softpipe: dynamically allocate space for immediate constants
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_half.h"
62 #include "util/u_memory.h"
63 #include "util/u_math.h"
64 #include "util/rounding.h"
65
66
67 #define DEBUG_EXECUTION 0
68
69
70 #define FAST_MATH 0
71
72 #define TILE_TOP_LEFT 0
73 #define TILE_TOP_RIGHT 1
74 #define TILE_BOTTOM_LEFT 2
75 #define TILE_BOTTOM_RIGHT 3
76
77 union tgsi_double_channel {
78 double d[TGSI_QUAD_SIZE];
79 unsigned u[TGSI_QUAD_SIZE][2];
80 uint64_t u64[TGSI_QUAD_SIZE];
81 int64_t i64[TGSI_QUAD_SIZE];
82 };
83
84 struct tgsi_double_vector {
85 union tgsi_double_channel xy;
86 union tgsi_double_channel zw;
87 };
88
89 static void
90 micro_abs(union tgsi_exec_channel *dst,
91 const union tgsi_exec_channel *src)
92 {
93 dst->f[0] = fabsf(src->f[0]);
94 dst->f[1] = fabsf(src->f[1]);
95 dst->f[2] = fabsf(src->f[2]);
96 dst->f[3] = fabsf(src->f[3]);
97 }
98
99 static void
100 micro_arl(union tgsi_exec_channel *dst,
101 const union tgsi_exec_channel *src)
102 {
103 dst->i[0] = (int)floorf(src->f[0]);
104 dst->i[1] = (int)floorf(src->f[1]);
105 dst->i[2] = (int)floorf(src->f[2]);
106 dst->i[3] = (int)floorf(src->f[3]);
107 }
108
109 static void
110 micro_arr(union tgsi_exec_channel *dst,
111 const union tgsi_exec_channel *src)
112 {
113 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
114 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
115 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
116 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
117 }
118
119 static void
120 micro_ceil(union tgsi_exec_channel *dst,
121 const union tgsi_exec_channel *src)
122 {
123 dst->f[0] = ceilf(src->f[0]);
124 dst->f[1] = ceilf(src->f[1]);
125 dst->f[2] = ceilf(src->f[2]);
126 dst->f[3] = ceilf(src->f[3]);
127 }
128
129 static void
130 micro_cmp(union tgsi_exec_channel *dst,
131 const union tgsi_exec_channel *src0,
132 const union tgsi_exec_channel *src1,
133 const union tgsi_exec_channel *src2)
134 {
135 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
136 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
137 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
138 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
139 }
140
141 static void
142 micro_cos(union tgsi_exec_channel *dst,
143 const union tgsi_exec_channel *src)
144 {
145 dst->f[0] = cosf(src->f[0]);
146 dst->f[1] = cosf(src->f[1]);
147 dst->f[2] = cosf(src->f[2]);
148 dst->f[3] = cosf(src->f[3]);
149 }
150
151 static void
152 micro_d2f(union tgsi_exec_channel *dst,
153 const union tgsi_double_channel *src)
154 {
155 dst->f[0] = (float)src->d[0];
156 dst->f[1] = (float)src->d[1];
157 dst->f[2] = (float)src->d[2];
158 dst->f[3] = (float)src->d[3];
159 }
160
161 static void
162 micro_d2i(union tgsi_exec_channel *dst,
163 const union tgsi_double_channel *src)
164 {
165 dst->i[0] = (int)src->d[0];
166 dst->i[1] = (int)src->d[1];
167 dst->i[2] = (int)src->d[2];
168 dst->i[3] = (int)src->d[3];
169 }
170
171 static void
172 micro_d2u(union tgsi_exec_channel *dst,
173 const union tgsi_double_channel *src)
174 {
175 dst->u[0] = (unsigned)src->d[0];
176 dst->u[1] = (unsigned)src->d[1];
177 dst->u[2] = (unsigned)src->d[2];
178 dst->u[3] = (unsigned)src->d[3];
179 }
180 static void
181 micro_dabs(union tgsi_double_channel *dst,
182 const union tgsi_double_channel *src)
183 {
184 dst->d[0] = src->d[0] >= 0.0 ? src->d[0] : -src->d[0];
185 dst->d[1] = src->d[1] >= 0.0 ? src->d[1] : -src->d[1];
186 dst->d[2] = src->d[2] >= 0.0 ? src->d[2] : -src->d[2];
187 dst->d[3] = src->d[3] >= 0.0 ? src->d[3] : -src->d[3];
188 }
189
190 static void
191 micro_dadd(union tgsi_double_channel *dst,
192 const union tgsi_double_channel *src)
193 {
194 dst->d[0] = src[0].d[0] + src[1].d[0];
195 dst->d[1] = src[0].d[1] + src[1].d[1];
196 dst->d[2] = src[0].d[2] + src[1].d[2];
197 dst->d[3] = src[0].d[3] + src[1].d[3];
198 }
199
200 static void
201 micro_ddiv(union tgsi_double_channel *dst,
202 const union tgsi_double_channel *src)
203 {
204 dst->d[0] = src[0].d[0] / src[1].d[0];
205 dst->d[1] = src[0].d[1] / src[1].d[1];
206 dst->d[2] = src[0].d[2] / src[1].d[2];
207 dst->d[3] = src[0].d[3] / src[1].d[3];
208 }
209
210 static void
211 micro_ddx(union tgsi_exec_channel *dst,
212 const union tgsi_exec_channel *src)
213 {
214 dst->f[0] =
215 dst->f[1] =
216 dst->f[2] =
217 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
218 }
219
220 static void
221 micro_ddy(union tgsi_exec_channel *dst,
222 const union tgsi_exec_channel *src)
223 {
224 dst->f[0] =
225 dst->f[1] =
226 dst->f[2] =
227 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
228 }
229
230 static void
231 micro_dmul(union tgsi_double_channel *dst,
232 const union tgsi_double_channel *src)
233 {
234 dst->d[0] = src[0].d[0] * src[1].d[0];
235 dst->d[1] = src[0].d[1] * src[1].d[1];
236 dst->d[2] = src[0].d[2] * src[1].d[2];
237 dst->d[3] = src[0].d[3] * src[1].d[3];
238 }
239
240 static void
241 micro_dmax(union tgsi_double_channel *dst,
242 const union tgsi_double_channel *src)
243 {
244 dst->d[0] = src[0].d[0] > src[1].d[0] ? src[0].d[0] : src[1].d[0];
245 dst->d[1] = src[0].d[1] > src[1].d[1] ? src[0].d[1] : src[1].d[1];
246 dst->d[2] = src[0].d[2] > src[1].d[2] ? src[0].d[2] : src[1].d[2];
247 dst->d[3] = src[0].d[3] > src[1].d[3] ? src[0].d[3] : src[1].d[3];
248 }
249
250 static void
251 micro_dmin(union tgsi_double_channel *dst,
252 const union tgsi_double_channel *src)
253 {
254 dst->d[0] = src[0].d[0] < src[1].d[0] ? src[0].d[0] : src[1].d[0];
255 dst->d[1] = src[0].d[1] < src[1].d[1] ? src[0].d[1] : src[1].d[1];
256 dst->d[2] = src[0].d[2] < src[1].d[2] ? src[0].d[2] : src[1].d[2];
257 dst->d[3] = src[0].d[3] < src[1].d[3] ? src[0].d[3] : src[1].d[3];
258 }
259
260 static void
261 micro_dneg(union tgsi_double_channel *dst,
262 const union tgsi_double_channel *src)
263 {
264 dst->d[0] = -src->d[0];
265 dst->d[1] = -src->d[1];
266 dst->d[2] = -src->d[2];
267 dst->d[3] = -src->d[3];
268 }
269
270 static void
271 micro_dslt(union tgsi_double_channel *dst,
272 const union tgsi_double_channel *src)
273 {
274 dst->u[0][0] = src[0].d[0] < src[1].d[0] ? ~0U : 0U;
275 dst->u[1][0] = src[0].d[1] < src[1].d[1] ? ~0U : 0U;
276 dst->u[2][0] = src[0].d[2] < src[1].d[2] ? ~0U : 0U;
277 dst->u[3][0] = src[0].d[3] < src[1].d[3] ? ~0U : 0U;
278 }
279
280 static void
281 micro_dsne(union tgsi_double_channel *dst,
282 const union tgsi_double_channel *src)
283 {
284 dst->u[0][0] = src[0].d[0] != src[1].d[0] ? ~0U : 0U;
285 dst->u[1][0] = src[0].d[1] != src[1].d[1] ? ~0U : 0U;
286 dst->u[2][0] = src[0].d[2] != src[1].d[2] ? ~0U : 0U;
287 dst->u[3][0] = src[0].d[3] != src[1].d[3] ? ~0U : 0U;
288 }
289
290 static void
291 micro_dsge(union tgsi_double_channel *dst,
292 const union tgsi_double_channel *src)
293 {
294 dst->u[0][0] = src[0].d[0] >= src[1].d[0] ? ~0U : 0U;
295 dst->u[1][0] = src[0].d[1] >= src[1].d[1] ? ~0U : 0U;
296 dst->u[2][0] = src[0].d[2] >= src[1].d[2] ? ~0U : 0U;
297 dst->u[3][0] = src[0].d[3] >= src[1].d[3] ? ~0U : 0U;
298 }
299
300 static void
301 micro_dseq(union tgsi_double_channel *dst,
302 const union tgsi_double_channel *src)
303 {
304 dst->u[0][0] = src[0].d[0] == src[1].d[0] ? ~0U : 0U;
305 dst->u[1][0] = src[0].d[1] == src[1].d[1] ? ~0U : 0U;
306 dst->u[2][0] = src[0].d[2] == src[1].d[2] ? ~0U : 0U;
307 dst->u[3][0] = src[0].d[3] == src[1].d[3] ? ~0U : 0U;
308 }
309
310 static void
311 micro_drcp(union tgsi_double_channel *dst,
312 const union tgsi_double_channel *src)
313 {
314 dst->d[0] = 1.0 / src->d[0];
315 dst->d[1] = 1.0 / src->d[1];
316 dst->d[2] = 1.0 / src->d[2];
317 dst->d[3] = 1.0 / src->d[3];
318 }
319
320 static void
321 micro_dsqrt(union tgsi_double_channel *dst,
322 const union tgsi_double_channel *src)
323 {
324 dst->d[0] = sqrt(src->d[0]);
325 dst->d[1] = sqrt(src->d[1]);
326 dst->d[2] = sqrt(src->d[2]);
327 dst->d[3] = sqrt(src->d[3]);
328 }
329
330 static void
331 micro_drsq(union tgsi_double_channel *dst,
332 const union tgsi_double_channel *src)
333 {
334 dst->d[0] = 1.0 / sqrt(src->d[0]);
335 dst->d[1] = 1.0 / sqrt(src->d[1]);
336 dst->d[2] = 1.0 / sqrt(src->d[2]);
337 dst->d[3] = 1.0 / sqrt(src->d[3]);
338 }
339
340 static void
341 micro_dmad(union tgsi_double_channel *dst,
342 const union tgsi_double_channel *src)
343 {
344 dst->d[0] = src[0].d[0] * src[1].d[0] + src[2].d[0];
345 dst->d[1] = src[0].d[1] * src[1].d[1] + src[2].d[1];
346 dst->d[2] = src[0].d[2] * src[1].d[2] + src[2].d[2];
347 dst->d[3] = src[0].d[3] * src[1].d[3] + src[2].d[3];
348 }
349
350 static void
351 micro_dfrac(union tgsi_double_channel *dst,
352 const union tgsi_double_channel *src)
353 {
354 dst->d[0] = src->d[0] - floor(src->d[0]);
355 dst->d[1] = src->d[1] - floor(src->d[1]);
356 dst->d[2] = src->d[2] - floor(src->d[2]);
357 dst->d[3] = src->d[3] - floor(src->d[3]);
358 }
359
360 static void
361 micro_dldexp(union tgsi_double_channel *dst,
362 const union tgsi_double_channel *src0,
363 union tgsi_exec_channel *src1)
364 {
365 dst->d[0] = ldexp(src0->d[0], src1->i[0]);
366 dst->d[1] = ldexp(src0->d[1], src1->i[1]);
367 dst->d[2] = ldexp(src0->d[2], src1->i[2]);
368 dst->d[3] = ldexp(src0->d[3], src1->i[3]);
369 }
370
371 static void
372 micro_dfracexp(union tgsi_double_channel *dst,
373 union tgsi_exec_channel *dst_exp,
374 const union tgsi_double_channel *src)
375 {
376 dst->d[0] = frexp(src->d[0], &dst_exp->i[0]);
377 dst->d[1] = frexp(src->d[1], &dst_exp->i[1]);
378 dst->d[2] = frexp(src->d[2], &dst_exp->i[2]);
379 dst->d[3] = frexp(src->d[3], &dst_exp->i[3]);
380 }
381
382 static void
383 micro_exp2(union tgsi_exec_channel *dst,
384 const union tgsi_exec_channel *src)
385 {
386 #if FAST_MATH
387 dst->f[0] = util_fast_exp2(src->f[0]);
388 dst->f[1] = util_fast_exp2(src->f[1]);
389 dst->f[2] = util_fast_exp2(src->f[2]);
390 dst->f[3] = util_fast_exp2(src->f[3]);
391 #else
392 #if DEBUG
393 /* Inf is okay for this instruction, so clamp it to silence assertions. */
394 uint i;
395 union tgsi_exec_channel clamped;
396
397 for (i = 0; i < 4; i++) {
398 if (src->f[i] > 127.99999f) {
399 clamped.f[i] = 127.99999f;
400 } else if (src->f[i] < -126.99999f) {
401 clamped.f[i] = -126.99999f;
402 } else {
403 clamped.f[i] = src->f[i];
404 }
405 }
406 src = &clamped;
407 #endif /* DEBUG */
408
409 dst->f[0] = powf(2.0f, src->f[0]);
410 dst->f[1] = powf(2.0f, src->f[1]);
411 dst->f[2] = powf(2.0f, src->f[2]);
412 dst->f[3] = powf(2.0f, src->f[3]);
413 #endif /* FAST_MATH */
414 }
415
416 static void
417 micro_f2d(union tgsi_double_channel *dst,
418 const union tgsi_exec_channel *src)
419 {
420 dst->d[0] = (double)src->f[0];
421 dst->d[1] = (double)src->f[1];
422 dst->d[2] = (double)src->f[2];
423 dst->d[3] = (double)src->f[3];
424 }
425
426 static void
427 micro_flr(union tgsi_exec_channel *dst,
428 const union tgsi_exec_channel *src)
429 {
430 dst->f[0] = floorf(src->f[0]);
431 dst->f[1] = floorf(src->f[1]);
432 dst->f[2] = floorf(src->f[2]);
433 dst->f[3] = floorf(src->f[3]);
434 }
435
436 static void
437 micro_frc(union tgsi_exec_channel *dst,
438 const union tgsi_exec_channel *src)
439 {
440 dst->f[0] = src->f[0] - floorf(src->f[0]);
441 dst->f[1] = src->f[1] - floorf(src->f[1]);
442 dst->f[2] = src->f[2] - floorf(src->f[2]);
443 dst->f[3] = src->f[3] - floorf(src->f[3]);
444 }
445
446 static void
447 micro_i2d(union tgsi_double_channel *dst,
448 const union tgsi_exec_channel *src)
449 {
450 dst->d[0] = (double)src->i[0];
451 dst->d[1] = (double)src->i[1];
452 dst->d[2] = (double)src->i[2];
453 dst->d[3] = (double)src->i[3];
454 }
455
456 static void
457 micro_iabs(union tgsi_exec_channel *dst,
458 const union tgsi_exec_channel *src)
459 {
460 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
461 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
462 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
463 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
464 }
465
466 static void
467 micro_ineg(union tgsi_exec_channel *dst,
468 const union tgsi_exec_channel *src)
469 {
470 dst->i[0] = -src->i[0];
471 dst->i[1] = -src->i[1];
472 dst->i[2] = -src->i[2];
473 dst->i[3] = -src->i[3];
474 }
475
476 static void
477 micro_lg2(union tgsi_exec_channel *dst,
478 const union tgsi_exec_channel *src)
479 {
480 #if FAST_MATH
481 dst->f[0] = util_fast_log2(src->f[0]);
482 dst->f[1] = util_fast_log2(src->f[1]);
483 dst->f[2] = util_fast_log2(src->f[2]);
484 dst->f[3] = util_fast_log2(src->f[3]);
485 #else
486 dst->f[0] = logf(src->f[0]) * 1.442695f;
487 dst->f[1] = logf(src->f[1]) * 1.442695f;
488 dst->f[2] = logf(src->f[2]) * 1.442695f;
489 dst->f[3] = logf(src->f[3]) * 1.442695f;
490 #endif
491 }
492
493 static void
494 micro_lrp(union tgsi_exec_channel *dst,
495 const union tgsi_exec_channel *src0,
496 const union tgsi_exec_channel *src1,
497 const union tgsi_exec_channel *src2)
498 {
499 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
500 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
501 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
502 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
503 }
504
505 static void
506 micro_mad(union tgsi_exec_channel *dst,
507 const union tgsi_exec_channel *src0,
508 const union tgsi_exec_channel *src1,
509 const union tgsi_exec_channel *src2)
510 {
511 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
512 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
513 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
514 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
515 }
516
517 static void
518 micro_mov(union tgsi_exec_channel *dst,
519 const union tgsi_exec_channel *src)
520 {
521 dst->u[0] = src->u[0];
522 dst->u[1] = src->u[1];
523 dst->u[2] = src->u[2];
524 dst->u[3] = src->u[3];
525 }
526
527 static void
528 micro_rcp(union tgsi_exec_channel *dst,
529 const union tgsi_exec_channel *src)
530 {
531 #if 0 /* for debugging */
532 assert(src->f[0] != 0.0f);
533 assert(src->f[1] != 0.0f);
534 assert(src->f[2] != 0.0f);
535 assert(src->f[3] != 0.0f);
536 #endif
537 dst->f[0] = 1.0f / src->f[0];
538 dst->f[1] = 1.0f / src->f[1];
539 dst->f[2] = 1.0f / src->f[2];
540 dst->f[3] = 1.0f / src->f[3];
541 }
542
543 static void
544 micro_rnd(union tgsi_exec_channel *dst,
545 const union tgsi_exec_channel *src)
546 {
547 dst->f[0] = _mesa_roundevenf(src->f[0]);
548 dst->f[1] = _mesa_roundevenf(src->f[1]);
549 dst->f[2] = _mesa_roundevenf(src->f[2]);
550 dst->f[3] = _mesa_roundevenf(src->f[3]);
551 }
552
553 static void
554 micro_rsq(union tgsi_exec_channel *dst,
555 const union tgsi_exec_channel *src)
556 {
557 #if 0 /* for debugging */
558 assert(src->f[0] != 0.0f);
559 assert(src->f[1] != 0.0f);
560 assert(src->f[2] != 0.0f);
561 assert(src->f[3] != 0.0f);
562 #endif
563 dst->f[0] = 1.0f / sqrtf(src->f[0]);
564 dst->f[1] = 1.0f / sqrtf(src->f[1]);
565 dst->f[2] = 1.0f / sqrtf(src->f[2]);
566 dst->f[3] = 1.0f / sqrtf(src->f[3]);
567 }
568
569 static void
570 micro_sqrt(union tgsi_exec_channel *dst,
571 const union tgsi_exec_channel *src)
572 {
573 dst->f[0] = sqrtf(src->f[0]);
574 dst->f[1] = sqrtf(src->f[1]);
575 dst->f[2] = sqrtf(src->f[2]);
576 dst->f[3] = sqrtf(src->f[3]);
577 }
578
579 static void
580 micro_seq(union tgsi_exec_channel *dst,
581 const union tgsi_exec_channel *src0,
582 const union tgsi_exec_channel *src1)
583 {
584 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
585 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
586 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
587 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
588 }
589
590 static void
591 micro_sge(union tgsi_exec_channel *dst,
592 const union tgsi_exec_channel *src0,
593 const union tgsi_exec_channel *src1)
594 {
595 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
596 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
597 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
598 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
599 }
600
601 static void
602 micro_sgn(union tgsi_exec_channel *dst,
603 const union tgsi_exec_channel *src)
604 {
605 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
606 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
607 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
608 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
609 }
610
611 static void
612 micro_isgn(union tgsi_exec_channel *dst,
613 const union tgsi_exec_channel *src)
614 {
615 dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
616 dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
617 dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
618 dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
619 }
620
621 static void
622 micro_sgt(union tgsi_exec_channel *dst,
623 const union tgsi_exec_channel *src0,
624 const union tgsi_exec_channel *src1)
625 {
626 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
627 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
628 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
629 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
630 }
631
632 static void
633 micro_sin(union tgsi_exec_channel *dst,
634 const union tgsi_exec_channel *src)
635 {
636 dst->f[0] = sinf(src->f[0]);
637 dst->f[1] = sinf(src->f[1]);
638 dst->f[2] = sinf(src->f[2]);
639 dst->f[3] = sinf(src->f[3]);
640 }
641
642 static void
643 micro_sle(union tgsi_exec_channel *dst,
644 const union tgsi_exec_channel *src0,
645 const union tgsi_exec_channel *src1)
646 {
647 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
648 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
649 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
650 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
651 }
652
653 static void
654 micro_slt(union tgsi_exec_channel *dst,
655 const union tgsi_exec_channel *src0,
656 const union tgsi_exec_channel *src1)
657 {
658 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
659 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
660 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
661 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
662 }
663
664 static void
665 micro_sne(union tgsi_exec_channel *dst,
666 const union tgsi_exec_channel *src0,
667 const union tgsi_exec_channel *src1)
668 {
669 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
670 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
671 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
672 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
673 }
674
675 static void
676 micro_trunc(union tgsi_exec_channel *dst,
677 const union tgsi_exec_channel *src)
678 {
679 dst->f[0] = truncf(src->f[0]);
680 dst->f[1] = truncf(src->f[1]);
681 dst->f[2] = truncf(src->f[2]);
682 dst->f[3] = truncf(src->f[3]);
683 }
684
685 static void
686 micro_u2d(union tgsi_double_channel *dst,
687 const union tgsi_exec_channel *src)
688 {
689 dst->d[0] = (double)src->u[0];
690 dst->d[1] = (double)src->u[1];
691 dst->d[2] = (double)src->u[2];
692 dst->d[3] = (double)src->u[3];
693 }
694
695 static void
696 micro_i64abs(union tgsi_double_channel *dst,
697 const union tgsi_double_channel *src)
698 {
699 dst->i64[0] = src->i64[0] >= 0.0 ? src->i64[0] : -src->i64[0];
700 dst->i64[1] = src->i64[1] >= 0.0 ? src->i64[1] : -src->i64[1];
701 dst->i64[2] = src->i64[2] >= 0.0 ? src->i64[2] : -src->i64[2];
702 dst->i64[3] = src->i64[3] >= 0.0 ? src->i64[3] : -src->i64[3];
703 }
704
705 static void
706 micro_i64sgn(union tgsi_double_channel *dst,
707 const union tgsi_double_channel *src)
708 {
709 dst->i64[0] = src->i64[0] < 0 ? -1 : src->i64[0] > 0 ? 1 : 0;
710 dst->i64[1] = src->i64[1] < 0 ? -1 : src->i64[1] > 0 ? 1 : 0;
711 dst->i64[2] = src->i64[2] < 0 ? -1 : src->i64[2] > 0 ? 1 : 0;
712 dst->i64[3] = src->i64[3] < 0 ? -1 : src->i64[3] > 0 ? 1 : 0;
713 }
714
715 static void
716 micro_i64neg(union tgsi_double_channel *dst,
717 const union tgsi_double_channel *src)
718 {
719 dst->i64[0] = -src->i64[0];
720 dst->i64[1] = -src->i64[1];
721 dst->i64[2] = -src->i64[2];
722 dst->i64[3] = -src->i64[3];
723 }
724
725 static void
726 micro_u64seq(union tgsi_double_channel *dst,
727 const union tgsi_double_channel *src)
728 {
729 dst->u[0][0] = src[0].u64[0] == src[1].u64[0] ? ~0U : 0U;
730 dst->u[1][0] = src[0].u64[1] == src[1].u64[1] ? ~0U : 0U;
731 dst->u[2][0] = src[0].u64[2] == src[1].u64[2] ? ~0U : 0U;
732 dst->u[3][0] = src[0].u64[3] == src[1].u64[3] ? ~0U : 0U;
733 }
734
735 static void
736 micro_u64sne(union tgsi_double_channel *dst,
737 const union tgsi_double_channel *src)
738 {
739 dst->u[0][0] = src[0].u64[0] != src[1].u64[0] ? ~0U : 0U;
740 dst->u[1][0] = src[0].u64[1] != src[1].u64[1] ? ~0U : 0U;
741 dst->u[2][0] = src[0].u64[2] != src[1].u64[2] ? ~0U : 0U;
742 dst->u[3][0] = src[0].u64[3] != src[1].u64[3] ? ~0U : 0U;
743 }
744
745 static void
746 micro_i64slt(union tgsi_double_channel *dst,
747 const union tgsi_double_channel *src)
748 {
749 dst->u[0][0] = src[0].i64[0] < src[1].i64[0] ? ~0U : 0U;
750 dst->u[1][0] = src[0].i64[1] < src[1].i64[1] ? ~0U : 0U;
751 dst->u[2][0] = src[0].i64[2] < src[1].i64[2] ? ~0U : 0U;
752 dst->u[3][0] = src[0].i64[3] < src[1].i64[3] ? ~0U : 0U;
753 }
754
755 static void
756 micro_u64slt(union tgsi_double_channel *dst,
757 const union tgsi_double_channel *src)
758 {
759 dst->u[0][0] = src[0].u64[0] < src[1].u64[0] ? ~0U : 0U;
760 dst->u[1][0] = src[0].u64[1] < src[1].u64[1] ? ~0U : 0U;
761 dst->u[2][0] = src[0].u64[2] < src[1].u64[2] ? ~0U : 0U;
762 dst->u[3][0] = src[0].u64[3] < src[1].u64[3] ? ~0U : 0U;
763 }
764
765 static void
766 micro_i64sge(union tgsi_double_channel *dst,
767 const union tgsi_double_channel *src)
768 {
769 dst->u[0][0] = src[0].i64[0] >= src[1].i64[0] ? ~0U : 0U;
770 dst->u[1][0] = src[0].i64[1] >= src[1].i64[1] ? ~0U : 0U;
771 dst->u[2][0] = src[0].i64[2] >= src[1].i64[2] ? ~0U : 0U;
772 dst->u[3][0] = src[0].i64[3] >= src[1].i64[3] ? ~0U : 0U;
773 }
774
775 static void
776 micro_u64sge(union tgsi_double_channel *dst,
777 const union tgsi_double_channel *src)
778 {
779 dst->u[0][0] = src[0].u64[0] >= src[1].u64[0] ? ~0U : 0U;
780 dst->u[1][0] = src[0].u64[1] >= src[1].u64[1] ? ~0U : 0U;
781 dst->u[2][0] = src[0].u64[2] >= src[1].u64[2] ? ~0U : 0U;
782 dst->u[3][0] = src[0].u64[3] >= src[1].u64[3] ? ~0U : 0U;
783 }
784
785 static void
786 micro_u64max(union tgsi_double_channel *dst,
787 const union tgsi_double_channel *src)
788 {
789 dst->u64[0] = src[0].u64[0] > src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
790 dst->u64[1] = src[0].u64[1] > src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
791 dst->u64[2] = src[0].u64[2] > src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
792 dst->u64[3] = src[0].u64[3] > src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
793 }
794
795 static void
796 micro_i64max(union tgsi_double_channel *dst,
797 const union tgsi_double_channel *src)
798 {
799 dst->i64[0] = src[0].i64[0] > src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
800 dst->i64[1] = src[0].i64[1] > src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
801 dst->i64[2] = src[0].i64[2] > src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
802 dst->i64[3] = src[0].i64[3] > src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
803 }
804
805 static void
806 micro_u64min(union tgsi_double_channel *dst,
807 const union tgsi_double_channel *src)
808 {
809 dst->u64[0] = src[0].u64[0] < src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
810 dst->u64[1] = src[0].u64[1] < src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
811 dst->u64[2] = src[0].u64[2] < src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
812 dst->u64[3] = src[0].u64[3] < src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
813 }
814
815 static void
816 micro_i64min(union tgsi_double_channel *dst,
817 const union tgsi_double_channel *src)
818 {
819 dst->i64[0] = src[0].i64[0] < src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
820 dst->i64[1] = src[0].i64[1] < src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
821 dst->i64[2] = src[0].i64[2] < src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
822 dst->i64[3] = src[0].i64[3] < src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
823 }
824
825 static void
826 micro_u64add(union tgsi_double_channel *dst,
827 const union tgsi_double_channel *src)
828 {
829 dst->u64[0] = src[0].u64[0] + src[1].u64[0];
830 dst->u64[1] = src[0].u64[1] + src[1].u64[1];
831 dst->u64[2] = src[0].u64[2] + src[1].u64[2];
832 dst->u64[3] = src[0].u64[3] + src[1].u64[3];
833 }
834
835 static void
836 micro_u64mul(union tgsi_double_channel *dst,
837 const union tgsi_double_channel *src)
838 {
839 dst->u64[0] = src[0].u64[0] * src[1].u64[0];
840 dst->u64[1] = src[0].u64[1] * src[1].u64[1];
841 dst->u64[2] = src[0].u64[2] * src[1].u64[2];
842 dst->u64[3] = src[0].u64[3] * src[1].u64[3];
843 }
844
845 static void
846 micro_u64div(union tgsi_double_channel *dst,
847 const union tgsi_double_channel *src)
848 {
849 dst->u64[0] = src[1].u64[0] ? src[0].u64[0] / src[1].u64[0] : ~0ull;
850 dst->u64[1] = src[1].u64[1] ? src[0].u64[1] / src[1].u64[1] : ~0ull;
851 dst->u64[2] = src[1].u64[2] ? src[0].u64[2] / src[1].u64[2] : ~0ull;
852 dst->u64[3] = src[1].u64[3] ? src[0].u64[3] / src[1].u64[3] : ~0ull;
853 }
854
855 static void
856 micro_i64div(union tgsi_double_channel *dst,
857 const union tgsi_double_channel *src)
858 {
859 dst->i64[0] = src[1].i64[0] ? src[0].i64[0] / src[1].i64[0] : 0;
860 dst->i64[1] = src[1].i64[1] ? src[0].i64[1] / src[1].i64[1] : 0;
861 dst->i64[2] = src[1].i64[2] ? src[0].i64[2] / src[1].i64[2] : 0;
862 dst->i64[3] = src[1].i64[3] ? src[0].i64[3] / src[1].i64[3] : 0;
863 }
864
865 static void
866 micro_u64mod(union tgsi_double_channel *dst,
867 const union tgsi_double_channel *src)
868 {
869 dst->u64[0] = src[1].u64[0] ? src[0].u64[0] % src[1].u64[0] : ~0ull;
870 dst->u64[1] = src[1].u64[1] ? src[0].u64[1] % src[1].u64[1] : ~0ull;
871 dst->u64[2] = src[1].u64[2] ? src[0].u64[2] % src[1].u64[2] : ~0ull;
872 dst->u64[3] = src[1].u64[3] ? src[0].u64[3] % src[1].u64[3] : ~0ull;
873 }
874
875 static void
876 micro_i64mod(union tgsi_double_channel *dst,
877 const union tgsi_double_channel *src)
878 {
879 dst->i64[0] = src[1].i64[0] ? src[0].i64[0] % src[1].i64[0] : ~0ll;
880 dst->i64[1] = src[1].i64[1] ? src[0].i64[1] % src[1].i64[1] : ~0ll;
881 dst->i64[2] = src[1].i64[2] ? src[0].i64[2] % src[1].i64[2] : ~0ll;
882 dst->i64[3] = src[1].i64[3] ? src[0].i64[3] % src[1].i64[3] : ~0ll;
883 }
884
885 static void
886 micro_u64shl(union tgsi_double_channel *dst,
887 const union tgsi_double_channel *src0,
888 union tgsi_exec_channel *src1)
889 {
890 unsigned masked_count;
891 masked_count = src1->u[0] & 0x3f;
892 dst->u64[0] = src0->u64[0] << masked_count;
893 masked_count = src1->u[1] & 0x3f;
894 dst->u64[1] = src0->u64[1] << masked_count;
895 masked_count = src1->u[2] & 0x3f;
896 dst->u64[2] = src0->u64[2] << masked_count;
897 masked_count = src1->u[3] & 0x3f;
898 dst->u64[3] = src0->u64[3] << masked_count;
899 }
900
901 static void
902 micro_i64shr(union tgsi_double_channel *dst,
903 const union tgsi_double_channel *src0,
904 union tgsi_exec_channel *src1)
905 {
906 unsigned masked_count;
907 masked_count = src1->u[0] & 0x3f;
908 dst->i64[0] = src0->i64[0] >> masked_count;
909 masked_count = src1->u[1] & 0x3f;
910 dst->i64[1] = src0->i64[1] >> masked_count;
911 masked_count = src1->u[2] & 0x3f;
912 dst->i64[2] = src0->i64[2] >> masked_count;
913 masked_count = src1->u[3] & 0x3f;
914 dst->i64[3] = src0->i64[3] >> masked_count;
915 }
916
917 static void
918 micro_u64shr(union tgsi_double_channel *dst,
919 const union tgsi_double_channel *src0,
920 union tgsi_exec_channel *src1)
921 {
922 unsigned masked_count;
923 masked_count = src1->u[0] & 0x3f;
924 dst->u64[0] = src0->u64[0] >> masked_count;
925 masked_count = src1->u[1] & 0x3f;
926 dst->u64[1] = src0->u64[1] >> masked_count;
927 masked_count = src1->u[2] & 0x3f;
928 dst->u64[2] = src0->u64[2] >> masked_count;
929 masked_count = src1->u[3] & 0x3f;
930 dst->u64[3] = src0->u64[3] >> masked_count;
931 }
932
933 enum tgsi_exec_datatype {
934 TGSI_EXEC_DATA_FLOAT,
935 TGSI_EXEC_DATA_INT,
936 TGSI_EXEC_DATA_UINT,
937 TGSI_EXEC_DATA_DOUBLE,
938 TGSI_EXEC_DATA_INT64,
939 TGSI_EXEC_DATA_UINT64,
940 };
941
942 /*
943 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
944 */
945 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
946 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
947 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
948 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
949 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
950 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
951
952
953 /** The execution mask depends on the conditional mask and the loop mask */
954 #define UPDATE_EXEC_MASK(MACH) \
955 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
956
957
958 static const union tgsi_exec_channel ZeroVec =
959 { { 0.0, 0.0, 0.0, 0.0 } };
960
961 static const union tgsi_exec_channel OneVec = {
962 {1.0f, 1.0f, 1.0f, 1.0f}
963 };
964
965 static const union tgsi_exec_channel P128Vec = {
966 {128.0f, 128.0f, 128.0f, 128.0f}
967 };
968
969 static const union tgsi_exec_channel M128Vec = {
970 {-128.0f, -128.0f, -128.0f, -128.0f}
971 };
972
973
974 /**
975 * Assert that none of the float values in 'chan' are infinite or NaN.
976 * NaN and Inf may occur normally during program execution and should
977 * not lead to crashes, etc. But when debugging, it's helpful to catch
978 * them.
979 */
980 static inline void
981 check_inf_or_nan(const union tgsi_exec_channel *chan)
982 {
983 assert(!util_is_inf_or_nan((chan)->f[0]));
984 assert(!util_is_inf_or_nan((chan)->f[1]));
985 assert(!util_is_inf_or_nan((chan)->f[2]));
986 assert(!util_is_inf_or_nan((chan)->f[3]));
987 }
988
989
990 #ifdef DEBUG
991 static void
992 print_chan(const char *msg, const union tgsi_exec_channel *chan)
993 {
994 debug_printf("%s = {%f, %f, %f, %f}\n",
995 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
996 }
997 #endif
998
999
1000 #ifdef DEBUG
1001 static void
1002 print_temp(const struct tgsi_exec_machine *mach, uint index)
1003 {
1004 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
1005 int i;
1006 debug_printf("Temp[%u] =\n", index);
1007 for (i = 0; i < 4; i++) {
1008 debug_printf(" %c: { %f, %f, %f, %f }\n",
1009 "XYZW"[i],
1010 tmp->xyzw[i].f[0],
1011 tmp->xyzw[i].f[1],
1012 tmp->xyzw[i].f[2],
1013 tmp->xyzw[i].f[3]);
1014 }
1015 }
1016 #endif
1017
1018
1019 void
1020 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
1021 unsigned num_bufs,
1022 const void **bufs,
1023 const unsigned *buf_sizes)
1024 {
1025 unsigned i;
1026
1027 for (i = 0; i < num_bufs; i++) {
1028 mach->Consts[i] = bufs[i];
1029 mach->ConstsSize[i] = buf_sizes[i];
1030 }
1031 }
1032
1033
1034 /**
1035 * Check if there's a potential src/dst register data dependency when
1036 * using SOA execution.
1037 * Example:
1038 * MOV T, T.yxwz;
1039 * This would expand into:
1040 * MOV t0, t1;
1041 * MOV t1, t0;
1042 * MOV t2, t3;
1043 * MOV t3, t2;
1044 * The second instruction will have the wrong value for t0 if executed as-is.
1045 */
1046 boolean
1047 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
1048 {
1049 uint i, chan;
1050
1051 uint writemask = inst->Dst[0].Register.WriteMask;
1052 if (writemask == TGSI_WRITEMASK_X ||
1053 writemask == TGSI_WRITEMASK_Y ||
1054 writemask == TGSI_WRITEMASK_Z ||
1055 writemask == TGSI_WRITEMASK_W ||
1056 writemask == TGSI_WRITEMASK_NONE) {
1057 /* no chance of data dependency */
1058 return FALSE;
1059 }
1060
1061 /* loop over src regs */
1062 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
1063 if ((inst->Src[i].Register.File ==
1064 inst->Dst[0].Register.File) &&
1065 ((inst->Src[i].Register.Index ==
1066 inst->Dst[0].Register.Index) ||
1067 inst->Src[i].Register.Indirect ||
1068 inst->Dst[0].Register.Indirect)) {
1069 /* loop over dest channels */
1070 uint channelsWritten = 0x0;
1071 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1072 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1073 /* check if we're reading a channel that's been written */
1074 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
1075 if (channelsWritten & (1 << swizzle)) {
1076 return TRUE;
1077 }
1078
1079 channelsWritten |= (1 << chan);
1080 }
1081 }
1082 }
1083 }
1084 return FALSE;
1085 }
1086
1087
1088 /**
1089 * Initialize machine state by expanding tokens to full instructions,
1090 * allocating temporary storage, setting up constants, etc.
1091 * After this, we can call tgsi_exec_machine_run() many times.
1092 */
1093 void
1094 tgsi_exec_machine_bind_shader(
1095 struct tgsi_exec_machine *mach,
1096 const struct tgsi_token *tokens,
1097 struct tgsi_sampler *sampler,
1098 struct tgsi_image *image,
1099 struct tgsi_buffer *buffer)
1100 {
1101 uint k;
1102 struct tgsi_parse_context parse;
1103 struct tgsi_full_instruction *instructions;
1104 struct tgsi_full_declaration *declarations;
1105 uint maxInstructions = 10, numInstructions = 0;
1106 uint maxDeclarations = 10, numDeclarations = 0;
1107
1108 #if 0
1109 tgsi_dump(tokens, 0);
1110 #endif
1111
1112 util_init_math();
1113
1114
1115 mach->Tokens = tokens;
1116 mach->Sampler = sampler;
1117 mach->Image = image;
1118 mach->Buffer = buffer;
1119
1120 if (!tokens) {
1121 /* unbind and free all */
1122 FREE(mach->Declarations);
1123 mach->Declarations = NULL;
1124 mach->NumDeclarations = 0;
1125
1126 FREE(mach->Instructions);
1127 mach->Instructions = NULL;
1128 mach->NumInstructions = 0;
1129
1130 return;
1131 }
1132
1133 k = tgsi_parse_init (&parse, mach->Tokens);
1134 if (k != TGSI_PARSE_OK) {
1135 debug_printf( "Problem parsing!\n" );
1136 return;
1137 }
1138
1139 mach->ImmLimit = 0;
1140 mach->NumOutputs = 0;
1141
1142 for (k = 0; k < TGSI_SEMANTIC_COUNT; k++)
1143 mach->SysSemanticToIndex[k] = -1;
1144
1145 if (mach->ShaderType == PIPE_SHADER_GEOMETRY &&
1146 !mach->UsedGeometryShader) {
1147 struct tgsi_exec_vector *inputs;
1148 struct tgsi_exec_vector *outputs;
1149
1150 inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1151 TGSI_MAX_PRIM_VERTICES * PIPE_MAX_SHADER_INPUTS,
1152 16);
1153
1154 if (!inputs)
1155 return;
1156
1157 outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1158 TGSI_MAX_TOTAL_VERTICES, 16);
1159
1160 if (!outputs) {
1161 align_free(inputs);
1162 return;
1163 }
1164
1165 align_free(mach->Inputs);
1166 align_free(mach->Outputs);
1167
1168 mach->Inputs = inputs;
1169 mach->Outputs = outputs;
1170 mach->UsedGeometryShader = TRUE;
1171 }
1172
1173 declarations = (struct tgsi_full_declaration *)
1174 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
1175
1176 if (!declarations) {
1177 return;
1178 }
1179
1180 instructions = (struct tgsi_full_instruction *)
1181 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
1182
1183 if (!instructions) {
1184 FREE( declarations );
1185 return;
1186 }
1187
1188 while( !tgsi_parse_end_of_tokens( &parse ) ) {
1189 uint i;
1190
1191 tgsi_parse_token( &parse );
1192 switch( parse.FullToken.Token.Type ) {
1193 case TGSI_TOKEN_TYPE_DECLARATION:
1194 /* save expanded declaration */
1195 if (numDeclarations == maxDeclarations) {
1196 declarations = REALLOC(declarations,
1197 maxDeclarations
1198 * sizeof(struct tgsi_full_declaration),
1199 (maxDeclarations + 10)
1200 * sizeof(struct tgsi_full_declaration));
1201 maxDeclarations += 10;
1202 }
1203 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
1204 unsigned reg;
1205 for (reg = parse.FullToken.FullDeclaration.Range.First;
1206 reg <= parse.FullToken.FullDeclaration.Range.Last;
1207 ++reg) {
1208 ++mach->NumOutputs;
1209 }
1210 }
1211 else if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
1212 const struct tgsi_full_declaration *decl = &parse.FullToken.FullDeclaration;
1213 mach->SysSemanticToIndex[decl->Semantic.Name] = decl->Range.First;
1214 }
1215
1216 memcpy(declarations + numDeclarations,
1217 &parse.FullToken.FullDeclaration,
1218 sizeof(declarations[0]));
1219 numDeclarations++;
1220 break;
1221
1222 case TGSI_TOKEN_TYPE_IMMEDIATE:
1223 {
1224 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1225 assert( size <= 4 );
1226 if (mach->ImmLimit >= mach->ImmsReserved) {
1227 unsigned newReserved = mach->ImmsReserved ? 2 * mach->ImmsReserved : 128;
1228 float4 *imms = REALLOC(mach->Imms, mach->ImmsReserved, newReserved * sizeof(float4));
1229 if (imms) {
1230 mach->ImmsReserved = newReserved;
1231 mach->Imms = imms;
1232 } else {
1233 debug_printf("Unable to (re)allocate space for immidiate constants\n");
1234 break;
1235 }
1236 }
1237
1238 for( i = 0; i < size; i++ ) {
1239 mach->Imms[mach->ImmLimit][i] =
1240 parse.FullToken.FullImmediate.u[i].Float;
1241 }
1242 mach->ImmLimit += 1;
1243 }
1244 break;
1245
1246 case TGSI_TOKEN_TYPE_INSTRUCTION:
1247
1248 /* save expanded instruction */
1249 if (numInstructions == maxInstructions) {
1250 instructions = REALLOC(instructions,
1251 maxInstructions
1252 * sizeof(struct tgsi_full_instruction),
1253 (maxInstructions + 10)
1254 * sizeof(struct tgsi_full_instruction));
1255 maxInstructions += 10;
1256 }
1257
1258 memcpy(instructions + numInstructions,
1259 &parse.FullToken.FullInstruction,
1260 sizeof(instructions[0]));
1261
1262 numInstructions++;
1263 break;
1264
1265 case TGSI_TOKEN_TYPE_PROPERTY:
1266 if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
1267 if (parse.FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
1268 mach->MaxOutputVertices = parse.FullToken.FullProperty.u[0].Data;
1269 }
1270 }
1271 break;
1272
1273 default:
1274 assert( 0 );
1275 }
1276 }
1277 tgsi_parse_free (&parse);
1278
1279 FREE(mach->Declarations);
1280 mach->Declarations = declarations;
1281 mach->NumDeclarations = numDeclarations;
1282
1283 FREE(mach->Instructions);
1284 mach->Instructions = instructions;
1285 mach->NumInstructions = numInstructions;
1286 }
1287
1288
1289 struct tgsi_exec_machine *
1290 tgsi_exec_machine_create(enum pipe_shader_type shader_type)
1291 {
1292 struct tgsi_exec_machine *mach;
1293 uint i;
1294
1295 mach = align_malloc( sizeof *mach, 16 );
1296 if (!mach)
1297 goto fail;
1298
1299 memset(mach, 0, sizeof(*mach));
1300
1301 mach->ShaderType = shader_type;
1302 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
1303 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
1304
1305 if (shader_type != PIPE_SHADER_COMPUTE) {
1306 mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_INPUTS, 16);
1307 mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_OUTPUTS, 16);
1308 if (!mach->Inputs || !mach->Outputs)
1309 goto fail;
1310 }
1311
1312 /* Setup constants needed by the SSE2 executor. */
1313 for( i = 0; i < 4; i++ ) {
1314 mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
1315 mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
1316 mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
1317 mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
1318 mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
1319 mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
1320 mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
1321 mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
1322 mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
1323 mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
1324 }
1325
1326 #ifdef DEBUG
1327 /* silence warnings */
1328 (void) print_chan;
1329 (void) print_temp;
1330 #endif
1331
1332 return mach;
1333
1334 fail:
1335 if (mach) {
1336 align_free(mach->Inputs);
1337 align_free(mach->Outputs);
1338 align_free(mach);
1339 }
1340 return NULL;
1341 }
1342
1343
1344 void
1345 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
1346 {
1347 if (mach) {
1348 FREE(mach->Instructions);
1349 FREE(mach->Declarations);
1350 FREE(mach->Imms);
1351
1352 align_free(mach->Inputs);
1353 align_free(mach->Outputs);
1354
1355 align_free(mach);
1356 }
1357 }
1358
1359 static void
1360 micro_add(union tgsi_exec_channel *dst,
1361 const union tgsi_exec_channel *src0,
1362 const union tgsi_exec_channel *src1)
1363 {
1364 dst->f[0] = src0->f[0] + src1->f[0];
1365 dst->f[1] = src0->f[1] + src1->f[1];
1366 dst->f[2] = src0->f[2] + src1->f[2];
1367 dst->f[3] = src0->f[3] + src1->f[3];
1368 }
1369
1370 static void
1371 micro_div(
1372 union tgsi_exec_channel *dst,
1373 const union tgsi_exec_channel *src0,
1374 const union tgsi_exec_channel *src1 )
1375 {
1376 if (src1->f[0] != 0) {
1377 dst->f[0] = src0->f[0] / src1->f[0];
1378 }
1379 if (src1->f[1] != 0) {
1380 dst->f[1] = src0->f[1] / src1->f[1];
1381 }
1382 if (src1->f[2] != 0) {
1383 dst->f[2] = src0->f[2] / src1->f[2];
1384 }
1385 if (src1->f[3] != 0) {
1386 dst->f[3] = src0->f[3] / src1->f[3];
1387 }
1388 }
1389
1390 static void
1391 micro_lt(
1392 union tgsi_exec_channel *dst,
1393 const union tgsi_exec_channel *src0,
1394 const union tgsi_exec_channel *src1,
1395 const union tgsi_exec_channel *src2,
1396 const union tgsi_exec_channel *src3 )
1397 {
1398 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
1399 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
1400 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
1401 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
1402 }
1403
1404 static void
1405 micro_max(union tgsi_exec_channel *dst,
1406 const union tgsi_exec_channel *src0,
1407 const union tgsi_exec_channel *src1)
1408 {
1409 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
1410 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
1411 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
1412 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
1413 }
1414
1415 static void
1416 micro_min(union tgsi_exec_channel *dst,
1417 const union tgsi_exec_channel *src0,
1418 const union tgsi_exec_channel *src1)
1419 {
1420 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
1421 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
1422 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
1423 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
1424 }
1425
1426 static void
1427 micro_mul(union tgsi_exec_channel *dst,
1428 const union tgsi_exec_channel *src0,
1429 const union tgsi_exec_channel *src1)
1430 {
1431 dst->f[0] = src0->f[0] * src1->f[0];
1432 dst->f[1] = src0->f[1] * src1->f[1];
1433 dst->f[2] = src0->f[2] * src1->f[2];
1434 dst->f[3] = src0->f[3] * src1->f[3];
1435 }
1436
1437 static void
1438 micro_neg(
1439 union tgsi_exec_channel *dst,
1440 const union tgsi_exec_channel *src )
1441 {
1442 dst->f[0] = -src->f[0];
1443 dst->f[1] = -src->f[1];
1444 dst->f[2] = -src->f[2];
1445 dst->f[3] = -src->f[3];
1446 }
1447
1448 static void
1449 micro_pow(
1450 union tgsi_exec_channel *dst,
1451 const union tgsi_exec_channel *src0,
1452 const union tgsi_exec_channel *src1 )
1453 {
1454 #if FAST_MATH
1455 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1456 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1457 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1458 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1459 #else
1460 dst->f[0] = powf( src0->f[0], src1->f[0] );
1461 dst->f[1] = powf( src0->f[1], src1->f[1] );
1462 dst->f[2] = powf( src0->f[2], src1->f[2] );
1463 dst->f[3] = powf( src0->f[3], src1->f[3] );
1464 #endif
1465 }
1466
1467 static void
1468 micro_ldexp(union tgsi_exec_channel *dst,
1469 const union tgsi_exec_channel *src0,
1470 const union tgsi_exec_channel *src1)
1471 {
1472 dst->f[0] = ldexpf(src0->f[0], src1->i[0]);
1473 dst->f[1] = ldexpf(src0->f[1], src1->i[1]);
1474 dst->f[2] = ldexpf(src0->f[2], src1->i[2]);
1475 dst->f[3] = ldexpf(src0->f[3], src1->i[3]);
1476 }
1477
1478 static void
1479 micro_sub(union tgsi_exec_channel *dst,
1480 const union tgsi_exec_channel *src0,
1481 const union tgsi_exec_channel *src1)
1482 {
1483 dst->f[0] = src0->f[0] - src1->f[0];
1484 dst->f[1] = src0->f[1] - src1->f[1];
1485 dst->f[2] = src0->f[2] - src1->f[2];
1486 dst->f[3] = src0->f[3] - src1->f[3];
1487 }
1488
1489 static void
1490 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1491 const uint file,
1492 const uint swizzle,
1493 const union tgsi_exec_channel *index,
1494 const union tgsi_exec_channel *index2D,
1495 union tgsi_exec_channel *chan)
1496 {
1497 uint i;
1498
1499 assert(swizzle < 4);
1500
1501 switch (file) {
1502 case TGSI_FILE_CONSTANT:
1503 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1504 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1505 assert(mach->Consts[index2D->i[i]]);
1506
1507 if (index->i[i] < 0) {
1508 chan->u[i] = 0;
1509 } else {
1510 /* NOTE: copying the const value as a uint instead of float */
1511 const uint constbuf = index2D->i[i];
1512 const uint *buf = (const uint *)mach->Consts[constbuf];
1513 const int pos = index->i[i] * 4 + swizzle;
1514 /* const buffer bounds check */
1515 if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
1516 if (0) {
1517 /* Debug: print warning */
1518 static int count = 0;
1519 if (count++ < 100)
1520 debug_printf("TGSI Exec: const buffer index %d"
1521 " out of bounds\n", pos);
1522 }
1523 chan->u[i] = 0;
1524 }
1525 else
1526 chan->u[i] = buf[pos];
1527 }
1528 }
1529 break;
1530
1531 case TGSI_FILE_INPUT:
1532 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1533 /*
1534 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1535 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1536 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1537 index2D->i[i], index->i[i]);
1538 }*/
1539 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1540 assert(pos >= 0);
1541 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1542 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1543 }
1544 break;
1545
1546 case TGSI_FILE_SYSTEM_VALUE:
1547 /* XXX no swizzling at this point. Will be needed if we put
1548 * gl_FragCoord, for example, in a sys value register.
1549 */
1550 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1551 chan->u[i] = mach->SystemValue[index->i[i]].xyzw[swizzle].u[i];
1552 }
1553 break;
1554
1555 case TGSI_FILE_TEMPORARY:
1556 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1557 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1558 assert(index2D->i[i] == 0);
1559
1560 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1561 }
1562 break;
1563
1564 case TGSI_FILE_IMMEDIATE:
1565 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1566 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1567 assert(index2D->i[i] == 0);
1568
1569 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1570 }
1571 break;
1572
1573 case TGSI_FILE_ADDRESS:
1574 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1575 assert(index->i[i] >= 0);
1576 assert(index2D->i[i] == 0);
1577
1578 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1579 }
1580 break;
1581
1582 case TGSI_FILE_OUTPUT:
1583 /* vertex/fragment output vars can be read too */
1584 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1585 assert(index->i[i] >= 0);
1586 assert(index2D->i[i] == 0);
1587
1588 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1589 }
1590 break;
1591
1592 default:
1593 assert(0);
1594 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1595 chan->u[i] = 0;
1596 }
1597 }
1598 }
1599
1600 static void
1601 fetch_source_d(const struct tgsi_exec_machine *mach,
1602 union tgsi_exec_channel *chan,
1603 const struct tgsi_full_src_register *reg,
1604 const uint chan_index)
1605 {
1606 union tgsi_exec_channel index;
1607 union tgsi_exec_channel index2D;
1608 uint swizzle;
1609
1610 /* We start with a direct index into a register file.
1611 *
1612 * file[1],
1613 * where:
1614 * file = Register.File
1615 * [1] = Register.Index
1616 */
1617 index.i[0] =
1618 index.i[1] =
1619 index.i[2] =
1620 index.i[3] = reg->Register.Index;
1621
1622 /* There is an extra source register that indirectly subscripts
1623 * a register file. The direct index now becomes an offset
1624 * that is being added to the indirect register.
1625 *
1626 * file[ind[2].x+1],
1627 * where:
1628 * ind = Indirect.File
1629 * [2] = Indirect.Index
1630 * .x = Indirect.SwizzleX
1631 */
1632 if (reg->Register.Indirect) {
1633 union tgsi_exec_channel index2;
1634 union tgsi_exec_channel indir_index;
1635 const uint execmask = mach->ExecMask;
1636 uint i;
1637
1638 /* which address register (always zero now) */
1639 index2.i[0] =
1640 index2.i[1] =
1641 index2.i[2] =
1642 index2.i[3] = reg->Indirect.Index;
1643 /* get current value of address register[swizzle] */
1644 swizzle = reg->Indirect.Swizzle;
1645 fetch_src_file_channel(mach,
1646 reg->Indirect.File,
1647 swizzle,
1648 &index2,
1649 &ZeroVec,
1650 &indir_index);
1651
1652 /* add value of address register to the offset */
1653 index.i[0] += indir_index.i[0];
1654 index.i[1] += indir_index.i[1];
1655 index.i[2] += indir_index.i[2];
1656 index.i[3] += indir_index.i[3];
1657
1658 /* for disabled execution channels, zero-out the index to
1659 * avoid using a potential garbage value.
1660 */
1661 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1662 if ((execmask & (1 << i)) == 0)
1663 index.i[i] = 0;
1664 }
1665 }
1666
1667 /* There is an extra source register that is a second
1668 * subscript to a register file. Effectively it means that
1669 * the register file is actually a 2D array of registers.
1670 *
1671 * file[3][1],
1672 * where:
1673 * [3] = Dimension.Index
1674 */
1675 if (reg->Register.Dimension) {
1676 index2D.i[0] =
1677 index2D.i[1] =
1678 index2D.i[2] =
1679 index2D.i[3] = reg->Dimension.Index;
1680
1681 /* Again, the second subscript index can be addressed indirectly
1682 * identically to the first one.
1683 * Nothing stops us from indirectly addressing the indirect register,
1684 * but there is no need for that, so we won't exercise it.
1685 *
1686 * file[ind[4].y+3][1],
1687 * where:
1688 * ind = DimIndirect.File
1689 * [4] = DimIndirect.Index
1690 * .y = DimIndirect.SwizzleX
1691 */
1692 if (reg->Dimension.Indirect) {
1693 union tgsi_exec_channel index2;
1694 union tgsi_exec_channel indir_index;
1695 const uint execmask = mach->ExecMask;
1696 uint i;
1697
1698 index2.i[0] =
1699 index2.i[1] =
1700 index2.i[2] =
1701 index2.i[3] = reg->DimIndirect.Index;
1702
1703 swizzle = reg->DimIndirect.Swizzle;
1704 fetch_src_file_channel(mach,
1705 reg->DimIndirect.File,
1706 swizzle,
1707 &index2,
1708 &ZeroVec,
1709 &indir_index);
1710
1711 index2D.i[0] += indir_index.i[0];
1712 index2D.i[1] += indir_index.i[1];
1713 index2D.i[2] += indir_index.i[2];
1714 index2D.i[3] += indir_index.i[3];
1715
1716 /* for disabled execution channels, zero-out the index to
1717 * avoid using a potential garbage value.
1718 */
1719 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1720 if ((execmask & (1 << i)) == 0) {
1721 index2D.i[i] = 0;
1722 }
1723 }
1724 }
1725
1726 /* If by any chance there was a need for a 3D array of register
1727 * files, we would have to check whether Dimension is followed
1728 * by a dimension register and continue the saga.
1729 */
1730 } else {
1731 index2D.i[0] =
1732 index2D.i[1] =
1733 index2D.i[2] =
1734 index2D.i[3] = 0;
1735 }
1736
1737 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1738 fetch_src_file_channel(mach,
1739 reg->Register.File,
1740 swizzle,
1741 &index,
1742 &index2D,
1743 chan);
1744 }
1745
1746 static void
1747 fetch_source(const struct tgsi_exec_machine *mach,
1748 union tgsi_exec_channel *chan,
1749 const struct tgsi_full_src_register *reg,
1750 const uint chan_index,
1751 enum tgsi_exec_datatype src_datatype)
1752 {
1753 fetch_source_d(mach, chan, reg, chan_index);
1754
1755 if (reg->Register.Absolute) {
1756 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1757 micro_abs(chan, chan);
1758 } else {
1759 micro_iabs(chan, chan);
1760 }
1761 }
1762
1763 if (reg->Register.Negate) {
1764 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1765 micro_neg(chan, chan);
1766 } else {
1767 micro_ineg(chan, chan);
1768 }
1769 }
1770 }
1771
1772 static union tgsi_exec_channel *
1773 store_dest_dstret(struct tgsi_exec_machine *mach,
1774 const union tgsi_exec_channel *chan,
1775 const struct tgsi_full_dst_register *reg,
1776 uint chan_index,
1777 enum tgsi_exec_datatype dst_datatype)
1778 {
1779 static union tgsi_exec_channel null;
1780 union tgsi_exec_channel *dst;
1781 union tgsi_exec_channel index2D;
1782 int offset = 0; /* indirection offset */
1783 int index;
1784
1785 /* for debugging */
1786 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1787 check_inf_or_nan(chan);
1788 }
1789
1790 /* There is an extra source register that indirectly subscripts
1791 * a register file. The direct index now becomes an offset
1792 * that is being added to the indirect register.
1793 *
1794 * file[ind[2].x+1],
1795 * where:
1796 * ind = Indirect.File
1797 * [2] = Indirect.Index
1798 * .x = Indirect.SwizzleX
1799 */
1800 if (reg->Register.Indirect) {
1801 union tgsi_exec_channel index;
1802 union tgsi_exec_channel indir_index;
1803 uint swizzle;
1804
1805 /* which address register (always zero for now) */
1806 index.i[0] =
1807 index.i[1] =
1808 index.i[2] =
1809 index.i[3] = reg->Indirect.Index;
1810
1811 /* get current value of address register[swizzle] */
1812 swizzle = reg->Indirect.Swizzle;
1813
1814 /* fetch values from the address/indirection register */
1815 fetch_src_file_channel(mach,
1816 reg->Indirect.File,
1817 swizzle,
1818 &index,
1819 &ZeroVec,
1820 &indir_index);
1821
1822 /* save indirection offset */
1823 offset = indir_index.i[0];
1824 }
1825
1826 /* There is an extra source register that is a second
1827 * subscript to a register file. Effectively it means that
1828 * the register file is actually a 2D array of registers.
1829 *
1830 * file[3][1],
1831 * where:
1832 * [3] = Dimension.Index
1833 */
1834 if (reg->Register.Dimension) {
1835 index2D.i[0] =
1836 index2D.i[1] =
1837 index2D.i[2] =
1838 index2D.i[3] = reg->Dimension.Index;
1839
1840 /* Again, the second subscript index can be addressed indirectly
1841 * identically to the first one.
1842 * Nothing stops us from indirectly addressing the indirect register,
1843 * but there is no need for that, so we won't exercise it.
1844 *
1845 * file[ind[4].y+3][1],
1846 * where:
1847 * ind = DimIndirect.File
1848 * [4] = DimIndirect.Index
1849 * .y = DimIndirect.SwizzleX
1850 */
1851 if (reg->Dimension.Indirect) {
1852 union tgsi_exec_channel index2;
1853 union tgsi_exec_channel indir_index;
1854 const uint execmask = mach->ExecMask;
1855 unsigned swizzle;
1856 uint i;
1857
1858 index2.i[0] =
1859 index2.i[1] =
1860 index2.i[2] =
1861 index2.i[3] = reg->DimIndirect.Index;
1862
1863 swizzle = reg->DimIndirect.Swizzle;
1864 fetch_src_file_channel(mach,
1865 reg->DimIndirect.File,
1866 swizzle,
1867 &index2,
1868 &ZeroVec,
1869 &indir_index);
1870
1871 index2D.i[0] += indir_index.i[0];
1872 index2D.i[1] += indir_index.i[1];
1873 index2D.i[2] += indir_index.i[2];
1874 index2D.i[3] += indir_index.i[3];
1875
1876 /* for disabled execution channels, zero-out the index to
1877 * avoid using a potential garbage value.
1878 */
1879 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1880 if ((execmask & (1 << i)) == 0) {
1881 index2D.i[i] = 0;
1882 }
1883 }
1884 }
1885
1886 /* If by any chance there was a need for a 3D array of register
1887 * files, we would have to check whether Dimension is followed
1888 * by a dimension register and continue the saga.
1889 */
1890 } else {
1891 index2D.i[0] =
1892 index2D.i[1] =
1893 index2D.i[2] =
1894 index2D.i[3] = 0;
1895 }
1896
1897 switch (reg->Register.File) {
1898 case TGSI_FILE_NULL:
1899 dst = &null;
1900 break;
1901
1902 case TGSI_FILE_OUTPUT:
1903 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1904 + reg->Register.Index;
1905 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1906 #if 0
1907 debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1908 mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1909 reg->Register.Index);
1910 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1911 debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1912 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1913 if (execmask & (1 << i))
1914 debug_printf("%f, ", chan->f[i]);
1915 debug_printf(")\n");
1916 }
1917 #endif
1918 break;
1919
1920 case TGSI_FILE_TEMPORARY:
1921 index = reg->Register.Index;
1922 assert( index < TGSI_EXEC_NUM_TEMPS );
1923 dst = &mach->Temps[offset + index].xyzw[chan_index];
1924 break;
1925
1926 case TGSI_FILE_ADDRESS:
1927 index = reg->Register.Index;
1928 dst = &mach->Addrs[index].xyzw[chan_index];
1929 break;
1930
1931 default:
1932 assert( 0 );
1933 return NULL;
1934 }
1935
1936 return dst;
1937 }
1938
1939 static void
1940 store_dest_double(struct tgsi_exec_machine *mach,
1941 const union tgsi_exec_channel *chan,
1942 const struct tgsi_full_dst_register *reg,
1943 uint chan_index,
1944 enum tgsi_exec_datatype dst_datatype)
1945 {
1946 union tgsi_exec_channel *dst;
1947 const uint execmask = mach->ExecMask;
1948 int i;
1949
1950 dst = store_dest_dstret(mach, chan, reg, chan_index, dst_datatype);
1951 if (!dst)
1952 return;
1953
1954 /* doubles path */
1955 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1956 if (execmask & (1 << i))
1957 dst->i[i] = chan->i[i];
1958 }
1959
1960 static void
1961 store_dest(struct tgsi_exec_machine *mach,
1962 const union tgsi_exec_channel *chan,
1963 const struct tgsi_full_dst_register *reg,
1964 const struct tgsi_full_instruction *inst,
1965 uint chan_index,
1966 enum tgsi_exec_datatype dst_datatype)
1967 {
1968 union tgsi_exec_channel *dst;
1969 const uint execmask = mach->ExecMask;
1970 int i;
1971
1972 dst = store_dest_dstret(mach, chan, reg, chan_index, dst_datatype);
1973 if (!dst)
1974 return;
1975
1976 if (!inst->Instruction.Saturate) {
1977 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1978 if (execmask & (1 << i))
1979 dst->i[i] = chan->i[i];
1980 }
1981 else {
1982 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1983 if (execmask & (1 << i)) {
1984 if (chan->f[i] < 0.0f)
1985 dst->f[i] = 0.0f;
1986 else if (chan->f[i] > 1.0f)
1987 dst->f[i] = 1.0f;
1988 else
1989 dst->i[i] = chan->i[i];
1990 }
1991 }
1992 }
1993
1994 #define FETCH(VAL,INDEX,CHAN)\
1995 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1996
1997 #define IFETCH(VAL,INDEX,CHAN)\
1998 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1999
2000
2001 /**
2002 * Execute ARB-style KIL which is predicated by a src register.
2003 * Kill fragment if any of the four values is less than zero.
2004 */
2005 static void
2006 exec_kill_if(struct tgsi_exec_machine *mach,
2007 const struct tgsi_full_instruction *inst)
2008 {
2009 uint uniquemask;
2010 uint chan_index;
2011 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2012 union tgsi_exec_channel r[1];
2013
2014 /* This mask stores component bits that were already tested. */
2015 uniquemask = 0;
2016
2017 for (chan_index = 0; chan_index < 4; chan_index++)
2018 {
2019 uint swizzle;
2020 uint i;
2021
2022 /* unswizzle channel */
2023 swizzle = tgsi_util_get_full_src_register_swizzle (
2024 &inst->Src[0],
2025 chan_index);
2026
2027 /* check if the component has not been already tested */
2028 if (uniquemask & (1 << swizzle))
2029 continue;
2030 uniquemask |= 1 << swizzle;
2031
2032 FETCH(&r[0], 0, chan_index);
2033 for (i = 0; i < 4; i++)
2034 if (r[0].f[i] < 0.0f)
2035 kilmask |= 1 << i;
2036 }
2037
2038 /* restrict to fragments currently executing */
2039 kilmask &= mach->ExecMask;
2040
2041 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2042 }
2043
2044 /**
2045 * Unconditional fragment kill/discard.
2046 */
2047 static void
2048 exec_kill(struct tgsi_exec_machine *mach)
2049 {
2050 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2051
2052 /* kill fragment for all fragments currently executing */
2053 kilmask = mach->ExecMask;
2054 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2055 }
2056
2057 static void
2058 emit_vertex(struct tgsi_exec_machine *mach)
2059 {
2060 /* FIXME: check for exec mask correctly
2061 unsigned i;
2062 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2063 if ((mach->ExecMask & (1 << i)))
2064 */
2065 if (mach->ExecMask) {
2066 if (mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] >= mach->MaxOutputVertices)
2067 return;
2068
2069 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
2070 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
2071 }
2072 }
2073
2074 static void
2075 emit_primitive(struct tgsi_exec_machine *mach)
2076 {
2077 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
2078 /* FIXME: check for exec mask correctly
2079 unsigned i;
2080 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2081 if ((mach->ExecMask & (1 << i)))
2082 */
2083 if (mach->ExecMask) {
2084 ++(*prim_count);
2085 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
2086 mach->Primitives[*prim_count] = 0;
2087 }
2088 }
2089
2090 static void
2091 conditional_emit_primitive(struct tgsi_exec_machine *mach)
2092 {
2093 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
2094 int emitted_verts =
2095 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
2096 if (emitted_verts) {
2097 emit_primitive(mach);
2098 }
2099 }
2100 }
2101
2102
2103 /*
2104 * Fetch four texture samples using STR texture coordinates.
2105 */
2106 static void
2107 fetch_texel( struct tgsi_sampler *sampler,
2108 const unsigned sview_idx,
2109 const unsigned sampler_idx,
2110 const union tgsi_exec_channel *s,
2111 const union tgsi_exec_channel *t,
2112 const union tgsi_exec_channel *p,
2113 const union tgsi_exec_channel *c0,
2114 const union tgsi_exec_channel *c1,
2115 float derivs[3][2][TGSI_QUAD_SIZE],
2116 const int8_t offset[3],
2117 enum tgsi_sampler_control control,
2118 union tgsi_exec_channel *r,
2119 union tgsi_exec_channel *g,
2120 union tgsi_exec_channel *b,
2121 union tgsi_exec_channel *a )
2122 {
2123 uint j;
2124 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2125
2126 /* FIXME: handle explicit derivs, offsets */
2127 sampler->get_samples(sampler, sview_idx, sampler_idx,
2128 s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
2129
2130 for (j = 0; j < 4; j++) {
2131 r->f[j] = rgba[0][j];
2132 g->f[j] = rgba[1][j];
2133 b->f[j] = rgba[2][j];
2134 a->f[j] = rgba[3][j];
2135 }
2136 }
2137
2138
2139 #define TEX_MODIFIER_NONE 0
2140 #define TEX_MODIFIER_PROJECTED 1
2141 #define TEX_MODIFIER_LOD_BIAS 2
2142 #define TEX_MODIFIER_EXPLICIT_LOD 3
2143 #define TEX_MODIFIER_LEVEL_ZERO 4
2144 #define TEX_MODIFIER_GATHER 5
2145
2146 /*
2147 * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
2148 */
2149 static void
2150 fetch_texel_offsets(struct tgsi_exec_machine *mach,
2151 const struct tgsi_full_instruction *inst,
2152 int8_t offsets[3])
2153 {
2154 if (inst->Texture.NumOffsets == 1) {
2155 union tgsi_exec_channel index;
2156 union tgsi_exec_channel offset[3];
2157 index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
2158 fetch_src_file_channel(mach, inst->TexOffsets[0].File,
2159 inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
2160 fetch_src_file_channel(mach, inst->TexOffsets[0].File,
2161 inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
2162 fetch_src_file_channel(mach, inst->TexOffsets[0].File,
2163 inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
2164 offsets[0] = offset[0].i[0];
2165 offsets[1] = offset[1].i[0];
2166 offsets[2] = offset[2].i[0];
2167 } else {
2168 assert(inst->Texture.NumOffsets == 0);
2169 offsets[0] = offsets[1] = offsets[2] = 0;
2170 }
2171 }
2172
2173
2174 /*
2175 * Fetch dx and dy values for one channel (s, t or r).
2176 * Put dx values into one float array, dy values into another.
2177 */
2178 static void
2179 fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
2180 const struct tgsi_full_instruction *inst,
2181 unsigned regdsrcx,
2182 unsigned chan,
2183 float derivs[2][TGSI_QUAD_SIZE])
2184 {
2185 union tgsi_exec_channel d;
2186 FETCH(&d, regdsrcx, chan);
2187 derivs[0][0] = d.f[0];
2188 derivs[0][1] = d.f[1];
2189 derivs[0][2] = d.f[2];
2190 derivs[0][3] = d.f[3];
2191 FETCH(&d, regdsrcx + 1, chan);
2192 derivs[1][0] = d.f[0];
2193 derivs[1][1] = d.f[1];
2194 derivs[1][2] = d.f[2];
2195 derivs[1][3] = d.f[3];
2196 }
2197
2198 static uint
2199 fetch_sampler_unit(struct tgsi_exec_machine *mach,
2200 const struct tgsi_full_instruction *inst,
2201 uint sampler)
2202 {
2203 uint unit = 0;
2204 int i;
2205 if (inst->Src[sampler].Register.Indirect) {
2206 const struct tgsi_full_src_register *reg = &inst->Src[sampler];
2207 union tgsi_exec_channel indir_index, index2;
2208 const uint execmask = mach->ExecMask;
2209 index2.i[0] =
2210 index2.i[1] =
2211 index2.i[2] =
2212 index2.i[3] = reg->Indirect.Index;
2213
2214 fetch_src_file_channel(mach,
2215 reg->Indirect.File,
2216 reg->Indirect.Swizzle,
2217 &index2,
2218 &ZeroVec,
2219 &indir_index);
2220 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2221 if (execmask & (1 << i)) {
2222 unit = inst->Src[sampler].Register.Index + indir_index.i[i];
2223 break;
2224 }
2225 }
2226
2227 } else {
2228 unit = inst->Src[sampler].Register.Index;
2229 }
2230 return unit;
2231 }
2232
2233 /*
2234 * execute a texture instruction.
2235 *
2236 * modifier is used to control the channel routing for the
2237 * instruction variants like proj, lod, and texture with lod bias.
2238 * sampler indicates which src register the sampler is contained in.
2239 */
2240 static void
2241 exec_tex(struct tgsi_exec_machine *mach,
2242 const struct tgsi_full_instruction *inst,
2243 uint modifier, uint sampler)
2244 {
2245 const union tgsi_exec_channel *args[5], *proj = NULL;
2246 union tgsi_exec_channel r[5];
2247 enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2248 uint chan;
2249 uint unit;
2250 int8_t offsets[3];
2251 int dim, shadow_ref, i;
2252
2253 unit = fetch_sampler_unit(mach, inst, sampler);
2254 /* always fetch all 3 offsets, overkill but keeps code simple */
2255 fetch_texel_offsets(mach, inst, offsets);
2256
2257 assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
2258 assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
2259
2260 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2261 shadow_ref = tgsi_util_get_shadow_ref_src_index(inst->Texture.Texture);
2262
2263 assert(dim <= 4);
2264 if (shadow_ref >= 0)
2265 assert(shadow_ref >= dim && shadow_ref < (int)ARRAY_SIZE(args));
2266
2267 /* fetch modifier to the last argument */
2268 if (modifier != TEX_MODIFIER_NONE) {
2269 const int last = ARRAY_SIZE(args) - 1;
2270
2271 /* fetch modifier from src0.w or src1.x */
2272 if (sampler == 1) {
2273 assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
2274 FETCH(&r[last], 0, TGSI_CHAN_W);
2275 }
2276 else {
2277 assert(shadow_ref != 4);
2278 FETCH(&r[last], 1, TGSI_CHAN_X);
2279 }
2280
2281 if (modifier != TEX_MODIFIER_PROJECTED) {
2282 args[last] = &r[last];
2283 }
2284 else {
2285 proj = &r[last];
2286 args[last] = &ZeroVec;
2287 }
2288
2289 /* point unused arguments to zero vector */
2290 for (i = dim; i < last; i++)
2291 args[i] = &ZeroVec;
2292
2293 if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
2294 control = TGSI_SAMPLER_LOD_EXPLICIT;
2295 else if (modifier == TEX_MODIFIER_LOD_BIAS)
2296 control = TGSI_SAMPLER_LOD_BIAS;
2297 else if (modifier == TEX_MODIFIER_GATHER)
2298 control = TGSI_SAMPLER_GATHER;
2299 }
2300 else {
2301 for (i = dim; i < (int)ARRAY_SIZE(args); i++)
2302 args[i] = &ZeroVec;
2303 }
2304
2305 /* fetch coordinates */
2306 for (i = 0; i < dim; i++) {
2307 FETCH(&r[i], 0, TGSI_CHAN_X + i);
2308
2309 if (proj)
2310 micro_div(&r[i], &r[i], proj);
2311
2312 args[i] = &r[i];
2313 }
2314
2315 /* fetch reference value */
2316 if (shadow_ref >= 0) {
2317 FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
2318
2319 if (proj)
2320 micro_div(&r[shadow_ref], &r[shadow_ref], proj);
2321
2322 args[shadow_ref] = &r[shadow_ref];
2323 }
2324
2325 fetch_texel(mach->Sampler, unit, unit,
2326 args[0], args[1], args[2], args[3], args[4],
2327 NULL, offsets, control,
2328 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2329
2330 #if 0
2331 debug_printf("fetch r: %g %g %g %g\n",
2332 r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
2333 debug_printf("fetch g: %g %g %g %g\n",
2334 r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
2335 debug_printf("fetch b: %g %g %g %g\n",
2336 r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
2337 debug_printf("fetch a: %g %g %g %g\n",
2338 r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
2339 #endif
2340
2341 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2342 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2343 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2344 }
2345 }
2346 }
2347
2348 static void
2349 exec_lodq(struct tgsi_exec_machine *mach,
2350 const struct tgsi_full_instruction *inst)
2351 {
2352 uint resource_unit, sampler_unit;
2353 unsigned dim;
2354 unsigned i;
2355 union tgsi_exec_channel coords[4];
2356 const union tgsi_exec_channel *args[ARRAY_SIZE(coords)];
2357 union tgsi_exec_channel r[2];
2358
2359 resource_unit = fetch_sampler_unit(mach, inst, 1);
2360 if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2361 uint target = mach->SamplerViews[resource_unit].Resource;
2362 dim = tgsi_util_get_texture_coord_dim(target);
2363 sampler_unit = fetch_sampler_unit(mach, inst, 2);
2364 } else {
2365 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2366 sampler_unit = resource_unit;
2367 }
2368 assert(dim <= ARRAY_SIZE(coords));
2369 /* fetch coordinates */
2370 for (i = 0; i < dim; i++) {
2371 FETCH(&coords[i], 0, TGSI_CHAN_X + i);
2372 args[i] = &coords[i];
2373 }
2374 for (i = dim; i < ARRAY_SIZE(coords); i++) {
2375 args[i] = &ZeroVec;
2376 }
2377 mach->Sampler->query_lod(mach->Sampler, resource_unit, sampler_unit,
2378 args[0]->f,
2379 args[1]->f,
2380 args[2]->f,
2381 args[3]->f,
2382 TGSI_SAMPLER_LOD_NONE,
2383 r[0].f,
2384 r[1].f);
2385
2386 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2387 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2388 TGSI_EXEC_DATA_FLOAT);
2389 }
2390 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2391 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2392 TGSI_EXEC_DATA_FLOAT);
2393 }
2394 if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2395 unsigned char swizzles[4];
2396 unsigned chan;
2397 swizzles[0] = inst->Src[1].Register.SwizzleX;
2398 swizzles[1] = inst->Src[1].Register.SwizzleY;
2399 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2400 swizzles[3] = inst->Src[1].Register.SwizzleW;
2401
2402 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2403 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2404 if (swizzles[chan] >= 2) {
2405 store_dest(mach, &ZeroVec,
2406 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2407 } else {
2408 store_dest(mach, &r[swizzles[chan]],
2409 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2410 }
2411 }
2412 }
2413 } else {
2414 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2415 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2416 TGSI_EXEC_DATA_FLOAT);
2417 }
2418 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2419 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2420 TGSI_EXEC_DATA_FLOAT);
2421 }
2422 }
2423 }
2424
2425 static void
2426 exec_txd(struct tgsi_exec_machine *mach,
2427 const struct tgsi_full_instruction *inst)
2428 {
2429 union tgsi_exec_channel r[4];
2430 float derivs[3][2][TGSI_QUAD_SIZE];
2431 uint chan;
2432 uint unit;
2433 int8_t offsets[3];
2434
2435 unit = fetch_sampler_unit(mach, inst, 3);
2436 /* always fetch all 3 offsets, overkill but keeps code simple */
2437 fetch_texel_offsets(mach, inst, offsets);
2438
2439 switch (inst->Texture.Texture) {
2440 case TGSI_TEXTURE_1D:
2441 FETCH(&r[0], 0, TGSI_CHAN_X);
2442
2443 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2444
2445 fetch_texel(mach->Sampler, unit, unit,
2446 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2447 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2448 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2449 break;
2450
2451 case TGSI_TEXTURE_SHADOW1D:
2452 case TGSI_TEXTURE_1D_ARRAY:
2453 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2454 /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
2455 FETCH(&r[0], 0, TGSI_CHAN_X);
2456 FETCH(&r[1], 0, TGSI_CHAN_Y);
2457 FETCH(&r[2], 0, TGSI_CHAN_Z);
2458
2459 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2460
2461 fetch_texel(mach->Sampler, unit, unit,
2462 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2463 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2464 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2465 break;
2466
2467 case TGSI_TEXTURE_2D:
2468 case TGSI_TEXTURE_RECT:
2469 FETCH(&r[0], 0, TGSI_CHAN_X);
2470 FETCH(&r[1], 0, TGSI_CHAN_Y);
2471
2472 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2473 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2474
2475 fetch_texel(mach->Sampler, unit, unit,
2476 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2477 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2478 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2479 break;
2480
2481
2482 case TGSI_TEXTURE_SHADOW2D:
2483 case TGSI_TEXTURE_SHADOWRECT:
2484 case TGSI_TEXTURE_2D_ARRAY:
2485 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2486 /* only SHADOW2D_ARRAY actually needs W */
2487 FETCH(&r[0], 0, TGSI_CHAN_X);
2488 FETCH(&r[1], 0, TGSI_CHAN_Y);
2489 FETCH(&r[2], 0, TGSI_CHAN_Z);
2490 FETCH(&r[3], 0, TGSI_CHAN_W);
2491
2492 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2493 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2494
2495 fetch_texel(mach->Sampler, unit, unit,
2496 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
2497 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2498 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2499 break;
2500
2501 case TGSI_TEXTURE_3D:
2502 case TGSI_TEXTURE_CUBE:
2503 case TGSI_TEXTURE_CUBE_ARRAY:
2504 case TGSI_TEXTURE_SHADOWCUBE:
2505 /* only TEXTURE_CUBE_ARRAY and TEXTURE_SHADOWCUBE actually need W */
2506 FETCH(&r[0], 0, TGSI_CHAN_X);
2507 FETCH(&r[1], 0, TGSI_CHAN_Y);
2508 FETCH(&r[2], 0, TGSI_CHAN_Z);
2509 FETCH(&r[3], 0, TGSI_CHAN_W);
2510
2511 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2512 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2513 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
2514
2515 fetch_texel(mach->Sampler, unit, unit,
2516 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
2517 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2518 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2519 break;
2520
2521 default:
2522 assert(0);
2523 }
2524
2525 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2526 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2527 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2528 }
2529 }
2530 }
2531
2532
2533 static void
2534 exec_txf(struct tgsi_exec_machine *mach,
2535 const struct tgsi_full_instruction *inst)
2536 {
2537 union tgsi_exec_channel r[4];
2538 uint chan;
2539 uint unit;
2540 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2541 int j;
2542 int8_t offsets[3];
2543 unsigned target;
2544
2545 unit = fetch_sampler_unit(mach, inst, 1);
2546 /* always fetch all 3 offsets, overkill but keeps code simple */
2547 fetch_texel_offsets(mach, inst, offsets);
2548
2549 IFETCH(&r[3], 0, TGSI_CHAN_W);
2550
2551 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2552 inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2553 target = mach->SamplerViews[unit].Resource;
2554 }
2555 else {
2556 target = inst->Texture.Texture;
2557 }
2558 switch(target) {
2559 case TGSI_TEXTURE_3D:
2560 case TGSI_TEXTURE_2D_ARRAY:
2561 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2562 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2563 IFETCH(&r[2], 0, TGSI_CHAN_Z);
2564 /* fallthrough */
2565 case TGSI_TEXTURE_2D:
2566 case TGSI_TEXTURE_RECT:
2567 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2568 case TGSI_TEXTURE_SHADOW2D:
2569 case TGSI_TEXTURE_SHADOWRECT:
2570 case TGSI_TEXTURE_1D_ARRAY:
2571 case TGSI_TEXTURE_2D_MSAA:
2572 IFETCH(&r[1], 0, TGSI_CHAN_Y);
2573 /* fallthrough */
2574 case TGSI_TEXTURE_BUFFER:
2575 case TGSI_TEXTURE_1D:
2576 case TGSI_TEXTURE_SHADOW1D:
2577 IFETCH(&r[0], 0, TGSI_CHAN_X);
2578 break;
2579 default:
2580 assert(0);
2581 break;
2582 }
2583
2584 mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2585 offsets, rgba);
2586
2587 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2588 r[0].f[j] = rgba[0][j];
2589 r[1].f[j] = rgba[1][j];
2590 r[2].f[j] = rgba[2][j];
2591 r[3].f[j] = rgba[3][j];
2592 }
2593
2594 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2595 inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2596 unsigned char swizzles[4];
2597 swizzles[0] = inst->Src[1].Register.SwizzleX;
2598 swizzles[1] = inst->Src[1].Register.SwizzleY;
2599 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2600 swizzles[3] = inst->Src[1].Register.SwizzleW;
2601
2602 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2603 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2604 store_dest(mach, &r[swizzles[chan]],
2605 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2606 }
2607 }
2608 }
2609 else {
2610 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2611 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2612 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2613 }
2614 }
2615 }
2616 }
2617
2618 static void
2619 exec_txq(struct tgsi_exec_machine *mach,
2620 const struct tgsi_full_instruction *inst)
2621 {
2622 int result[4];
2623 union tgsi_exec_channel r[4], src;
2624 uint chan;
2625 uint unit;
2626 int i,j;
2627
2628 unit = fetch_sampler_unit(mach, inst, 1);
2629
2630 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2631
2632 /* XXX: This interface can't return per-pixel values */
2633 mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2634
2635 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2636 for (j = 0; j < 4; j++) {
2637 r[j].i[i] = result[j];
2638 }
2639 }
2640
2641 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2642 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2643 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2644 TGSI_EXEC_DATA_INT);
2645 }
2646 }
2647 }
2648
2649 static void
2650 exec_sample(struct tgsi_exec_machine *mach,
2651 const struct tgsi_full_instruction *inst,
2652 uint modifier, boolean compare)
2653 {
2654 const uint resource_unit = inst->Src[1].Register.Index;
2655 const uint sampler_unit = inst->Src[2].Register.Index;
2656 union tgsi_exec_channel r[5], c1;
2657 const union tgsi_exec_channel *lod = &ZeroVec;
2658 enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2659 uint chan;
2660 unsigned char swizzles[4];
2661 int8_t offsets[3];
2662
2663 /* always fetch all 3 offsets, overkill but keeps code simple */
2664 fetch_texel_offsets(mach, inst, offsets);
2665
2666 assert(modifier != TEX_MODIFIER_PROJECTED);
2667
2668 if (modifier != TEX_MODIFIER_NONE) {
2669 if (modifier == TEX_MODIFIER_LOD_BIAS) {
2670 FETCH(&c1, 3, TGSI_CHAN_X);
2671 lod = &c1;
2672 control = TGSI_SAMPLER_LOD_BIAS;
2673 }
2674 else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2675 FETCH(&c1, 3, TGSI_CHAN_X);
2676 lod = &c1;
2677 control = TGSI_SAMPLER_LOD_EXPLICIT;
2678 }
2679 else if (modifier == TEX_MODIFIER_GATHER) {
2680 control = TGSI_SAMPLER_GATHER;
2681 }
2682 else {
2683 assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2684 control = TGSI_SAMPLER_LOD_ZERO;
2685 }
2686 }
2687
2688 FETCH(&r[0], 0, TGSI_CHAN_X);
2689
2690 switch (mach->SamplerViews[resource_unit].Resource) {
2691 case TGSI_TEXTURE_1D:
2692 if (compare) {
2693 FETCH(&r[2], 3, TGSI_CHAN_X);
2694 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2695 &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2696 NULL, offsets, control,
2697 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2698 }
2699 else {
2700 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2701 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2702 NULL, offsets, control,
2703 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2704 }
2705 break;
2706
2707 case TGSI_TEXTURE_1D_ARRAY:
2708 case TGSI_TEXTURE_2D:
2709 case TGSI_TEXTURE_RECT:
2710 FETCH(&r[1], 0, TGSI_CHAN_Y);
2711 if (compare) {
2712 FETCH(&r[2], 3, TGSI_CHAN_X);
2713 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2714 &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2715 NULL, offsets, control,
2716 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2717 }
2718 else {
2719 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2720 &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2721 NULL, offsets, control,
2722 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2723 }
2724 break;
2725
2726 case TGSI_TEXTURE_2D_ARRAY:
2727 case TGSI_TEXTURE_3D:
2728 case TGSI_TEXTURE_CUBE:
2729 FETCH(&r[1], 0, TGSI_CHAN_Y);
2730 FETCH(&r[2], 0, TGSI_CHAN_Z);
2731 if(compare) {
2732 FETCH(&r[3], 3, TGSI_CHAN_X);
2733 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2734 &r[0], &r[1], &r[2], &r[3], lod,
2735 NULL, offsets, control,
2736 &r[0], &r[1], &r[2], &r[3]);
2737 }
2738 else {
2739 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2740 &r[0], &r[1], &r[2], &ZeroVec, lod,
2741 NULL, offsets, control,
2742 &r[0], &r[1], &r[2], &r[3]);
2743 }
2744 break;
2745
2746 case TGSI_TEXTURE_CUBE_ARRAY:
2747 FETCH(&r[1], 0, TGSI_CHAN_Y);
2748 FETCH(&r[2], 0, TGSI_CHAN_Z);
2749 FETCH(&r[3], 0, TGSI_CHAN_W);
2750 if(compare) {
2751 FETCH(&r[4], 3, TGSI_CHAN_X);
2752 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2753 &r[0], &r[1], &r[2], &r[3], &r[4],
2754 NULL, offsets, control,
2755 &r[0], &r[1], &r[2], &r[3]);
2756 }
2757 else {
2758 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2759 &r[0], &r[1], &r[2], &r[3], lod,
2760 NULL, offsets, control,
2761 &r[0], &r[1], &r[2], &r[3]);
2762 }
2763 break;
2764
2765
2766 default:
2767 assert(0);
2768 }
2769
2770 swizzles[0] = inst->Src[1].Register.SwizzleX;
2771 swizzles[1] = inst->Src[1].Register.SwizzleY;
2772 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2773 swizzles[3] = inst->Src[1].Register.SwizzleW;
2774
2775 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2776 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2777 store_dest(mach, &r[swizzles[chan]],
2778 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2779 }
2780 }
2781 }
2782
2783 static void
2784 exec_sample_d(struct tgsi_exec_machine *mach,
2785 const struct tgsi_full_instruction *inst)
2786 {
2787 const uint resource_unit = inst->Src[1].Register.Index;
2788 const uint sampler_unit = inst->Src[2].Register.Index;
2789 union tgsi_exec_channel r[4];
2790 float derivs[3][2][TGSI_QUAD_SIZE];
2791 uint chan;
2792 unsigned char swizzles[4];
2793 int8_t offsets[3];
2794
2795 /* always fetch all 3 offsets, overkill but keeps code simple */
2796 fetch_texel_offsets(mach, inst, offsets);
2797
2798 FETCH(&r[0], 0, TGSI_CHAN_X);
2799
2800 switch (mach->SamplerViews[resource_unit].Resource) {
2801 case TGSI_TEXTURE_1D:
2802 case TGSI_TEXTURE_1D_ARRAY:
2803 /* only 1D array actually needs Y */
2804 FETCH(&r[1], 0, TGSI_CHAN_Y);
2805
2806 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2807
2808 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2809 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2810 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2811 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2812 break;
2813
2814 case TGSI_TEXTURE_2D:
2815 case TGSI_TEXTURE_RECT:
2816 case TGSI_TEXTURE_2D_ARRAY:
2817 /* only 2D array actually needs Z */
2818 FETCH(&r[1], 0, TGSI_CHAN_Y);
2819 FETCH(&r[2], 0, TGSI_CHAN_Z);
2820
2821 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2822 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2823
2824 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2825 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */
2826 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2827 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2828 break;
2829
2830 case TGSI_TEXTURE_3D:
2831 case TGSI_TEXTURE_CUBE:
2832 case TGSI_TEXTURE_CUBE_ARRAY:
2833 /* only cube array actually needs W */
2834 FETCH(&r[1], 0, TGSI_CHAN_Y);
2835 FETCH(&r[2], 0, TGSI_CHAN_Z);
2836 FETCH(&r[3], 0, TGSI_CHAN_W);
2837
2838 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2839 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2840 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2841
2842 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2843 &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2844 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2845 &r[0], &r[1], &r[2], &r[3]);
2846 break;
2847
2848 default:
2849 assert(0);
2850 }
2851
2852 swizzles[0] = inst->Src[1].Register.SwizzleX;
2853 swizzles[1] = inst->Src[1].Register.SwizzleY;
2854 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2855 swizzles[3] = inst->Src[1].Register.SwizzleW;
2856
2857 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2858 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2859 store_dest(mach, &r[swizzles[chan]],
2860 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2861 }
2862 }
2863 }
2864
2865
2866 /**
2867 * Evaluate a constant-valued coefficient at the position of the
2868 * current quad.
2869 */
2870 static void
2871 eval_constant_coef(
2872 struct tgsi_exec_machine *mach,
2873 unsigned attrib,
2874 unsigned chan )
2875 {
2876 unsigned i;
2877
2878 for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2879 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2880 }
2881 }
2882
2883 /**
2884 * Evaluate a linear-valued coefficient at the position of the
2885 * current quad.
2886 */
2887 static void
2888 eval_linear_coef(
2889 struct tgsi_exec_machine *mach,
2890 unsigned attrib,
2891 unsigned chan )
2892 {
2893 const float x = mach->QuadPos.xyzw[0].f[0];
2894 const float y = mach->QuadPos.xyzw[1].f[0];
2895 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2896 const float dady = mach->InterpCoefs[attrib].dady[chan];
2897 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2898 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2899 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2900 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2901 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2902 }
2903
2904 /**
2905 * Evaluate a perspective-valued coefficient at the position of the
2906 * current quad.
2907 */
2908 static void
2909 eval_perspective_coef(
2910 struct tgsi_exec_machine *mach,
2911 unsigned attrib,
2912 unsigned chan )
2913 {
2914 const float x = mach->QuadPos.xyzw[0].f[0];
2915 const float y = mach->QuadPos.xyzw[1].f[0];
2916 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2917 const float dady = mach->InterpCoefs[attrib].dady[chan];
2918 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2919 const float *w = mach->QuadPos.xyzw[3].f;
2920 /* divide by W here */
2921 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2922 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2923 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2924 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2925 }
2926
2927
2928 typedef void (* eval_coef_func)(
2929 struct tgsi_exec_machine *mach,
2930 unsigned attrib,
2931 unsigned chan );
2932
2933 static void
2934 exec_declaration(struct tgsi_exec_machine *mach,
2935 const struct tgsi_full_declaration *decl)
2936 {
2937 if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2938 mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2939 return;
2940 }
2941
2942 if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
2943 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2944 uint first, last, mask;
2945
2946 first = decl->Range.First;
2947 last = decl->Range.Last;
2948 mask = decl->Declaration.UsageMask;
2949
2950 /* XXX we could remove this special-case code since
2951 * mach->InterpCoefs[first].a0 should already have the
2952 * front/back-face value. But we should first update the
2953 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2954 * Then, we could remove the tgsi_exec_machine::Face field.
2955 */
2956 /* XXX make FACE a system value */
2957 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2958 uint i;
2959
2960 assert(decl->Semantic.Index == 0);
2961 assert(first == last);
2962
2963 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2964 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2965 }
2966 } else {
2967 eval_coef_func eval;
2968 uint i, j;
2969
2970 switch (decl->Interp.Interpolate) {
2971 case TGSI_INTERPOLATE_CONSTANT:
2972 eval = eval_constant_coef;
2973 break;
2974
2975 case TGSI_INTERPOLATE_LINEAR:
2976 eval = eval_linear_coef;
2977 break;
2978
2979 case TGSI_INTERPOLATE_PERSPECTIVE:
2980 eval = eval_perspective_coef;
2981 break;
2982
2983 case TGSI_INTERPOLATE_COLOR:
2984 eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2985 break;
2986
2987 default:
2988 assert(0);
2989 return;
2990 }
2991
2992 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2993 if (mask & (1 << j)) {
2994 for (i = first; i <= last; i++) {
2995 eval(mach, i, j);
2996 }
2997 }
2998 }
2999 }
3000
3001 if (DEBUG_EXECUTION) {
3002 uint i, j;
3003 for (i = first; i <= last; ++i) {
3004 debug_printf("IN[%2u] = ", i);
3005 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3006 if (j > 0) {
3007 debug_printf(" ");
3008 }
3009 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
3010 mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
3011 mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
3012 mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
3013 mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
3014 }
3015 }
3016 }
3017 }
3018 }
3019
3020 }
3021
3022 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
3023 const union tgsi_exec_channel *src);
3024
3025 static void
3026 exec_scalar_unary(struct tgsi_exec_machine *mach,
3027 const struct tgsi_full_instruction *inst,
3028 micro_unary_op op,
3029 enum tgsi_exec_datatype dst_datatype,
3030 enum tgsi_exec_datatype src_datatype)
3031 {
3032 unsigned int chan;
3033 union tgsi_exec_channel src;
3034 union tgsi_exec_channel dst;
3035
3036 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
3037 op(&dst, &src);
3038 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3039 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3040 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3041 }
3042 }
3043 }
3044
3045 static void
3046 exec_vector_unary(struct tgsi_exec_machine *mach,
3047 const struct tgsi_full_instruction *inst,
3048 micro_unary_op op,
3049 enum tgsi_exec_datatype dst_datatype,
3050 enum tgsi_exec_datatype src_datatype)
3051 {
3052 unsigned int chan;
3053 struct tgsi_exec_vector dst;
3054
3055 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3056 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3057 union tgsi_exec_channel src;
3058
3059 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
3060 op(&dst.xyzw[chan], &src);
3061 }
3062 }
3063 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3064 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3065 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3066 }
3067 }
3068 }
3069
3070 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
3071 const union tgsi_exec_channel *src0,
3072 const union tgsi_exec_channel *src1);
3073
3074 static void
3075 exec_scalar_binary(struct tgsi_exec_machine *mach,
3076 const struct tgsi_full_instruction *inst,
3077 micro_binary_op op,
3078 enum tgsi_exec_datatype dst_datatype,
3079 enum tgsi_exec_datatype src_datatype)
3080 {
3081 unsigned int chan;
3082 union tgsi_exec_channel src[2];
3083 union tgsi_exec_channel dst;
3084
3085 fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
3086 fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
3087 op(&dst, &src[0], &src[1]);
3088 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3089 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3090 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3091 }
3092 }
3093 }
3094
3095 static void
3096 exec_vector_binary(struct tgsi_exec_machine *mach,
3097 const struct tgsi_full_instruction *inst,
3098 micro_binary_op op,
3099 enum tgsi_exec_datatype dst_datatype,
3100 enum tgsi_exec_datatype src_datatype)
3101 {
3102 unsigned int chan;
3103 struct tgsi_exec_vector dst;
3104
3105 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3106 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3107 union tgsi_exec_channel src[2];
3108
3109 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3110 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3111 op(&dst.xyzw[chan], &src[0], &src[1]);
3112 }
3113 }
3114 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3115 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3116 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3117 }
3118 }
3119 }
3120
3121 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
3122 const union tgsi_exec_channel *src0,
3123 const union tgsi_exec_channel *src1,
3124 const union tgsi_exec_channel *src2);
3125
3126 static void
3127 exec_vector_trinary(struct tgsi_exec_machine *mach,
3128 const struct tgsi_full_instruction *inst,
3129 micro_trinary_op op,
3130 enum tgsi_exec_datatype dst_datatype,
3131 enum tgsi_exec_datatype src_datatype)
3132 {
3133 unsigned int chan;
3134 struct tgsi_exec_vector dst;
3135
3136 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3137 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3138 union tgsi_exec_channel src[3];
3139
3140 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3141 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3142 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3143 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3144 }
3145 }
3146 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3147 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3148 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3149 }
3150 }
3151 }
3152
3153 typedef void (* micro_quaternary_op)(union tgsi_exec_channel *dst,
3154 const union tgsi_exec_channel *src0,
3155 const union tgsi_exec_channel *src1,
3156 const union tgsi_exec_channel *src2,
3157 const union tgsi_exec_channel *src3);
3158
3159 static void
3160 exec_vector_quaternary(struct tgsi_exec_machine *mach,
3161 const struct tgsi_full_instruction *inst,
3162 micro_quaternary_op op,
3163 enum tgsi_exec_datatype dst_datatype,
3164 enum tgsi_exec_datatype src_datatype)
3165 {
3166 unsigned int chan;
3167 struct tgsi_exec_vector dst;
3168
3169 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3170 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3171 union tgsi_exec_channel src[4];
3172
3173 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3174 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3175 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3176 fetch_source(mach, &src[3], &inst->Src[3], chan, src_datatype);
3177 op(&dst.xyzw[chan], &src[0], &src[1], &src[2], &src[3]);
3178 }
3179 }
3180 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3181 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3182 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3183 }
3184 }
3185 }
3186
3187 static void
3188 exec_dp3(struct tgsi_exec_machine *mach,
3189 const struct tgsi_full_instruction *inst)
3190 {
3191 unsigned int chan;
3192 union tgsi_exec_channel arg[3];
3193
3194 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3195 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3196 micro_mul(&arg[2], &arg[0], &arg[1]);
3197
3198 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
3199 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3200 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3201 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3202 }
3203
3204 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3205 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3206 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3207 }
3208 }
3209 }
3210
3211 static void
3212 exec_dp4(struct tgsi_exec_machine *mach,
3213 const struct tgsi_full_instruction *inst)
3214 {
3215 unsigned int chan;
3216 union tgsi_exec_channel arg[3];
3217
3218 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3219 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3220 micro_mul(&arg[2], &arg[0], &arg[1]);
3221
3222 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
3223 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3224 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3225 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3226 }
3227
3228 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3229 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3230 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3231 }
3232 }
3233 }
3234
3235 static void
3236 exec_dp2(struct tgsi_exec_machine *mach,
3237 const struct tgsi_full_instruction *inst)
3238 {
3239 unsigned int chan;
3240 union tgsi_exec_channel arg[3];
3241
3242 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3243 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3244 micro_mul(&arg[2], &arg[0], &arg[1]);
3245
3246 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3247 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3248 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3249
3250 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3251 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3252 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3253 }
3254 }
3255 }
3256
3257 static void
3258 exec_pk2h(struct tgsi_exec_machine *mach,
3259 const struct tgsi_full_instruction *inst)
3260 {
3261 unsigned chan;
3262 union tgsi_exec_channel arg[2], dst;
3263
3264 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3265 fetch_source(mach, &arg[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3266 for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3267 dst.u[chan] = util_float_to_half(arg[0].f[chan]) |
3268 (util_float_to_half(arg[1].f[chan]) << 16);
3269 }
3270 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3271 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3272 store_dest(mach, &dst, &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_UINT);
3273 }
3274 }
3275 }
3276
3277 static void
3278 exec_up2h(struct tgsi_exec_machine *mach,
3279 const struct tgsi_full_instruction *inst)
3280 {
3281 unsigned chan;
3282 union tgsi_exec_channel arg, dst[2];
3283
3284 fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3285 for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3286 dst[0].f[chan] = util_half_to_float(arg.u[chan] & 0xffff);
3287 dst[1].f[chan] = util_half_to_float(arg.u[chan] >> 16);
3288 }
3289 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3290 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3291 store_dest(mach, &dst[chan & 1], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3292 }
3293 }
3294 }
3295
3296 static void
3297 micro_ucmp(union tgsi_exec_channel *dst,
3298 const union tgsi_exec_channel *src0,
3299 const union tgsi_exec_channel *src1,
3300 const union tgsi_exec_channel *src2)
3301 {
3302 dst->f[0] = src0->u[0] ? src1->f[0] : src2->f[0];
3303 dst->f[1] = src0->u[1] ? src1->f[1] : src2->f[1];
3304 dst->f[2] = src0->u[2] ? src1->f[2] : src2->f[2];
3305 dst->f[3] = src0->u[3] ? src1->f[3] : src2->f[3];
3306 }
3307
3308 static void
3309 exec_ucmp(struct tgsi_exec_machine *mach,
3310 const struct tgsi_full_instruction *inst)
3311 {
3312 unsigned int chan;
3313 struct tgsi_exec_vector dst;
3314
3315 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3316 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3317 union tgsi_exec_channel src[3];
3318
3319 fetch_source(mach, &src[0], &inst->Src[0], chan,
3320 TGSI_EXEC_DATA_UINT);
3321 fetch_source(mach, &src[1], &inst->Src[1], chan,
3322 TGSI_EXEC_DATA_FLOAT);
3323 fetch_source(mach, &src[2], &inst->Src[2], chan,
3324 TGSI_EXEC_DATA_FLOAT);
3325 micro_ucmp(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3326 }
3327 }
3328 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3329 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3330 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan,
3331 TGSI_EXEC_DATA_FLOAT);
3332 }
3333 }
3334 }
3335
3336 static void
3337 exec_dst(struct tgsi_exec_machine *mach,
3338 const struct tgsi_full_instruction *inst)
3339 {
3340 union tgsi_exec_channel r[2];
3341 union tgsi_exec_channel d[4];
3342
3343 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3344 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3345 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3346 micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
3347 }
3348 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3349 fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3350 }
3351 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3352 fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3353 }
3354
3355 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3356 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3357 }
3358 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3359 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3360 }
3361 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3362 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3363 }
3364 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3365 store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3366 }
3367 }
3368
3369 static void
3370 exec_log(struct tgsi_exec_machine *mach,
3371 const struct tgsi_full_instruction *inst)
3372 {
3373 union tgsi_exec_channel r[3];
3374
3375 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3376 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
3377 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
3378 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
3379 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3380 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3381 }
3382 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3383 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
3384 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
3385 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3386 }
3387 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3388 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3389 }
3390 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3391 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3392 }
3393 }
3394
3395 static void
3396 exec_exp(struct tgsi_exec_machine *mach,
3397 const struct tgsi_full_instruction *inst)
3398 {
3399 union tgsi_exec_channel r[3];
3400
3401 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3402 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
3403 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3404 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
3405 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3406 }
3407 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3408 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3409 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3410 }
3411 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3412 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
3413 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3414 }
3415 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3416 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3417 }
3418 }
3419
3420 static void
3421 exec_lit(struct tgsi_exec_machine *mach,
3422 const struct tgsi_full_instruction *inst)
3423 {
3424 union tgsi_exec_channel r[3];
3425 union tgsi_exec_channel d[3];
3426
3427 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3428 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3429 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3430 fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3431 micro_max(&r[1], &r[1], &ZeroVec);
3432
3433 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3434 micro_min(&r[2], &r[2], &P128Vec);
3435 micro_max(&r[2], &r[2], &M128Vec);
3436 micro_pow(&r[1], &r[1], &r[2]);
3437 micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3438 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3439 }
3440 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3441 micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3442 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3443 }
3444 }
3445 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3446 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3447 }
3448
3449 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3450 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3451 }
3452 }
3453
3454 static void
3455 exec_break(struct tgsi_exec_machine *mach)
3456 {
3457 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3458 /* turn off loop channels for each enabled exec channel */
3459 mach->LoopMask &= ~mach->ExecMask;
3460 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3461 UPDATE_EXEC_MASK(mach);
3462 } else {
3463 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3464
3465 mach->Switch.mask = 0x0;
3466
3467 UPDATE_EXEC_MASK(mach);
3468 }
3469 }
3470
3471 static void
3472 exec_switch(struct tgsi_exec_machine *mach,
3473 const struct tgsi_full_instruction *inst)
3474 {
3475 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3476 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3477
3478 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3479 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3480 mach->Switch.mask = 0x0;
3481 mach->Switch.defaultMask = 0x0;
3482
3483 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3484 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3485
3486 UPDATE_EXEC_MASK(mach);
3487 }
3488
3489 static void
3490 exec_case(struct tgsi_exec_machine *mach,
3491 const struct tgsi_full_instruction *inst)
3492 {
3493 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3494 union tgsi_exec_channel src;
3495 uint mask = 0;
3496
3497 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3498
3499 if (mach->Switch.selector.u[0] == src.u[0]) {
3500 mask |= 0x1;
3501 }
3502 if (mach->Switch.selector.u[1] == src.u[1]) {
3503 mask |= 0x2;
3504 }
3505 if (mach->Switch.selector.u[2] == src.u[2]) {
3506 mask |= 0x4;
3507 }
3508 if (mach->Switch.selector.u[3] == src.u[3]) {
3509 mask |= 0x8;
3510 }
3511
3512 mach->Switch.defaultMask |= mask;
3513
3514 mach->Switch.mask |= mask & prevMask;
3515
3516 UPDATE_EXEC_MASK(mach);
3517 }
3518
3519 /* FIXME: this will only work if default is last */
3520 static void
3521 exec_default(struct tgsi_exec_machine *mach)
3522 {
3523 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3524
3525 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3526
3527 UPDATE_EXEC_MASK(mach);
3528 }
3529
3530 static void
3531 exec_endswitch(struct tgsi_exec_machine *mach)
3532 {
3533 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3534 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3535
3536 UPDATE_EXEC_MASK(mach);
3537 }
3538
3539 typedef void (* micro_dop)(union tgsi_double_channel *dst,
3540 const union tgsi_double_channel *src);
3541
3542 typedef void (* micro_dop_sop)(union tgsi_double_channel *dst,
3543 const union tgsi_double_channel *src0,
3544 union tgsi_exec_channel *src1);
3545
3546 typedef void (* micro_dop_s)(union tgsi_double_channel *dst,
3547 const union tgsi_exec_channel *src);
3548
3549 typedef void (* micro_sop_d)(union tgsi_exec_channel *dst,
3550 const union tgsi_double_channel *src);
3551
3552 static void
3553 fetch_double_channel(struct tgsi_exec_machine *mach,
3554 union tgsi_double_channel *chan,
3555 const struct tgsi_full_src_register *reg,
3556 uint chan_0,
3557 uint chan_1)
3558 {
3559 union tgsi_exec_channel src[2];
3560 uint i;
3561
3562 fetch_source_d(mach, &src[0], reg, chan_0);
3563 fetch_source_d(mach, &src[1], reg, chan_1);
3564
3565 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3566 chan->u[i][0] = src[0].u[i];
3567 chan->u[i][1] = src[1].u[i];
3568 }
3569 if (reg->Register.Absolute) {
3570 micro_dabs(chan, chan);
3571 }
3572 if (reg->Register.Negate) {
3573 micro_dneg(chan, chan);
3574 }
3575 }
3576
3577 static void
3578 store_double_channel(struct tgsi_exec_machine *mach,
3579 const union tgsi_double_channel *chan,
3580 const struct tgsi_full_dst_register *reg,
3581 const struct tgsi_full_instruction *inst,
3582 uint chan_0,
3583 uint chan_1)
3584 {
3585 union tgsi_exec_channel dst[2];
3586 uint i;
3587 union tgsi_double_channel temp;
3588 const uint execmask = mach->ExecMask;
3589
3590 if (!inst->Instruction.Saturate) {
3591 for (i = 0; i < TGSI_QUAD_SIZE; i++)
3592 if (execmask & (1 << i)) {
3593 dst[0].u[i] = chan->u[i][0];
3594 dst[1].u[i] = chan->u[i][1];
3595 }
3596 }
3597 else {
3598 for (i = 0; i < TGSI_QUAD_SIZE; i++)
3599 if (execmask & (1 << i)) {
3600 if (chan->d[i] < 0.0)
3601 temp.d[i] = 0.0;
3602 else if (chan->d[i] > 1.0)
3603 temp.d[i] = 1.0;
3604 else
3605 temp.d[i] = chan->d[i];
3606
3607 dst[0].u[i] = temp.u[i][0];
3608 dst[1].u[i] = temp.u[i][1];
3609 }
3610 }
3611
3612 store_dest_double(mach, &dst[0], reg, chan_0, TGSI_EXEC_DATA_UINT);
3613 if (chan_1 != (unsigned)-1)
3614 store_dest_double(mach, &dst[1], reg, chan_1, TGSI_EXEC_DATA_UINT);
3615 }
3616
3617 static void
3618 exec_double_unary(struct tgsi_exec_machine *mach,
3619 const struct tgsi_full_instruction *inst,
3620 micro_dop op)
3621 {
3622 union tgsi_double_channel src;
3623 union tgsi_double_channel dst;
3624
3625 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3626 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3627 op(&dst, &src);
3628 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3629 }
3630 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3631 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3632 op(&dst, &src);
3633 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3634 }
3635 }
3636
3637 static void
3638 exec_double_binary(struct tgsi_exec_machine *mach,
3639 const struct tgsi_full_instruction *inst,
3640 micro_dop op,
3641 enum tgsi_exec_datatype dst_datatype)
3642 {
3643 union tgsi_double_channel src[2];
3644 union tgsi_double_channel dst;
3645 int first_dest_chan, second_dest_chan;
3646 int wmask;
3647
3648 wmask = inst->Dst[0].Register.WriteMask;
3649 /* these are & because of the way DSLT etc store their destinations */
3650 if (wmask & TGSI_WRITEMASK_XY) {
3651 first_dest_chan = TGSI_CHAN_X;
3652 second_dest_chan = TGSI_CHAN_Y;
3653 if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3654 first_dest_chan = (wmask & TGSI_WRITEMASK_X) ? TGSI_CHAN_X : TGSI_CHAN_Y;
3655 second_dest_chan = -1;
3656 }
3657
3658 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3659 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3660 op(&dst, src);
3661 store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3662 }
3663
3664 if (wmask & TGSI_WRITEMASK_ZW) {
3665 first_dest_chan = TGSI_CHAN_Z;
3666 second_dest_chan = TGSI_CHAN_W;
3667 if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3668 first_dest_chan = (wmask & TGSI_WRITEMASK_Z) ? TGSI_CHAN_Z : TGSI_CHAN_W;
3669 second_dest_chan = -1;
3670 }
3671
3672 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3673 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3674 op(&dst, src);
3675 store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3676 }
3677 }
3678
3679 static void
3680 exec_double_trinary(struct tgsi_exec_machine *mach,
3681 const struct tgsi_full_instruction *inst,
3682 micro_dop op)
3683 {
3684 union tgsi_double_channel src[3];
3685 union tgsi_double_channel dst;
3686
3687 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3688 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3689 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3690 fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_X, TGSI_CHAN_Y);
3691 op(&dst, src);
3692 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3693 }
3694 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3695 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3696 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3697 fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_CHAN_W);
3698 op(&dst, src);
3699 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3700 }
3701 }
3702
3703 static void
3704 exec_dldexp(struct tgsi_exec_machine *mach,
3705 const struct tgsi_full_instruction *inst)
3706 {
3707 union tgsi_double_channel src0;
3708 union tgsi_exec_channel src1;
3709 union tgsi_double_channel dst;
3710 int wmask;
3711
3712 wmask = inst->Dst[0].Register.WriteMask;
3713 if (wmask & TGSI_WRITEMASK_XY) {
3714 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3715 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3716 micro_dldexp(&dst, &src0, &src1);
3717 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3718 }
3719
3720 if (wmask & TGSI_WRITEMASK_ZW) {
3721 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3722 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3723 micro_dldexp(&dst, &src0, &src1);
3724 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3725 }
3726 }
3727
3728 static void
3729 exec_dfracexp(struct tgsi_exec_machine *mach,
3730 const struct tgsi_full_instruction *inst)
3731 {
3732 union tgsi_double_channel src;
3733 union tgsi_double_channel dst;
3734 union tgsi_exec_channel dst_exp;
3735
3736 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3737 micro_dfracexp(&dst, &dst_exp, &src);
3738 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY)
3739 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3740 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW)
3741 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3742 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3743 if (inst->Dst[1].Register.WriteMask & (1 << chan))
3744 store_dest(mach, &dst_exp, &inst->Dst[1], inst, chan, TGSI_EXEC_DATA_INT);
3745 }
3746 }
3747
3748 static void
3749 exec_arg0_64_arg1_32(struct tgsi_exec_machine *mach,
3750 const struct tgsi_full_instruction *inst,
3751 micro_dop_sop op)
3752 {
3753 union tgsi_double_channel src0;
3754 union tgsi_exec_channel src1;
3755 union tgsi_double_channel dst;
3756 int wmask;
3757
3758 wmask = inst->Dst[0].Register.WriteMask;
3759 if (wmask & TGSI_WRITEMASK_XY) {
3760 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3761 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3762 op(&dst, &src0, &src1);
3763 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3764 }
3765
3766 if (wmask & TGSI_WRITEMASK_ZW) {
3767 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3768 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3769 op(&dst, &src0, &src1);
3770 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3771 }
3772 }
3773
3774 static int
3775 get_image_coord_dim(unsigned tgsi_tex)
3776 {
3777 int dim;
3778 switch (tgsi_tex) {
3779 case TGSI_TEXTURE_BUFFER:
3780 case TGSI_TEXTURE_1D:
3781 dim = 1;
3782 break;
3783 case TGSI_TEXTURE_2D:
3784 case TGSI_TEXTURE_RECT:
3785 case TGSI_TEXTURE_1D_ARRAY:
3786 case TGSI_TEXTURE_2D_MSAA:
3787 dim = 2;
3788 break;
3789 case TGSI_TEXTURE_3D:
3790 case TGSI_TEXTURE_CUBE:
3791 case TGSI_TEXTURE_2D_ARRAY:
3792 case TGSI_TEXTURE_2D_ARRAY_MSAA:
3793 case TGSI_TEXTURE_CUBE_ARRAY:
3794 dim = 3;
3795 break;
3796 default:
3797 assert(!"unknown texture target");
3798 dim = 0;
3799 break;
3800 }
3801
3802 return dim;
3803 }
3804
3805 static int
3806 get_image_coord_sample(unsigned tgsi_tex)
3807 {
3808 int sample = 0;
3809 switch (tgsi_tex) {
3810 case TGSI_TEXTURE_2D_MSAA:
3811 sample = 3;
3812 break;
3813 case TGSI_TEXTURE_2D_ARRAY_MSAA:
3814 sample = 4;
3815 break;
3816 default:
3817 break;
3818 }
3819 return sample;
3820 }
3821
3822 static void
3823 exec_load_img(struct tgsi_exec_machine *mach,
3824 const struct tgsi_full_instruction *inst)
3825 {
3826 union tgsi_exec_channel r[4], sample_r;
3827 uint unit;
3828 int sample;
3829 int i, j;
3830 int dim;
3831 uint chan;
3832 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3833 struct tgsi_image_params params;
3834 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3835
3836 unit = fetch_sampler_unit(mach, inst, 0);
3837 dim = get_image_coord_dim(inst->Memory.Texture);
3838 sample = get_image_coord_sample(inst->Memory.Texture);
3839 assert(dim <= 3);
3840
3841 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3842 params.unit = unit;
3843 params.tgsi_tex_instr = inst->Memory.Texture;
3844 params.format = inst->Memory.Format;
3845
3846 for (i = 0; i < dim; i++) {
3847 IFETCH(&r[i], 1, TGSI_CHAN_X + i);
3848 }
3849
3850 if (sample)
3851 IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
3852
3853 mach->Image->load(mach->Image, &params,
3854 r[0].i, r[1].i, r[2].i, sample_r.i,
3855 rgba);
3856 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3857 r[0].f[j] = rgba[0][j];
3858 r[1].f[j] = rgba[1][j];
3859 r[2].f[j] = rgba[2][j];
3860 r[3].f[j] = rgba[3][j];
3861 }
3862 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3863 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3864 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3865 }
3866 }
3867 }
3868
3869 static void
3870 exec_load_buf(struct tgsi_exec_machine *mach,
3871 const struct tgsi_full_instruction *inst)
3872 {
3873 union tgsi_exec_channel r[4];
3874 uint unit;
3875 int j;
3876 uint chan;
3877 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3878 struct tgsi_buffer_params params;
3879 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3880
3881 unit = fetch_sampler_unit(mach, inst, 0);
3882
3883 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3884 params.unit = unit;
3885 IFETCH(&r[0], 1, TGSI_CHAN_X);
3886
3887 mach->Buffer->load(mach->Buffer, &params,
3888 r[0].i, rgba);
3889 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3890 r[0].f[j] = rgba[0][j];
3891 r[1].f[j] = rgba[1][j];
3892 r[2].f[j] = rgba[2][j];
3893 r[3].f[j] = rgba[3][j];
3894 }
3895 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3896 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3897 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3898 }
3899 }
3900 }
3901
3902 static void
3903 exec_load_mem(struct tgsi_exec_machine *mach,
3904 const struct tgsi_full_instruction *inst)
3905 {
3906 union tgsi_exec_channel r[4];
3907 uint chan;
3908 char *ptr = mach->LocalMem;
3909 uint32_t offset;
3910 int j;
3911
3912 IFETCH(&r[0], 1, TGSI_CHAN_X);
3913 if (r[0].u[0] >= mach->LocalMemSize)
3914 return;
3915
3916 offset = r[0].u[0];
3917 ptr += offset;
3918
3919 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3920 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3921 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3922 memcpy(&r[chan].u[j], ptr + (4 * chan), 4);
3923 }
3924 }
3925 }
3926
3927 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3928 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3929 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3930 }
3931 }
3932 }
3933
3934 static void
3935 exec_load(struct tgsi_exec_machine *mach,
3936 const struct tgsi_full_instruction *inst)
3937 {
3938 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
3939 exec_load_img(mach, inst);
3940 else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
3941 exec_load_buf(mach, inst);
3942 else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
3943 exec_load_mem(mach, inst);
3944 }
3945
3946 static void
3947 exec_store_img(struct tgsi_exec_machine *mach,
3948 const struct tgsi_full_instruction *inst)
3949 {
3950 union tgsi_exec_channel r[3], sample_r;
3951 union tgsi_exec_channel value[4];
3952 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3953 struct tgsi_image_params params;
3954 int dim;
3955 int sample;
3956 int i, j;
3957 uint unit;
3958 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3959 unit = inst->Dst[0].Register.Index;
3960 dim = get_image_coord_dim(inst->Memory.Texture);
3961 sample = get_image_coord_sample(inst->Memory.Texture);
3962 assert(dim <= 3);
3963
3964 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3965 params.unit = unit;
3966 params.tgsi_tex_instr = inst->Memory.Texture;
3967 params.format = inst->Memory.Format;
3968
3969 for (i = 0; i < dim; i++) {
3970 IFETCH(&r[i], 0, TGSI_CHAN_X + i);
3971 }
3972
3973 for (i = 0; i < 4; i++) {
3974 FETCH(&value[i], 1, TGSI_CHAN_X + i);
3975 }
3976 if (sample)
3977 IFETCH(&sample_r, 0, TGSI_CHAN_X + sample);
3978
3979 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3980 rgba[0][j] = value[0].f[j];
3981 rgba[1][j] = value[1].f[j];
3982 rgba[2][j] = value[2].f[j];
3983 rgba[3][j] = value[3].f[j];
3984 }
3985
3986 mach->Image->store(mach->Image, &params,
3987 r[0].i, r[1].i, r[2].i, sample_r.i,
3988 rgba);
3989 }
3990
3991 static void
3992 exec_store_buf(struct tgsi_exec_machine *mach,
3993 const struct tgsi_full_instruction *inst)
3994 {
3995 union tgsi_exec_channel r[3];
3996 union tgsi_exec_channel value[4];
3997 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3998 struct tgsi_buffer_params params;
3999 int i, j;
4000 uint unit;
4001 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4002
4003 unit = inst->Dst[0].Register.Index;
4004
4005 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4006 params.unit = unit;
4007 params.writemask = inst->Dst[0].Register.WriteMask;
4008
4009 IFETCH(&r[0], 0, TGSI_CHAN_X);
4010 for (i = 0; i < 4; i++) {
4011 FETCH(&value[i], 1, TGSI_CHAN_X + i);
4012 }
4013
4014 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4015 rgba[0][j] = value[0].f[j];
4016 rgba[1][j] = value[1].f[j];
4017 rgba[2][j] = value[2].f[j];
4018 rgba[3][j] = value[3].f[j];
4019 }
4020
4021 mach->Buffer->store(mach->Buffer, &params,
4022 r[0].i,
4023 rgba);
4024 }
4025
4026 static void
4027 exec_store_mem(struct tgsi_exec_machine *mach,
4028 const struct tgsi_full_instruction *inst)
4029 {
4030 union tgsi_exec_channel r[3];
4031 union tgsi_exec_channel value[4];
4032 uint i, chan;
4033 char *ptr = mach->LocalMem;
4034 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4035 int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4036
4037 IFETCH(&r[0], 0, TGSI_CHAN_X);
4038
4039 for (i = 0; i < 4; i++) {
4040 FETCH(&value[i], 1, TGSI_CHAN_X + i);
4041 }
4042
4043 if (r[0].u[0] >= mach->LocalMemSize)
4044 return;
4045 ptr += r[0].u[0];
4046
4047 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4048 if (execmask & (1 << i)) {
4049 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4050 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4051 memcpy(ptr + (chan * 4), &value[chan].u[0], 4);
4052 }
4053 }
4054 }
4055 }
4056 }
4057
4058 static void
4059 exec_store(struct tgsi_exec_machine *mach,
4060 const struct tgsi_full_instruction *inst)
4061 {
4062 if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE)
4063 exec_store_img(mach, inst);
4064 else if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER)
4065 exec_store_buf(mach, inst);
4066 else if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY)
4067 exec_store_mem(mach, inst);
4068 }
4069
4070 static void
4071 exec_atomop_img(struct tgsi_exec_machine *mach,
4072 const struct tgsi_full_instruction *inst)
4073 {
4074 union tgsi_exec_channel r[4], sample_r;
4075 union tgsi_exec_channel value[4], value2[4];
4076 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4077 float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4078 struct tgsi_image_params params;
4079 int dim;
4080 int sample;
4081 int i, j;
4082 uint unit, chan;
4083 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4084 unit = fetch_sampler_unit(mach, inst, 0);
4085 dim = get_image_coord_dim(inst->Memory.Texture);
4086 sample = get_image_coord_sample(inst->Memory.Texture);
4087 assert(dim <= 3);
4088
4089 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4090 params.unit = unit;
4091 params.tgsi_tex_instr = inst->Memory.Texture;
4092 params.format = inst->Memory.Format;
4093
4094 for (i = 0; i < dim; i++) {
4095 IFETCH(&r[i], 1, TGSI_CHAN_X + i);
4096 }
4097
4098 for (i = 0; i < 4; i++) {
4099 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4100 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4101 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4102 }
4103 if (sample)
4104 IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
4105
4106 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4107 rgba[0][j] = value[0].f[j];
4108 rgba[1][j] = value[1].f[j];
4109 rgba[2][j] = value[2].f[j];
4110 rgba[3][j] = value[3].f[j];
4111 }
4112 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4113 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4114 rgba2[0][j] = value2[0].f[j];
4115 rgba2[1][j] = value2[1].f[j];
4116 rgba2[2][j] = value2[2].f[j];
4117 rgba2[3][j] = value2[3].f[j];
4118 }
4119 }
4120
4121 mach->Image->op(mach->Image, &params, inst->Instruction.Opcode,
4122 r[0].i, r[1].i, r[2].i, sample_r.i,
4123 rgba, rgba2);
4124
4125 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4126 r[0].f[j] = rgba[0][j];
4127 r[1].f[j] = rgba[1][j];
4128 r[2].f[j] = rgba[2][j];
4129 r[3].f[j] = rgba[3][j];
4130 }
4131 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4132 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4133 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4134 }
4135 }
4136 }
4137
4138 static void
4139 exec_atomop_buf(struct tgsi_exec_machine *mach,
4140 const struct tgsi_full_instruction *inst)
4141 {
4142 union tgsi_exec_channel r[4];
4143 union tgsi_exec_channel value[4], value2[4];
4144 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4145 float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4146 struct tgsi_buffer_params params;
4147 int i, j;
4148 uint unit, chan;
4149 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4150
4151 unit = fetch_sampler_unit(mach, inst, 0);
4152
4153 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4154 params.unit = unit;
4155 params.writemask = inst->Dst[0].Register.WriteMask;
4156
4157 IFETCH(&r[0], 1, TGSI_CHAN_X);
4158
4159 for (i = 0; i < 4; i++) {
4160 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4161 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4162 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4163 }
4164
4165 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4166 rgba[0][j] = value[0].f[j];
4167 rgba[1][j] = value[1].f[j];
4168 rgba[2][j] = value[2].f[j];
4169 rgba[3][j] = value[3].f[j];
4170 }
4171 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4172 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4173 rgba2[0][j] = value2[0].f[j];
4174 rgba2[1][j] = value2[1].f[j];
4175 rgba2[2][j] = value2[2].f[j];
4176 rgba2[3][j] = value2[3].f[j];
4177 }
4178 }
4179
4180 mach->Buffer->op(mach->Buffer, &params, inst->Instruction.Opcode,
4181 r[0].i,
4182 rgba, rgba2);
4183
4184 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4185 r[0].f[j] = rgba[0][j];
4186 r[1].f[j] = rgba[1][j];
4187 r[2].f[j] = rgba[2][j];
4188 r[3].f[j] = rgba[3][j];
4189 }
4190 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4191 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4192 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4193 }
4194 }
4195 }
4196
4197 static void
4198 exec_atomop_mem(struct tgsi_exec_machine *mach,
4199 const struct tgsi_full_instruction *inst)
4200 {
4201 union tgsi_exec_channel r[4];
4202 union tgsi_exec_channel value[4], value2[4];
4203 char *ptr = mach->LocalMem;
4204 uint32_t val;
4205 uint chan, i;
4206 uint32_t offset;
4207 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4208 int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4209 IFETCH(&r[0], 1, TGSI_CHAN_X);
4210
4211 if (r[0].u[0] >= mach->LocalMemSize)
4212 return;
4213
4214 offset = r[0].u[0];
4215 ptr += offset;
4216 for (i = 0; i < 4; i++) {
4217 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4218 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4219 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4220 }
4221
4222 memcpy(&r[0].u[0], ptr, 4);
4223 val = r[0].u[0];
4224 switch (inst->Instruction.Opcode) {
4225 case TGSI_OPCODE_ATOMUADD:
4226 val += value[0].u[0];
4227 break;
4228 case TGSI_OPCODE_ATOMXOR:
4229 val ^= value[0].u[0];
4230 break;
4231 case TGSI_OPCODE_ATOMOR:
4232 val |= value[0].u[0];
4233 break;
4234 case TGSI_OPCODE_ATOMAND:
4235 val &= value[0].u[0];
4236 break;
4237 case TGSI_OPCODE_ATOMUMIN:
4238 val = MIN2(val, value[0].u[0]);
4239 break;
4240 case TGSI_OPCODE_ATOMUMAX:
4241 val = MAX2(val, value[0].u[0]);
4242 break;
4243 case TGSI_OPCODE_ATOMIMIN:
4244 val = MIN2(r[0].i[0], value[0].i[0]);
4245 break;
4246 case TGSI_OPCODE_ATOMIMAX:
4247 val = MAX2(r[0].i[0], value[0].i[0]);
4248 break;
4249 case TGSI_OPCODE_ATOMXCHG:
4250 val = value[0].i[0];
4251 break;
4252 case TGSI_OPCODE_ATOMCAS:
4253 if (val == value[0].u[0])
4254 val = value2[0].u[0];
4255 break;
4256 default:
4257 break;
4258 }
4259 for (i = 0; i < TGSI_QUAD_SIZE; i++)
4260 if (execmask & (1 << i))
4261 memcpy(ptr, &val, 4);
4262
4263 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4264 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4265 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4266 }
4267 }
4268 }
4269
4270 static void
4271 exec_atomop(struct tgsi_exec_machine *mach,
4272 const struct tgsi_full_instruction *inst)
4273 {
4274 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4275 exec_atomop_img(mach, inst);
4276 else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
4277 exec_atomop_buf(mach, inst);
4278 else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
4279 exec_atomop_mem(mach, inst);
4280 }
4281
4282 static void
4283 exec_resq_img(struct tgsi_exec_machine *mach,
4284 const struct tgsi_full_instruction *inst)
4285 {
4286 int result[4];
4287 union tgsi_exec_channel r[4];
4288 uint unit;
4289 int i, chan, j;
4290 struct tgsi_image_params params;
4291 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4292
4293 unit = fetch_sampler_unit(mach, inst, 0);
4294
4295 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4296 params.unit = unit;
4297 params.tgsi_tex_instr = inst->Memory.Texture;
4298 params.format = inst->Memory.Format;
4299
4300 mach->Image->get_dims(mach->Image, &params, result);
4301
4302 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4303 for (j = 0; j < 4; j++) {
4304 r[j].i[i] = result[j];
4305 }
4306 }
4307
4308 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4309 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4310 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4311 TGSI_EXEC_DATA_INT);
4312 }
4313 }
4314 }
4315
4316 static void
4317 exec_resq_buf(struct tgsi_exec_machine *mach,
4318 const struct tgsi_full_instruction *inst)
4319 {
4320 int result;
4321 union tgsi_exec_channel r[4];
4322 uint unit;
4323 int i, chan;
4324 struct tgsi_buffer_params params;
4325 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4326
4327 unit = fetch_sampler_unit(mach, inst, 0);
4328
4329 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4330 params.unit = unit;
4331
4332 mach->Buffer->get_dims(mach->Buffer, &params, &result);
4333
4334 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4335 r[0].i[i] = result;
4336 }
4337
4338 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4339 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4340 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4341 TGSI_EXEC_DATA_INT);
4342 }
4343 }
4344 }
4345
4346 static void
4347 exec_resq(struct tgsi_exec_machine *mach,
4348 const struct tgsi_full_instruction *inst)
4349 {
4350 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4351 exec_resq_img(mach, inst);
4352 else
4353 exec_resq_buf(mach, inst);
4354 }
4355
4356 static void
4357 micro_f2u64(union tgsi_double_channel *dst,
4358 const union tgsi_exec_channel *src)
4359 {
4360 dst->u64[0] = (uint64_t)src->f[0];
4361 dst->u64[1] = (uint64_t)src->f[1];
4362 dst->u64[2] = (uint64_t)src->f[2];
4363 dst->u64[3] = (uint64_t)src->f[3];
4364 }
4365
4366 static void
4367 micro_f2i64(union tgsi_double_channel *dst,
4368 const union tgsi_exec_channel *src)
4369 {
4370 dst->i64[0] = (int64_t)src->f[0];
4371 dst->i64[1] = (int64_t)src->f[1];
4372 dst->i64[2] = (int64_t)src->f[2];
4373 dst->i64[3] = (int64_t)src->f[3];
4374 }
4375
4376 static void
4377 micro_u2i64(union tgsi_double_channel *dst,
4378 const union tgsi_exec_channel *src)
4379 {
4380 dst->u64[0] = (uint64_t)src->u[0];
4381 dst->u64[1] = (uint64_t)src->u[1];
4382 dst->u64[2] = (uint64_t)src->u[2];
4383 dst->u64[3] = (uint64_t)src->u[3];
4384 }
4385
4386 static void
4387 micro_i2i64(union tgsi_double_channel *dst,
4388 const union tgsi_exec_channel *src)
4389 {
4390 dst->i64[0] = (int64_t)src->i[0];
4391 dst->i64[1] = (int64_t)src->i[1];
4392 dst->i64[2] = (int64_t)src->i[2];
4393 dst->i64[3] = (int64_t)src->i[3];
4394 }
4395
4396 static void
4397 micro_d2u64(union tgsi_double_channel *dst,
4398 const union tgsi_double_channel *src)
4399 {
4400 dst->u64[0] = (uint64_t)src->d[0];
4401 dst->u64[1] = (uint64_t)src->d[1];
4402 dst->u64[2] = (uint64_t)src->d[2];
4403 dst->u64[3] = (uint64_t)src->d[3];
4404 }
4405
4406 static void
4407 micro_d2i64(union tgsi_double_channel *dst,
4408 const union tgsi_double_channel *src)
4409 {
4410 dst->i64[0] = (int64_t)src->d[0];
4411 dst->i64[1] = (int64_t)src->d[1];
4412 dst->i64[2] = (int64_t)src->d[2];
4413 dst->i64[3] = (int64_t)src->d[3];
4414 }
4415
4416 static void
4417 micro_u642d(union tgsi_double_channel *dst,
4418 const union tgsi_double_channel *src)
4419 {
4420 dst->d[0] = (double)src->u64[0];
4421 dst->d[1] = (double)src->u64[1];
4422 dst->d[2] = (double)src->u64[2];
4423 dst->d[3] = (double)src->u64[3];
4424 }
4425
4426 static void
4427 micro_i642d(union tgsi_double_channel *dst,
4428 const union tgsi_double_channel *src)
4429 {
4430 dst->d[0] = (double)src->i64[0];
4431 dst->d[1] = (double)src->i64[1];
4432 dst->d[2] = (double)src->i64[2];
4433 dst->d[3] = (double)src->i64[3];
4434 }
4435
4436 static void
4437 micro_u642f(union tgsi_exec_channel *dst,
4438 const union tgsi_double_channel *src)
4439 {
4440 dst->f[0] = (float)src->u64[0];
4441 dst->f[1] = (float)src->u64[1];
4442 dst->f[2] = (float)src->u64[2];
4443 dst->f[3] = (float)src->u64[3];
4444 }
4445
4446 static void
4447 micro_i642f(union tgsi_exec_channel *dst,
4448 const union tgsi_double_channel *src)
4449 {
4450 dst->f[0] = (float)src->i64[0];
4451 dst->f[1] = (float)src->i64[1];
4452 dst->f[2] = (float)src->i64[2];
4453 dst->f[3] = (float)src->i64[3];
4454 }
4455
4456 static void
4457 exec_t_2_64(struct tgsi_exec_machine *mach,
4458 const struct tgsi_full_instruction *inst,
4459 micro_dop_s op,
4460 enum tgsi_exec_datatype src_datatype)
4461 {
4462 union tgsi_exec_channel src;
4463 union tgsi_double_channel dst;
4464
4465 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
4466 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
4467 op(&dst, &src);
4468 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
4469 }
4470 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
4471 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_Y, src_datatype);
4472 op(&dst, &src);
4473 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
4474 }
4475 }
4476
4477 static void
4478 exec_64_2_t(struct tgsi_exec_machine *mach,
4479 const struct tgsi_full_instruction *inst,
4480 micro_sop_d op,
4481 enum tgsi_exec_datatype dst_datatype)
4482 {
4483 union tgsi_double_channel src;
4484 union tgsi_exec_channel dst;
4485 int wm = inst->Dst[0].Register.WriteMask;
4486 int i;
4487 int bit;
4488 for (i = 0; i < 2; i++) {
4489 bit = ffs(wm);
4490 if (bit) {
4491 wm &= ~(1 << (bit - 1));
4492 if (i == 0)
4493 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
4494 else
4495 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
4496 op(&dst, &src);
4497 store_dest(mach, &dst, &inst->Dst[0], inst, bit - 1, dst_datatype);
4498 }
4499 }
4500 }
4501
4502 static void
4503 micro_i2f(union tgsi_exec_channel *dst,
4504 const union tgsi_exec_channel *src)
4505 {
4506 dst->f[0] = (float)src->i[0];
4507 dst->f[1] = (float)src->i[1];
4508 dst->f[2] = (float)src->i[2];
4509 dst->f[3] = (float)src->i[3];
4510 }
4511
4512 static void
4513 micro_not(union tgsi_exec_channel *dst,
4514 const union tgsi_exec_channel *src)
4515 {
4516 dst->u[0] = ~src->u[0];
4517 dst->u[1] = ~src->u[1];
4518 dst->u[2] = ~src->u[2];
4519 dst->u[3] = ~src->u[3];
4520 }
4521
4522 static void
4523 micro_shl(union tgsi_exec_channel *dst,
4524 const union tgsi_exec_channel *src0,
4525 const union tgsi_exec_channel *src1)
4526 {
4527 unsigned masked_count;
4528 masked_count = src1->u[0] & 0x1f;
4529 dst->u[0] = src0->u[0] << masked_count;
4530 masked_count = src1->u[1] & 0x1f;
4531 dst->u[1] = src0->u[1] << masked_count;
4532 masked_count = src1->u[2] & 0x1f;
4533 dst->u[2] = src0->u[2] << masked_count;
4534 masked_count = src1->u[3] & 0x1f;
4535 dst->u[3] = src0->u[3] << masked_count;
4536 }
4537
4538 static void
4539 micro_and(union tgsi_exec_channel *dst,
4540 const union tgsi_exec_channel *src0,
4541 const union tgsi_exec_channel *src1)
4542 {
4543 dst->u[0] = src0->u[0] & src1->u[0];
4544 dst->u[1] = src0->u[1] & src1->u[1];
4545 dst->u[2] = src0->u[2] & src1->u[2];
4546 dst->u[3] = src0->u[3] & src1->u[3];
4547 }
4548
4549 static void
4550 micro_or(union tgsi_exec_channel *dst,
4551 const union tgsi_exec_channel *src0,
4552 const union tgsi_exec_channel *src1)
4553 {
4554 dst->u[0] = src0->u[0] | src1->u[0];
4555 dst->u[1] = src0->u[1] | src1->u[1];
4556 dst->u[2] = src0->u[2] | src1->u[2];
4557 dst->u[3] = src0->u[3] | src1->u[3];
4558 }
4559
4560 static void
4561 micro_xor(union tgsi_exec_channel *dst,
4562 const union tgsi_exec_channel *src0,
4563 const union tgsi_exec_channel *src1)
4564 {
4565 dst->u[0] = src0->u[0] ^ src1->u[0];
4566 dst->u[1] = src0->u[1] ^ src1->u[1];
4567 dst->u[2] = src0->u[2] ^ src1->u[2];
4568 dst->u[3] = src0->u[3] ^ src1->u[3];
4569 }
4570
4571 static void
4572 micro_mod(union tgsi_exec_channel *dst,
4573 const union tgsi_exec_channel *src0,
4574 const union tgsi_exec_channel *src1)
4575 {
4576 dst->i[0] = src1->i[0] ? src0->i[0] % src1->i[0] : ~0;
4577 dst->i[1] = src1->i[1] ? src0->i[1] % src1->i[1] : ~0;
4578 dst->i[2] = src1->i[2] ? src0->i[2] % src1->i[2] : ~0;
4579 dst->i[3] = src1->i[3] ? src0->i[3] % src1->i[3] : ~0;
4580 }
4581
4582 static void
4583 micro_f2i(union tgsi_exec_channel *dst,
4584 const union tgsi_exec_channel *src)
4585 {
4586 dst->i[0] = (int)src->f[0];
4587 dst->i[1] = (int)src->f[1];
4588 dst->i[2] = (int)src->f[2];
4589 dst->i[3] = (int)src->f[3];
4590 }
4591
4592 static void
4593 micro_fseq(union tgsi_exec_channel *dst,
4594 const union tgsi_exec_channel *src0,
4595 const union tgsi_exec_channel *src1)
4596 {
4597 dst->u[0] = src0->f[0] == src1->f[0] ? ~0 : 0;
4598 dst->u[1] = src0->f[1] == src1->f[1] ? ~0 : 0;
4599 dst->u[2] = src0->f[2] == src1->f[2] ? ~0 : 0;
4600 dst->u[3] = src0->f[3] == src1->f[3] ? ~0 : 0;
4601 }
4602
4603 static void
4604 micro_fsge(union tgsi_exec_channel *dst,
4605 const union tgsi_exec_channel *src0,
4606 const union tgsi_exec_channel *src1)
4607 {
4608 dst->u[0] = src0->f[0] >= src1->f[0] ? ~0 : 0;
4609 dst->u[1] = src0->f[1] >= src1->f[1] ? ~0 : 0;
4610 dst->u[2] = src0->f[2] >= src1->f[2] ? ~0 : 0;
4611 dst->u[3] = src0->f[3] >= src1->f[3] ? ~0 : 0;
4612 }
4613
4614 static void
4615 micro_fslt(union tgsi_exec_channel *dst,
4616 const union tgsi_exec_channel *src0,
4617 const union tgsi_exec_channel *src1)
4618 {
4619 dst->u[0] = src0->f[0] < src1->f[0] ? ~0 : 0;
4620 dst->u[1] = src0->f[1] < src1->f[1] ? ~0 : 0;
4621 dst->u[2] = src0->f[2] < src1->f[2] ? ~0 : 0;
4622 dst->u[3] = src0->f[3] < src1->f[3] ? ~0 : 0;
4623 }
4624
4625 static void
4626 micro_fsne(union tgsi_exec_channel *dst,
4627 const union tgsi_exec_channel *src0,
4628 const union tgsi_exec_channel *src1)
4629 {
4630 dst->u[0] = src0->f[0] != src1->f[0] ? ~0 : 0;
4631 dst->u[1] = src0->f[1] != src1->f[1] ? ~0 : 0;
4632 dst->u[2] = src0->f[2] != src1->f[2] ? ~0 : 0;
4633 dst->u[3] = src0->f[3] != src1->f[3] ? ~0 : 0;
4634 }
4635
4636 static void
4637 micro_idiv(union tgsi_exec_channel *dst,
4638 const union tgsi_exec_channel *src0,
4639 const union tgsi_exec_channel *src1)
4640 {
4641 dst->i[0] = src1->i[0] ? src0->i[0] / src1->i[0] : 0;
4642 dst->i[1] = src1->i[1] ? src0->i[1] / src1->i[1] : 0;
4643 dst->i[2] = src1->i[2] ? src0->i[2] / src1->i[2] : 0;
4644 dst->i[3] = src1->i[3] ? src0->i[3] / src1->i[3] : 0;
4645 }
4646
4647 static void
4648 micro_imax(union tgsi_exec_channel *dst,
4649 const union tgsi_exec_channel *src0,
4650 const union tgsi_exec_channel *src1)
4651 {
4652 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
4653 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
4654 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
4655 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
4656 }
4657
4658 static void
4659 micro_imin(union tgsi_exec_channel *dst,
4660 const union tgsi_exec_channel *src0,
4661 const union tgsi_exec_channel *src1)
4662 {
4663 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
4664 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
4665 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
4666 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
4667 }
4668
4669 static void
4670 micro_isge(union tgsi_exec_channel *dst,
4671 const union tgsi_exec_channel *src0,
4672 const union tgsi_exec_channel *src1)
4673 {
4674 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
4675 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
4676 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
4677 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
4678 }
4679
4680 static void
4681 micro_ishr(union tgsi_exec_channel *dst,
4682 const union tgsi_exec_channel *src0,
4683 const union tgsi_exec_channel *src1)
4684 {
4685 unsigned masked_count;
4686 masked_count = src1->i[0] & 0x1f;
4687 dst->i[0] = src0->i[0] >> masked_count;
4688 masked_count = src1->i[1] & 0x1f;
4689 dst->i[1] = src0->i[1] >> masked_count;
4690 masked_count = src1->i[2] & 0x1f;
4691 dst->i[2] = src0->i[2] >> masked_count;
4692 masked_count = src1->i[3] & 0x1f;
4693 dst->i[3] = src0->i[3] >> masked_count;
4694 }
4695
4696 static void
4697 micro_islt(union tgsi_exec_channel *dst,
4698 const union tgsi_exec_channel *src0,
4699 const union tgsi_exec_channel *src1)
4700 {
4701 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
4702 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
4703 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
4704 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
4705 }
4706
4707 static void
4708 micro_f2u(union tgsi_exec_channel *dst,
4709 const union tgsi_exec_channel *src)
4710 {
4711 dst->u[0] = (uint)src->f[0];
4712 dst->u[1] = (uint)src->f[1];
4713 dst->u[2] = (uint)src->f[2];
4714 dst->u[3] = (uint)src->f[3];
4715 }
4716
4717 static void
4718 micro_u2f(union tgsi_exec_channel *dst,
4719 const union tgsi_exec_channel *src)
4720 {
4721 dst->f[0] = (float)src->u[0];
4722 dst->f[1] = (float)src->u[1];
4723 dst->f[2] = (float)src->u[2];
4724 dst->f[3] = (float)src->u[3];
4725 }
4726
4727 static void
4728 micro_uadd(union tgsi_exec_channel *dst,
4729 const union tgsi_exec_channel *src0,
4730 const union tgsi_exec_channel *src1)
4731 {
4732 dst->u[0] = src0->u[0] + src1->u[0];
4733 dst->u[1] = src0->u[1] + src1->u[1];
4734 dst->u[2] = src0->u[2] + src1->u[2];
4735 dst->u[3] = src0->u[3] + src1->u[3];
4736 }
4737
4738 static void
4739 micro_udiv(union tgsi_exec_channel *dst,
4740 const union tgsi_exec_channel *src0,
4741 const union tgsi_exec_channel *src1)
4742 {
4743 dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
4744 dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
4745 dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
4746 dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
4747 }
4748
4749 static void
4750 micro_umad(union tgsi_exec_channel *dst,
4751 const union tgsi_exec_channel *src0,
4752 const union tgsi_exec_channel *src1,
4753 const union tgsi_exec_channel *src2)
4754 {
4755 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
4756 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
4757 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
4758 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
4759 }
4760
4761 static void
4762 micro_umax(union tgsi_exec_channel *dst,
4763 const union tgsi_exec_channel *src0,
4764 const union tgsi_exec_channel *src1)
4765 {
4766 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
4767 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
4768 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
4769 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
4770 }
4771
4772 static void
4773 micro_umin(union tgsi_exec_channel *dst,
4774 const union tgsi_exec_channel *src0,
4775 const union tgsi_exec_channel *src1)
4776 {
4777 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
4778 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
4779 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
4780 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
4781 }
4782
4783 static void
4784 micro_umod(union tgsi_exec_channel *dst,
4785 const union tgsi_exec_channel *src0,
4786 const union tgsi_exec_channel *src1)
4787 {
4788 dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
4789 dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
4790 dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
4791 dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
4792 }
4793
4794 static void
4795 micro_umul(union tgsi_exec_channel *dst,
4796 const union tgsi_exec_channel *src0,
4797 const union tgsi_exec_channel *src1)
4798 {
4799 dst->u[0] = src0->u[0] * src1->u[0];
4800 dst->u[1] = src0->u[1] * src1->u[1];
4801 dst->u[2] = src0->u[2] * src1->u[2];
4802 dst->u[3] = src0->u[3] * src1->u[3];
4803 }
4804
4805 static void
4806 micro_imul_hi(union tgsi_exec_channel *dst,
4807 const union tgsi_exec_channel *src0,
4808 const union tgsi_exec_channel *src1)
4809 {
4810 #define I64M(x, y) ((((int64_t)x) * ((int64_t)y)) >> 32)
4811 dst->i[0] = I64M(src0->i[0], src1->i[0]);
4812 dst->i[1] = I64M(src0->i[1], src1->i[1]);
4813 dst->i[2] = I64M(src0->i[2], src1->i[2]);
4814 dst->i[3] = I64M(src0->i[3], src1->i[3]);
4815 #undef I64M
4816 }
4817
4818 static void
4819 micro_umul_hi(union tgsi_exec_channel *dst,
4820 const union tgsi_exec_channel *src0,
4821 const union tgsi_exec_channel *src1)
4822 {
4823 #define U64M(x, y) ((((uint64_t)x) * ((uint64_t)y)) >> 32)
4824 dst->u[0] = U64M(src0->u[0], src1->u[0]);
4825 dst->u[1] = U64M(src0->u[1], src1->u[1]);
4826 dst->u[2] = U64M(src0->u[2], src1->u[2]);
4827 dst->u[3] = U64M(src0->u[3], src1->u[3]);
4828 #undef U64M
4829 }
4830
4831 static void
4832 micro_useq(union tgsi_exec_channel *dst,
4833 const union tgsi_exec_channel *src0,
4834 const union tgsi_exec_channel *src1)
4835 {
4836 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
4837 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
4838 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
4839 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
4840 }
4841
4842 static void
4843 micro_usge(union tgsi_exec_channel *dst,
4844 const union tgsi_exec_channel *src0,
4845 const union tgsi_exec_channel *src1)
4846 {
4847 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
4848 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
4849 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
4850 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
4851 }
4852
4853 static void
4854 micro_ushr(union tgsi_exec_channel *dst,
4855 const union tgsi_exec_channel *src0,
4856 const union tgsi_exec_channel *src1)
4857 {
4858 unsigned masked_count;
4859 masked_count = src1->u[0] & 0x1f;
4860 dst->u[0] = src0->u[0] >> masked_count;
4861 masked_count = src1->u[1] & 0x1f;
4862 dst->u[1] = src0->u[1] >> masked_count;
4863 masked_count = src1->u[2] & 0x1f;
4864 dst->u[2] = src0->u[2] >> masked_count;
4865 masked_count = src1->u[3] & 0x1f;
4866 dst->u[3] = src0->u[3] >> masked_count;
4867 }
4868
4869 static void
4870 micro_uslt(union tgsi_exec_channel *dst,
4871 const union tgsi_exec_channel *src0,
4872 const union tgsi_exec_channel *src1)
4873 {
4874 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
4875 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
4876 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
4877 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
4878 }
4879
4880 static void
4881 micro_usne(union tgsi_exec_channel *dst,
4882 const union tgsi_exec_channel *src0,
4883 const union tgsi_exec_channel *src1)
4884 {
4885 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
4886 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
4887 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
4888 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
4889 }
4890
4891 static void
4892 micro_uarl(union tgsi_exec_channel *dst,
4893 const union tgsi_exec_channel *src)
4894 {
4895 dst->i[0] = src->u[0];
4896 dst->i[1] = src->u[1];
4897 dst->i[2] = src->u[2];
4898 dst->i[3] = src->u[3];
4899 }
4900
4901 /**
4902 * Signed bitfield extract (i.e. sign-extend the extracted bits)
4903 */
4904 static void
4905 micro_ibfe(union tgsi_exec_channel *dst,
4906 const union tgsi_exec_channel *src0,
4907 const union tgsi_exec_channel *src1,
4908 const union tgsi_exec_channel *src2)
4909 {
4910 int i;
4911 for (i = 0; i < 4; i++) {
4912 int width = src2->i[i] & 0x1f;
4913 int offset = src1->i[i] & 0x1f;
4914 if (width == 0)
4915 dst->i[i] = 0;
4916 else if (width + offset < 32)
4917 dst->i[i] = (src0->i[i] << (32 - width - offset)) >> (32 - width);
4918 else
4919 dst->i[i] = src0->i[i] >> offset;
4920 }
4921 }
4922
4923 /**
4924 * Unsigned bitfield extract
4925 */
4926 static void
4927 micro_ubfe(union tgsi_exec_channel *dst,
4928 const union tgsi_exec_channel *src0,
4929 const union tgsi_exec_channel *src1,
4930 const union tgsi_exec_channel *src2)
4931 {
4932 int i;
4933 for (i = 0; i < 4; i++) {
4934 int width = src2->u[i] & 0x1f;
4935 int offset = src1->u[i] & 0x1f;
4936 if (width == 0)
4937 dst->u[i] = 0;
4938 else if (width + offset < 32)
4939 dst->u[i] = (src0->u[i] << (32 - width - offset)) >> (32 - width);
4940 else
4941 dst->u[i] = src0->u[i] >> offset;
4942 }
4943 }
4944
4945 /**
4946 * Bitfield insert: copy low bits from src1 into a region of src0.
4947 */
4948 static void
4949 micro_bfi(union tgsi_exec_channel *dst,
4950 const union tgsi_exec_channel *src0,
4951 const union tgsi_exec_channel *src1,
4952 const union tgsi_exec_channel *src2,
4953 const union tgsi_exec_channel *src3)
4954 {
4955 int i;
4956 for (i = 0; i < 4; i++) {
4957 int width = src3->u[i] & 0x1f;
4958 int offset = src2->u[i] & 0x1f;
4959 int bitmask = ((1 << width) - 1) << offset;
4960 dst->u[i] = ((src1->u[i] << offset) & bitmask) | (src0->u[i] & ~bitmask);
4961 }
4962 }
4963
4964 static void
4965 micro_brev(union tgsi_exec_channel *dst,
4966 const union tgsi_exec_channel *src)
4967 {
4968 dst->u[0] = util_bitreverse(src->u[0]);
4969 dst->u[1] = util_bitreverse(src->u[1]);
4970 dst->u[2] = util_bitreverse(src->u[2]);
4971 dst->u[3] = util_bitreverse(src->u[3]);
4972 }
4973
4974 static void
4975 micro_popc(union tgsi_exec_channel *dst,
4976 const union tgsi_exec_channel *src)
4977 {
4978 dst->u[0] = util_bitcount(src->u[0]);
4979 dst->u[1] = util_bitcount(src->u[1]);
4980 dst->u[2] = util_bitcount(src->u[2]);
4981 dst->u[3] = util_bitcount(src->u[3]);
4982 }
4983
4984 static void
4985 micro_lsb(union tgsi_exec_channel *dst,
4986 const union tgsi_exec_channel *src)
4987 {
4988 dst->i[0] = ffs(src->u[0]) - 1;
4989 dst->i[1] = ffs(src->u[1]) - 1;
4990 dst->i[2] = ffs(src->u[2]) - 1;
4991 dst->i[3] = ffs(src->u[3]) - 1;
4992 }
4993
4994 static void
4995 micro_imsb(union tgsi_exec_channel *dst,
4996 const union tgsi_exec_channel *src)
4997 {
4998 dst->i[0] = util_last_bit_signed(src->i[0]) - 1;
4999 dst->i[1] = util_last_bit_signed(src->i[1]) - 1;
5000 dst->i[2] = util_last_bit_signed(src->i[2]) - 1;
5001 dst->i[3] = util_last_bit_signed(src->i[3]) - 1;
5002 }
5003
5004 static void
5005 micro_umsb(union tgsi_exec_channel *dst,
5006 const union tgsi_exec_channel *src)
5007 {
5008 dst->i[0] = util_last_bit(src->u[0]) - 1;
5009 dst->i[1] = util_last_bit(src->u[1]) - 1;
5010 dst->i[2] = util_last_bit(src->u[2]) - 1;
5011 dst->i[3] = util_last_bit(src->u[3]) - 1;
5012 }
5013
5014 /**
5015 * Execute a TGSI instruction.
5016 * Returns TRUE if a barrier instruction is hit,
5017 * otherwise FALSE.
5018 */
5019 static boolean
5020 exec_instruction(
5021 struct tgsi_exec_machine *mach,
5022 const struct tgsi_full_instruction *inst,
5023 int *pc )
5024 {
5025 union tgsi_exec_channel r[10];
5026
5027 (*pc)++;
5028
5029 switch (inst->Instruction.Opcode) {
5030 case TGSI_OPCODE_ARL:
5031 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5032 break;
5033
5034 case TGSI_OPCODE_MOV:
5035 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5036 break;
5037
5038 case TGSI_OPCODE_LIT:
5039 exec_lit(mach, inst);
5040 break;
5041
5042 case TGSI_OPCODE_RCP:
5043 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5044 break;
5045
5046 case TGSI_OPCODE_RSQ:
5047 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5048 break;
5049
5050 case TGSI_OPCODE_EXP:
5051 exec_exp(mach, inst);
5052 break;
5053
5054 case TGSI_OPCODE_LOG:
5055 exec_log(mach, inst);
5056 break;
5057
5058 case TGSI_OPCODE_MUL:
5059 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5060 break;
5061
5062 case TGSI_OPCODE_ADD:
5063 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5064 break;
5065
5066 case TGSI_OPCODE_DP3:
5067 exec_dp3(mach, inst);
5068 break;
5069
5070 case TGSI_OPCODE_DP4:
5071 exec_dp4(mach, inst);
5072 break;
5073
5074 case TGSI_OPCODE_DST:
5075 exec_dst(mach, inst);
5076 break;
5077
5078 case TGSI_OPCODE_MIN:
5079 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5080 break;
5081
5082 case TGSI_OPCODE_MAX:
5083 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5084 break;
5085
5086 case TGSI_OPCODE_SLT:
5087 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5088 break;
5089
5090 case TGSI_OPCODE_SGE:
5091 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5092 break;
5093
5094 case TGSI_OPCODE_MAD:
5095 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5096 break;
5097
5098 case TGSI_OPCODE_LRP:
5099 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5100 break;
5101
5102 case TGSI_OPCODE_SQRT:
5103 exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5104 break;
5105
5106 case TGSI_OPCODE_FRC:
5107 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5108 break;
5109
5110 case TGSI_OPCODE_FLR:
5111 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5112 break;
5113
5114 case TGSI_OPCODE_ROUND:
5115 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5116 break;
5117
5118 case TGSI_OPCODE_EX2:
5119 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5120 break;
5121
5122 case TGSI_OPCODE_LG2:
5123 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5124 break;
5125
5126 case TGSI_OPCODE_POW:
5127 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5128 break;
5129
5130 case TGSI_OPCODE_LDEXP:
5131 exec_vector_binary(mach, inst, micro_ldexp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5132 break;
5133
5134 case TGSI_OPCODE_COS:
5135 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5136 break;
5137
5138 case TGSI_OPCODE_DDX:
5139 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5140 break;
5141
5142 case TGSI_OPCODE_DDY:
5143 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5144 break;
5145
5146 case TGSI_OPCODE_KILL:
5147 exec_kill (mach);
5148 break;
5149
5150 case TGSI_OPCODE_KILL_IF:
5151 exec_kill_if (mach, inst);
5152 break;
5153
5154 case TGSI_OPCODE_PK2H:
5155 exec_pk2h(mach, inst);
5156 break;
5157
5158 case TGSI_OPCODE_PK2US:
5159 assert (0);
5160 break;
5161
5162 case TGSI_OPCODE_PK4B:
5163 assert (0);
5164 break;
5165
5166 case TGSI_OPCODE_PK4UB:
5167 assert (0);
5168 break;
5169
5170 case TGSI_OPCODE_SEQ:
5171 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5172 break;
5173
5174 case TGSI_OPCODE_SGT:
5175 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5176 break;
5177
5178 case TGSI_OPCODE_SIN:
5179 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5180 break;
5181
5182 case TGSI_OPCODE_SLE:
5183 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5184 break;
5185
5186 case TGSI_OPCODE_SNE:
5187 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5188 break;
5189
5190 case TGSI_OPCODE_TEX:
5191 /* simple texture lookup */
5192 /* src[0] = texcoord */
5193 /* src[1] = sampler unit */
5194 exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
5195 break;
5196
5197 case TGSI_OPCODE_TXB:
5198 /* Texture lookup with lod bias */
5199 /* src[0] = texcoord (src[0].w = LOD bias) */
5200 /* src[1] = sampler unit */
5201 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
5202 break;
5203
5204 case TGSI_OPCODE_TXD:
5205 /* Texture lookup with explict partial derivatives */
5206 /* src[0] = texcoord */
5207 /* src[1] = d[strq]/dx */
5208 /* src[2] = d[strq]/dy */
5209 /* src[3] = sampler unit */
5210 exec_txd(mach, inst);
5211 break;
5212
5213 case TGSI_OPCODE_TXL:
5214 /* Texture lookup with explit LOD */
5215 /* src[0] = texcoord (src[0].w = LOD) */
5216 /* src[1] = sampler unit */
5217 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
5218 break;
5219
5220 case TGSI_OPCODE_TXP:
5221 /* Texture lookup with projection */
5222 /* src[0] = texcoord (src[0].w = projection) */
5223 /* src[1] = sampler unit */
5224 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
5225 break;
5226
5227 case TGSI_OPCODE_TG4:
5228 /* src[0] = texcoord */
5229 /* src[1] = component */
5230 /* src[2] = sampler unit */
5231 exec_tex(mach, inst, TEX_MODIFIER_GATHER, 2);
5232 break;
5233
5234 case TGSI_OPCODE_LODQ:
5235 /* src[0] = texcoord */
5236 /* src[1] = sampler unit */
5237 exec_lodq(mach, inst);
5238 break;
5239
5240 case TGSI_OPCODE_UP2H:
5241 exec_up2h(mach, inst);
5242 break;
5243
5244 case TGSI_OPCODE_UP2US:
5245 assert (0);
5246 break;
5247
5248 case TGSI_OPCODE_UP4B:
5249 assert (0);
5250 break;
5251
5252 case TGSI_OPCODE_UP4UB:
5253 assert (0);
5254 break;
5255
5256 case TGSI_OPCODE_ARR:
5257 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5258 break;
5259
5260 case TGSI_OPCODE_CAL:
5261 /* skip the call if no execution channels are enabled */
5262 if (mach->ExecMask) {
5263 /* do the call */
5264
5265 /* First, record the depths of the execution stacks.
5266 * This is important for deeply nested/looped return statements.
5267 * We have to unwind the stacks by the correct amount. For a
5268 * real code generator, we could determine the number of entries
5269 * to pop off each stack with simple static analysis and avoid
5270 * implementing this data structure at run time.
5271 */
5272 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
5273 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
5274 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
5275 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
5276 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
5277 /* note that PC was already incremented above */
5278 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
5279
5280 mach->CallStackTop++;
5281
5282 /* Second, push the Cond, Loop, Cont, Func stacks */
5283 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5284 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5285 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5286 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
5287 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5288 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
5289
5290 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5291 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5292 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5293 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
5294 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5295 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
5296
5297 /* Finally, jump to the subroutine. The label is a pointer
5298 * (an instruction number) to the BGNSUB instruction.
5299 */
5300 *pc = inst->Label.Label;
5301 assert(mach->Instructions[*pc].Instruction.Opcode
5302 == TGSI_OPCODE_BGNSUB);
5303 }
5304 break;
5305
5306 case TGSI_OPCODE_RET:
5307 mach->FuncMask &= ~mach->ExecMask;
5308 UPDATE_EXEC_MASK(mach);
5309
5310 if (mach->FuncMask == 0x0) {
5311 /* really return now (otherwise, keep executing */
5312
5313 if (mach->CallStackTop == 0) {
5314 /* returning from main() */
5315 mach->CondStackTop = 0;
5316 mach->LoopStackTop = 0;
5317 mach->ContStackTop = 0;
5318 mach->LoopLabelStackTop = 0;
5319 mach->SwitchStackTop = 0;
5320 mach->BreakStackTop = 0;
5321 *pc = -1;
5322 return FALSE;
5323 }
5324
5325 assert(mach->CallStackTop > 0);
5326 mach->CallStackTop--;
5327
5328 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5329 mach->CondMask = mach->CondStack[mach->CondStackTop];
5330
5331 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5332 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5333
5334 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5335 mach->ContMask = mach->ContStack[mach->ContStackTop];
5336
5337 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5338 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5339
5340 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5341 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5342
5343 assert(mach->FuncStackTop > 0);
5344 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5345
5346 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5347
5348 UPDATE_EXEC_MASK(mach);
5349 }
5350 break;
5351
5352 case TGSI_OPCODE_SSG:
5353 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5354 break;
5355
5356 case TGSI_OPCODE_CMP:
5357 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5358 break;
5359
5360 case TGSI_OPCODE_DIV:
5361 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5362 break;
5363
5364 case TGSI_OPCODE_DP2:
5365 exec_dp2(mach, inst);
5366 break;
5367
5368 case TGSI_OPCODE_IF:
5369 /* push CondMask */
5370 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5371 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5372 FETCH( &r[0], 0, TGSI_CHAN_X );
5373 /* update CondMask */
5374 if( ! r[0].f[0] ) {
5375 mach->CondMask &= ~0x1;
5376 }
5377 if( ! r[0].f[1] ) {
5378 mach->CondMask &= ~0x2;
5379 }
5380 if( ! r[0].f[2] ) {
5381 mach->CondMask &= ~0x4;
5382 }
5383 if( ! r[0].f[3] ) {
5384 mach->CondMask &= ~0x8;
5385 }
5386 UPDATE_EXEC_MASK(mach);
5387 /* Todo: If CondMask==0, jump to ELSE */
5388 break;
5389
5390 case TGSI_OPCODE_UIF:
5391 /* push CondMask */
5392 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5393 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5394 IFETCH( &r[0], 0, TGSI_CHAN_X );
5395 /* update CondMask */
5396 if( ! r[0].u[0] ) {
5397 mach->CondMask &= ~0x1;
5398 }
5399 if( ! r[0].u[1] ) {
5400 mach->CondMask &= ~0x2;
5401 }
5402 if( ! r[0].u[2] ) {
5403 mach->CondMask &= ~0x4;
5404 }
5405 if( ! r[0].u[3] ) {
5406 mach->CondMask &= ~0x8;
5407 }
5408 UPDATE_EXEC_MASK(mach);
5409 /* Todo: If CondMask==0, jump to ELSE */
5410 break;
5411
5412 case TGSI_OPCODE_ELSE:
5413 /* invert CondMask wrt previous mask */
5414 {
5415 uint prevMask;
5416 assert(mach->CondStackTop > 0);
5417 prevMask = mach->CondStack[mach->CondStackTop - 1];
5418 mach->CondMask = ~mach->CondMask & prevMask;
5419 UPDATE_EXEC_MASK(mach);
5420 /* Todo: If CondMask==0, jump to ENDIF */
5421 }
5422 break;
5423
5424 case TGSI_OPCODE_ENDIF:
5425 /* pop CondMask */
5426 assert(mach->CondStackTop > 0);
5427 mach->CondMask = mach->CondStack[--mach->CondStackTop];
5428 UPDATE_EXEC_MASK(mach);
5429 break;
5430
5431 case TGSI_OPCODE_END:
5432 /* make sure we end primitives which haven't
5433 * been explicitly emitted */
5434 conditional_emit_primitive(mach);
5435 /* halt execution */
5436 *pc = -1;
5437 break;
5438
5439 case TGSI_OPCODE_CEIL:
5440 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5441 break;
5442
5443 case TGSI_OPCODE_I2F:
5444 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
5445 break;
5446
5447 case TGSI_OPCODE_NOT:
5448 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5449 break;
5450
5451 case TGSI_OPCODE_TRUNC:
5452 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5453 break;
5454
5455 case TGSI_OPCODE_SHL:
5456 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5457 break;
5458
5459 case TGSI_OPCODE_AND:
5460 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5461 break;
5462
5463 case TGSI_OPCODE_OR:
5464 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5465 break;
5466
5467 case TGSI_OPCODE_MOD:
5468 exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5469 break;
5470
5471 case TGSI_OPCODE_XOR:
5472 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5473 break;
5474
5475 case TGSI_OPCODE_TXF:
5476 exec_txf(mach, inst);
5477 break;
5478
5479 case TGSI_OPCODE_TXQ:
5480 exec_txq(mach, inst);
5481 break;
5482
5483 case TGSI_OPCODE_EMIT:
5484 emit_vertex(mach);
5485 break;
5486
5487 case TGSI_OPCODE_ENDPRIM:
5488 emit_primitive(mach);
5489 break;
5490
5491 case TGSI_OPCODE_BGNLOOP:
5492 /* push LoopMask and ContMasks */
5493 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5494 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5495 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5496 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5497
5498 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5499 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5500 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
5501 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5502 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
5503 break;
5504
5505 case TGSI_OPCODE_ENDLOOP:
5506 /* Restore ContMask, but don't pop */
5507 assert(mach->ContStackTop > 0);
5508 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
5509 UPDATE_EXEC_MASK(mach);
5510 if (mach->ExecMask) {
5511 /* repeat loop: jump to instruction just past BGNLOOP */
5512 assert(mach->LoopLabelStackTop > 0);
5513 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
5514 }
5515 else {
5516 /* exit loop: pop LoopMask */
5517 assert(mach->LoopStackTop > 0);
5518 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
5519 /* pop ContMask */
5520 assert(mach->ContStackTop > 0);
5521 mach->ContMask = mach->ContStack[--mach->ContStackTop];
5522 assert(mach->LoopLabelStackTop > 0);
5523 --mach->LoopLabelStackTop;
5524
5525 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
5526 }
5527 UPDATE_EXEC_MASK(mach);
5528 break;
5529
5530 case TGSI_OPCODE_BRK:
5531 exec_break(mach);
5532 break;
5533
5534 case TGSI_OPCODE_CONT:
5535 /* turn off cont channels for each enabled exec channel */
5536 mach->ContMask &= ~mach->ExecMask;
5537 /* Todo: if mach->LoopMask == 0, jump to end of loop */
5538 UPDATE_EXEC_MASK(mach);
5539 break;
5540
5541 case TGSI_OPCODE_BGNSUB:
5542 /* no-op */
5543 break;
5544
5545 case TGSI_OPCODE_ENDSUB:
5546 /*
5547 * XXX: This really should be a no-op. We should never reach this opcode.
5548 */
5549
5550 assert(mach->CallStackTop > 0);
5551 mach->CallStackTop--;
5552
5553 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5554 mach->CondMask = mach->CondStack[mach->CondStackTop];
5555
5556 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5557 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5558
5559 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5560 mach->ContMask = mach->ContStack[mach->ContStackTop];
5561
5562 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5563 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5564
5565 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5566 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5567
5568 assert(mach->FuncStackTop > 0);
5569 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5570
5571 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5572
5573 UPDATE_EXEC_MASK(mach);
5574 break;
5575
5576 case TGSI_OPCODE_NOP:
5577 break;
5578
5579 case TGSI_OPCODE_F2I:
5580 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5581 break;
5582
5583 case TGSI_OPCODE_FSEQ:
5584 exec_vector_binary(mach, inst, micro_fseq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5585 break;
5586
5587 case TGSI_OPCODE_FSGE:
5588 exec_vector_binary(mach, inst, micro_fsge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5589 break;
5590
5591 case TGSI_OPCODE_FSLT:
5592 exec_vector_binary(mach, inst, micro_fslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5593 break;
5594
5595 case TGSI_OPCODE_FSNE:
5596 exec_vector_binary(mach, inst, micro_fsne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5597 break;
5598
5599 case TGSI_OPCODE_IDIV:
5600 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5601 break;
5602
5603 case TGSI_OPCODE_IMAX:
5604 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5605 break;
5606
5607 case TGSI_OPCODE_IMIN:
5608 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5609 break;
5610
5611 case TGSI_OPCODE_INEG:
5612 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5613 break;
5614
5615 case TGSI_OPCODE_ISGE:
5616 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5617 break;
5618
5619 case TGSI_OPCODE_ISHR:
5620 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5621 break;
5622
5623 case TGSI_OPCODE_ISLT:
5624 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5625 break;
5626
5627 case TGSI_OPCODE_F2U:
5628 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5629 break;
5630
5631 case TGSI_OPCODE_U2F:
5632 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
5633 break;
5634
5635 case TGSI_OPCODE_UADD:
5636 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5637 break;
5638
5639 case TGSI_OPCODE_UDIV:
5640 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5641 break;
5642
5643 case TGSI_OPCODE_UMAD:
5644 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5645 break;
5646
5647 case TGSI_OPCODE_UMAX:
5648 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5649 break;
5650
5651 case TGSI_OPCODE_UMIN:
5652 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5653 break;
5654
5655 case TGSI_OPCODE_UMOD:
5656 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5657 break;
5658
5659 case TGSI_OPCODE_UMUL:
5660 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5661 break;
5662
5663 case TGSI_OPCODE_IMUL_HI:
5664 exec_vector_binary(mach, inst, micro_imul_hi, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5665 break;
5666
5667 case TGSI_OPCODE_UMUL_HI:
5668 exec_vector_binary(mach, inst, micro_umul_hi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5669 break;
5670
5671 case TGSI_OPCODE_USEQ:
5672 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5673 break;
5674
5675 case TGSI_OPCODE_USGE:
5676 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5677 break;
5678
5679 case TGSI_OPCODE_USHR:
5680 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5681 break;
5682
5683 case TGSI_OPCODE_USLT:
5684 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5685 break;
5686
5687 case TGSI_OPCODE_USNE:
5688 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5689 break;
5690
5691 case TGSI_OPCODE_SWITCH:
5692 exec_switch(mach, inst);
5693 break;
5694
5695 case TGSI_OPCODE_CASE:
5696 exec_case(mach, inst);
5697 break;
5698
5699 case TGSI_OPCODE_DEFAULT:
5700 exec_default(mach);
5701 break;
5702
5703 case TGSI_OPCODE_ENDSWITCH:
5704 exec_endswitch(mach);
5705 break;
5706
5707 case TGSI_OPCODE_SAMPLE_I:
5708 exec_txf(mach, inst);
5709 break;
5710
5711 case TGSI_OPCODE_SAMPLE_I_MS:
5712 exec_txf(mach, inst);
5713 break;
5714
5715 case TGSI_OPCODE_SAMPLE:
5716 exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
5717 break;
5718
5719 case TGSI_OPCODE_SAMPLE_B:
5720 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
5721 break;
5722
5723 case TGSI_OPCODE_SAMPLE_C:
5724 exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
5725 break;
5726
5727 case TGSI_OPCODE_SAMPLE_C_LZ:
5728 exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
5729 break;
5730
5731 case TGSI_OPCODE_SAMPLE_D:
5732 exec_sample_d(mach, inst);
5733 break;
5734
5735 case TGSI_OPCODE_SAMPLE_L:
5736 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
5737 break;
5738
5739 case TGSI_OPCODE_GATHER4:
5740 exec_sample(mach, inst, TEX_MODIFIER_GATHER, FALSE);
5741 break;
5742
5743 case TGSI_OPCODE_SVIEWINFO:
5744 exec_txq(mach, inst);
5745 break;
5746
5747 case TGSI_OPCODE_SAMPLE_POS:
5748 assert(0);
5749 break;
5750
5751 case TGSI_OPCODE_SAMPLE_INFO:
5752 assert(0);
5753 break;
5754
5755 case TGSI_OPCODE_LOD:
5756 exec_lodq(mach, inst);
5757 break;
5758
5759 case TGSI_OPCODE_UARL:
5760 exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5761 break;
5762
5763 case TGSI_OPCODE_UCMP:
5764 exec_ucmp(mach, inst);
5765 break;
5766
5767 case TGSI_OPCODE_IABS:
5768 exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5769 break;
5770
5771 case TGSI_OPCODE_ISSG:
5772 exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5773 break;
5774
5775 case TGSI_OPCODE_TEX2:
5776 /* simple texture lookup */
5777 /* src[0] = texcoord */
5778 /* src[1] = compare */
5779 /* src[2] = sampler unit */
5780 exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
5781 break;
5782 case TGSI_OPCODE_TXB2:
5783 /* simple texture lookup */
5784 /* src[0] = texcoord */
5785 /* src[1] = bias */
5786 /* src[2] = sampler unit */
5787 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
5788 break;
5789 case TGSI_OPCODE_TXL2:
5790 /* simple texture lookup */
5791 /* src[0] = texcoord */
5792 /* src[1] = lod */
5793 /* src[2] = sampler unit */
5794 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
5795 break;
5796
5797 case TGSI_OPCODE_IBFE:
5798 exec_vector_trinary(mach, inst, micro_ibfe, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5799 break;
5800 case TGSI_OPCODE_UBFE:
5801 exec_vector_trinary(mach, inst, micro_ubfe, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5802 break;
5803 case TGSI_OPCODE_BFI:
5804 exec_vector_quaternary(mach, inst, micro_bfi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5805 break;
5806 case TGSI_OPCODE_BREV:
5807 exec_vector_unary(mach, inst, micro_brev, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5808 break;
5809 case TGSI_OPCODE_POPC:
5810 exec_vector_unary(mach, inst, micro_popc, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5811 break;
5812 case TGSI_OPCODE_LSB:
5813 exec_vector_unary(mach, inst, micro_lsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5814 break;
5815 case TGSI_OPCODE_IMSB:
5816 exec_vector_unary(mach, inst, micro_imsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5817 break;
5818 case TGSI_OPCODE_UMSB:
5819 exec_vector_unary(mach, inst, micro_umsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5820 break;
5821
5822 case TGSI_OPCODE_F2D:
5823 exec_t_2_64(mach, inst, micro_f2d, TGSI_EXEC_DATA_FLOAT);
5824 break;
5825
5826 case TGSI_OPCODE_D2F:
5827 exec_64_2_t(mach, inst, micro_d2f, TGSI_EXEC_DATA_FLOAT);
5828 break;
5829
5830 case TGSI_OPCODE_DABS:
5831 exec_double_unary(mach, inst, micro_dabs);
5832 break;
5833
5834 case TGSI_OPCODE_DNEG:
5835 exec_double_unary(mach, inst, micro_dneg);
5836 break;
5837
5838 case TGSI_OPCODE_DADD:
5839 exec_double_binary(mach, inst, micro_dadd, TGSI_EXEC_DATA_DOUBLE);
5840 break;
5841
5842 case TGSI_OPCODE_DDIV:
5843 exec_double_binary(mach, inst, micro_ddiv, TGSI_EXEC_DATA_DOUBLE);
5844 break;
5845
5846 case TGSI_OPCODE_DMUL:
5847 exec_double_binary(mach, inst, micro_dmul, TGSI_EXEC_DATA_DOUBLE);
5848 break;
5849
5850 case TGSI_OPCODE_DMAX:
5851 exec_double_binary(mach, inst, micro_dmax, TGSI_EXEC_DATA_DOUBLE);
5852 break;
5853
5854 case TGSI_OPCODE_DMIN:
5855 exec_double_binary(mach, inst, micro_dmin, TGSI_EXEC_DATA_DOUBLE);
5856 break;
5857
5858 case TGSI_OPCODE_DSLT:
5859 exec_double_binary(mach, inst, micro_dslt, TGSI_EXEC_DATA_UINT);
5860 break;
5861
5862 case TGSI_OPCODE_DSGE:
5863 exec_double_binary(mach, inst, micro_dsge, TGSI_EXEC_DATA_UINT);
5864 break;
5865
5866 case TGSI_OPCODE_DSEQ:
5867 exec_double_binary(mach, inst, micro_dseq, TGSI_EXEC_DATA_UINT);
5868 break;
5869
5870 case TGSI_OPCODE_DSNE:
5871 exec_double_binary(mach, inst, micro_dsne, TGSI_EXEC_DATA_UINT);
5872 break;
5873
5874 case TGSI_OPCODE_DRCP:
5875 exec_double_unary(mach, inst, micro_drcp);
5876 break;
5877
5878 case TGSI_OPCODE_DSQRT:
5879 exec_double_unary(mach, inst, micro_dsqrt);
5880 break;
5881
5882 case TGSI_OPCODE_DRSQ:
5883 exec_double_unary(mach, inst, micro_drsq);
5884 break;
5885
5886 case TGSI_OPCODE_DMAD:
5887 exec_double_trinary(mach, inst, micro_dmad);
5888 break;
5889
5890 case TGSI_OPCODE_DFRAC:
5891 exec_double_unary(mach, inst, micro_dfrac);
5892 break;
5893
5894 case TGSI_OPCODE_DLDEXP:
5895 exec_dldexp(mach, inst);
5896 break;
5897
5898 case TGSI_OPCODE_DFRACEXP:
5899 exec_dfracexp(mach, inst);
5900 break;
5901
5902 case TGSI_OPCODE_I2D:
5903 exec_t_2_64(mach, inst, micro_i2d, TGSI_EXEC_DATA_INT);
5904 break;
5905
5906 case TGSI_OPCODE_D2I:
5907 exec_64_2_t(mach, inst, micro_d2i, TGSI_EXEC_DATA_INT);
5908 break;
5909
5910 case TGSI_OPCODE_U2D:
5911 exec_t_2_64(mach, inst, micro_u2d, TGSI_EXEC_DATA_UINT);
5912 break;
5913
5914 case TGSI_OPCODE_D2U:
5915 exec_64_2_t(mach, inst, micro_d2u, TGSI_EXEC_DATA_INT);
5916 break;
5917
5918 case TGSI_OPCODE_LOAD:
5919 exec_load(mach, inst);
5920 break;
5921
5922 case TGSI_OPCODE_STORE:
5923 exec_store(mach, inst);
5924 break;
5925
5926 case TGSI_OPCODE_ATOMUADD:
5927 case TGSI_OPCODE_ATOMXCHG:
5928 case TGSI_OPCODE_ATOMCAS:
5929 case TGSI_OPCODE_ATOMAND:
5930 case TGSI_OPCODE_ATOMOR:
5931 case TGSI_OPCODE_ATOMXOR:
5932 case TGSI_OPCODE_ATOMUMIN:
5933 case TGSI_OPCODE_ATOMUMAX:
5934 case TGSI_OPCODE_ATOMIMIN:
5935 case TGSI_OPCODE_ATOMIMAX:
5936 exec_atomop(mach, inst);
5937 break;
5938
5939 case TGSI_OPCODE_RESQ:
5940 exec_resq(mach, inst);
5941 break;
5942 case TGSI_OPCODE_BARRIER:
5943 case TGSI_OPCODE_MEMBAR:
5944 return TRUE;
5945 break;
5946
5947 case TGSI_OPCODE_I64ABS:
5948 exec_double_unary(mach, inst, micro_i64abs);
5949 break;
5950
5951 case TGSI_OPCODE_I64SSG:
5952 exec_double_unary(mach, inst, micro_i64sgn);
5953 break;
5954
5955 case TGSI_OPCODE_I64NEG:
5956 exec_double_unary(mach, inst, micro_i64neg);
5957 break;
5958
5959 case TGSI_OPCODE_U64SEQ:
5960 exec_double_binary(mach, inst, micro_u64seq, TGSI_EXEC_DATA_UINT);
5961 break;
5962
5963 case TGSI_OPCODE_U64SNE:
5964 exec_double_binary(mach, inst, micro_u64sne, TGSI_EXEC_DATA_UINT);
5965 break;
5966
5967 case TGSI_OPCODE_I64SLT:
5968 exec_double_binary(mach, inst, micro_i64slt, TGSI_EXEC_DATA_UINT);
5969 break;
5970 case TGSI_OPCODE_U64SLT:
5971 exec_double_binary(mach, inst, micro_u64slt, TGSI_EXEC_DATA_UINT);
5972 break;
5973
5974 case TGSI_OPCODE_I64SGE:
5975 exec_double_binary(mach, inst, micro_i64sge, TGSI_EXEC_DATA_UINT);
5976 break;
5977 case TGSI_OPCODE_U64SGE:
5978 exec_double_binary(mach, inst, micro_u64sge, TGSI_EXEC_DATA_UINT);
5979 break;
5980
5981 case TGSI_OPCODE_I64MIN:
5982 exec_double_binary(mach, inst, micro_i64min, TGSI_EXEC_DATA_INT64);
5983 break;
5984 case TGSI_OPCODE_U64MIN:
5985 exec_double_binary(mach, inst, micro_u64min, TGSI_EXEC_DATA_UINT64);
5986 break;
5987 case TGSI_OPCODE_I64MAX:
5988 exec_double_binary(mach, inst, micro_i64max, TGSI_EXEC_DATA_INT64);
5989 break;
5990 case TGSI_OPCODE_U64MAX:
5991 exec_double_binary(mach, inst, micro_u64max, TGSI_EXEC_DATA_UINT64);
5992 break;
5993 case TGSI_OPCODE_U64ADD:
5994 exec_double_binary(mach, inst, micro_u64add, TGSI_EXEC_DATA_UINT64);
5995 break;
5996 case TGSI_OPCODE_U64MUL:
5997 exec_double_binary(mach, inst, micro_u64mul, TGSI_EXEC_DATA_UINT64);
5998 break;
5999 case TGSI_OPCODE_U64SHL:
6000 exec_arg0_64_arg1_32(mach, inst, micro_u64shl);
6001 break;
6002 case TGSI_OPCODE_I64SHR:
6003 exec_arg0_64_arg1_32(mach, inst, micro_i64shr);
6004 break;
6005 case TGSI_OPCODE_U64SHR:
6006 exec_arg0_64_arg1_32(mach, inst, micro_u64shr);
6007 break;
6008 case TGSI_OPCODE_U64DIV:
6009 exec_double_binary(mach, inst, micro_u64div, TGSI_EXEC_DATA_UINT64);
6010 break;
6011 case TGSI_OPCODE_I64DIV:
6012 exec_double_binary(mach, inst, micro_i64div, TGSI_EXEC_DATA_INT64);
6013 break;
6014 case TGSI_OPCODE_U64MOD:
6015 exec_double_binary(mach, inst, micro_u64mod, TGSI_EXEC_DATA_UINT64);
6016 break;
6017 case TGSI_OPCODE_I64MOD:
6018 exec_double_binary(mach, inst, micro_i64mod, TGSI_EXEC_DATA_INT64);
6019 break;
6020
6021 case TGSI_OPCODE_F2U64:
6022 exec_t_2_64(mach, inst, micro_f2u64, TGSI_EXEC_DATA_FLOAT);
6023 break;
6024
6025 case TGSI_OPCODE_F2I64:
6026 exec_t_2_64(mach, inst, micro_f2i64, TGSI_EXEC_DATA_FLOAT);
6027 break;
6028
6029 case TGSI_OPCODE_U2I64:
6030 exec_t_2_64(mach, inst, micro_u2i64, TGSI_EXEC_DATA_INT);
6031 break;
6032 case TGSI_OPCODE_I2I64:
6033 exec_t_2_64(mach, inst, micro_i2i64, TGSI_EXEC_DATA_INT);
6034 break;
6035
6036 case TGSI_OPCODE_D2U64:
6037 exec_double_unary(mach, inst, micro_d2u64);
6038 break;
6039
6040 case TGSI_OPCODE_D2I64:
6041 exec_double_unary(mach, inst, micro_d2i64);
6042 break;
6043
6044 case TGSI_OPCODE_U642F:
6045 exec_64_2_t(mach, inst, micro_u642f, TGSI_EXEC_DATA_FLOAT);
6046 break;
6047 case TGSI_OPCODE_I642F:
6048 exec_64_2_t(mach, inst, micro_i642f, TGSI_EXEC_DATA_FLOAT);
6049 break;
6050
6051 case TGSI_OPCODE_U642D:
6052 exec_double_unary(mach, inst, micro_u642d);
6053 break;
6054 case TGSI_OPCODE_I642D:
6055 exec_double_unary(mach, inst, micro_i642d);
6056 break;
6057
6058 default:
6059 assert( 0 );
6060 }
6061 return FALSE;
6062 }
6063
6064 static void
6065 tgsi_exec_machine_setup_masks(struct tgsi_exec_machine *mach)
6066 {
6067 uint default_mask = 0xf;
6068
6069 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
6070 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
6071
6072 if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
6073 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
6074 mach->Primitives[0] = 0;
6075 /* GS runs on a single primitive for now */
6076 default_mask = 0x1;
6077 }
6078
6079 if (mach->NonHelperMask == 0)
6080 mach->NonHelperMask = default_mask;
6081 mach->CondMask = default_mask;
6082 mach->LoopMask = default_mask;
6083 mach->ContMask = default_mask;
6084 mach->FuncMask = default_mask;
6085 mach->ExecMask = default_mask;
6086
6087 mach->Switch.mask = default_mask;
6088
6089 assert(mach->CondStackTop == 0);
6090 assert(mach->LoopStackTop == 0);
6091 assert(mach->ContStackTop == 0);
6092 assert(mach->SwitchStackTop == 0);
6093 assert(mach->BreakStackTop == 0);
6094 assert(mach->CallStackTop == 0);
6095 }
6096
6097 /**
6098 * Run TGSI interpreter.
6099 * \return bitmask of "alive" quad components
6100 */
6101 uint
6102 tgsi_exec_machine_run( struct tgsi_exec_machine *mach, int start_pc )
6103 {
6104 uint i;
6105
6106 mach->pc = start_pc;
6107
6108 if (!start_pc) {
6109 tgsi_exec_machine_setup_masks(mach);
6110
6111 /* execute declarations (interpolants) */
6112 for (i = 0; i < mach->NumDeclarations; i++) {
6113 exec_declaration( mach, mach->Declarations+i );
6114 }
6115 }
6116
6117 {
6118 #if DEBUG_EXECUTION
6119 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
6120 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
6121 uint inst = 1;
6122
6123 if (!start_pc) {
6124 memset(mach->Temps, 0, sizeof(temps));
6125 if (mach->Outputs)
6126 memset(mach->Outputs, 0, sizeof(outputs));
6127 memset(temps, 0, sizeof(temps));
6128 memset(outputs, 0, sizeof(outputs));
6129 }
6130 #endif
6131
6132 /* execute instructions, until pc is set to -1 */
6133 while (mach->pc != -1) {
6134 boolean barrier_hit;
6135 #if DEBUG_EXECUTION
6136 uint i;
6137
6138 tgsi_dump_instruction(&mach->Instructions[mach->pc], inst++);
6139 #endif
6140
6141 assert(mach->pc < (int) mach->NumInstructions);
6142 barrier_hit = exec_instruction(mach, mach->Instructions + mach->pc, &mach->pc);
6143
6144 /* for compute shaders if we hit a barrier return now for later rescheduling */
6145 if (barrier_hit && mach->ShaderType == PIPE_SHADER_COMPUTE)
6146 return 0;
6147
6148 #if DEBUG_EXECUTION
6149 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
6150 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
6151 uint j;
6152
6153 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
6154 debug_printf("TEMP[%2u] = ", i);
6155 for (j = 0; j < 4; j++) {
6156 if (j > 0) {
6157 debug_printf(" ");
6158 }
6159 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6160 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
6161 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
6162 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
6163 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
6164 }
6165 }
6166 }
6167 if (mach->Outputs) {
6168 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
6169 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
6170 uint j;
6171
6172 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
6173 debug_printf("OUT[%2u] = ", i);
6174 for (j = 0; j < 4; j++) {
6175 if (j > 0) {
6176 debug_printf(" ");
6177 }
6178 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6179 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
6180 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
6181 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
6182 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
6183 }
6184 }
6185 }
6186 }
6187 #endif
6188 }
6189 }
6190
6191 #if 0
6192 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
6193 if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
6194 /*
6195 * Scale back depth component.
6196 */
6197 for (i = 0; i < 4; i++)
6198 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
6199 }
6200 #endif
6201
6202 /* Strictly speaking, these assertions aren't really needed but they
6203 * can potentially catch some bugs in the control flow code.
6204 */
6205 assert(mach->CondStackTop == 0);
6206 assert(mach->LoopStackTop == 0);
6207 assert(mach->ContStackTop == 0);
6208 assert(mach->SwitchStackTop == 0);
6209 assert(mach->BreakStackTop == 0);
6210 assert(mach->CallStackTop == 0);
6211
6212 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
6213 }