gallivm: Implement TXD.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_tgsi_soa.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * TGSI to LLVM IR translation -- SoA.
32 *
33 * @author Jose Fonseca <jfonseca@vmware.com>
34 *
35 * Based on tgsi_sse2.c code written by Michal Krol, Keith Whitwell,
36 * Brian Paul, and others.
37 */
38
39 #include "pipe/p_config.h"
40 #include "pipe/p_shader_tokens.h"
41 #include "util/u_debug.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44 #include "tgsi/tgsi_dump.h"
45 #include "tgsi/tgsi_info.h"
46 #include "tgsi/tgsi_parse.h"
47 #include "tgsi/tgsi_util.h"
48 #include "tgsi/tgsi_exec.h"
49 #include "tgsi/tgsi_scan.h"
50 #include "lp_bld_type.h"
51 #include "lp_bld_const.h"
52 #include "lp_bld_arit.h"
53 #include "lp_bld_logic.h"
54 #include "lp_bld_swizzle.h"
55 #include "lp_bld_flow.h"
56 #include "lp_bld_tgsi.h"
57 #include "lp_bld_limits.h"
58 #include "lp_bld_debug.h"
59
60
61 #define FOR_EACH_CHANNEL( CHAN )\
62 for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)
63
64 #define IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
65 ((INST)->Dst[0].Register.WriteMask & (1 << (CHAN)))
66
67 #define IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
68 if (IS_DST0_CHANNEL_ENABLED( INST, CHAN ))
69
70 #define FOR_EACH_DST0_ENABLED_CHANNEL( INST, CHAN )\
71 FOR_EACH_CHANNEL( CHAN )\
72 IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )
73
74 #define CHAN_X 0
75 #define CHAN_Y 1
76 #define CHAN_Z 2
77 #define CHAN_W 3
78
79 #define QUAD_TOP_LEFT 0
80 #define QUAD_TOP_RIGHT 1
81 #define QUAD_BOTTOM_LEFT 2
82 #define QUAD_BOTTOM_RIGHT 3
83
84
85 struct lp_exec_mask {
86 struct lp_build_context *bld;
87
88 boolean has_mask;
89
90 LLVMTypeRef int_vec_type;
91
92 LLVMValueRef cond_stack[LP_MAX_TGSI_NESTING];
93 int cond_stack_size;
94 LLVMValueRef cond_mask;
95
96 LLVMValueRef break_stack[LP_MAX_TGSI_NESTING];
97 int break_stack_size;
98 LLVMValueRef break_mask;
99
100 LLVMValueRef cont_stack[LP_MAX_TGSI_NESTING];
101 int cont_stack_size;
102 LLVMValueRef cont_mask;
103
104 LLVMBasicBlockRef loop_stack[LP_MAX_TGSI_NESTING];
105 int loop_stack_size;
106 LLVMBasicBlockRef loop_block;
107
108
109 LLVMValueRef exec_mask;
110 };
111
112 struct lp_build_tgsi_soa_context
113 {
114 struct lp_build_context base;
115
116 LLVMValueRef consts_ptr;
117 const LLVMValueRef *pos;
118 const LLVMValueRef (*inputs)[NUM_CHANNELS];
119 LLVMValueRef (*outputs)[NUM_CHANNELS];
120
121 struct lp_build_sampler_soa *sampler;
122
123 LLVMValueRef immediates[LP_MAX_TGSI_IMMEDIATES][NUM_CHANNELS];
124 LLVMValueRef temps[LP_MAX_TGSI_TEMPS][NUM_CHANNELS];
125 LLVMValueRef addr[LP_MAX_TGSI_ADDRS][NUM_CHANNELS];
126
127 /* we allocate an array of temps if we have indirect
128 * addressing and then the temps above is unused */
129 LLVMValueRef temps_array;
130 boolean has_indirect_addressing;
131
132 struct lp_build_mask_context *mask;
133 struct lp_exec_mask exec_mask;
134 };
135
136 static const unsigned char
137 swizzle_left[4] = {
138 QUAD_TOP_LEFT, QUAD_TOP_LEFT,
139 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_LEFT
140 };
141
142 static const unsigned char
143 swizzle_right[4] = {
144 QUAD_TOP_RIGHT, QUAD_TOP_RIGHT,
145 QUAD_BOTTOM_RIGHT, QUAD_BOTTOM_RIGHT
146 };
147
148 static const unsigned char
149 swizzle_top[4] = {
150 QUAD_TOP_LEFT, QUAD_TOP_RIGHT,
151 QUAD_TOP_LEFT, QUAD_TOP_RIGHT
152 };
153
154 static const unsigned char
155 swizzle_bottom[4] = {
156 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_RIGHT,
157 QUAD_BOTTOM_LEFT, QUAD_BOTTOM_RIGHT
158 };
159
160 static void lp_exec_mask_init(struct lp_exec_mask *mask, struct lp_build_context *bld)
161 {
162 mask->bld = bld;
163 mask->has_mask = FALSE;
164 mask->cond_stack_size = 0;
165 mask->loop_stack_size = 0;
166 mask->break_stack_size = 0;
167 mask->cont_stack_size = 0;
168
169 mask->int_vec_type = lp_build_int_vec_type(mask->bld->type);
170 }
171
172 static void lp_exec_mask_update(struct lp_exec_mask *mask)
173 {
174 if (mask->loop_stack_size) {
175 /*for loops we need to update the entire mask at runtime */
176 LLVMValueRef tmp;
177 assert(mask->break_mask);
178 tmp = LLVMBuildAnd(mask->bld->builder,
179 mask->cont_mask,
180 mask->break_mask,
181 "maskcb");
182 mask->exec_mask = LLVMBuildAnd(mask->bld->builder,
183 mask->cond_mask,
184 tmp,
185 "maskfull");
186 } else
187 mask->exec_mask = mask->cond_mask;
188
189
190 mask->has_mask = (mask->cond_stack_size > 0 ||
191 mask->loop_stack_size > 0);
192 }
193
194 static void lp_exec_mask_cond_push(struct lp_exec_mask *mask,
195 LLVMValueRef val)
196 {
197 assert(mask->cond_stack_size < LP_MAX_TGSI_NESTING);
198 mask->cond_stack[mask->cond_stack_size++] = mask->cond_mask;
199 mask->cond_mask = LLVMBuildBitCast(mask->bld->builder, val,
200 mask->int_vec_type, "");
201
202 lp_exec_mask_update(mask);
203 }
204
205 static void lp_exec_mask_cond_invert(struct lp_exec_mask *mask)
206 {
207 LLVMValueRef prev_mask = mask->cond_stack[mask->cond_stack_size - 1];
208 LLVMValueRef inv_mask = LLVMBuildNot(mask->bld->builder,
209 mask->cond_mask, "");
210
211 /* means that we didn't have any mask before and that
212 * we were fully enabled */
213 if (mask->cond_stack_size <= 1) {
214 prev_mask = LLVMConstAllOnes(mask->int_vec_type);
215 }
216
217 mask->cond_mask = LLVMBuildAnd(mask->bld->builder,
218 inv_mask,
219 prev_mask, "");
220 lp_exec_mask_update(mask);
221 }
222
223 static void lp_exec_mask_cond_pop(struct lp_exec_mask *mask)
224 {
225 mask->cond_mask = mask->cond_stack[--mask->cond_stack_size];
226 lp_exec_mask_update(mask);
227 }
228
229 static void lp_exec_bgnloop(struct lp_exec_mask *mask)
230 {
231
232 if (mask->cont_stack_size == 0)
233 mask->cont_mask = LLVMConstAllOnes(mask->int_vec_type);
234 if (mask->break_stack_size == 0)
235 mask->break_mask = LLVMConstAllOnes(mask->int_vec_type);
236 if (mask->cond_stack_size == 0)
237 mask->cond_mask = LLVMConstAllOnes(mask->int_vec_type);
238
239 assert(mask->break_stack_size < LP_MAX_TGSI_NESTING);
240 assert(mask->cont_stack_size < LP_MAX_TGSI_NESTING);
241 assert(mask->break_stack_size < LP_MAX_TGSI_NESTING);
242
243 mask->break_stack[mask->break_stack_size++] = mask->break_mask;
244 mask->cont_stack[mask->cont_stack_size++] = mask->cont_mask;
245 mask->loop_stack[mask->loop_stack_size++] = mask->loop_block;
246 mask->loop_block = lp_build_insert_new_block(mask->bld->builder, "bgnloop");
247 LLVMBuildBr(mask->bld->builder, mask->loop_block);
248 LLVMPositionBuilderAtEnd(mask->bld->builder, mask->loop_block);
249
250 lp_exec_mask_update(mask);
251 }
252
253 static void lp_exec_break(struct lp_exec_mask *mask)
254 {
255 LLVMValueRef exec_mask = LLVMBuildNot(mask->bld->builder,
256 mask->exec_mask,
257 "break");
258
259 mask->break_mask = LLVMBuildAnd(mask->bld->builder,
260 mask->break_mask,
261 exec_mask, "break_full");
262
263 lp_exec_mask_update(mask);
264 }
265
266 static void lp_exec_continue(struct lp_exec_mask *mask)
267 {
268 LLVMValueRef exec_mask = LLVMBuildNot(mask->bld->builder,
269 mask->exec_mask,
270 "");
271
272 mask->cont_mask = LLVMBuildAnd(mask->bld->builder,
273 mask->cont_mask,
274 exec_mask, "");
275
276 lp_exec_mask_update(mask);
277 }
278
279
280 static void lp_exec_endloop(struct lp_exec_mask *mask)
281 {
282 LLVMBasicBlockRef endloop;
283 LLVMTypeRef reg_type = LLVMIntType(mask->bld->type.width*
284 mask->bld->type.length);
285 LLVMValueRef i1cond;
286
287 assert(mask->break_mask);
288
289 /* i1cond = (mask == 0) */
290 i1cond = LLVMBuildICmp(
291 mask->bld->builder,
292 LLVMIntNE,
293 LLVMBuildBitCast(mask->bld->builder, mask->break_mask, reg_type, ""),
294 LLVMConstNull(reg_type), "");
295
296 endloop = lp_build_insert_new_block(mask->bld->builder, "endloop");
297
298 LLVMBuildCondBr(mask->bld->builder,
299 i1cond, mask->loop_block, endloop);
300
301 LLVMPositionBuilderAtEnd(mask->bld->builder, endloop);
302
303 mask->loop_block = mask->loop_stack[--mask->loop_stack_size];
304 /* pop the cont mask */
305 if (mask->cont_stack_size) {
306 mask->cont_mask = mask->cont_stack[--mask->cont_stack_size];
307 }
308 /* pop the break mask */
309 if (mask->break_stack_size) {
310 mask->break_mask = mask->break_stack[--mask->break_stack_size];
311 }
312
313 lp_exec_mask_update(mask);
314 }
315
316 /* stores val into an address pointed to by dst.
317 * mask->exec_mask is used to figure out which bits of val
318 * should be stored into the address
319 * (0 means don't store this bit, 1 means do store).
320 */
321 static void lp_exec_mask_store(struct lp_exec_mask *mask,
322 LLVMValueRef val,
323 LLVMValueRef dst)
324 {
325 if (mask->has_mask) {
326 LLVMValueRef real_val, dst_val;
327
328 dst_val = LLVMBuildLoad(mask->bld->builder, dst, "");
329 real_val = lp_build_select(mask->bld,
330 mask->exec_mask,
331 val, dst_val);
332
333 LLVMBuildStore(mask->bld->builder, real_val, dst);
334 } else
335 LLVMBuildStore(mask->bld->builder, val, dst);
336 }
337
338
339 static LLVMValueRef
340 emit_ddx(struct lp_build_tgsi_soa_context *bld,
341 LLVMValueRef src)
342 {
343 LLVMValueRef src_left = lp_build_swizzle1_aos(&bld->base, src, swizzle_left);
344 LLVMValueRef src_right = lp_build_swizzle1_aos(&bld->base, src, swizzle_right);
345 return lp_build_sub(&bld->base, src_right, src_left);
346 }
347
348
349 static LLVMValueRef
350 emit_ddy(struct lp_build_tgsi_soa_context *bld,
351 LLVMValueRef src)
352 {
353 LLVMValueRef src_top = lp_build_swizzle1_aos(&bld->base, src, swizzle_top);
354 LLVMValueRef src_bottom = lp_build_swizzle1_aos(&bld->base, src, swizzle_bottom);
355 return lp_build_sub(&bld->base, src_top, src_bottom);
356 }
357
358 static LLVMValueRef
359 get_temp_ptr(struct lp_build_tgsi_soa_context *bld,
360 unsigned index,
361 unsigned swizzle,
362 boolean is_indirect,
363 LLVMValueRef addr)
364 {
365 if (!bld->has_indirect_addressing) {
366 return bld->temps[index][swizzle];
367 } else {
368 LLVMValueRef lindex =
369 LLVMConstInt(LLVMInt32Type(), index*4 + swizzle, 0);
370 if (is_indirect)
371 lindex = lp_build_add(&bld->base, lindex, addr);
372 return LLVMBuildGEP(bld->base.builder, bld->temps_array, &lindex, 1, "");
373 }
374 }
375
376 /**
377 * Register fetch.
378 */
379 static LLVMValueRef
380 emit_fetch(
381 struct lp_build_tgsi_soa_context *bld,
382 const struct tgsi_full_instruction *inst,
383 unsigned index,
384 const unsigned chan_index )
385 {
386 const struct tgsi_full_src_register *reg = &inst->Src[index];
387 unsigned swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
388 LLVMValueRef res;
389 LLVMValueRef addr;
390
391 switch (swizzle) {
392 case TGSI_SWIZZLE_X:
393 case TGSI_SWIZZLE_Y:
394 case TGSI_SWIZZLE_Z:
395 case TGSI_SWIZZLE_W:
396
397 if (reg->Register.Indirect) {
398 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->base.type);
399 unsigned swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, chan_index );
400 addr = LLVMBuildLoad(bld->base.builder,
401 bld->addr[reg->Indirect.Index][swizzle],
402 "");
403 /* for indexing we want integers */
404 addr = LLVMBuildFPToSI(bld->base.builder, addr,
405 int_vec_type, "");
406 addr = LLVMBuildExtractElement(bld->base.builder,
407 addr, LLVMConstInt(LLVMInt32Type(), 0, 0),
408 "");
409 addr = lp_build_mul(&bld->base, addr, LLVMConstInt(LLVMInt32Type(), 4, 0));
410 }
411
412 switch (reg->Register.File) {
413 case TGSI_FILE_CONSTANT: {
414 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), reg->Register.Index*4 + swizzle, 0);
415 LLVMValueRef scalar, scalar_ptr;
416
417 if (reg->Register.Indirect) {
418 /*lp_build_printf(bld->base.builder,
419 "\taddr = %d\n", addr);*/
420 index = lp_build_add(&bld->base, index, addr);
421 }
422 scalar_ptr = LLVMBuildGEP(bld->base.builder, bld->consts_ptr, &index, 1, "");
423 scalar = LLVMBuildLoad(bld->base.builder, scalar_ptr, "");
424
425 res = lp_build_broadcast_scalar(&bld->base, scalar);
426 break;
427 }
428
429 case TGSI_FILE_IMMEDIATE:
430 res = bld->immediates[reg->Register.Index][swizzle];
431 assert(res);
432 break;
433
434 case TGSI_FILE_INPUT:
435 res = bld->inputs[reg->Register.Index][swizzle];
436 assert(res);
437 break;
438
439 case TGSI_FILE_TEMPORARY: {
440 LLVMValueRef temp_ptr = get_temp_ptr(bld, reg->Register.Index,
441 swizzle,
442 reg->Register.Indirect,
443 addr);
444 res = LLVMBuildLoad(bld->base.builder, temp_ptr, "");
445 if(!res)
446 return bld->base.undef;
447 break;
448 }
449
450 default:
451 assert( 0 );
452 return bld->base.undef;
453 }
454 break;
455
456 default:
457 assert( 0 );
458 return bld->base.undef;
459 }
460
461 switch( tgsi_util_get_full_src_register_sign_mode( reg, chan_index ) ) {
462 case TGSI_UTIL_SIGN_CLEAR:
463 res = lp_build_abs( &bld->base, res );
464 break;
465
466 case TGSI_UTIL_SIGN_SET:
467 /* TODO: Use bitwese OR for floating point */
468 res = lp_build_abs( &bld->base, res );
469 res = LLVMBuildNeg( bld->base.builder, res, "" );
470 break;
471
472 case TGSI_UTIL_SIGN_TOGGLE:
473 res = LLVMBuildNeg( bld->base.builder, res, "" );
474 break;
475
476 case TGSI_UTIL_SIGN_KEEP:
477 break;
478 }
479
480 return res;
481 }
482
483
484 /**
485 * Register fetch with derivatives.
486 */
487 static void
488 emit_fetch_deriv(
489 struct lp_build_tgsi_soa_context *bld,
490 const struct tgsi_full_instruction *inst,
491 unsigned index,
492 const unsigned chan_index,
493 LLVMValueRef *res,
494 LLVMValueRef *ddx,
495 LLVMValueRef *ddy)
496 {
497 LLVMValueRef src;
498
499 src = emit_fetch(bld, inst, index, chan_index);
500
501 if(res)
502 *res = src;
503
504 /* TODO: use interpolation coeffs for inputs */
505
506 if(ddx)
507 *ddx = emit_ddx(bld, src);
508
509 if(ddy)
510 *ddy = emit_ddy(bld, src);
511 }
512
513
514 /**
515 * Register store.
516 */
517 static void
518 emit_store(
519 struct lp_build_tgsi_soa_context *bld,
520 const struct tgsi_full_instruction *inst,
521 unsigned index,
522 unsigned chan_index,
523 LLVMValueRef value)
524 {
525 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
526 LLVMValueRef addr;
527
528 switch( inst->Instruction.Saturate ) {
529 case TGSI_SAT_NONE:
530 break;
531
532 case TGSI_SAT_ZERO_ONE:
533 value = lp_build_max(&bld->base, value, bld->base.zero);
534 value = lp_build_min(&bld->base, value, bld->base.one);
535 break;
536
537 case TGSI_SAT_MINUS_PLUS_ONE:
538 value = lp_build_max(&bld->base, value, lp_build_const_vec(bld->base.type, -1.0));
539 value = lp_build_min(&bld->base, value, bld->base.one);
540 break;
541
542 default:
543 assert(0);
544 }
545
546 if (reg->Register.Indirect) {
547 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->base.type);
548 unsigned swizzle = tgsi_util_get_src_register_swizzle( &reg->Indirect, chan_index );
549 addr = LLVMBuildLoad(bld->base.builder,
550 bld->addr[reg->Indirect.Index][swizzle],
551 "");
552 /* for indexing we want integers */
553 addr = LLVMBuildFPToSI(bld->base.builder, addr,
554 int_vec_type, "");
555 addr = LLVMBuildExtractElement(bld->base.builder,
556 addr, LLVMConstInt(LLVMInt32Type(), 0, 0),
557 "");
558 addr = lp_build_mul(&bld->base, addr, LLVMConstInt(LLVMInt32Type(), 4, 0));
559 }
560
561 switch( reg->Register.File ) {
562 case TGSI_FILE_OUTPUT:
563 lp_exec_mask_store(&bld->exec_mask, value,
564 bld->outputs[reg->Register.Index][chan_index]);
565 break;
566
567 case TGSI_FILE_TEMPORARY: {
568 LLVMValueRef temp_ptr = get_temp_ptr(bld, reg->Register.Index,
569 chan_index,
570 reg->Register.Indirect,
571 addr);
572 lp_exec_mask_store(&bld->exec_mask, value, temp_ptr);
573 break;
574 }
575
576 case TGSI_FILE_ADDRESS:
577 lp_exec_mask_store(&bld->exec_mask, value,
578 bld->addr[reg->Indirect.Index][chan_index]);
579 break;
580
581 case TGSI_FILE_PREDICATE:
582 /* FIXME */
583 break;
584
585 default:
586 assert( 0 );
587 }
588 }
589
590
591 /**
592 * High-level instruction translators.
593 */
594
595 enum tex_modifier {
596 TEX_MODIFIER_NONE = 0,
597 TEX_MODIFIER_PROJECTED,
598 TEX_MODIFIER_LOD_BIAS,
599 TEX_MODIFIER_EXPLICIT_LOD,
600 TEX_MODIFIER_EXPLICIT_DERIV
601 };
602
603 static void
604 emit_tex( struct lp_build_tgsi_soa_context *bld,
605 const struct tgsi_full_instruction *inst,
606 enum tex_modifier modifier,
607 LLVMValueRef *texel)
608 {
609 unsigned unit;
610 LLVMValueRef lodbias;
611 LLVMValueRef oow = NULL;
612 LLVMValueRef coords[3];
613 LLVMValueRef ddx[3];
614 LLVMValueRef ddy[3];
615 unsigned num_coords;
616 unsigned i;
617
618 if (!bld->sampler) {
619 _debug_printf("warning: found texture instruction but no sampler generator supplied\n");
620 for (i = 0; i < 4; i++) {
621 texel[i] = bld->base.undef;
622 }
623 return;
624 }
625
626 switch (inst->Texture.Texture) {
627 case TGSI_TEXTURE_1D:
628 num_coords = 1;
629 break;
630 case TGSI_TEXTURE_2D:
631 case TGSI_TEXTURE_RECT:
632 num_coords = 2;
633 break;
634 case TGSI_TEXTURE_SHADOW1D:
635 case TGSI_TEXTURE_SHADOW2D:
636 case TGSI_TEXTURE_SHADOWRECT:
637 case TGSI_TEXTURE_3D:
638 case TGSI_TEXTURE_CUBE:
639 num_coords = 3;
640 break;
641 default:
642 assert(0);
643 return;
644 }
645
646 /* FIXME: Treat TEX_MODIFIER_EXPLICIT_LOD correctly */
647 if (modifier == TEX_MODIFIER_LOD_BIAS || TEX_MODIFIER_EXPLICIT_LOD)
648 lodbias = emit_fetch( bld, inst, 0, 3 );
649 else
650 lodbias = bld->base.zero;
651
652 if (modifier == TEX_MODIFIER_PROJECTED) {
653 oow = emit_fetch( bld, inst, 0, 3 );
654 oow = lp_build_rcp(&bld->base, oow);
655 }
656
657 for (i = 0; i < num_coords; i++) {
658 coords[i] = emit_fetch( bld, inst, 0, i );
659 if (modifier == TEX_MODIFIER_PROJECTED)
660 coords[i] = lp_build_mul(&bld->base, coords[i], oow);
661 }
662 for (i = num_coords; i < 3; i++) {
663 coords[i] = bld->base.undef;
664 }
665
666 if (modifier == TEX_MODIFIER_EXPLICIT_DERIV) {
667 for (i = 0; i < num_coords; i++) {
668 ddx[i] = emit_fetch( bld, inst, 1, i );
669 ddy[i] = emit_fetch( bld, inst, 2, i );
670 }
671 unit = inst->Src[3].Register.Index;
672 } else {
673 for (i = 0; i < num_coords; i++) {
674 ddx[i] = emit_ddx( bld, coords[i] );
675 ddy[i] = emit_ddy( bld, coords[i] );
676 }
677 unit = inst->Src[1].Register.Index;
678 }
679
680 bld->sampler->emit_fetch_texel(bld->sampler,
681 bld->base.builder,
682 bld->base.type,
683 unit, num_coords, coords,
684 ddx, ddy, lodbias,
685 texel);
686 }
687
688
689 /**
690 * Kill fragment if any of the src register values are negative.
691 */
692 static void
693 emit_kil(
694 struct lp_build_tgsi_soa_context *bld,
695 const struct tgsi_full_instruction *inst )
696 {
697 const struct tgsi_full_src_register *reg = &inst->Src[0];
698 LLVMValueRef terms[NUM_CHANNELS];
699 LLVMValueRef mask;
700 unsigned chan_index;
701
702 memset(&terms, 0, sizeof terms);
703
704 FOR_EACH_CHANNEL( chan_index ) {
705 unsigned swizzle;
706
707 /* Unswizzle channel */
708 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
709
710 /* Check if the component has not been already tested. */
711 assert(swizzle < NUM_CHANNELS);
712 if( !terms[swizzle] )
713 /* TODO: change the comparison operator instead of setting the sign */
714 terms[swizzle] = emit_fetch(bld, inst, 0, chan_index );
715 }
716
717 mask = NULL;
718 FOR_EACH_CHANNEL( chan_index ) {
719 if(terms[chan_index]) {
720 LLVMValueRef chan_mask;
721
722 /*
723 * If term < 0 then mask = 0 else mask = ~0.
724 */
725 chan_mask = lp_build_cmp(&bld->base, PIPE_FUNC_GEQUAL, terms[chan_index], bld->base.zero);
726
727 if(mask)
728 mask = LLVMBuildAnd(bld->base.builder, mask, chan_mask, "");
729 else
730 mask = chan_mask;
731 }
732 }
733
734 if(mask)
735 lp_build_mask_update(bld->mask, mask);
736 }
737
738
739 /**
740 * Predicated fragment kill.
741 * XXX Actually, we do an unconditional kill (as in tgsi_exec.c).
742 * The only predication is the execution mask which will apply if
743 * we're inside a loop or conditional.
744 */
745 static void
746 emit_kilp(struct lp_build_tgsi_soa_context *bld,
747 const struct tgsi_full_instruction *inst)
748 {
749 LLVMValueRef mask;
750
751 /* For those channels which are "alive", disable fragment shader
752 * execution.
753 */
754 if (bld->exec_mask.has_mask) {
755 mask = LLVMBuildNot(bld->base.builder, bld->exec_mask.exec_mask, "kilp");
756 }
757 else {
758 mask = bld->base.zero;
759 }
760
761 lp_build_mask_update(bld->mask, mask);
762 }
763
764 static void
765 emit_declaration(
766 struct lp_build_tgsi_soa_context *bld,
767 const struct tgsi_full_declaration *decl)
768 {
769 LLVMTypeRef vec_type = lp_build_vec_type(bld->base.type);
770
771 unsigned first = decl->Range.First;
772 unsigned last = decl->Range.Last;
773 unsigned idx, i;
774
775 for (idx = first; idx <= last; ++idx) {
776 switch (decl->Declaration.File) {
777 case TGSI_FILE_TEMPORARY:
778 assert(idx < LP_MAX_TGSI_TEMPS);
779 if (bld->has_indirect_addressing) {
780 LLVMValueRef val = LLVMConstInt(LLVMInt32Type(),
781 last*4 + 4, 0);
782 bld->temps_array = lp_build_array_alloca(bld->base.builder,
783 vec_type, val, "");
784 } else {
785 for (i = 0; i < NUM_CHANNELS; i++)
786 bld->temps[idx][i] = lp_build_alloca(bld->base.builder,
787 vec_type, "");
788 }
789 break;
790
791 case TGSI_FILE_OUTPUT:
792 for (i = 0; i < NUM_CHANNELS; i++)
793 bld->outputs[idx][i] = lp_build_alloca(bld->base.builder,
794 vec_type, "");
795 break;
796
797 case TGSI_FILE_ADDRESS:
798 assert(idx < LP_MAX_TGSI_ADDRS);
799 for (i = 0; i < NUM_CHANNELS; i++)
800 bld->addr[idx][i] = lp_build_alloca(bld->base.builder,
801 vec_type, "");
802 break;
803
804 case TGSI_FILE_PREDICATE:
805 _debug_printf("warning: predicate registers not yet implemented\n");
806 break;
807
808 default:
809 /* don't need to declare other vars */
810 break;
811 }
812 }
813 }
814
815
816 /**
817 * Emit LLVM for one TGSI instruction.
818 * \param return TRUE for success, FALSE otherwise
819 */
820 static boolean
821 emit_instruction(
822 struct lp_build_tgsi_soa_context *bld,
823 const struct tgsi_full_instruction *inst,
824 const struct tgsi_opcode_info *info)
825 {
826 unsigned chan_index;
827 LLVMValueRef src0, src1, src2;
828 LLVMValueRef tmp0, tmp1, tmp2;
829 LLVMValueRef tmp3 = NULL;
830 LLVMValueRef tmp4 = NULL;
831 LLVMValueRef tmp5 = NULL;
832 LLVMValueRef tmp6 = NULL;
833 LLVMValueRef tmp7 = NULL;
834 LLVMValueRef res;
835 LLVMValueRef dst0[NUM_CHANNELS];
836
837 /*
838 * Stores and write masks are handled in a general fashion after the long
839 * instruction opcode switch statement.
840 *
841 * Although not stricitly necessary, we avoid generating instructions for
842 * channels which won't be stored, in cases where's that easy. For some
843 * complex instructions, like texture sampling, it is more convenient to
844 * assume a full writemask and then let LLVM optimization passes eliminate
845 * redundant code.
846 */
847
848 assert(info->num_dst <= 1);
849 if(info->num_dst) {
850 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
851 dst0[chan_index] = bld->base.undef;
852 }
853 }
854
855 switch (inst->Instruction.Opcode) {
856 case TGSI_OPCODE_ARL:
857 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
858 tmp0 = emit_fetch( bld, inst, 0, chan_index );
859 tmp0 = lp_build_floor(&bld->base, tmp0);
860 dst0[chan_index] = tmp0;
861 }
862 break;
863
864 case TGSI_OPCODE_MOV:
865 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
866 dst0[chan_index] = emit_fetch( bld, inst, 0, chan_index );
867 }
868 break;
869
870 case TGSI_OPCODE_LIT:
871 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ) {
872 dst0[CHAN_X] = bld->base.one;
873 }
874 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ) {
875 src0 = emit_fetch( bld, inst, 0, CHAN_X );
876 dst0[CHAN_Y] = lp_build_max( &bld->base, src0, bld->base.zero);
877 }
878 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
879 /* XMM[1] = SrcReg[0].yyyy */
880 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
881 /* XMM[1] = max(XMM[1], 0) */
882 tmp1 = lp_build_max( &bld->base, tmp1, bld->base.zero);
883 /* XMM[2] = SrcReg[0].wwww */
884 tmp2 = emit_fetch( bld, inst, 0, CHAN_W );
885 tmp1 = lp_build_pow( &bld->base, tmp1, tmp2);
886 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
887 tmp2 = lp_build_cmp(&bld->base, PIPE_FUNC_GREATER, tmp0, bld->base.zero);
888 dst0[CHAN_Z] = lp_build_select(&bld->base, tmp2, tmp1, bld->base.zero);
889 }
890 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) ) {
891 dst0[CHAN_W] = bld->base.one;
892 }
893 break;
894
895 case TGSI_OPCODE_RCP:
896 /* TGSI_OPCODE_RECIP */
897 src0 = emit_fetch( bld, inst, 0, CHAN_X );
898 res = lp_build_rcp(&bld->base, src0);
899 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
900 dst0[chan_index] = res;
901 }
902 break;
903
904 case TGSI_OPCODE_RSQ:
905 /* TGSI_OPCODE_RECIPSQRT */
906 src0 = emit_fetch( bld, inst, 0, CHAN_X );
907 src0 = lp_build_abs(&bld->base, src0);
908 res = lp_build_rsqrt(&bld->base, src0);
909 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
910 dst0[chan_index] = res;
911 }
912 break;
913
914 case TGSI_OPCODE_EXP:
915 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
916 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
917 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z )) {
918 LLVMValueRef *p_exp2_int_part = NULL;
919 LLVMValueRef *p_frac_part = NULL;
920 LLVMValueRef *p_exp2 = NULL;
921
922 src0 = emit_fetch( bld, inst, 0, CHAN_X );
923
924 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
925 p_exp2_int_part = &tmp0;
926 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
927 p_frac_part = &tmp1;
928 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
929 p_exp2 = &tmp2;
930
931 lp_build_exp2_approx(&bld->base, src0, p_exp2_int_part, p_frac_part, p_exp2);
932
933 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
934 dst0[CHAN_X] = tmp0;
935 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
936 dst0[CHAN_Y] = tmp1;
937 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
938 dst0[CHAN_Z] = tmp2;
939 }
940 /* dst.w = 1.0 */
941 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_W )) {
942 dst0[CHAN_W] = bld->base.one;
943 }
944 break;
945
946 case TGSI_OPCODE_LOG:
947 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
948 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
949 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z )) {
950 LLVMValueRef *p_floor_log2 = NULL;
951 LLVMValueRef *p_exp = NULL;
952 LLVMValueRef *p_log2 = NULL;
953
954 src0 = emit_fetch( bld, inst, 0, CHAN_X );
955 src0 = lp_build_abs( &bld->base, src0 );
956
957 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
958 p_floor_log2 = &tmp0;
959 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ))
960 p_exp = &tmp1;
961 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
962 p_log2 = &tmp2;
963
964 lp_build_log2_approx(&bld->base, src0, p_exp, p_floor_log2, p_log2);
965
966 /* dst.x = floor(lg2(abs(src.x))) */
967 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ))
968 dst0[CHAN_X] = tmp0;
969 /* dst.y = abs(src)/ex2(floor(lg2(abs(src.x)))) */
970 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y )) {
971 dst0[CHAN_Y] = lp_build_div( &bld->base, src0, tmp1);
972 }
973 /* dst.z = lg2(abs(src.x)) */
974 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ))
975 dst0[CHAN_Z] = tmp2;
976 }
977 /* dst.w = 1.0 */
978 if (IS_DST0_CHANNEL_ENABLED( inst, CHAN_W )) {
979 dst0[CHAN_W] = bld->base.one;
980 }
981 break;
982
983 case TGSI_OPCODE_MUL:
984 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
985 src0 = emit_fetch( bld, inst, 0, chan_index );
986 src1 = emit_fetch( bld, inst, 1, chan_index );
987 dst0[chan_index] = lp_build_mul(&bld->base, src0, src1);
988 }
989 break;
990
991 case TGSI_OPCODE_ADD:
992 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
993 src0 = emit_fetch( bld, inst, 0, chan_index );
994 src1 = emit_fetch( bld, inst, 1, chan_index );
995 dst0[chan_index] = lp_build_add(&bld->base, src0, src1);
996 }
997 break;
998
999 case TGSI_OPCODE_DP3:
1000 /* TGSI_OPCODE_DOT3 */
1001 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1002 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
1003 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1004 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
1005 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
1006 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1007 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1008 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
1009 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
1010 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1011 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1012 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1013 dst0[chan_index] = tmp0;
1014 }
1015 break;
1016
1017 case TGSI_OPCODE_DP4:
1018 /* TGSI_OPCODE_DOT4 */
1019 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1020 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
1021 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1022 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
1023 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
1024 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1025 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1026 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
1027 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
1028 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1029 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1030 tmp1 = emit_fetch( bld, inst, 0, CHAN_W );
1031 tmp2 = emit_fetch( bld, inst, 1, CHAN_W );
1032 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1033 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1034 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1035 dst0[chan_index] = tmp0;
1036 }
1037 break;
1038
1039 case TGSI_OPCODE_DST:
1040 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1041 dst0[CHAN_X] = bld->base.one;
1042 }
1043 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1044 tmp0 = emit_fetch( bld, inst, 0, CHAN_Y );
1045 tmp1 = emit_fetch( bld, inst, 1, CHAN_Y );
1046 dst0[CHAN_Y] = lp_build_mul( &bld->base, tmp0, tmp1);
1047 }
1048 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1049 dst0[CHAN_Z] = emit_fetch( bld, inst, 0, CHAN_Z );
1050 }
1051 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1052 dst0[CHAN_W] = emit_fetch( bld, inst, 1, CHAN_W );
1053 }
1054 break;
1055
1056 case TGSI_OPCODE_MIN:
1057 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1058 src0 = emit_fetch( bld, inst, 0, chan_index );
1059 src1 = emit_fetch( bld, inst, 1, chan_index );
1060 dst0[chan_index] = lp_build_min( &bld->base, src0, src1 );
1061 }
1062 break;
1063
1064 case TGSI_OPCODE_MAX:
1065 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1066 src0 = emit_fetch( bld, inst, 0, chan_index );
1067 src1 = emit_fetch( bld, inst, 1, chan_index );
1068 dst0[chan_index] = lp_build_max( &bld->base, src0, src1 );
1069 }
1070 break;
1071
1072 case TGSI_OPCODE_SLT:
1073 /* TGSI_OPCODE_SETLT */
1074 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1075 src0 = emit_fetch( bld, inst, 0, chan_index );
1076 src1 = emit_fetch( bld, inst, 1, chan_index );
1077 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LESS, src0, src1 );
1078 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1079 }
1080 break;
1081
1082 case TGSI_OPCODE_SGE:
1083 /* TGSI_OPCODE_SETGE */
1084 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1085 src0 = emit_fetch( bld, inst, 0, chan_index );
1086 src1 = emit_fetch( bld, inst, 1, chan_index );
1087 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GEQUAL, src0, src1 );
1088 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1089 }
1090 break;
1091
1092 case TGSI_OPCODE_MAD:
1093 /* TGSI_OPCODE_MADD */
1094 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1095 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1096 tmp1 = emit_fetch( bld, inst, 1, chan_index );
1097 tmp2 = emit_fetch( bld, inst, 2, chan_index );
1098 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1099 tmp0 = lp_build_add( &bld->base, tmp0, tmp2);
1100 dst0[chan_index] = tmp0;
1101 }
1102 break;
1103
1104 case TGSI_OPCODE_SUB:
1105 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1106 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1107 tmp1 = emit_fetch( bld, inst, 1, chan_index );
1108 dst0[chan_index] = lp_build_sub( &bld->base, tmp0, tmp1);
1109 }
1110 break;
1111
1112 case TGSI_OPCODE_LRP:
1113 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1114 src0 = emit_fetch( bld, inst, 0, chan_index );
1115 src1 = emit_fetch( bld, inst, 1, chan_index );
1116 src2 = emit_fetch( bld, inst, 2, chan_index );
1117 tmp0 = lp_build_sub( &bld->base, src1, src2 );
1118 tmp0 = lp_build_mul( &bld->base, src0, tmp0 );
1119 dst0[chan_index] = lp_build_add( &bld->base, tmp0, src2 );
1120 }
1121 break;
1122
1123 case TGSI_OPCODE_CND:
1124 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1125 src0 = emit_fetch( bld, inst, 0, chan_index );
1126 src1 = emit_fetch( bld, inst, 1, chan_index );
1127 src2 = emit_fetch( bld, inst, 2, chan_index );
1128 tmp1 = lp_build_const_vec(bld->base.type, 0.5);
1129 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GREATER, src2, tmp1);
1130 dst0[chan_index] = lp_build_select( &bld->base, tmp0, src0, src1 );
1131 }
1132 break;
1133
1134 case TGSI_OPCODE_DP2A:
1135 tmp0 = emit_fetch( bld, inst, 0, CHAN_X ); /* xmm0 = src[0].x */
1136 tmp1 = emit_fetch( bld, inst, 1, CHAN_X ); /* xmm1 = src[1].x */
1137 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 * xmm1 */
1138 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y ); /* xmm1 = src[0].y */
1139 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y ); /* xmm2 = src[1].y */
1140 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2); /* xmm1 = xmm1 * xmm2 */
1141 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1142 tmp1 = emit_fetch( bld, inst, 2, CHAN_X ); /* xmm1 = src[2].x */
1143 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1144 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1145 dst0[chan_index] = tmp0; /* dest[ch] = xmm0 */
1146 }
1147 break;
1148
1149 case TGSI_OPCODE_FRC:
1150 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1151 src0 = emit_fetch( bld, inst, 0, chan_index );
1152 tmp0 = lp_build_floor(&bld->base, src0);
1153 tmp0 = lp_build_sub(&bld->base, src0, tmp0);
1154 dst0[chan_index] = tmp0;
1155 }
1156 break;
1157
1158 case TGSI_OPCODE_CLAMP:
1159 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1160 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1161 src1 = emit_fetch( bld, inst, 1, chan_index );
1162 src2 = emit_fetch( bld, inst, 2, chan_index );
1163 tmp0 = lp_build_max(&bld->base, tmp0, src1);
1164 tmp0 = lp_build_min(&bld->base, tmp0, src2);
1165 dst0[chan_index] = tmp0;
1166 }
1167 break;
1168
1169 case TGSI_OPCODE_FLR:
1170 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1171 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1172 dst0[chan_index] = lp_build_floor(&bld->base, tmp0);
1173 }
1174 break;
1175
1176 case TGSI_OPCODE_ROUND:
1177 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1178 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1179 dst0[chan_index] = lp_build_round(&bld->base, tmp0);
1180 }
1181 break;
1182
1183 case TGSI_OPCODE_EX2: {
1184 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1185 tmp0 = lp_build_exp2( &bld->base, tmp0);
1186 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1187 dst0[chan_index] = tmp0;
1188 }
1189 break;
1190 }
1191
1192 case TGSI_OPCODE_LG2:
1193 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1194 tmp0 = lp_build_log2( &bld->base, tmp0);
1195 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1196 dst0[chan_index] = tmp0;
1197 }
1198 break;
1199
1200 case TGSI_OPCODE_POW:
1201 src0 = emit_fetch( bld, inst, 0, CHAN_X );
1202 src1 = emit_fetch( bld, inst, 1, CHAN_X );
1203 res = lp_build_pow( &bld->base, src0, src1 );
1204 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1205 dst0[chan_index] = res;
1206 }
1207 break;
1208
1209 case TGSI_OPCODE_XPD:
1210 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
1211 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ) {
1212 tmp1 = emit_fetch( bld, inst, 1, CHAN_Z );
1213 tmp3 = emit_fetch( bld, inst, 0, CHAN_Z );
1214 }
1215 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) ||
1216 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
1217 tmp0 = emit_fetch( bld, inst, 0, CHAN_Y );
1218 tmp4 = emit_fetch( bld, inst, 1, CHAN_Y );
1219 }
1220 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1221 tmp2 = tmp0;
1222 tmp2 = lp_build_mul( &bld->base, tmp2, tmp1);
1223 tmp5 = tmp3;
1224 tmp5 = lp_build_mul( &bld->base, tmp5, tmp4);
1225 tmp2 = lp_build_sub( &bld->base, tmp2, tmp5);
1226 dst0[CHAN_X] = tmp2;
1227 }
1228 if( IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) ||
1229 IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) ) {
1230 tmp2 = emit_fetch( bld, inst, 1, CHAN_X );
1231 tmp5 = emit_fetch( bld, inst, 0, CHAN_X );
1232 }
1233 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1234 tmp3 = lp_build_mul( &bld->base, tmp3, tmp2);
1235 tmp1 = lp_build_mul( &bld->base, tmp1, tmp5);
1236 tmp3 = lp_build_sub( &bld->base, tmp3, tmp1);
1237 dst0[CHAN_Y] = tmp3;
1238 }
1239 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1240 tmp5 = lp_build_mul( &bld->base, tmp5, tmp4);
1241 tmp0 = lp_build_mul( &bld->base, tmp0, tmp2);
1242 tmp5 = lp_build_sub( &bld->base, tmp5, tmp0);
1243 dst0[CHAN_Z] = tmp5;
1244 }
1245 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1246 dst0[CHAN_W] = bld->base.one;
1247 }
1248 break;
1249
1250 case TGSI_OPCODE_ABS:
1251 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1252 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1253 dst0[chan_index] = lp_build_abs( &bld->base, tmp0 );
1254 }
1255 break;
1256
1257 case TGSI_OPCODE_RCC:
1258 /* deprecated? */
1259 assert(0);
1260 return FALSE;
1261
1262 case TGSI_OPCODE_DPH:
1263 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1264 tmp1 = emit_fetch( bld, inst, 1, CHAN_X );
1265 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1);
1266 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y );
1267 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y );
1268 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1269 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1270 tmp1 = emit_fetch( bld, inst, 0, CHAN_Z );
1271 tmp2 = emit_fetch( bld, inst, 1, CHAN_Z );
1272 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2);
1273 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1274 tmp1 = emit_fetch( bld, inst, 1, CHAN_W );
1275 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1276 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1277 dst0[chan_index] = tmp0;
1278 }
1279 break;
1280
1281 case TGSI_OPCODE_COS:
1282 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1283 tmp0 = lp_build_cos( &bld->base, tmp0 );
1284 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1285 dst0[chan_index] = tmp0;
1286 }
1287 break;
1288
1289 case TGSI_OPCODE_DDX:
1290 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1291 emit_fetch_deriv( bld, inst, 0, chan_index, NULL, &dst0[chan_index], NULL);
1292 }
1293 break;
1294
1295 case TGSI_OPCODE_DDY:
1296 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1297 emit_fetch_deriv( bld, inst, 0, chan_index, NULL, NULL, &dst0[chan_index]);
1298 }
1299 break;
1300
1301 case TGSI_OPCODE_KILP:
1302 /* predicated kill */
1303 emit_kilp( bld, inst );
1304 break;
1305
1306 case TGSI_OPCODE_KIL:
1307 /* conditional kill */
1308 emit_kil( bld, inst );
1309 break;
1310
1311 case TGSI_OPCODE_PK2H:
1312 return FALSE;
1313 break;
1314
1315 case TGSI_OPCODE_PK2US:
1316 return FALSE;
1317 break;
1318
1319 case TGSI_OPCODE_PK4B:
1320 return FALSE;
1321 break;
1322
1323 case TGSI_OPCODE_PK4UB:
1324 return FALSE;
1325 break;
1326
1327 case TGSI_OPCODE_RFL:
1328 return FALSE;
1329 break;
1330
1331 case TGSI_OPCODE_SEQ:
1332 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1333 src0 = emit_fetch( bld, inst, 0, chan_index );
1334 src1 = emit_fetch( bld, inst, 1, chan_index );
1335 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_EQUAL, src0, src1 );
1336 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1337 }
1338 break;
1339
1340 case TGSI_OPCODE_SFL:
1341 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1342 dst0[chan_index] = bld->base.zero;
1343 }
1344 break;
1345
1346 case TGSI_OPCODE_SGT:
1347 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1348 src0 = emit_fetch( bld, inst, 0, chan_index );
1349 src1 = emit_fetch( bld, inst, 1, chan_index );
1350 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_GREATER, src0, src1 );
1351 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1352 }
1353 break;
1354
1355 case TGSI_OPCODE_SIN:
1356 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1357 tmp0 = lp_build_sin( &bld->base, tmp0 );
1358 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1359 dst0[chan_index] = tmp0;
1360 }
1361 break;
1362
1363 case TGSI_OPCODE_SLE:
1364 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1365 src0 = emit_fetch( bld, inst, 0, chan_index );
1366 src1 = emit_fetch( bld, inst, 1, chan_index );
1367 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LEQUAL, src0, src1 );
1368 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1369 }
1370 break;
1371
1372 case TGSI_OPCODE_SNE:
1373 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1374 src0 = emit_fetch( bld, inst, 0, chan_index );
1375 src1 = emit_fetch( bld, inst, 1, chan_index );
1376 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_NOTEQUAL, src0, src1 );
1377 dst0[chan_index] = lp_build_select( &bld->base, tmp0, bld->base.one, bld->base.zero );
1378 }
1379 break;
1380
1381 case TGSI_OPCODE_STR:
1382 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1383 dst0[chan_index] = bld->base.one;
1384 }
1385 break;
1386
1387 case TGSI_OPCODE_TEX:
1388 emit_tex( bld, inst, TEX_MODIFIER_NONE, dst0 );
1389 break;
1390
1391 case TGSI_OPCODE_TXD:
1392 emit_tex( bld, inst, TEX_MODIFIER_EXPLICIT_DERIV, dst0 );
1393 break;
1394
1395 case TGSI_OPCODE_UP2H:
1396 /* deprecated */
1397 assert (0);
1398 return FALSE;
1399 break;
1400
1401 case TGSI_OPCODE_UP2US:
1402 /* deprecated */
1403 assert(0);
1404 return FALSE;
1405 break;
1406
1407 case TGSI_OPCODE_UP4B:
1408 /* deprecated */
1409 assert(0);
1410 return FALSE;
1411 break;
1412
1413 case TGSI_OPCODE_UP4UB:
1414 /* deprecated */
1415 assert(0);
1416 return FALSE;
1417 break;
1418
1419 case TGSI_OPCODE_X2D:
1420 /* deprecated? */
1421 assert(0);
1422 return FALSE;
1423 break;
1424
1425 case TGSI_OPCODE_ARA:
1426 /* deprecated */
1427 assert(0);
1428 return FALSE;
1429 break;
1430
1431 case TGSI_OPCODE_ARR:
1432 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1433 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1434 tmp0 = lp_build_round(&bld->base, tmp0);
1435 dst0[chan_index] = tmp0;
1436 }
1437 break;
1438
1439 case TGSI_OPCODE_BRA:
1440 /* deprecated */
1441 assert(0);
1442 return FALSE;
1443 break;
1444
1445 case TGSI_OPCODE_CAL:
1446 /* FIXME */
1447 return FALSE;
1448 break;
1449
1450 case TGSI_OPCODE_RET:
1451 /* FIXME */
1452 return FALSE;
1453 break;
1454
1455 case TGSI_OPCODE_END:
1456 break;
1457
1458 case TGSI_OPCODE_SSG:
1459 /* TGSI_OPCODE_SGN */
1460 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1461 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1462 dst0[chan_index] = lp_build_sgn( &bld->base, tmp0 );
1463 }
1464 break;
1465
1466 case TGSI_OPCODE_CMP:
1467 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1468 src0 = emit_fetch( bld, inst, 0, chan_index );
1469 src1 = emit_fetch( bld, inst, 1, chan_index );
1470 src2 = emit_fetch( bld, inst, 2, chan_index );
1471 tmp0 = lp_build_cmp( &bld->base, PIPE_FUNC_LESS, src0, bld->base.zero );
1472 dst0[chan_index] = lp_build_select( &bld->base, tmp0, src1, src2);
1473 }
1474 break;
1475
1476 case TGSI_OPCODE_SCS:
1477 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_X ) {
1478 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1479 dst0[CHAN_X] = lp_build_cos( &bld->base, tmp0 );
1480 }
1481 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Y ) {
1482 tmp0 = emit_fetch( bld, inst, 0, CHAN_X );
1483 dst0[CHAN_Y] = lp_build_sin( &bld->base, tmp0 );
1484 }
1485 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_Z ) {
1486 dst0[CHAN_Z] = bld->base.zero;
1487 }
1488 IF_IS_DST0_CHANNEL_ENABLED( inst, CHAN_W ) {
1489 dst0[CHAN_W] = bld->base.one;
1490 }
1491 break;
1492
1493 case TGSI_OPCODE_TXB:
1494 emit_tex( bld, inst, TEX_MODIFIER_LOD_BIAS, dst0 );
1495 break;
1496
1497 case TGSI_OPCODE_NRM:
1498 /* fall-through */
1499 case TGSI_OPCODE_NRM4:
1500 /* 3 or 4-component normalization */
1501 {
1502 uint dims = (inst->Instruction.Opcode == TGSI_OPCODE_NRM) ? 3 : 4;
1503
1504 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X) ||
1505 IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y) ||
1506 IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z) ||
1507 (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W) && dims == 4)) {
1508
1509 /* NOTE: Cannot use xmm regs 2/3 here (see emit_rsqrt() above). */
1510
1511 /* xmm4 = src.x */
1512 /* xmm0 = src.x * src.x */
1513 tmp0 = emit_fetch(bld, inst, 0, CHAN_X);
1514 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X)) {
1515 tmp4 = tmp0;
1516 }
1517 tmp0 = lp_build_mul( &bld->base, tmp0, tmp0);
1518
1519 /* xmm5 = src.y */
1520 /* xmm0 = xmm0 + src.y * src.y */
1521 tmp1 = emit_fetch(bld, inst, 0, CHAN_Y);
1522 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y)) {
1523 tmp5 = tmp1;
1524 }
1525 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1526 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1527
1528 /* xmm6 = src.z */
1529 /* xmm0 = xmm0 + src.z * src.z */
1530 tmp1 = emit_fetch(bld, inst, 0, CHAN_Z);
1531 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z)) {
1532 tmp6 = tmp1;
1533 }
1534 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1535 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1536
1537 if (dims == 4) {
1538 /* xmm7 = src.w */
1539 /* xmm0 = xmm0 + src.w * src.w */
1540 tmp1 = emit_fetch(bld, inst, 0, CHAN_W);
1541 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W)) {
1542 tmp7 = tmp1;
1543 }
1544 tmp1 = lp_build_mul( &bld->base, tmp1, tmp1);
1545 tmp0 = lp_build_add( &bld->base, tmp0, tmp1);
1546 }
1547
1548 /* xmm1 = 1 / sqrt(xmm0) */
1549 tmp1 = lp_build_rsqrt( &bld->base, tmp0);
1550
1551 /* dst.x = xmm1 * src.x */
1552 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X)) {
1553 dst0[CHAN_X] = lp_build_mul( &bld->base, tmp4, tmp1);
1554 }
1555
1556 /* dst.y = xmm1 * src.y */
1557 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Y)) {
1558 dst0[CHAN_Y] = lp_build_mul( &bld->base, tmp5, tmp1);
1559 }
1560
1561 /* dst.z = xmm1 * src.z */
1562 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_Z)) {
1563 dst0[CHAN_Z] = lp_build_mul( &bld->base, tmp6, tmp1);
1564 }
1565
1566 /* dst.w = xmm1 * src.w */
1567 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_X) && dims == 4) {
1568 dst0[CHAN_W] = lp_build_mul( &bld->base, tmp7, tmp1);
1569 }
1570 }
1571
1572 /* dst.w = 1.0 */
1573 if (IS_DST0_CHANNEL_ENABLED(inst, CHAN_W) && dims == 3) {
1574 dst0[CHAN_W] = bld->base.one;
1575 }
1576 }
1577 break;
1578
1579 case TGSI_OPCODE_DIV:
1580 /* deprecated */
1581 assert( 0 );
1582 return FALSE;
1583 break;
1584
1585 case TGSI_OPCODE_DP2:
1586 tmp0 = emit_fetch( bld, inst, 0, CHAN_X ); /* xmm0 = src[0].x */
1587 tmp1 = emit_fetch( bld, inst, 1, CHAN_X ); /* xmm1 = src[1].x */
1588 tmp0 = lp_build_mul( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 * xmm1 */
1589 tmp1 = emit_fetch( bld, inst, 0, CHAN_Y ); /* xmm1 = src[0].y */
1590 tmp2 = emit_fetch( bld, inst, 1, CHAN_Y ); /* xmm2 = src[1].y */
1591 tmp1 = lp_build_mul( &bld->base, tmp1, tmp2); /* xmm1 = xmm1 * xmm2 */
1592 tmp0 = lp_build_add( &bld->base, tmp0, tmp1); /* xmm0 = xmm0 + xmm1 */
1593 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1594 dst0[chan_index] = tmp0; /* dest[ch] = xmm0 */
1595 }
1596 break;
1597
1598 case TGSI_OPCODE_TXL:
1599 emit_tex( bld, inst, TEX_MODIFIER_EXPLICIT_LOD, dst0 );
1600 break;
1601
1602 case TGSI_OPCODE_TXP:
1603 emit_tex( bld, inst, TEX_MODIFIER_PROJECTED, dst0 );
1604 break;
1605
1606 case TGSI_OPCODE_BRK:
1607 lp_exec_break(&bld->exec_mask);
1608 break;
1609
1610 case TGSI_OPCODE_IF:
1611 tmp0 = emit_fetch(bld, inst, 0, CHAN_X);
1612 tmp0 = lp_build_cmp(&bld->base, PIPE_FUNC_NOTEQUAL,
1613 tmp0, bld->base.zero);
1614 lp_exec_mask_cond_push(&bld->exec_mask, tmp0);
1615 break;
1616
1617 case TGSI_OPCODE_BGNLOOP:
1618 lp_exec_bgnloop(&bld->exec_mask);
1619 break;
1620
1621 case TGSI_OPCODE_ELSE:
1622 lp_exec_mask_cond_invert(&bld->exec_mask);
1623 break;
1624
1625 case TGSI_OPCODE_ENDIF:
1626 lp_exec_mask_cond_pop(&bld->exec_mask);
1627 break;
1628
1629 case TGSI_OPCODE_ENDLOOP:
1630 lp_exec_endloop(&bld->exec_mask);
1631 break;
1632
1633 case TGSI_OPCODE_PUSHA:
1634 /* deprecated? */
1635 assert(0);
1636 return FALSE;
1637 break;
1638
1639 case TGSI_OPCODE_POPA:
1640 /* deprecated? */
1641 assert(0);
1642 return FALSE;
1643 break;
1644
1645 case TGSI_OPCODE_CEIL:
1646 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1647 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1648 dst0[chan_index] = lp_build_ceil(&bld->base, tmp0);
1649 }
1650 break;
1651
1652 case TGSI_OPCODE_I2F:
1653 /* deprecated? */
1654 assert(0);
1655 return FALSE;
1656 break;
1657
1658 case TGSI_OPCODE_NOT:
1659 /* deprecated? */
1660 assert(0);
1661 return FALSE;
1662 break;
1663
1664 case TGSI_OPCODE_TRUNC:
1665 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1666 tmp0 = emit_fetch( bld, inst, 0, chan_index );
1667 dst0[chan_index] = lp_build_trunc(&bld->base, tmp0);
1668 }
1669 break;
1670
1671 case TGSI_OPCODE_SHL:
1672 /* deprecated? */
1673 assert(0);
1674 return FALSE;
1675 break;
1676
1677 case TGSI_OPCODE_ISHR:
1678 /* deprecated? */
1679 assert(0);
1680 return FALSE;
1681 break;
1682
1683 case TGSI_OPCODE_AND:
1684 /* deprecated? */
1685 assert(0);
1686 return FALSE;
1687 break;
1688
1689 case TGSI_OPCODE_OR:
1690 /* deprecated? */
1691 assert(0);
1692 return FALSE;
1693 break;
1694
1695 case TGSI_OPCODE_MOD:
1696 /* deprecated? */
1697 assert(0);
1698 return FALSE;
1699 break;
1700
1701 case TGSI_OPCODE_XOR:
1702 /* deprecated? */
1703 assert(0);
1704 return FALSE;
1705 break;
1706
1707 case TGSI_OPCODE_SAD:
1708 /* deprecated? */
1709 assert(0);
1710 return FALSE;
1711 break;
1712
1713 case TGSI_OPCODE_TXF:
1714 /* deprecated? */
1715 assert(0);
1716 return FALSE;
1717 break;
1718
1719 case TGSI_OPCODE_TXQ:
1720 /* deprecated? */
1721 assert(0);
1722 return FALSE;
1723 break;
1724
1725 case TGSI_OPCODE_CONT:
1726 lp_exec_continue(&bld->exec_mask);
1727 break;
1728
1729 case TGSI_OPCODE_EMIT:
1730 return FALSE;
1731 break;
1732
1733 case TGSI_OPCODE_ENDPRIM:
1734 return FALSE;
1735 break;
1736
1737 case TGSI_OPCODE_NOP:
1738 break;
1739
1740 default:
1741 return FALSE;
1742 }
1743
1744 if(info->num_dst) {
1745 FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
1746 emit_store( bld, inst, 0, chan_index, dst0[chan_index]);
1747 }
1748 }
1749
1750 return TRUE;
1751 }
1752
1753
1754 void
1755 lp_build_tgsi_soa(LLVMBuilderRef builder,
1756 const struct tgsi_token *tokens,
1757 struct lp_type type,
1758 struct lp_build_mask_context *mask,
1759 LLVMValueRef consts_ptr,
1760 const LLVMValueRef *pos,
1761 const LLVMValueRef (*inputs)[NUM_CHANNELS],
1762 LLVMValueRef (*outputs)[NUM_CHANNELS],
1763 struct lp_build_sampler_soa *sampler,
1764 struct tgsi_shader_info *info)
1765 {
1766 struct lp_build_tgsi_soa_context bld;
1767 struct tgsi_parse_context parse;
1768 uint num_immediates = 0;
1769 unsigned i;
1770
1771 /* Setup build context */
1772 memset(&bld, 0, sizeof bld);
1773 lp_build_context_init(&bld.base, builder, type);
1774 bld.mask = mask;
1775 bld.pos = pos;
1776 bld.inputs = inputs;
1777 bld.outputs = outputs;
1778 bld.consts_ptr = consts_ptr;
1779 bld.sampler = sampler;
1780 bld.has_indirect_addressing = info->opcode_count[TGSI_OPCODE_ARR] > 0 ||
1781 info->opcode_count[TGSI_OPCODE_ARL] > 0;
1782
1783 lp_exec_mask_init(&bld.exec_mask, &bld.base);
1784
1785 tgsi_parse_init( &parse, tokens );
1786
1787 while( !tgsi_parse_end_of_tokens( &parse ) ) {
1788 tgsi_parse_token( &parse );
1789
1790 switch( parse.FullToken.Token.Type ) {
1791 case TGSI_TOKEN_TYPE_DECLARATION:
1792 /* Inputs already interpolated */
1793 emit_declaration( &bld, &parse.FullToken.FullDeclaration );
1794 break;
1795
1796 case TGSI_TOKEN_TYPE_INSTRUCTION:
1797 {
1798 unsigned opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
1799 const struct tgsi_opcode_info *opcode_info = tgsi_get_opcode_info(opcode);
1800 if (!emit_instruction( &bld, &parse.FullToken.FullInstruction, opcode_info ))
1801 _debug_printf("warning: failed to translate tgsi opcode %s to LLVM\n",
1802 opcode_info->mnemonic);
1803 }
1804
1805 break;
1806
1807 case TGSI_TOKEN_TYPE_IMMEDIATE:
1808 /* simply copy the immediate values into the next immediates[] slot */
1809 {
1810 const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1811 assert(size <= 4);
1812 assert(num_immediates < LP_MAX_TGSI_IMMEDIATES);
1813 for( i = 0; i < size; ++i )
1814 bld.immediates[num_immediates][i] =
1815 lp_build_const_vec(type, parse.FullToken.FullImmediate.u[i].Float);
1816 for( i = size; i < 4; ++i )
1817 bld.immediates[num_immediates][i] = bld.base.undef;
1818 num_immediates++;
1819 }
1820 break;
1821
1822 case TGSI_TOKEN_TYPE_PROPERTY:
1823 break;
1824
1825 default:
1826 assert( 0 );
1827 }
1828 }
1829 if (0) {
1830 LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
1831 LLVMValueRef function = LLVMGetBasicBlockParent(block);
1832 debug_printf("11111111111111111111111111111 \n");
1833 tgsi_dump(tokens, 0);
1834 LLVMDumpValue(function);
1835 debug_printf("2222222222222222222222222222 \n");
1836 }
1837 tgsi_parse_free( &parse );
1838 }
1839