gallivm: Fix several glitches introduced in the prev commit.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_tgsi_soa.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * TGSI to LLVM IR translation -- SoA.
32 *
33 * @author Jose Fonseca <jfonseca@vmware.com>
34 *
35 * Based on tgsi_sse2.c code written by Michal Krol, Keith Whitwell,
36 * Brian Paul, and others.
37 */
38
39 #include "pipe/p_config.h"
40 #include "pipe/p_shader_tokens.h"
41 #include "util/u_debug.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44 #include "tgsi/tgsi_dump.h"
45 #include "tgsi/tgsi_info.h"
46 #include "tgsi/tgsi_parse.h"
47 #include "tgsi/tgsi_util.h"
48 #include "tgsi/tgsi_exec.h"
49 #include "tgsi/tgsi_scan.h"
50 #include "lp_bld_type.h"
51 #include "lp_bld_const.h"
52 #include "lp_bld_arit.h"
53 #include "lp_bld_logic.h"
54 #include "lp_bld_swizzle.h"
55 #include "lp_bld_flow.h"
56 #include "lp_bld_tgsi.h"
57 #include "lp_bld_limits.h"
58 #include "lp_bld_debug.h"
59
60
61 #define FOR_EACH_CHANNEL( CHAN )\
62 for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)
63
64 #define IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
65 ((INST)->Dst[0].Register.WriteMask & (1 << (CHAN)))
66
67 #define IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
68 if (IS_DST0_CHANNEL_ENABLED( INST, CHAN ))
69
70 #define FOR_EACH_DST0_ENABLED_CHANNEL( INST, CHAN )\
71 FOR_EACH_CHANNEL( CHAN )\
72 IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )
73
74 #define CHAN_X 0
75 #define CHAN_Y 1
76 #define CHAN_Z 2
77 #define CHAN_W 3
78
79 #define QUAD_TOP_LEFT 0
80 #define QUAD_TOP_RIGHT 1
81 #define QUAD_BOTTOM_LEFT 2
82 #define QUAD_BOTTOM_RIGHT 3
83
84
85 struct lp_exec_mask {
86 struct lp_build_context *bld;
87
88 boolean has_mask;
89
90 LLVMTypeRef int_vec_type;
91
92 LLVMValueRef cond_stack[LP_MAX_TGSI_NESTING];
93 int cond_stack_size;
94 LLVMValueRef cond_mask;
95
96 LLVMValueRef break_stack[LP_MAX_TGSI_NESTING];
97 int break_stack_size;
98 LLVMValueRef break_mask;
99
100 LLVMValueRef cont_stack[LP_MAX_TGSI_NESTING];
101 int cont_stack_size;
102 LLVMValueRef cont_mask;
103
104 LLVMBasicBlockRef loop_stack[LP_MAX_TGSI_NESTING];
105 int loop_stack_size;
106 LLVMBasicBlockRef loop_block;
107
108
109 LLVMValueRef exec_mask;
110 };
111
112 struct lp_build_tgsi_soa_context
113 {
114 struct lp_build_context base;
115
116 LLVMValueRef consts_ptr;
117 const LLVMValueRef *pos;
118 const LLVMValueRef (*inputs)[NUM_CHANNELS];
119 LLVMValueRef (*outputs)[NUM_CHANNELS];
120
121 struct lp_build_sampler_soa *sampler;
122
123 LLVMValueRef immediates[LP_MAX_TGSI_IMMEDIATES][NUM_CHANNELS];
124 LLVMValueRef temps[LP_MAX_TGSI_TEMPS][NUM_CHANNELS];
125 LLVMValueRef addr[LP_MAX_TGSI_ADDRS][NUM_CHANNELS];
126
127 /* we allocate an array of temps if we have indirect
128 * addressing and then the temps above is unused */
129 LLVMValueRef temps_array;
130 boolean has_indirect_addressing;
131
132 struct lp_build_mask_context *mask;
133 struct lp_exec_mask exec_mask;
134 };
135
136 static const unsigned char
137 swizzle_left[4] = {
138 QUAD_TOP_LEFT, QUAD_TOP_LEFT,
139 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_LEFT
140 };
141
142 static const unsigned char
143 swizzle_right[4] = {
144 QUAD_TOP_RIGHT, QUAD_TOP_RIGHT,
145 QUAD_BOTTOM_RIGHT, QUAD_BOTTOM_RIGHT
146 };
147
148 static const unsigned char
149 swizzle_top[4] = {
150 QUAD_TOP_LEFT, QUAD_TOP_RIGHT,
151 QUAD_TOP_LEFT, QUAD_TOP_RIGHT
152 };
153
154 static const unsigned char
155 swizzle_bottom[4] = {
156 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_RIGHT,
157 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_RIGHT
158 };
159
160 static void lp_exec_mask_init(struct lp_exec_mask *mask, struct lp_build_context *bld)
161 {
162 mask->bld = bld;
163 mask->has_mask = FALSE;
164 mask->cond_stack_size = 0;
165 mask->loop_stack_size = 0;
166 mask->break_stack_size = 0;
167 mask->cont_stack_size = 0;
168
169 mask->int_vec_type = lp_build_int_vec_type(mask->bld->type);
170 }
171
172 static void lp_exec_mask_update(struct lp_exec_mask *mask)
173 {
174 if (mask->loop_stack_size) {
175 /*for loops we need to update the entire mask at runtime */
176 LLVMValueRef tmp;
177 assert(mask->break_mask);
178 tmp = LLVMBuildAnd(mask->bld->builder,
179 mask->cont_mask,
180 mask->break_mask,
181 "maskcb");
182 mask->exec_mask = LLVMBuildAnd(mask->bld->builder,
183 mask->cond_mask,
184 tmp,
185 "maskfull");
186 } else
187 mask->exec_mask = mask->cond_mask;
188
189
190 mask->has_mask = (mask->cond_stack_size > 0 ||
191 mask->loop_stack_size > 0);
192 }
193
194 static void lp_exec_mask_cond_push(struct lp_exec_mask *mask,
195 LLVMValueRef val)
196 {
197 assert(mask->cond_stack_size < LP_MAX_TGSI_NESTING);
198 mask->cond_stack[mask->cond_stack_size++] = mask->cond_mask;
199 mask->cond_mask = LLVMBuildBitCast(mask->bld->builder, val,
200 mask->int_vec_type, "");
201
202 lp_exec_mask_update(mask);
203 }
204
205 static void lp_exec_mask_cond_invert(struct lp_exec_mask *mask)
206 {
207 LLVMValueRef prev_mask = mask->cond_stack[mask->cond_stack_size - 1];
208 LLVMValueRef inv_mask = LLVMBuildNot(mask->bld->builder,
209 mask->cond_mask, "");
210
211 /* means that we didn't have any mask before and that
212 * we were fully enabled */
213 if (mask->cond_stack_size <= 1) {
214 prev_mask = LLVMConstAllOnes(mask->int_vec_type);
215 }
216
217 mask->cond_mask = LLVMBuildAnd(mask->bld->builder,
218 inv_mask,
219 prev_mask, "");
220 lp_exec_mask_update(mask);
221 }
222
223 static void lp_exec_mask_cond_pop(struct lp_exec_mask *mask)
224 {
225 mask->cond_mask = mask->cond_stack[--mask->cond_stack_size];
226 lp_exec_mask_update(mask);
227 }
228
229 static void lp_exec_bgnloop(struct lp_exec_mask *mask)
230 {
231
232 if (mask->cont_stack_size == 0)
233 mask->cont_mask = LLVMConstAllOnes(mask->int_vec_type);
234 if (mask->break_stack_size == 0)
235 mask->break_mask = LLVMConstAllOnes(mask->int_vec_type);
236 if (mask->cond_stack_size == 0)
237 mask->cond_mask = LLVMConstAllOnes(mask->int_vec_type);
238
239 assert(mask->break_stack_size < LP_MAX_TGSI_NESTING);
240 assert(mask->cont_stack_size < LP_MAX_TGSI_NESTING);
241 assert(mask->break_stack_size < LP_MAX_TGSI_NESTING);
242
243 mask->break_stack[mask->break_stack_size++] = mask->break_mask;
244 mask->cont_stack[mask->cont_stack_size++] = mask->cont_mask;
245 mask->loop_stack[mask->loop_stack_size++] = mask->loop_block;
246 mask->loop_block = lp_build_insert_new_block(mask->bld->builder, "bgnloop");
247 LLVMBuildBr(mask->bld->builder, mask->loop_block);
248 LLVMPositionBuilderAtEnd(mask->bld->builder, mask->loop_block);
249
250 lp_exec_mask_update(mask);
251 }
252
253 static void lp_exec_break(struct lp_exec_mask *mask)
254 {
255 LLVMValueRef exec_mask = LLVMBuildNot(mask->bld->builder,
256 mask->exec_mask,
257 "break");
258
259 mask->break_mask = LLVMBuildAnd(mask->bld->builder,
260 mask->break_mask,
261 exec_mask, "break_full");
262
263 lp_exec_mask_update(mask);
264 }
265
266 static void lp_exec_continue(struct lp_exec_mask *mask)
267 {
268 LLVMValueRef exec_mask = LLVMBuildNot(mask->bld->builder,
269 mask->exec_mask,
270 "");
271
272 mask->cont_mask = LLVMBuildAnd(mask->bld->builder,
273 mask->cont_mask,
274 exec_mask, "");
275
276 lp_exec_mask_update(mask);
277 }
278
279
280 static void lp_exec_endloop(struct lp_exec_mask *mask)
281 {
282 LLVMBasicBlockRef endloop;
283 LLVMTypeRef reg_type = LLVMIntType(mask->bld->type.width*
284 mask->bld->type.length);
285 LLVMValueRef i1cond;
286
287 assert(mask->break_mask);
288
289 /* i1cond = (mask == 0) */
290 i1cond = LLVMBuildICmp(
291 mask->bld->builder,
292 LLVMIntNE,
293 LLVMBuildBitCast(mask->bld->builder, mask->break_mask, reg_type, ""),
294 LLVMConstNull(reg_type), "");
295
296 endloop = lp_build_insert_new_block(mask->bld->builder, "endloop");
297
298 LLVMBuildCondBr(mask->bld->builder,
299 i1cond, mask->loop_block, endloop);
300
301 LLVMPositionBuilderAtEnd(mask->bld->builder, endloop);
302
303 mask->loop_block = mask->loop_stack[--mask->loop_stack_size];
304 /* pop the cont mask */
305 if (mask->cont_stack_size) {
306 mask->cont_mask = mask->cont_stack[--mask->cont_stack_size];
307 }
308 /* pop the break mask */
309 if (mask->break_stack_size) {
310 mask->break_mask = mask->break_stack[--mask->break_stack_size];
311 }
312
313 lp_exec_mask_update(mask);
314 }
315
316 /* stores val into an address pointed to by dst.
317 * mask->exec_mask is used to figure out which bits of val
318 * should be stored into the address
319 * (0 means don't store this bit, 1 means do store).
320 */
321 static void lp_exec_mask_store(struct lp_exec_mask *mask,
322 LLVMValueRef val,
323 LLVMValueRef dst)
324 {
325 if (mask->has_mask) {
326 LLVMValueRef real_val, dst_val;
327
328 dst_val = LLVMBuildLoad(mask->bld->builder, dst, "");
329 real_val = lp_build_select(mask->bld,
330 mask->exec_mask,
331 val, dst_val);
332
333 LLVMBuildStore(mask->bld->builder, real_val, dst);
334 } else
335 LLVMBuildStore(mask->bld->builder, val, dst);
336 }
337
338
339 static LLVMValueRef
340 emit_ddx(struct lp_build_tgsi_soa_context *bld,
341 LLVMValueRef src)
342 {
343 LLVMValueRef src_left = lp_build_swizzle1_aos(&bld->base, src, swizzle_left);
344 LLVMValueRef src_right = lp_build_swizzle1_aos(&bld->base, src, swizzle_right);
345 return lp_build_sub(&bld->base, src_right, src_left);
346 }
347
348
349 static LLVMValueRef
350 emit_ddy(struct lp_build_tgsi_soa_context *bld,
351 LLVMValueRef src)
352 {
353 LLVMValueRef src_top = lp_build_swizzle1_aos(&bld->base, src, swizzle_top);
354 LLVMValueRef src_bottom = lp_build_swizzle1_aos(&bld->base, src, swizzle_bottom);
355 return lp_build_sub(&bld->base, src_top, src_bottom);
356 }
357
358 static LLVMValueRef
359 get_temp_ptr(struct lp_build_tgsi_soa_context *bld,
360 unsigned index,
361 unsigned swizzle,
362 boolean is_indirect,
363 LLVMValueRef addr)
364 {
365 if (!bld->has_indirect_addressing) {
366 return bld->temps[index][swizzle];
367 } else {
368 LLVMValueRef lindex =
369 LLVMConstInt(LLVMInt32Type(), index*4 + swizzle, 0);
370 if (is_indirect)
371 lindex = lp_build_add(&bld->base, lindex, addr);
372 return LLVMBuildGEP(bld->base.builder, bld->temps_array, &lindex, 1, "");
373 }
374 }
375
376 /**
377 * Register fetch.
378 */
379 static LLVMValueRef
380 emit_fetch(
381 struct lp_build_tgsi_soa_context *bld,
382 const struct tgsi_full_instruction *inst,
383 unsigned index,
384 const unsigned chan_index )
385 {
386 const struct tgsi_full_src_register *reg = &inst->Src[index];
387 unsigned swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
388 LLVMValueRef res;
389 LLVMValueRef addr;
390
391 switch (swizzle) {
392 case TGSI_SWIZZLE_X:
393 case TGSI_SWIZZLE_Y:
394 case TGSI_SWIZZLE_Z:
395 case TGSI_SWIZZLE_W:
396
397 if (reg->Register.Indirect) {
398 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->base.type);
399 unsigned swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, chan_index );
400 addr = LLVMBuildLoad(bld->base.builder,
401 bld->addr[reg->Indirect.Index][swizzle],
402 "");
403 /* for indexing we want integers */
404 addr = LLVMBuildFPToSI(bld->base.builder, addr,
405 int_vec_type, "");
406 addr = LLVMBuildExtractElement(bld->base.builder,
407 addr, LLVMConstInt(LLVMInt32Type(), 0, 0),
408 "");
409 addr = lp_build_mul(&bld->base, addr, LLVMConstInt(LLVMInt32Type(), 4, 0));
410 }
411
412 switch (reg->Register.File) {
413 case TGSI_FILE_CONSTANT: {
414 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), reg->Register.Index*4 + swizzle, 0);
415 LLVMValueRef scalar, scalar_ptr;
416
417 if (reg->Register.Indirect) {
418 /*lp_build_printf(bld->base.builder,
419 "\taddr = %d\n", addr);*/
420 index = lp_build_add(&bld->base, index, addr);
421 }
422 scalar_ptr = LLVMBuildGEP(bld->base.builder, bld->consts_ptr, &index, 1, "");
423 scalar = LLVMBuildLoad(bld->base.builder, scalar_ptr, "");
424
425 res = lp_build_broadcast_scalar(&bld->base, scalar);
426 break;
427 }
428
429 case TGSI_FILE_IMMEDIATE:
430 res = bld->immediates[reg->Register.Index][swizzle];
431 assert(res);
432 break;
433
434 case TGSI_FILE_INPUT:
435 res = bld->inputs[reg->Register.Index][swizzle];
436 assert(res);
437 break;
438
439 case TGSI_FILE_TEMPORARY: {
440 LLVMValueRef temp_ptr = get_temp_ptr(bld, reg->Register.Index,
441 swizzle,
442 reg->Register.Indirect,
443 addr);
444 res = LLVMBuildLoad(bld->base.builder, temp_ptr, "");
445 if(!res)
446 return bld->base.undef;
447 break;
448 }
449
450 default:
451 assert( 0 );
452 return bld->base.undef;
453 }
454 break;
455
456 default:
457 assert( 0 );
458 return bld->base.undef;
459 }
460
461 switch( tgsi_util_get_full_src_register_sign_mode( reg, chan_index ) ) {
462 case TGSI_UTIL_SIGN_CLEAR:
463 res = lp_build_abs( &bld->base, res );
464 break;
465
466 case TGSI_UTIL_SIGN_SET:
467 /* TODO: Use bitwese OR for floating point */
468 res = lp_build_abs( &bld->base, res );
469 res = LLVMBuildNeg( bld->base.builder, res, "" );
470 break;
471
472 case TGSI_UTIL_SIGN_TOGGLE:
473 res = LLVMBuildNeg( bld->base.builder, res, "" );
474 break;
475
476 case TGSI_UTIL_SIGN_KEEP:
477 break;
478 }
479
480 return res;
481 }
482
483
484 /**
485 * Register fetch with derivatives.
486 */
487 static void
488 emit_fetch_deriv(
489 struct lp_build_tgsi_soa_context *bld,
490 const struct tgsi_full_instruction *inst,
491 unsigned index,
492 const unsigned chan_index,
493 LLVMValueRef *res,
494 LLVMValueRef *ddx,
495 LLVMValueRef *ddy)
496 {
497 LLVMValueRef src;
498
499 src = emit_fetch(bld, inst, index, chan_index);
500
501 if(res)
502 *res = src;
503
504 /* TODO: use interpolation coeffs for inputs */
505
506 if(ddx)
507 *ddx = emit_ddx(bld, src);
508
509 if(ddy)
510 *ddy = emit_ddy(bld, src);
511 }
512
513
514 /**
515 * Register store.
516 */
517 static void
518 emit_store(
519 struct lp_build_tgsi_soa_context *bld,
520 const struct tgsi_full_instruction *inst,
521 unsigned index,
522 unsigned chan_index,
523 LLVMValueRef value)
524 {
525 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
526 LLVMValueRef addr;
527
528 switch( inst->Instruction.Saturate ) {
529 case TGSI_SAT_NONE:
530 break;
531
532 case TGSI_SAT_ZERO_ONE:
533 value = lp_build_max(&bld->base, value, bld->base.zero);
534 value = lp_build_min(&bld->base, value, bld->base.one);
535 break;
536
537 case TGSI_SAT_MINUS_PLUS_ONE:
538 value = lp_build_max(&bld->base, value, lp_build_const_vec(bld->base.type, -1.0));
539 value = lp_build_min(&bld->base, value, bld->base.one);
540 break;
541
542 default:
543 assert(0);
544 }
545
546 if (reg->Register.Indirect) {
547 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->base.type);
548 unsigned swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, chan_index );
549 addr = LLVMBuildLoad(bld->base.builder,
550 bld->addr[reg->Indirect.Index][swizzle],
551 "");
552 /* for indexing we want integers */
553 addr = LLVMBuildFPToSI(bld->base.builder, addr,
554 int_vec_type, "");
555 addr = LLVMBuildExtractElement(bld->base.builder,
556 addr, LLVMConstInt(LLVMInt32Type(), 0, 0),
557 "");
558 addr = lp_build_mul(&bld->base, addr, LLVMConstInt(LLVMInt32Type(), 4, 0));
559 }
560
561 switch( reg->Register.File ) {
562 case TGSI_FILE_OUTPUT:
563 lp_exec_mask_store(&bld->exec_mask, value,
564 bld->outputs[reg->Register.Index][chan_index]);
565 break;
566
567 case TGSI_FILE_TEMPORARY: {
568 LLVMValueRef temp_ptr = get_temp_ptr(bld, reg->Register.Index,
569 chan_index,
570 reg->Register.Indirect,
571 addr);
572 lp_exec_mask_store(&bld->exec_mask, value, temp_ptr);
573 break;
574 }
575
576 case TGSI_FILE_ADDRESS:
577 lp_exec_mask_store(&bld->exec_mask, value,
578 bld->addr[reg->Indirect.Index][chan_index]);
579 break;
580
581 case TGSI_FILE_PREDICATE:
582 /* FIXME */
583 break;
584
585 default:
586 assert( 0 );
587 }
588 }
589
590
591 /**
592 * High-level instruction translators.
593 */
594
595 enum tex_modifier {
596 TEX_MODIFIER_NONE = 0,
597 TEX_MODIFIER_PROJECTED,
598 TEX_MODIFIER_LOD_BIAS,
599 TEX_MODIFIER_EXPLICIT_LOD,
600 TEX_MODIFIER_EXPLICIT_DERIV
601 };
602
603 static void
604 emit_tex( struct lp_build_tgsi_soa_context *bld,
605 const struct tgsi_full_instruction *inst,
606 enum tex_modifier modifier,
607 LLVMValueRef *texel)
608 {
609 unsigned unit;
610 LLVMValueRef lodbias;
611 LLVMValueRef oow = NULL;
612 LLVMValueRef coords[3];
613 LLVMValueRef ddx[3];
614 LLVMValueRef ddy[3];
615 unsigned num_coords;
616 unsigned i;
617
618 if (!bld->sampler) {
619 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
620 for (i = 0; i < 4; i++) {
621 texel[i] = bld->base.undef;
622 }
623 return;
624 }
625
626 switch (inst->Texture.Texture) {
627 case TGSI_TEXTURE_1D:
628 num_coords = 1;
629 break;
630 case TGSI_TEXTURE_2D:
631 case TGSI_TEXTURE_RECT:
632 num_coords = 2;
633 break;
634 case TGSI_TEXTURE_SHADOW1D:
635 case TGSI_TEXTURE_SHADOW2D:
636 case TGSI_TEXTURE_SHADOWRECT:
637 case TGSI_TEXTURE_3D:
638 case TGSI_TEXTURE_CUBE:
639 num_coords = 3;
640 break;
641 default:
642 assert(0);
643 return;
644 }
645
646 /* FIXME: Treat TEX_MODIFIER_EXPLICIT_LOD correctly */
647 if (modifier == TEX_MODIFIER_LOD_BIAS || modifier == TEX_MODIFIER_EXPLICIT_LOD)
648 lodbias = emit_fetch( bld, inst, 0, 3 );
649 else
650 lodbias = bld->base.zero;
651
652 if (modifier == TEX_MODIFIER_PROJECTED) {
653 oow = emit_fetch( bld, inst, 0, 3 );
654 oow = lp_build_rcp(&bld->base, oow);
655 }
656
657 for (i = 0; i < num_coords; i++) {
658 coords[i] = emit_fetch( bld, inst, 0, i );
659 if (modifier == TEX_MODIFIER_PROJECTED)
660 coords[i] = lp_build_mul(&bld->base, coords[i], oow);
661 }
662 for (i = num_coords; i < 3; i++) {
663 coords[i] = bld->base.undef;
664 }
665
666 if (modifier == TEX_MODIFIER_EXPLICIT_DERIV) {
667 for (i = 0; i < num_coords; i++) {
668 ddx[i] = emit_fetch( bld, inst, 1, i );
669 ddy[i] = emit_fetch( bld, inst, 2, i );
670 }
671 unit = inst->Src[3].Register.Index;
672 } else {
673 for (i = 0; i < num_coords; i++) {
674 ddx[i] = emit_ddx( bld, coords[i] );
675 ddy[i] = emit_ddy( bld, coords[i] );
676 }
677 unit = inst->Src[1].Register.Index;
678 }
679 for (i = num_coords; i < 3; i++) {
680 ddx[i] = bld->base.undef;
681 ddy[i] = bld->base.undef;
682 }
683
684 bld->sampler->emit_fetch_texel(bld->sampler,
685 bld->base.builder,
686 bld->base.type,
687 unit, num_coords, coords,
688 ddx, ddy, lodbias,
689 texel);
690 }
691
692
693 /**
694 * Kill fragment if any of the src register values are negative.
695 */
696 static void
697 emit_kil(
698 struct lp_build_tgsi_soa_context *bld,
699 const struct tgsi_full_instruction *inst )
700 {
701 const struct tgsi_full_src_register *reg = &inst->Src[0];
702 LLVMValueRef terms[NUM_CHANNELS];
703 LLVMValueRef mask;
704 unsigned chan_index;
705
706 memset(&terms, 0, sizeof terms);
707
708 FOR_EACH_CHANNEL( chan_index ) {
709 unsigned swizzle;
710
711 /* Unswizzle channel */
712 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
713
714 /* Check if the component has not been already tested. */
715 assert(swizzle < NUM_CHANNELS);
716 if( !terms[swizzle] )
717 /* TODO: change the comparison operator instead of setting the sign */
718 terms[swizzle] = emit_fetch(bld, inst, 0, chan_index );
719 }
720
721 mask = NULL;
722 FOR_EACH_CHANNEL( chan_index ) {
723 if(terms[chan_index]) {
724 LLVMValueRef chan_mask;
725
726 /*
727 * If term < 0 then mask = 0 else mask = ~0.
728 */
729 chan_mask = lp_build_cmp(&bld->base, PIPE_FUNC_GEQUAL, terms[chan_index], bld->base.zero);
730
731 if(mask)
732 mask = LLVMBuildAnd(bld->base.builder, mask, chan_mask, "");
733 else
734 mask = chan_mask;
735 }
736 }
737
738 if(mask)
739 lp_build_mask_update(bld->mask, mask);
740 }
741
742
743 /**
744 * Predicated fragment kill.
745 * XXX Actually, we do an unconditional kill (as in tgsi_exec.c).
746 * The only predication is the execution mask which will apply if
747 * we're inside a loop or conditional.
748 */
749 static void
750 emit_kilp(struct lp_build_tgsi_soa_context *bld,
751 const struct tgsi_full_instruction *inst)
752 {
753 LLVMValueRef mask;
754
755 /* For those channels which are "alive", disable fragment shader
756 * execution.
757 */
758 if (bld->exec_mask.has_mask) {
759 mask = LLVMBuildNot(bld->base.builder, bld->exec_mask.exec_mask, "kilp");
760 }
761 else {
762 mask = bld->base.zero;
763 }
764
765 lp_build_mask_update(bld->mask, mask);
766 }
767
768 static void
769 emit_declaration(
770 struct lp_build_tgsi_soa_context *bld,
771 const struct tgsi_full_declaration *decl)
772 {
773 LLVMTypeRef vec_type = lp_build_vec_type(bld->base.type);
774
775 unsigned first = decl->Range.First;
776 unsigned last = decl->Range.Last;
777 unsigned idx, i;
778
779 for (idx = first; idx <= last; ++idx) {
780 switch (decl->Declaration.File) {
781 case TGSI_FILE_TEMPORARY:
782 assert(idx < LP_MAX_TGSI_TEMPS);
783 if (bld->has_indirect_addressing) {
784 LLVMValueRef val = LLVMConstInt(LLVMInt32Type(),
785 last*4 + 4, 0);
786 bld->temps_array = lp_build_array_alloca(bld->base.builder,
787 vec_type, val, "");
788 } else {
789 for (i = 0; i < NUM_CHANNELS; i++)
790 bld->temps[idx][i] = lp_build_alloca(bld->base.builder,
791 vec_type, "");
792 }
793 break;
794
795 case TGSI_FILE_OUTPUT:
796 for (i = 0; i < NUM_CHANNELS; i++)
797 bld->outputs[idx][i] = lp_build_alloca(bld->base.builder,
798 vec_type, "");
799 break;
800
801 case TGSI_FILE_ADDRESS:
802 assert(idx < LP_MAX_TGSI_ADDRS);
803 for (i = 0; i < NUM_CHANNELS; i++)
804 bld->addr[idx][i] = lp_build_alloca(bld->base.builder,
805 vec_type, "");
806 break;
807
808 case TGSI_FILE_PREDICATE:
809 _debug_printf("warning: predicate registers not yet implemented\n");
810 break;
811
812 default:
813 /* don't need to declare other vars */
814 break;
815 }
816 }
817 }
818
819
820 /**
821 * Emit LLVM for one TGSI instruction.
822 * \param return TRUE for success, FALSE otherwise
823 */
824 static boolean
825 emit_instruction(
826 struct lp_build_tgsi_soa_context *bld,
827 const struct tgsi_full_instruction *inst,
828 const struct tgsi_opcode_info *info)
829 {
830 unsigned chan_index;
831 LLVMValueRef src0, src1, src2;
832 LLVMValueRef tmp0, tmp1, tmp2;
833 LLVMValueRef tmp3 = NULL;
834 LLVMValueRef tmp4 = NULL;
835 LLVMValueRef tmp5 = NULL;
836 LLVMValueRef tmp6 = NULL;
837 LLVMValueRef tmp7 = NULL;
838 LLVMValueRef res;
839 LLVMValueRef dst0[NUM_CHANNELS];
840
841 /*
842 * Stores and write masks are handled in a general fashion after the long
843 * instruction opcode switch statement.
844 *
845 * Although not stricitly necessary, we avoid generating instructions for
846 * channels which won't be stored, in cases where's that easy. For some
847 * complex instructions, like texture sampling, it is more convenient to
848 * assume a full writemask and then let LLVM optimization passes eliminate
849 * redundant code.
850 */
851
852 assert(info->num_dst <= 1);
853 if(info->num_dst) {
854 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
855 dst0[chan_index] = bld->base.undef;
856 }
857 }
858
859 switch (inst->Instruction.Opcode) {
860 case TGSI_OPCODE_ARL:
861 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
862 tmp0 = emit_fetch( bld, inst, 0, chan_index );
863 tmp0 = lp_build_floor(&bld->base, tmp0);
864 dst0[chan_index] = tmp0;
865 }
866 break;
867
868 case TGSI_OPCODE_MOV:
869 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
870 dst0[chan_index] = emit_fetch( bld, inst, 0, chan_index );
871 }
872 break;
873
874 case TGSI_OPCODE_LIT:
875 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ) {
876 dst0[CHAN_X] = bld->base.one;
877 }
878 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ) {
879 src0 = emit_fetch( bld, inst, 0, CHAN_X );
880 dst0[CHAN_Y] = lp_build_max( &bld->base, src0, bld->base.zero);
881 }
882 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
883 /* XMM[1] = SrcReg[0].yyyy */
884 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
885 /* XMM[1] = max(XMM[1], 0) */
886 tmp1 = lp_build_max( &bld->base, tmp1, bld->base.zero);
887 /* XMM[2] = SrcReg[0].wwww */
888 tmp2 = emit_fetch( bld, inst, 0, CHAN_W );
889 tmp1 = lp_build_pow( &bld->base, tmp1, tmp2);
890 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
891 tmp2 = lp_build_cmp(&bld->base, PIPE_FUNC_GREATER, tmp0, bld->base.zero);
892 dst0[CHAN_Z] = lp_build_select(&bld->base, tmp2, tmp1, bld->base.zero);
893 }
894 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) ) {
895 dst0[CHAN_W] = bld->base.one;
896 }
897 break;
898
899 case TGSI_OPCODE_RCP:
900 /* TGSI_OPCODE_RECIP */
901 src0 = emit_fetch( bld, inst, 0, CHAN_X );
902 res = lp_build_rcp(&bld->base, src0);
903 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
904 dst0[chan_index] = res;
905 }
906 break;
907
908 case TGSI_OPCODE_RSQ:
909 /* TGSI_OPCODE_RECIPSQRT */
910 src0 = emit_fetch( bld, inst, 0, CHAN_X );
911 src0 = lp_build_abs(&bld->base, src0);
912 res = lp_build_rsqrt(&bld->base, src0);
913 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
914 dst0[chan_index] = res;
915 }
916 break;
917
918 case TGSI_OPCODE_EXP:
919 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
920 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
921 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z )) {
922 LLVMValueRef *p_exp2_int_part = NULL;
923 LLVMValueRef *p_frac_part = NULL;
924 LLVMValueRef *p_exp2 = NULL;
925
926 src0 = emit_fetch( bld, inst, 0, CHAN_X );
927
928 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
929 p_exp2_int_part = &tmp0;
930 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
931 p_frac_part = &tmp1;
932 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
933 p_exp2 = &tmp2;
934
935 lp_build_exp2_approx(&bld->base, src0, p_exp2_int_part, p_frac_part, p_exp2);
936
937 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
938 dst0[CHAN_X] = tmp0;
939 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
940 dst0[CHAN_Y] = tmp1;
941 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
942 dst0[CHAN_Z] = tmp2;
943 }
944 /* dst.w = 1.0 */
945 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_W )) {
946 dst0[CHAN_W] = bld->base.one;
947 }
948 break;
949
950 case TGSI_OPCODE_LOG:
951 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
952 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
953 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z )) {
954 LLVMValueRef *p_floor_log2 = NULL;
955 LLVMValueRef *p_exp = NULL;
956 LLVMValueRef *p_log2 = NULL;
957
958 src0 = emit_fetch( bld, inst, 0, CHAN_X );
959 src0 = lp_build_abs( &bld->base, src0 );
960
961 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
962 p_floor_log2 = &tmp0;
963 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
964 p_exp = &tmp1;
965 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
966 p_log2 = &tmp2;
967
968 lp_build_log2_approx(&bld->base, src0, p_exp, p_floor_log2, p_log2);
969
970 /* dst.x = floor(lg2(abs(src.x))) */
971 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
972 dst0[CHAN_X] = tmp0;
973 /* dst.y = abs(src)/ex2(floor(lg2(abs(src.x)))) */
974 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y )) {
975 dst0[CHAN_Y] = lp_build_div( &bld->base, src0, tmp1);
976 }
977 /* dst.z = lg2(abs(src.x)) */
978 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
979 dst0[CHAN_Z] = tmp2;
980 }
981 /* dst.w = 1.0 */
982 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_W )) {
983 dst0[CHAN_W] = bld->base.one;
984 }
985 break;
986
987 case TGSI_OPCODE_MUL:
988 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
989 src0 = emit_fetch( bld, inst, 0, chan_index );
990 src1 = emit_fetch( bld, inst, 1, chan_index );
991 dst0[chan_index] = lp_build_mul(&bld->base, src0, src1);
992 }
993 break;
994
995 case TGSI_OPCODE_ADD:
996 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
997 src0 = emit_fetch( bld, inst, 0, chan_index );
998 src1 = emit_fetch( bld, inst, 1, chan_index );
999 dst0[chan_index] = lp_build_add(&bld->base, src0, src1);
1000 }
1001 break;
1002
1003 case TGSI_OPCODE_DP3:
1004 /* TGSI_OPCODE_DOT3 */
1005 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1006 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
1007 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1008 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
1009 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
1010 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1011 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1012 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
1013 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
1014 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1015 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1016 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1017 dst0[chan_index] = tmp0;
1018 }
1019 break;
1020
1021 case TGSI_OPCODE_DP4:
1022 /* TGSI_OPCODE_DOT4 */
1023 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1024 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
1025 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1026 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
1027 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
1028 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1029 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1030 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
1031 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
1032 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1033 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1034 tmp1 = emit_fetch( bld, inst, 0, CHAN_W );
1035 tmp2 = emit_fetch( bld, inst, 1, CHAN_W );
1036 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1037 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1038 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1039 dst0[chan_index] = tmp0;
1040 }
1041 break;
1042
1043 case TGSI_OPCODE_DST:
1044 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1045 dst0[CHAN_X] = bld->base.one;
1046 }
1047 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1048 tmp0 = emit_fetch( bld, inst, 0, CHAN_Y );
1049 tmp1 = emit_fetch( bld, inst, 1, CHAN_Y );
1050 dst0[CHAN_Y] = lp_build_mul( &bld->base, tmp0, tmp1);
1051 }
1052 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1053 dst0[CHAN_Z] = emit_fetch( bld, inst, 0, CHAN_Z );
1054 }
1055 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1056 dst0[CHAN_W] = emit_fetch( bld, inst, 1, CHAN_W );
1057 }
1058 break;
1059
1060 case TGSI_OPCODE_MIN:
1061 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1062 src0 = emit_fetch( bld, inst, 0, chan_index );
1063 src1 = emit_fetch( bld, inst, 1, chan_index );
1064 dst0[chan_index] = lp_build_min( &bld->base, src0, src1 );
1065 }
1066 break;
1067
1068 case TGSI_OPCODE_MAX:
1069 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1070 src0 = emit_fetch( bld, inst, 0, chan_index );
1071 src1 = emit_fetch( bld, inst, 1, chan_index );
1072 dst0[chan_index] = lp_build_max( &bld->base, src0, src1 );
1073 }
1074 break;
1075
1076 case TGSI_OPCODE_SLT:
1077 /* TGSI_OPCODE_SETLT */
1078 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1079 src0 = emit_fetch( bld, inst, 0, chan_index );
1080 src1 = emit_fetch( bld, inst, 1, chan_index );
1081 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LESS, src0, src1 );
1082 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1083 }
1084 break;
1085
1086 case TGSI_OPCODE_SGE:
1087 /* TGSI_OPCODE_SETGE */
1088 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1089 src0 = emit_fetch( bld, inst, 0, chan_index );
1090 src1 = emit_fetch( bld, inst, 1, chan_index );
1091 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GEQUAL, src0, src1 );
1092 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1093 }
1094 break;
1095
1096 case TGSI_OPCODE_MAD:
1097 /* TGSI_OPCODE_MADD */
1098 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1099 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1100 tmp1 = emit_fetch( bld, inst, 1, chan_index );
1101 tmp2 = emit_fetch( bld, inst, 2, chan_index );
1102 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1103 tmp0 = lp_build_add( &bld->base, tmp0, tmp2);
1104 dst0[chan_index] = tmp0;
1105 }
1106 break;
1107
1108 case TGSI_OPCODE_SUB:
1109 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1110 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1111 tmp1 = emit_fetch( bld, inst, 1, chan_index );
1112 dst0[chan_index] = lp_build_sub( &bld->base, tmp0, tmp1);
1113 }
1114 break;
1115
1116 case TGSI_OPCODE_LRP:
1117 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1118 src0 = emit_fetch( bld, inst, 0, chan_index );
1119 src1 = emit_fetch( bld, inst, 1, chan_index );
1120 src2 = emit_fetch( bld, inst, 2, chan_index );
1121 tmp0 = lp_build_sub( &bld->base, src1, src2 );
1122 tmp0 = lp_build_mul( &bld->base, src0, tmp0 );
1123 dst0[chan_index] = lp_build_add( &bld->base, tmp0, src2 );
1124 }
1125 break;
1126
1127 case TGSI_OPCODE_CND:
1128 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1129 src0 = emit_fetch( bld, inst, 0, chan_index );
1130 src1 = emit_fetch( bld, inst, 1, chan_index );
1131 src2 = emit_fetch( bld, inst, 2, chan_index );
1132 tmp1 = lp_build_const_vec(bld->base.type, 0.5);
1133 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GREATER, src2, tmp1);
1134 dst0[chan_index] = lp_build_select( &bld->base, tmp0, src0, src1 );
1135 }
1136 break;
1137
1138 case TGSI_OPCODE_DP2A:
1139 tmp0 = emit_fetch( bld, inst, 0, CHAN_X ); /* xmm0 = src[0].x */
1140 tmp1 = emit_fetch( bld, inst, 1, CHAN_X ); /* xmm1 = src[1].x */
1141 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 * xmm1 */
1142 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y ); /* xmm1 = src[0].y */
1143 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y ); /* xmm2 = src[1].y */
1144 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2); /* xmm1 = xmm1 * xmm2 */
1145 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1146 tmp1 = emit_fetch( bld, inst, 2, CHAN_X ); /* xmm1 = src[2].x */
1147 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1148 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1149 dst0[chan_index] = tmp0; /* dest[ch] = xmm0 */
1150 }
1151 break;
1152
1153 case TGSI_OPCODE_FRC:
1154 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1155 src0 = emit_fetch( bld, inst, 0, chan_index );
1156 tmp0 = lp_build_floor(&bld->base, src0);
1157 tmp0 = lp_build_sub(&bld->base, src0, tmp0);
1158 dst0[chan_index] = tmp0;
1159 }
1160 break;
1161
1162 case TGSI_OPCODE_CLAMP:
1163 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1164 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1165 src1 = emit_fetch( bld, inst, 1, chan_index );
1166 src2 = emit_fetch( bld, inst, 2, chan_index );
1167 tmp0 = lp_build_max(&bld->base, tmp0, src1);
1168 tmp0 = lp_build_min(&bld->base, tmp0, src2);
1169 dst0[chan_index] = tmp0;
1170 }
1171 break;
1172
1173 case TGSI_OPCODE_FLR:
1174 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1175 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1176 dst0[chan_index] = lp_build_floor(&bld->base, tmp0);
1177 }
1178 break;
1179
1180 case TGSI_OPCODE_ROUND:
1181 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1182 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1183 dst0[chan_index] = lp_build_round(&bld->base, tmp0);
1184 }
1185 break;
1186
1187 case TGSI_OPCODE_EX2: {
1188 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1189 tmp0 = lp_build_exp2( &bld->base, tmp0);
1190 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1191 dst0[chan_index] = tmp0;
1192 }
1193 break;
1194 }
1195
1196 case TGSI_OPCODE_LG2:
1197 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1198 tmp0 = lp_build_log2( &bld->base, tmp0);
1199 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1200 dst0[chan_index] = tmp0;
1201 }
1202 break;
1203
1204 case TGSI_OPCODE_POW:
1205 src0 = emit_fetch( bld, inst, 0, CHAN_X );
1206 src1 = emit_fetch( bld, inst, 1, CHAN_X );
1207 res = lp_build_pow( &bld->base, src0, src1 );
1208 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1209 dst0[chan_index] = res;
1210 }
1211 break;
1212
1213 case TGSI_OPCODE_XPD:
1214 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
1215 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ) {
1216 tmp1 = emit_fetch( bld, inst, 1, CHAN_Z );
1217 tmp3 = emit_fetch( bld, inst, 0, CHAN_Z );
1218 }
1219 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
1220 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
1221 tmp0 = emit_fetch( bld, inst, 0, CHAN_Y );
1222 tmp4 = emit_fetch( bld, inst, 1, CHAN_Y );
1223 }
1224 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1225 tmp2 = tmp0;
1226 tmp2 = lp_build_mul( &bld->base, tmp2, tmp1);
1227 tmp5 = tmp3;
1228 tmp5 = lp_build_mul( &bld->base, tmp5, tmp4);
1229 tmp2 = lp_build_sub( &bld->base, tmp2, tmp5);
1230 dst0[CHAN_X] = tmp2;
1231 }
1232 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
1233 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
1234 tmp2 = emit_fetch( bld, inst, 1, CHAN_X );
1235 tmp5 = emit_fetch( bld, inst, 0, CHAN_X );
1236 }
1237 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1238 tmp3 = lp_build_mul( &bld->base, tmp3, tmp2);
1239 tmp1 = lp_build_mul( &bld->base, tmp1, tmp5);
1240 tmp3 = lp_build_sub( &bld->base, tmp3, tmp1);
1241 dst0[CHAN_Y] = tmp3;
1242 }
1243 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1244 tmp5 = lp_build_mul( &bld->base, tmp5, tmp4);
1245 tmp0 = lp_build_mul( &bld->base, tmp0, tmp2);
1246 tmp5 = lp_build_sub( &bld->base, tmp5, tmp0);
1247 dst0[CHAN_Z] = tmp5;
1248 }
1249 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1250 dst0[CHAN_W] = bld->base.one;
1251 }
1252 break;
1253
1254 case TGSI_OPCODE_ABS:
1255 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1256 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1257 dst0[chan_index] = lp_build_abs( &bld->base, tmp0 );
1258 }
1259 break;
1260
1261 case TGSI_OPCODE_RCC:
1262 /* deprecated? */
1263 assert(0);
1264 return FALSE;
1265
1266 case TGSI_OPCODE_DPH:
1267 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1268 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
1269 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1270 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
1271 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
1272 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1273 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1274 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
1275 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
1276 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1277 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1278 tmp1 = emit_fetch( bld, inst, 1, CHAN_W );
1279 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1280 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1281 dst0[chan_index] = tmp0;
1282 }
1283 break;
1284
1285 case TGSI_OPCODE_COS:
1286 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1287 tmp0 = lp_build_cos( &bld->base, tmp0 );
1288 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1289 dst0[chan_index] = tmp0;
1290 }
1291 break;
1292
1293 case TGSI_OPCODE_DDX:
1294 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1295 emit_fetch_deriv( bld, inst, 0, chan_index, NULL, &dst0[chan_index], NULL);
1296 }
1297 break;
1298
1299 case TGSI_OPCODE_DDY:
1300 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1301 emit_fetch_deriv( bld, inst, 0, chan_index, NULL, NULL, &dst0[chan_index]);
1302 }
1303 break;
1304
1305 case TGSI_OPCODE_KILP:
1306 /* predicated kill */
1307 emit_kilp( bld, inst );
1308 break;
1309
1310 case TGSI_OPCODE_KIL:
1311 /* conditional kill */
1312 emit_kil( bld, inst );
1313 break;
1314
1315 case TGSI_OPCODE_PK2H:
1316 return FALSE;
1317 break;
1318
1319 case TGSI_OPCODE_PK2US:
1320 return FALSE;
1321 break;
1322
1323 case TGSI_OPCODE_PK4B:
1324 return FALSE;
1325 break;
1326
1327 case TGSI_OPCODE_PK4UB:
1328 return FALSE;
1329 break;
1330
1331 case TGSI_OPCODE_RFL:
1332 return FALSE;
1333 break;
1334
1335 case TGSI_OPCODE_SEQ:
1336 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1337 src0 = emit_fetch( bld, inst, 0, chan_index );
1338 src1 = emit_fetch( bld, inst, 1, chan_index );
1339 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_EQUAL, src0, src1 );
1340 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1341 }
1342 break;
1343
1344 case TGSI_OPCODE_SFL:
1345 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1346 dst0[chan_index] = bld->base.zero;
1347 }
1348 break;
1349
1350 case TGSI_OPCODE_SGT:
1351 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1352 src0 = emit_fetch( bld, inst, 0, chan_index );
1353 src1 = emit_fetch( bld, inst, 1, chan_index );
1354 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GREATER, src0, src1 );
1355 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1356 }
1357 break;
1358
1359 case TGSI_OPCODE_SIN:
1360 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1361 tmp0 = lp_build_sin( &bld->base, tmp0 );
1362 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1363 dst0[chan_index] = tmp0;
1364 }
1365 break;
1366
1367 case TGSI_OPCODE_SLE:
1368 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1369 src0 = emit_fetch( bld, inst, 0, chan_index );
1370 src1 = emit_fetch( bld, inst, 1, chan_index );
1371 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LEQUAL, src0, src1 );
1372 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1373 }
1374 break;
1375
1376 case TGSI_OPCODE_SNE:
1377 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1378 src0 = emit_fetch( bld, inst, 0, chan_index );
1379 src1 = emit_fetch( bld, inst, 1, chan_index );
1380 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_NOTEQUAL, src0, src1 );
1381 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1382 }
1383 break;
1384
1385 case TGSI_OPCODE_STR:
1386 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1387 dst0[chan_index] = bld->base.one;
1388 }
1389 break;
1390
1391 case TGSI_OPCODE_TEX:
1392 emit_tex( bld, inst, TEX_MODIFIER_NONE, dst0 );
1393 break;
1394
1395 case TGSI_OPCODE_TXD:
1396 emit_tex( bld, inst, TEX_MODIFIER_EXPLICIT_DERIV, dst0 );
1397 break;
1398
1399 case TGSI_OPCODE_UP2H:
1400 /* deprecated */
1401 assert (0);
1402 return FALSE;
1403 break;
1404
1405 case TGSI_OPCODE_UP2US:
1406 /* deprecated */
1407 assert(0);
1408 return FALSE;
1409 break;
1410
1411 case TGSI_OPCODE_UP4B:
1412 /* deprecated */
1413 assert(0);
1414 return FALSE;
1415 break;
1416
1417 case TGSI_OPCODE_UP4UB:
1418 /* deprecated */
1419 assert(0);
1420 return FALSE;
1421 break;
1422
1423 case TGSI_OPCODE_X2D:
1424 /* deprecated? */
1425 assert(0);
1426 return FALSE;
1427 break;
1428
1429 case TGSI_OPCODE_ARA:
1430 /* deprecated */
1431 assert(0);
1432 return FALSE;
1433 break;
1434
1435 case TGSI_OPCODE_ARR:
1436 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1437 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1438 tmp0 = lp_build_round(&bld->base, tmp0);
1439 dst0[chan_index] = tmp0;
1440 }
1441 break;
1442
1443 case TGSI_OPCODE_BRA:
1444 /* deprecated */
1445 assert(0);
1446 return FALSE;
1447 break;
1448
1449 case TGSI_OPCODE_CAL:
1450 /* FIXME */
1451 return FALSE;
1452 break;
1453
1454 case TGSI_OPCODE_RET:
1455 /* FIXME */
1456 return FALSE;
1457 break;
1458
1459 case TGSI_OPCODE_END:
1460 break;
1461
1462 case TGSI_OPCODE_SSG:
1463 /* TGSI_OPCODE_SGN */
1464 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1465 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1466 dst0[chan_index] = lp_build_sgn( &bld->base, tmp0 );
1467 }
1468 break;
1469
1470 case TGSI_OPCODE_CMP:
1471 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1472 src0 = emit_fetch( bld, inst, 0, chan_index );
1473 src1 = emit_fetch( bld, inst, 1, chan_index );
1474 src2 = emit_fetch( bld, inst, 2, chan_index );
1475 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LESS, src0, bld->base.zero );
1476 dst0[chan_index] = lp_build_select( &bld->base, tmp0, src1, src2);
1477 }
1478 break;
1479
1480 case TGSI_OPCODE_SCS:
1481 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1482 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1483 dst0[CHAN_X] = lp_build_cos( &bld->base, tmp0 );
1484 }
1485 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1486 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1487 dst0[CHAN_Y] = lp_build_sin( &bld->base, tmp0 );
1488 }
1489 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1490 dst0[CHAN_Z] = bld->base.zero;
1491 }
1492 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1493 dst0[CHAN_W] = bld->base.one;
1494 }
1495 break;
1496
1497 case TGSI_OPCODE_TXB:
1498 emit_tex( bld, inst, TEX_MODIFIER_LOD_BIAS, dst0 );
1499 break;
1500
1501 case TGSI_OPCODE_NRM:
1502 /* fall-through */
1503 case TGSI_OPCODE_NRM4:
1504 /* 3 or 4-component normalization */
1505 {
1506 uint dims = (inst->Instruction.Opcode == TGSI_OPCODE_NRM) ? 3 : 4;
1507
1508 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X) ||
1509 IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y) ||
1510 IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z) ||
1511 (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W) && dims == 4)) {
1512
1513 /* NOTE: Cannot use xmm regs 2/3 here (see emit_rsqrt() above). */
1514
1515 /* xmm4 = src.x */
1516 /* xmm0 = src.x * src.x */
1517 tmp0 = emit_fetch(bld, inst, 0, CHAN_X);
1518 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X)) {
1519 tmp4 = tmp0;
1520 }
1521 tmp0 = lp_build_mul( &bld->base, tmp0, tmp0);
1522
1523 /* xmm5 = src.y */
1524 /* xmm0 = xmm0 + src.y * src.y */
1525 tmp1 = emit_fetch(bld, inst, 0, CHAN_Y);
1526 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y)) {
1527 tmp5 = tmp1;
1528 }
1529 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1530 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1531
1532 /* xmm6 = src.z */
1533 /* xmm0 = xmm0 + src.z * src.z */
1534 tmp1 = emit_fetch(bld, inst, 0, CHAN_Z);
1535 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z)) {
1536 tmp6 = tmp1;
1537 }
1538 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1539 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1540
1541 if (dims == 4) {
1542 /* xmm7 = src.w */
1543 /* xmm0 = xmm0 + src.w * src.w */
1544 tmp1 = emit_fetch(bld, inst, 0, CHAN_W);
1545 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W)) {
1546 tmp7 = tmp1;
1547 }
1548 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1549 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1550 }
1551
1552 /* xmm1 = 1 / sqrt(xmm0) */
1553 tmp1 = lp_build_rsqrt( &bld->base, tmp0);
1554
1555 /* dst.x = xmm1 * src.x */
1556 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X)) {
1557 dst0[CHAN_X] = lp_build_mul( &bld->base, tmp4, tmp1);
1558 }
1559
1560 /* dst.y = xmm1 * src.y */
1561 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y)) {
1562 dst0[CHAN_Y] = lp_build_mul( &bld->base, tmp5, tmp1);
1563 }
1564
1565 /* dst.z = xmm1 * src.z */
1566 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z)) {
1567 dst0[CHAN_Z] = lp_build_mul( &bld->base, tmp6, tmp1);
1568 }
1569
1570 /* dst.w = xmm1 * src.w */
1571 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X) && dims == 4) {
1572 dst0[CHAN_W] = lp_build_mul( &bld->base, tmp7, tmp1);
1573 }
1574 }
1575
1576 /* dst.w = 1.0 */
1577 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W) && dims == 3) {
1578 dst0[CHAN_W] = bld->base.one;
1579 }
1580 }
1581 break;
1582
1583 case TGSI_OPCODE_DIV:
1584 /* deprecated */
1585 assert( 0 );
1586 return FALSE;
1587 break;
1588
1589 case TGSI_OPCODE_DP2:
1590 tmp0 = emit_fetch( bld, inst, 0, CHAN_X ); /* xmm0 = src[0].x */
1591 tmp1 = emit_fetch( bld, inst, 1, CHAN_X ); /* xmm1 = src[1].x */
1592 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 * xmm1 */
1593 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y ); /* xmm1 = src[0].y */
1594 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y ); /* xmm2 = src[1].y */
1595 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2); /* xmm1 = xmm1 * xmm2 */
1596 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1597 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1598 dst0[chan_index] = tmp0; /* dest[ch] = xmm0 */
1599 }
1600 break;
1601
1602 case TGSI_OPCODE_TXL:
1603 emit_tex( bld, inst, TEX_MODIFIER_EXPLICIT_LOD, dst0 );
1604 break;
1605
1606 case TGSI_OPCODE_TXP:
1607 emit_tex( bld, inst, TEX_MODIFIER_PROJECTED, dst0 );
1608 break;
1609
1610 case TGSI_OPCODE_BRK:
1611 lp_exec_break(&bld->exec_mask);
1612 break;
1613
1614 case TGSI_OPCODE_IF:
1615 tmp0 = emit_fetch(bld, inst, 0, CHAN_X);
1616 tmp0 = lp_build_cmp(&bld->base, PIPE_FUNC_NOTEQUAL,
1617 tmp0, bld->base.zero);
1618 lp_exec_mask_cond_push(&bld->exec_mask, tmp0);
1619 break;
1620
1621 case TGSI_OPCODE_BGNLOOP:
1622 lp_exec_bgnloop(&bld->exec_mask);
1623 break;
1624
1625 case TGSI_OPCODE_ELSE:
1626 lp_exec_mask_cond_invert(&bld->exec_mask);
1627 break;
1628
1629 case TGSI_OPCODE_ENDIF:
1630 lp_exec_mask_cond_pop(&bld->exec_mask);
1631 break;
1632
1633 case TGSI_OPCODE_ENDLOOP:
1634 lp_exec_endloop(&bld->exec_mask);
1635 break;
1636
1637 case TGSI_OPCODE_PUSHA:
1638 /* deprecated? */
1639 assert(0);
1640 return FALSE;
1641 break;
1642
1643 case TGSI_OPCODE_POPA:
1644 /* deprecated? */
1645 assert(0);
1646 return FALSE;
1647 break;
1648
1649 case TGSI_OPCODE_CEIL:
1650 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1651 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1652 dst0[chan_index] = lp_build_ceil(&bld->base, tmp0);
1653 }
1654 break;
1655
1656 case TGSI_OPCODE_I2F:
1657 /* deprecated? */
1658 assert(0);
1659 return FALSE;
1660 break;
1661
1662 case TGSI_OPCODE_NOT:
1663 /* deprecated? */
1664 assert(0);
1665 return FALSE;
1666 break;
1667
1668 case TGSI_OPCODE_TRUNC:
1669 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1670 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1671 dst0[chan_index] = lp_build_trunc(&bld->base, tmp0);
1672 }
1673 break;
1674
1675 case TGSI_OPCODE_SHL:
1676 /* deprecated? */
1677 assert(0);
1678 return FALSE;
1679 break;
1680
1681 case TGSI_OPCODE_ISHR:
1682 /* deprecated? */
1683 assert(0);
1684 return FALSE;
1685 break;
1686
1687 case TGSI_OPCODE_AND:
1688 /* deprecated? */
1689 assert(0);
1690 return FALSE;
1691 break;
1692
1693 case TGSI_OPCODE_OR:
1694 /* deprecated? */
1695 assert(0);
1696 return FALSE;
1697 break;
1698
1699 case TGSI_OPCODE_MOD:
1700 /* deprecated? */
1701 assert(0);
1702 return FALSE;
1703 break;
1704
1705 case TGSI_OPCODE_XOR:
1706 /* deprecated? */
1707 assert(0);
1708 return FALSE;
1709 break;
1710
1711 case TGSI_OPCODE_SAD:
1712 /* deprecated? */
1713 assert(0);
1714 return FALSE;
1715 break;
1716
1717 case TGSI_OPCODE_TXF:
1718 /* deprecated? */
1719 assert(0);
1720 return FALSE;
1721 break;
1722
1723 case TGSI_OPCODE_TXQ:
1724 /* deprecated? */
1725 assert(0);
1726 return FALSE;
1727 break;
1728
1729 case TGSI_OPCODE_CONT:
1730 lp_exec_continue(&bld->exec_mask);
1731 break;
1732
1733 case TGSI_OPCODE_EMIT:
1734 return FALSE;
1735 break;
1736
1737 case TGSI_OPCODE_ENDPRIM:
1738 return FALSE;
1739 break;
1740
1741 case TGSI_OPCODE_NOP:
1742 break;
1743
1744 default:
1745 return FALSE;
1746 }
1747
1748 if(info->num_dst) {
1749 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1750 emit_store( bld, inst, 0, chan_index, dst0[chan_index]);
1751 }
1752 }
1753
1754 return TRUE;
1755 }
1756
1757
1758 void
1759 lp_build_tgsi_soa(LLVMBuilderRef builder,
1760 const struct tgsi_token *tokens,
1761 struct lp_type type,
1762 struct lp_build_mask_context *mask,
1763 LLVMValueRef consts_ptr,
1764 const LLVMValueRef *pos,
1765 const LLVMValueRef (*inputs)[NUM_CHANNELS],
1766 LLVMValueRef (*outputs)[NUM_CHANNELS],
1767 struct lp_build_sampler_soa *sampler,
1768 struct tgsi_shader_info *info)
1769 {
1770 struct lp_build_tgsi_soa_context bld;
1771 struct tgsi_parse_context parse;
1772 uint num_immediates = 0;
1773 unsigned i;
1774
1775 /* Setup build context */
1776 memset(&bld, 0, sizeof bld);
1777 lp_build_context_init(&bld.base, builder, type);
1778 bld.mask = mask;
1779 bld.pos = pos;
1780 bld.inputs = inputs;
1781 bld.outputs = outputs;
1782 bld.consts_ptr = consts_ptr;
1783 bld.sampler = sampler;
1784 bld.has_indirect_addressing = info->opcode_count[TGSI_OPCODE_ARR] > 0 ||
1785 info->opcode_count[TGSI_OPCODE_ARL] > 0;
1786
1787 lp_exec_mask_init(&bld.exec_mask, &bld.base);
1788
1789 tgsi_parse_init( &parse, tokens );
1790
1791 while( !tgsi_parse_end_of_tokens( &parse ) ) {
1792 tgsi_parse_token( &parse );
1793
1794 switch( parse.FullToken.Token.Type ) {
1795 case TGSI_TOKEN_TYPE_DECLARATION:
1796 /* Inputs already interpolated */
1797 emit_declaration( &bld, &parse.FullToken.FullDeclaration );
1798 break;
1799
1800 case TGSI_TOKEN_TYPE_INSTRUCTION:
1801 {
1802 unsigned opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
1803 const struct tgsi_opcode_info *opcode_info = tgsi_get_opcode_info(opcode);
1804 if (!emit_instruction( &bld, &parse.FullToken.FullInstruction, opcode_info ))
1805 _debug_printf("warning: failed to translate tgsi opcode %s to LLVM\n",
1806 opcode_info->mnemonic);
1807 }
1808
1809 break;
1810
1811 case TGSI_TOKEN_TYPE_IMMEDIATE:
1812 /* simply copy the immediate values into the next immediates[] slot */
1813 {
1814 const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1815 assert(size <= 4);
1816 assert(num_immediates < LP_MAX_TGSI_IMMEDIATES);
1817 for( i = 0; i < size; ++i )
1818 bld.immediates[num_immediates][i] =
1819 lp_build_const_vec(type, parse.FullToken.FullImmediate.u[i].Float);
1820 for( i = size; i < 4; ++i )
1821 bld.immediates[num_immediates][i] = bld.base.undef;
1822 num_immediates++;
1823 }
1824 break;
1825
1826 case TGSI_TOKEN_TYPE_PROPERTY:
1827 break;
1828
1829 default:
1830 assert( 0 );
1831 }
1832 }
1833 if (0) {
1834 LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
1835 LLVMValueRef function = LLVMGetBasicBlockParent(block);
1836 debug_printf("11111111111111111111111111111 \n");
1837 tgsi_dump(tokens, 0);
1838 LLVMDumpValue(function);
1839 debug_printf("2222222222222222222222222222 \n");
1840 }
1841 tgsi_parse_free( &parse );
1842 }
1843