Merge branch '7.8'
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_type.h
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * Convenient representation of SIMD types.
31 *
32 * @author Jose Fonseca <jfonseca@vmware.com>
33 */
34
35
36 #ifndef LP_BLD_TYPE_H
37 #define LP_BLD_TYPE_H
38
39
40 #include <llvm-c/Core.h>
41
42 #include <pipe/p_compiler.h>
43
44
45 /**
46 * Native SIMD register width.
47 *
48 * 128 for all architectures we care about.
49 */
50 #define LP_NATIVE_VECTOR_WIDTH 128
51
52 /**
53 * Several functions can only cope with vectors of length up to this value.
54 * You may need to increase that value if you want to represent bigger vectors.
55 */
56 #define LP_MAX_VECTOR_LENGTH 16
57
58
59 /**
60 * The LLVM type system can't conveniently express all the things we care about
61 * on the types used for intermediate computations, such as signed vs unsigned,
62 * normalized values, or fixed point.
63 */
64 struct lp_type {
65 /**
66 * Floating-point. Cannot be used with fixed. Integer numbers are
67 * represented by this zero.
68 */
69 unsigned floating:1;
70
71 /**
72 * Fixed-point. Cannot be used with floating. Integer numbers are
73 * represented by this zero.
74 */
75 unsigned fixed:1;
76
77 /**
78 * Whether it can represent negative values or not.
79 *
80 * If this is not set for floating point, it means that all values are
81 * assumed to be positive.
82 */
83 unsigned sign:1;
84
85 /**
86 * Whether values are normalized to fit [0, 1] interval, or [-1, 1]
87 * interval for signed types.
88 *
89 * For integer types it means the representable integer range should be
90 * interpreted as the interval above.
91 *
92 * For floating and fixed point formats it means the values should be
93 * clamped to the interval above.
94 */
95 unsigned norm:1;
96
97 /**
98 * Element width.
99 *
100 * For fixed point values, the fixed point is assumed to be at half the
101 * width.
102 */
103 unsigned width:14;
104
105 /**
106 * Vector length. If length==1, this is a scalar (float/int) type.
107 *
108 * width*length should be a power of two greater or equal to eight.
109 *
110 * @sa LP_MAX_VECTOR_LENGTH
111 */
112 unsigned length:14;
113 };
114
115
116 /**
117 * We need most of the information here in order to correctly and efficiently
118 * translate an arithmetic operation into LLVM IR. Putting it here avoids the
119 * trouble of passing it as parameters.
120 */
121 struct lp_build_context
122 {
123 LLVMBuilderRef builder;
124
125 /**
126 * This not only describes the input/output LLVM types, but also whether
127 * to normalize/clamp the results.
128 */
129 struct lp_type type;
130
131 /** Same as lp_build_undef(type) */
132 LLVMValueRef undef;
133
134 /** Same as lp_build_zero(type) */
135 LLVMValueRef zero;
136
137 /** Same as lp_build_one(type) */
138 LLVMValueRef one;
139 };
140
141
142 /** Create scalar float type */
143 static INLINE struct lp_type
144 lp_type_float(unsigned width)
145 {
146 struct lp_type res_type;
147
148 memset(&res_type, 0, sizeof res_type);
149 res_type.floating = TRUE;
150 res_type.sign = TRUE;
151 res_type.width = width;
152 res_type.length = 1;
153
154 return res_type;
155 }
156
157
158 /** Create vector of float type */
159 static INLINE struct lp_type
160 lp_type_float_vec(unsigned width)
161 {
162 struct lp_type res_type;
163
164 memset(&res_type, 0, sizeof res_type);
165 res_type.floating = TRUE;
166 res_type.sign = TRUE;
167 res_type.width = width;
168 res_type.length = LP_NATIVE_VECTOR_WIDTH / width;
169
170 return res_type;
171 }
172
173
174 /** Create scalar int type */
175 static INLINE struct lp_type
176 lp_type_int(unsigned width)
177 {
178 struct lp_type res_type;
179
180 memset(&res_type, 0, sizeof res_type);
181 res_type.sign = TRUE;
182 res_type.width = width;
183 res_type.length = 1;
184
185 return res_type;
186 }
187
188
189 /** Create vector int type */
190 static INLINE struct lp_type
191 lp_type_int_vec(unsigned width)
192 {
193 struct lp_type res_type;
194
195 memset(&res_type, 0, sizeof res_type);
196 res_type.sign = TRUE;
197 res_type.width = width;
198 res_type.length = LP_NATIVE_VECTOR_WIDTH / width;
199
200 return res_type;
201 }
202
203
204 /** Create scalar uint type */
205 static INLINE struct lp_type
206 lp_type_uint(unsigned width)
207 {
208 struct lp_type res_type;
209
210 memset(&res_type, 0, sizeof res_type);
211 res_type.width = width;
212 res_type.length = 1;
213
214 return res_type;
215 }
216
217
218 /** Create vector uint type */
219 static INLINE struct lp_type
220 lp_type_uint_vec(unsigned width)
221 {
222 struct lp_type res_type;
223
224 memset(&res_type, 0, sizeof res_type);
225 res_type.width = width;
226 res_type.length = LP_NATIVE_VECTOR_WIDTH / width;
227
228 return res_type;
229 }
230
231
232 static INLINE struct lp_type
233 lp_type_unorm(unsigned width)
234 {
235 struct lp_type res_type;
236
237 memset(&res_type, 0, sizeof res_type);
238 res_type.norm = TRUE;
239 res_type.width = width;
240 res_type.length = LP_NATIVE_VECTOR_WIDTH / width;
241
242 return res_type;
243 }
244
245
246 static INLINE struct lp_type
247 lp_type_fixed(unsigned width)
248 {
249 struct lp_type res_type;
250
251 memset(&res_type, 0, sizeof res_type);
252 res_type.sign = TRUE;
253 res_type.fixed = TRUE;
254 res_type.width = width;
255 res_type.length = LP_NATIVE_VECTOR_WIDTH / width;
256
257 return res_type;
258 }
259
260
261 static INLINE struct lp_type
262 lp_type_ufixed(unsigned width)
263 {
264 struct lp_type res_type;
265
266 memset(&res_type, 0, sizeof res_type);
267 res_type.fixed = TRUE;
268 res_type.width = width;
269 res_type.length = LP_NATIVE_VECTOR_WIDTH / width;
270
271 return res_type;
272 }
273
274
275 LLVMTypeRef
276 lp_build_elem_type(struct lp_type type);
277
278
279 LLVMTypeRef
280 lp_build_vec_type(struct lp_type type);
281
282
283 boolean
284 lp_check_elem_type(struct lp_type type, LLVMTypeRef elem_type);
285
286
287 boolean
288 lp_check_vec_type(struct lp_type type, LLVMTypeRef vec_type);
289
290
291 boolean
292 lp_check_value(struct lp_type type, LLVMValueRef val);
293
294
295 LLVMTypeRef
296 lp_build_int_elem_type(struct lp_type type);
297
298
299 LLVMTypeRef
300 lp_build_int_vec_type(struct lp_type type);
301
302
303 LLVMTypeRef
304 lp_build_int32_vec4_type(void);
305
306
307 struct lp_type
308 lp_uint_type(struct lp_type type);
309
310
311 struct lp_type
312 lp_int_type(struct lp_type type);
313
314
315 struct lp_type
316 lp_wider_type(struct lp_type type);
317
318
319 void
320 lp_build_context_init(struct lp_build_context *bld,
321 LLVMBuilderRef builder,
322 struct lp_type type);
323
324
325 #endif /* !LP_BLD_TYPE_H */