gallium: add new LOD opcode
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_half.h"
62 #include "util/u_memory.h"
63 #include "util/u_math.h"
64 #include "util/rounding.h"
65
66
67 #define DEBUG_EXECUTION 0
68
69
70 #define FAST_MATH 0
71
72 #define TILE_TOP_LEFT 0
73 #define TILE_TOP_RIGHT 1
74 #define TILE_BOTTOM_LEFT 2
75 #define TILE_BOTTOM_RIGHT 3
76
77 union tgsi_double_channel {
78 double d[TGSI_QUAD_SIZE];
79 unsigned u[TGSI_QUAD_SIZE][2];
80 uint64_t u64[TGSI_QUAD_SIZE];
81 int64_t i64[TGSI_QUAD_SIZE];
82 };
83
84 struct tgsi_double_vector {
85 union tgsi_double_channel xy;
86 union tgsi_double_channel zw;
87 };
88
89 static void
90 micro_abs(union tgsi_exec_channel *dst,
91 const union tgsi_exec_channel *src)
92 {
93 dst->f[0] = fabsf(src->f[0]);
94 dst->f[1] = fabsf(src->f[1]);
95 dst->f[2] = fabsf(src->f[2]);
96 dst->f[3] = fabsf(src->f[3]);
97 }
98
99 static void
100 micro_arl(union tgsi_exec_channel *dst,
101 const union tgsi_exec_channel *src)
102 {
103 dst->i[0] = (int)floorf(src->f[0]);
104 dst->i[1] = (int)floorf(src->f[1]);
105 dst->i[2] = (int)floorf(src->f[2]);
106 dst->i[3] = (int)floorf(src->f[3]);
107 }
108
109 static void
110 micro_arr(union tgsi_exec_channel *dst,
111 const union tgsi_exec_channel *src)
112 {
113 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
114 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
115 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
116 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
117 }
118
119 static void
120 micro_ceil(union tgsi_exec_channel *dst,
121 const union tgsi_exec_channel *src)
122 {
123 dst->f[0] = ceilf(src->f[0]);
124 dst->f[1] = ceilf(src->f[1]);
125 dst->f[2] = ceilf(src->f[2]);
126 dst->f[3] = ceilf(src->f[3]);
127 }
128
129 static void
130 micro_cmp(union tgsi_exec_channel *dst,
131 const union tgsi_exec_channel *src0,
132 const union tgsi_exec_channel *src1,
133 const union tgsi_exec_channel *src2)
134 {
135 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
136 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
137 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
138 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
139 }
140
141 static void
142 micro_cos(union tgsi_exec_channel *dst,
143 const union tgsi_exec_channel *src)
144 {
145 dst->f[0] = cosf(src->f[0]);
146 dst->f[1] = cosf(src->f[1]);
147 dst->f[2] = cosf(src->f[2]);
148 dst->f[3] = cosf(src->f[3]);
149 }
150
151 static void
152 micro_d2f(union tgsi_exec_channel *dst,
153 const union tgsi_double_channel *src)
154 {
155 dst->f[0] = (float)src->d[0];
156 dst->f[1] = (float)src->d[1];
157 dst->f[2] = (float)src->d[2];
158 dst->f[3] = (float)src->d[3];
159 }
160
161 static void
162 micro_d2i(union tgsi_exec_channel *dst,
163 const union tgsi_double_channel *src)
164 {
165 dst->i[0] = (int)src->d[0];
166 dst->i[1] = (int)src->d[1];
167 dst->i[2] = (int)src->d[2];
168 dst->i[3] = (int)src->d[3];
169 }
170
171 static void
172 micro_d2u(union tgsi_exec_channel *dst,
173 const union tgsi_double_channel *src)
174 {
175 dst->u[0] = (unsigned)src->d[0];
176 dst->u[1] = (unsigned)src->d[1];
177 dst->u[2] = (unsigned)src->d[2];
178 dst->u[3] = (unsigned)src->d[3];
179 }
180 static void
181 micro_dabs(union tgsi_double_channel *dst,
182 const union tgsi_double_channel *src)
183 {
184 dst->d[0] = src->d[0] >= 0.0 ? src->d[0] : -src->d[0];
185 dst->d[1] = src->d[1] >= 0.0 ? src->d[1] : -src->d[1];
186 dst->d[2] = src->d[2] >= 0.0 ? src->d[2] : -src->d[2];
187 dst->d[3] = src->d[3] >= 0.0 ? src->d[3] : -src->d[3];
188 }
189
190 static void
191 micro_dadd(union tgsi_double_channel *dst,
192 const union tgsi_double_channel *src)
193 {
194 dst->d[0] = src[0].d[0] + src[1].d[0];
195 dst->d[1] = src[0].d[1] + src[1].d[1];
196 dst->d[2] = src[0].d[2] + src[1].d[2];
197 dst->d[3] = src[0].d[3] + src[1].d[3];
198 }
199
200 static void
201 micro_ddiv(union tgsi_double_channel *dst,
202 const union tgsi_double_channel *src)
203 {
204 dst->d[0] = src[0].d[0] / src[1].d[0];
205 dst->d[1] = src[0].d[1] / src[1].d[1];
206 dst->d[2] = src[0].d[2] / src[1].d[2];
207 dst->d[3] = src[0].d[3] / src[1].d[3];
208 }
209
210 static void
211 micro_ddx(union tgsi_exec_channel *dst,
212 const union tgsi_exec_channel *src)
213 {
214 dst->f[0] =
215 dst->f[1] =
216 dst->f[2] =
217 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
218 }
219
220 static void
221 micro_ddy(union tgsi_exec_channel *dst,
222 const union tgsi_exec_channel *src)
223 {
224 dst->f[0] =
225 dst->f[1] =
226 dst->f[2] =
227 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
228 }
229
230 static void
231 micro_dmul(union tgsi_double_channel *dst,
232 const union tgsi_double_channel *src)
233 {
234 dst->d[0] = src[0].d[0] * src[1].d[0];
235 dst->d[1] = src[0].d[1] * src[1].d[1];
236 dst->d[2] = src[0].d[2] * src[1].d[2];
237 dst->d[3] = src[0].d[3] * src[1].d[3];
238 }
239
240 static void
241 micro_dmax(union tgsi_double_channel *dst,
242 const union tgsi_double_channel *src)
243 {
244 dst->d[0] = src[0].d[0] > src[1].d[0] ? src[0].d[0] : src[1].d[0];
245 dst->d[1] = src[0].d[1] > src[1].d[1] ? src[0].d[1] : src[1].d[1];
246 dst->d[2] = src[0].d[2] > src[1].d[2] ? src[0].d[2] : src[1].d[2];
247 dst->d[3] = src[0].d[3] > src[1].d[3] ? src[0].d[3] : src[1].d[3];
248 }
249
250 static void
251 micro_dmin(union tgsi_double_channel *dst,
252 const union tgsi_double_channel *src)
253 {
254 dst->d[0] = src[0].d[0] < src[1].d[0] ? src[0].d[0] : src[1].d[0];
255 dst->d[1] = src[0].d[1] < src[1].d[1] ? src[0].d[1] : src[1].d[1];
256 dst->d[2] = src[0].d[2] < src[1].d[2] ? src[0].d[2] : src[1].d[2];
257 dst->d[3] = src[0].d[3] < src[1].d[3] ? src[0].d[3] : src[1].d[3];
258 }
259
260 static void
261 micro_dneg(union tgsi_double_channel *dst,
262 const union tgsi_double_channel *src)
263 {
264 dst->d[0] = -src->d[0];
265 dst->d[1] = -src->d[1];
266 dst->d[2] = -src->d[2];
267 dst->d[3] = -src->d[3];
268 }
269
270 static void
271 micro_dslt(union tgsi_double_channel *dst,
272 const union tgsi_double_channel *src)
273 {
274 dst->u[0][0] = src[0].d[0] < src[1].d[0] ? ~0U : 0U;
275 dst->u[1][0] = src[0].d[1] < src[1].d[1] ? ~0U : 0U;
276 dst->u[2][0] = src[0].d[2] < src[1].d[2] ? ~0U : 0U;
277 dst->u[3][0] = src[0].d[3] < src[1].d[3] ? ~0U : 0U;
278 }
279
280 static void
281 micro_dsne(union tgsi_double_channel *dst,
282 const union tgsi_double_channel *src)
283 {
284 dst->u[0][0] = src[0].d[0] != src[1].d[0] ? ~0U : 0U;
285 dst->u[1][0] = src[0].d[1] != src[1].d[1] ? ~0U : 0U;
286 dst->u[2][0] = src[0].d[2] != src[1].d[2] ? ~0U : 0U;
287 dst->u[3][0] = src[0].d[3] != src[1].d[3] ? ~0U : 0U;
288 }
289
290 static void
291 micro_dsge(union tgsi_double_channel *dst,
292 const union tgsi_double_channel *src)
293 {
294 dst->u[0][0] = src[0].d[0] >= src[1].d[0] ? ~0U : 0U;
295 dst->u[1][0] = src[0].d[1] >= src[1].d[1] ? ~0U : 0U;
296 dst->u[2][0] = src[0].d[2] >= src[1].d[2] ? ~0U : 0U;
297 dst->u[3][0] = src[0].d[3] >= src[1].d[3] ? ~0U : 0U;
298 }
299
300 static void
301 micro_dseq(union tgsi_double_channel *dst,
302 const union tgsi_double_channel *src)
303 {
304 dst->u[0][0] = src[0].d[0] == src[1].d[0] ? ~0U : 0U;
305 dst->u[1][0] = src[0].d[1] == src[1].d[1] ? ~0U : 0U;
306 dst->u[2][0] = src[0].d[2] == src[1].d[2] ? ~0U : 0U;
307 dst->u[3][0] = src[0].d[3] == src[1].d[3] ? ~0U : 0U;
308 }
309
310 static void
311 micro_drcp(union tgsi_double_channel *dst,
312 const union tgsi_double_channel *src)
313 {
314 dst->d[0] = 1.0 / src->d[0];
315 dst->d[1] = 1.0 / src->d[1];
316 dst->d[2] = 1.0 / src->d[2];
317 dst->d[3] = 1.0 / src->d[3];
318 }
319
320 static void
321 micro_dsqrt(union tgsi_double_channel *dst,
322 const union tgsi_double_channel *src)
323 {
324 dst->d[0] = sqrt(src->d[0]);
325 dst->d[1] = sqrt(src->d[1]);
326 dst->d[2] = sqrt(src->d[2]);
327 dst->d[3] = sqrt(src->d[3]);
328 }
329
330 static void
331 micro_drsq(union tgsi_double_channel *dst,
332 const union tgsi_double_channel *src)
333 {
334 dst->d[0] = 1.0 / sqrt(src->d[0]);
335 dst->d[1] = 1.0 / sqrt(src->d[1]);
336 dst->d[2] = 1.0 / sqrt(src->d[2]);
337 dst->d[3] = 1.0 / sqrt(src->d[3]);
338 }
339
340 static void
341 micro_dmad(union tgsi_double_channel *dst,
342 const union tgsi_double_channel *src)
343 {
344 dst->d[0] = src[0].d[0] * src[1].d[0] + src[2].d[0];
345 dst->d[1] = src[0].d[1] * src[1].d[1] + src[2].d[1];
346 dst->d[2] = src[0].d[2] * src[1].d[2] + src[2].d[2];
347 dst->d[3] = src[0].d[3] * src[1].d[3] + src[2].d[3];
348 }
349
350 static void
351 micro_dfrac(union tgsi_double_channel *dst,
352 const union tgsi_double_channel *src)
353 {
354 dst->d[0] = src->d[0] - floor(src->d[0]);
355 dst->d[1] = src->d[1] - floor(src->d[1]);
356 dst->d[2] = src->d[2] - floor(src->d[2]);
357 dst->d[3] = src->d[3] - floor(src->d[3]);
358 }
359
360 static void
361 micro_dldexp(union tgsi_double_channel *dst,
362 const union tgsi_double_channel *src0,
363 union tgsi_exec_channel *src1)
364 {
365 dst->d[0] = ldexp(src0->d[0], src1->i[0]);
366 dst->d[1] = ldexp(src0->d[1], src1->i[1]);
367 dst->d[2] = ldexp(src0->d[2], src1->i[2]);
368 dst->d[3] = ldexp(src0->d[3], src1->i[3]);
369 }
370
371 static void
372 micro_dfracexp(union tgsi_double_channel *dst,
373 union tgsi_exec_channel *dst_exp,
374 const union tgsi_double_channel *src)
375 {
376 dst->d[0] = frexp(src->d[0], &dst_exp->i[0]);
377 dst->d[1] = frexp(src->d[1], &dst_exp->i[1]);
378 dst->d[2] = frexp(src->d[2], &dst_exp->i[2]);
379 dst->d[3] = frexp(src->d[3], &dst_exp->i[3]);
380 }
381
382 static void
383 micro_exp2(union tgsi_exec_channel *dst,
384 const union tgsi_exec_channel *src)
385 {
386 #if FAST_MATH
387 dst->f[0] = util_fast_exp2(src->f[0]);
388 dst->f[1] = util_fast_exp2(src->f[1]);
389 dst->f[2] = util_fast_exp2(src->f[2]);
390 dst->f[3] = util_fast_exp2(src->f[3]);
391 #else
392 #if DEBUG
393 /* Inf is okay for this instruction, so clamp it to silence assertions. */
394 uint i;
395 union tgsi_exec_channel clamped;
396
397 for (i = 0; i < 4; i++) {
398 if (src->f[i] > 127.99999f) {
399 clamped.f[i] = 127.99999f;
400 } else if (src->f[i] < -126.99999f) {
401 clamped.f[i] = -126.99999f;
402 } else {
403 clamped.f[i] = src->f[i];
404 }
405 }
406 src = &clamped;
407 #endif /* DEBUG */
408
409 dst->f[0] = powf(2.0f, src->f[0]);
410 dst->f[1] = powf(2.0f, src->f[1]);
411 dst->f[2] = powf(2.0f, src->f[2]);
412 dst->f[3] = powf(2.0f, src->f[3]);
413 #endif /* FAST_MATH */
414 }
415
416 static void
417 micro_f2d(union tgsi_double_channel *dst,
418 const union tgsi_exec_channel *src)
419 {
420 dst->d[0] = (double)src->f[0];
421 dst->d[1] = (double)src->f[1];
422 dst->d[2] = (double)src->f[2];
423 dst->d[3] = (double)src->f[3];
424 }
425
426 static void
427 micro_flr(union tgsi_exec_channel *dst,
428 const union tgsi_exec_channel *src)
429 {
430 dst->f[0] = floorf(src->f[0]);
431 dst->f[1] = floorf(src->f[1]);
432 dst->f[2] = floorf(src->f[2]);
433 dst->f[3] = floorf(src->f[3]);
434 }
435
436 static void
437 micro_frc(union tgsi_exec_channel *dst,
438 const union tgsi_exec_channel *src)
439 {
440 dst->f[0] = src->f[0] - floorf(src->f[0]);
441 dst->f[1] = src->f[1] - floorf(src->f[1]);
442 dst->f[2] = src->f[2] - floorf(src->f[2]);
443 dst->f[3] = src->f[3] - floorf(src->f[3]);
444 }
445
446 static void
447 micro_i2d(union tgsi_double_channel *dst,
448 const union tgsi_exec_channel *src)
449 {
450 dst->d[0] = (double)src->i[0];
451 dst->d[1] = (double)src->i[1];
452 dst->d[2] = (double)src->i[2];
453 dst->d[3] = (double)src->i[3];
454 }
455
456 static void
457 micro_iabs(union tgsi_exec_channel *dst,
458 const union tgsi_exec_channel *src)
459 {
460 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
461 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
462 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
463 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
464 }
465
466 static void
467 micro_ineg(union tgsi_exec_channel *dst,
468 const union tgsi_exec_channel *src)
469 {
470 dst->i[0] = -src->i[0];
471 dst->i[1] = -src->i[1];
472 dst->i[2] = -src->i[2];
473 dst->i[3] = -src->i[3];
474 }
475
476 static void
477 micro_lg2(union tgsi_exec_channel *dst,
478 const union tgsi_exec_channel *src)
479 {
480 #if FAST_MATH
481 dst->f[0] = util_fast_log2(src->f[0]);
482 dst->f[1] = util_fast_log2(src->f[1]);
483 dst->f[2] = util_fast_log2(src->f[2]);
484 dst->f[3] = util_fast_log2(src->f[3]);
485 #else
486 dst->f[0] = logf(src->f[0]) * 1.442695f;
487 dst->f[1] = logf(src->f[1]) * 1.442695f;
488 dst->f[2] = logf(src->f[2]) * 1.442695f;
489 dst->f[3] = logf(src->f[3]) * 1.442695f;
490 #endif
491 }
492
493 static void
494 micro_lrp(union tgsi_exec_channel *dst,
495 const union tgsi_exec_channel *src0,
496 const union tgsi_exec_channel *src1,
497 const union tgsi_exec_channel *src2)
498 {
499 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
500 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
501 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
502 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
503 }
504
505 static void
506 micro_mad(union tgsi_exec_channel *dst,
507 const union tgsi_exec_channel *src0,
508 const union tgsi_exec_channel *src1,
509 const union tgsi_exec_channel *src2)
510 {
511 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
512 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
513 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
514 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
515 }
516
517 static void
518 micro_mov(union tgsi_exec_channel *dst,
519 const union tgsi_exec_channel *src)
520 {
521 dst->u[0] = src->u[0];
522 dst->u[1] = src->u[1];
523 dst->u[2] = src->u[2];
524 dst->u[3] = src->u[3];
525 }
526
527 static void
528 micro_rcp(union tgsi_exec_channel *dst,
529 const union tgsi_exec_channel *src)
530 {
531 #if 0 /* for debugging */
532 assert(src->f[0] != 0.0f);
533 assert(src->f[1] != 0.0f);
534 assert(src->f[2] != 0.0f);
535 assert(src->f[3] != 0.0f);
536 #endif
537 dst->f[0] = 1.0f / src->f[0];
538 dst->f[1] = 1.0f / src->f[1];
539 dst->f[2] = 1.0f / src->f[2];
540 dst->f[3] = 1.0f / src->f[3];
541 }
542
543 static void
544 micro_rnd(union tgsi_exec_channel *dst,
545 const union tgsi_exec_channel *src)
546 {
547 dst->f[0] = _mesa_roundevenf(src->f[0]);
548 dst->f[1] = _mesa_roundevenf(src->f[1]);
549 dst->f[2] = _mesa_roundevenf(src->f[2]);
550 dst->f[3] = _mesa_roundevenf(src->f[3]);
551 }
552
553 static void
554 micro_rsq(union tgsi_exec_channel *dst,
555 const union tgsi_exec_channel *src)
556 {
557 #if 0 /* for debugging */
558 assert(src->f[0] != 0.0f);
559 assert(src->f[1] != 0.0f);
560 assert(src->f[2] != 0.0f);
561 assert(src->f[3] != 0.0f);
562 #endif
563 dst->f[0] = 1.0f / sqrtf(src->f[0]);
564 dst->f[1] = 1.0f / sqrtf(src->f[1]);
565 dst->f[2] = 1.0f / sqrtf(src->f[2]);
566 dst->f[3] = 1.0f / sqrtf(src->f[3]);
567 }
568
569 static void
570 micro_sqrt(union tgsi_exec_channel *dst,
571 const union tgsi_exec_channel *src)
572 {
573 dst->f[0] = sqrtf(src->f[0]);
574 dst->f[1] = sqrtf(src->f[1]);
575 dst->f[2] = sqrtf(src->f[2]);
576 dst->f[3] = sqrtf(src->f[3]);
577 }
578
579 static void
580 micro_seq(union tgsi_exec_channel *dst,
581 const union tgsi_exec_channel *src0,
582 const union tgsi_exec_channel *src1)
583 {
584 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
585 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
586 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
587 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
588 }
589
590 static void
591 micro_sge(union tgsi_exec_channel *dst,
592 const union tgsi_exec_channel *src0,
593 const union tgsi_exec_channel *src1)
594 {
595 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
596 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
597 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
598 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
599 }
600
601 static void
602 micro_sgn(union tgsi_exec_channel *dst,
603 const union tgsi_exec_channel *src)
604 {
605 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
606 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
607 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
608 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
609 }
610
611 static void
612 micro_isgn(union tgsi_exec_channel *dst,
613 const union tgsi_exec_channel *src)
614 {
615 dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
616 dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
617 dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
618 dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
619 }
620
621 static void
622 micro_sgt(union tgsi_exec_channel *dst,
623 const union tgsi_exec_channel *src0,
624 const union tgsi_exec_channel *src1)
625 {
626 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
627 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
628 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
629 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
630 }
631
632 static void
633 micro_sin(union tgsi_exec_channel *dst,
634 const union tgsi_exec_channel *src)
635 {
636 dst->f[0] = sinf(src->f[0]);
637 dst->f[1] = sinf(src->f[1]);
638 dst->f[2] = sinf(src->f[2]);
639 dst->f[3] = sinf(src->f[3]);
640 }
641
642 static void
643 micro_sle(union tgsi_exec_channel *dst,
644 const union tgsi_exec_channel *src0,
645 const union tgsi_exec_channel *src1)
646 {
647 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
648 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
649 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
650 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
651 }
652
653 static void
654 micro_slt(union tgsi_exec_channel *dst,
655 const union tgsi_exec_channel *src0,
656 const union tgsi_exec_channel *src1)
657 {
658 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
659 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
660 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
661 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
662 }
663
664 static void
665 micro_sne(union tgsi_exec_channel *dst,
666 const union tgsi_exec_channel *src0,
667 const union tgsi_exec_channel *src1)
668 {
669 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
670 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
671 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
672 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
673 }
674
675 static void
676 micro_trunc(union tgsi_exec_channel *dst,
677 const union tgsi_exec_channel *src)
678 {
679 dst->f[0] = truncf(src->f[0]);
680 dst->f[1] = truncf(src->f[1]);
681 dst->f[2] = truncf(src->f[2]);
682 dst->f[3] = truncf(src->f[3]);
683 }
684
685 static void
686 micro_u2d(union tgsi_double_channel *dst,
687 const union tgsi_exec_channel *src)
688 {
689 dst->d[0] = (double)src->u[0];
690 dst->d[1] = (double)src->u[1];
691 dst->d[2] = (double)src->u[2];
692 dst->d[3] = (double)src->u[3];
693 }
694
695 static void
696 micro_i64abs(union tgsi_double_channel *dst,
697 const union tgsi_double_channel *src)
698 {
699 dst->i64[0] = src->i64[0] >= 0.0 ? src->i64[0] : -src->i64[0];
700 dst->i64[1] = src->i64[1] >= 0.0 ? src->i64[1] : -src->i64[1];
701 dst->i64[2] = src->i64[2] >= 0.0 ? src->i64[2] : -src->i64[2];
702 dst->i64[3] = src->i64[3] >= 0.0 ? src->i64[3] : -src->i64[3];
703 }
704
705 static void
706 micro_i64sgn(union tgsi_double_channel *dst,
707 const union tgsi_double_channel *src)
708 {
709 dst->i64[0] = src->i64[0] < 0 ? -1 : src->i64[0] > 0 ? 1 : 0;
710 dst->i64[1] = src->i64[1] < 0 ? -1 : src->i64[1] > 0 ? 1 : 0;
711 dst->i64[2] = src->i64[2] < 0 ? -1 : src->i64[2] > 0 ? 1 : 0;
712 dst->i64[3] = src->i64[3] < 0 ? -1 : src->i64[3] > 0 ? 1 : 0;
713 }
714
715 static void
716 micro_i64neg(union tgsi_double_channel *dst,
717 const union tgsi_double_channel *src)
718 {
719 dst->i64[0] = -src->i64[0];
720 dst->i64[1] = -src->i64[1];
721 dst->i64[2] = -src->i64[2];
722 dst->i64[3] = -src->i64[3];
723 }
724
725 static void
726 micro_u64seq(union tgsi_double_channel *dst,
727 const union tgsi_double_channel *src)
728 {
729 dst->u[0][0] = src[0].u64[0] == src[1].u64[0] ? ~0U : 0U;
730 dst->u[1][0] = src[0].u64[1] == src[1].u64[1] ? ~0U : 0U;
731 dst->u[2][0] = src[0].u64[2] == src[1].u64[2] ? ~0U : 0U;
732 dst->u[3][0] = src[0].u64[3] == src[1].u64[3] ? ~0U : 0U;
733 }
734
735 static void
736 micro_u64sne(union tgsi_double_channel *dst,
737 const union tgsi_double_channel *src)
738 {
739 dst->u[0][0] = src[0].u64[0] != src[1].u64[0] ? ~0U : 0U;
740 dst->u[1][0] = src[0].u64[1] != src[1].u64[1] ? ~0U : 0U;
741 dst->u[2][0] = src[0].u64[2] != src[1].u64[2] ? ~0U : 0U;
742 dst->u[3][0] = src[0].u64[3] != src[1].u64[3] ? ~0U : 0U;
743 }
744
745 static void
746 micro_i64slt(union tgsi_double_channel *dst,
747 const union tgsi_double_channel *src)
748 {
749 dst->u[0][0] = src[0].i64[0] < src[1].i64[0] ? ~0U : 0U;
750 dst->u[1][0] = src[0].i64[1] < src[1].i64[1] ? ~0U : 0U;
751 dst->u[2][0] = src[0].i64[2] < src[1].i64[2] ? ~0U : 0U;
752 dst->u[3][0] = src[0].i64[3] < src[1].i64[3] ? ~0U : 0U;
753 }
754
755 static void
756 micro_u64slt(union tgsi_double_channel *dst,
757 const union tgsi_double_channel *src)
758 {
759 dst->u[0][0] = src[0].u64[0] < src[1].u64[0] ? ~0U : 0U;
760 dst->u[1][0] = src[0].u64[1] < src[1].u64[1] ? ~0U : 0U;
761 dst->u[2][0] = src[0].u64[2] < src[1].u64[2] ? ~0U : 0U;
762 dst->u[3][0] = src[0].u64[3] < src[1].u64[3] ? ~0U : 0U;
763 }
764
765 static void
766 micro_i64sge(union tgsi_double_channel *dst,
767 const union tgsi_double_channel *src)
768 {
769 dst->u[0][0] = src[0].i64[0] >= src[1].i64[0] ? ~0U : 0U;
770 dst->u[1][0] = src[0].i64[1] >= src[1].i64[1] ? ~0U : 0U;
771 dst->u[2][0] = src[0].i64[2] >= src[1].i64[2] ? ~0U : 0U;
772 dst->u[3][0] = src[0].i64[3] >= src[1].i64[3] ? ~0U : 0U;
773 }
774
775 static void
776 micro_u64sge(union tgsi_double_channel *dst,
777 const union tgsi_double_channel *src)
778 {
779 dst->u[0][0] = src[0].u64[0] >= src[1].u64[0] ? ~0U : 0U;
780 dst->u[1][0] = src[0].u64[1] >= src[1].u64[1] ? ~0U : 0U;
781 dst->u[2][0] = src[0].u64[2] >= src[1].u64[2] ? ~0U : 0U;
782 dst->u[3][0] = src[0].u64[3] >= src[1].u64[3] ? ~0U : 0U;
783 }
784
785 static void
786 micro_u64max(union tgsi_double_channel *dst,
787 const union tgsi_double_channel *src)
788 {
789 dst->u64[0] = src[0].u64[0] > src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
790 dst->u64[1] = src[0].u64[1] > src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
791 dst->u64[2] = src[0].u64[2] > src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
792 dst->u64[3] = src[0].u64[3] > src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
793 }
794
795 static void
796 micro_i64max(union tgsi_double_channel *dst,
797 const union tgsi_double_channel *src)
798 {
799 dst->i64[0] = src[0].i64[0] > src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
800 dst->i64[1] = src[0].i64[1] > src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
801 dst->i64[2] = src[0].i64[2] > src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
802 dst->i64[3] = src[0].i64[3] > src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
803 }
804
805 static void
806 micro_u64min(union tgsi_double_channel *dst,
807 const union tgsi_double_channel *src)
808 {
809 dst->u64[0] = src[0].u64[0] < src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
810 dst->u64[1] = src[0].u64[1] < src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
811 dst->u64[2] = src[0].u64[2] < src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
812 dst->u64[3] = src[0].u64[3] < src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
813 }
814
815 static void
816 micro_i64min(union tgsi_double_channel *dst,
817 const union tgsi_double_channel *src)
818 {
819 dst->i64[0] = src[0].i64[0] < src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
820 dst->i64[1] = src[0].i64[1] < src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
821 dst->i64[2] = src[0].i64[2] < src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
822 dst->i64[3] = src[0].i64[3] < src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
823 }
824
825 static void
826 micro_u64add(union tgsi_double_channel *dst,
827 const union tgsi_double_channel *src)
828 {
829 dst->u64[0] = src[0].u64[0] + src[1].u64[0];
830 dst->u64[1] = src[0].u64[1] + src[1].u64[1];
831 dst->u64[2] = src[0].u64[2] + src[1].u64[2];
832 dst->u64[3] = src[0].u64[3] + src[1].u64[3];
833 }
834
835 static void
836 micro_u64mul(union tgsi_double_channel *dst,
837 const union tgsi_double_channel *src)
838 {
839 dst->u64[0] = src[0].u64[0] * src[1].u64[0];
840 dst->u64[1] = src[0].u64[1] * src[1].u64[1];
841 dst->u64[2] = src[0].u64[2] * src[1].u64[2];
842 dst->u64[3] = src[0].u64[3] * src[1].u64[3];
843 }
844
845 static void
846 micro_u64div(union tgsi_double_channel *dst,
847 const union tgsi_double_channel *src)
848 {
849 dst->u64[0] = src[1].u64[0] ? src[0].u64[0] / src[1].u64[0] : ~0ull;
850 dst->u64[1] = src[1].u64[1] ? src[0].u64[1] / src[1].u64[1] : ~0ull;
851 dst->u64[2] = src[1].u64[2] ? src[0].u64[2] / src[1].u64[2] : ~0ull;
852 dst->u64[3] = src[1].u64[3] ? src[0].u64[3] / src[1].u64[3] : ~0ull;
853 }
854
855 static void
856 micro_i64div(union tgsi_double_channel *dst,
857 const union tgsi_double_channel *src)
858 {
859 dst->i64[0] = src[1].i64[0] ? src[0].i64[0] / src[1].i64[0] : 0;
860 dst->i64[1] = src[1].i64[1] ? src[0].i64[1] / src[1].i64[1] : 0;
861 dst->i64[2] = src[1].i64[2] ? src[0].i64[2] / src[1].i64[2] : 0;
862 dst->i64[3] = src[1].i64[3] ? src[0].i64[3] / src[1].i64[3] : 0;
863 }
864
865 static void
866 micro_u64mod(union tgsi_double_channel *dst,
867 const union tgsi_double_channel *src)
868 {
869 dst->u64[0] = src[1].u64[0] ? src[0].u64[0] % src[1].u64[0] : ~0ull;
870 dst->u64[1] = src[1].u64[1] ? src[0].u64[1] % src[1].u64[1] : ~0ull;
871 dst->u64[2] = src[1].u64[2] ? src[0].u64[2] % src[1].u64[2] : ~0ull;
872 dst->u64[3] = src[1].u64[3] ? src[0].u64[3] % src[1].u64[3] : ~0ull;
873 }
874
875 static void
876 micro_i64mod(union tgsi_double_channel *dst,
877 const union tgsi_double_channel *src)
878 {
879 dst->i64[0] = src[1].i64[0] ? src[0].i64[0] % src[1].i64[0] : ~0ll;
880 dst->i64[1] = src[1].i64[1] ? src[0].i64[1] % src[1].i64[1] : ~0ll;
881 dst->i64[2] = src[1].i64[2] ? src[0].i64[2] % src[1].i64[2] : ~0ll;
882 dst->i64[3] = src[1].i64[3] ? src[0].i64[3] % src[1].i64[3] : ~0ll;
883 }
884
885 static void
886 micro_u64shl(union tgsi_double_channel *dst,
887 const union tgsi_double_channel *src0,
888 union tgsi_exec_channel *src1)
889 {
890 unsigned masked_count;
891 masked_count = src1->u[0] & 0x3f;
892 dst->u64[0] = src0->u64[0] << masked_count;
893 masked_count = src1->u[1] & 0x3f;
894 dst->u64[1] = src0->u64[1] << masked_count;
895 masked_count = src1->u[2] & 0x3f;
896 dst->u64[2] = src0->u64[2] << masked_count;
897 masked_count = src1->u[3] & 0x3f;
898 dst->u64[3] = src0->u64[3] << masked_count;
899 }
900
901 static void
902 micro_i64shr(union tgsi_double_channel *dst,
903 const union tgsi_double_channel *src0,
904 union tgsi_exec_channel *src1)
905 {
906 unsigned masked_count;
907 masked_count = src1->u[0] & 0x3f;
908 dst->i64[0] = src0->i64[0] >> masked_count;
909 masked_count = src1->u[1] & 0x3f;
910 dst->i64[1] = src0->i64[1] >> masked_count;
911 masked_count = src1->u[2] & 0x3f;
912 dst->i64[2] = src0->i64[2] >> masked_count;
913 masked_count = src1->u[3] & 0x3f;
914 dst->i64[3] = src0->i64[3] >> masked_count;
915 }
916
917 static void
918 micro_u64shr(union tgsi_double_channel *dst,
919 const union tgsi_double_channel *src0,
920 union tgsi_exec_channel *src1)
921 {
922 unsigned masked_count;
923 masked_count = src1->u[0] & 0x3f;
924 dst->u64[0] = src0->u64[0] >> masked_count;
925 masked_count = src1->u[1] & 0x3f;
926 dst->u64[1] = src0->u64[1] >> masked_count;
927 masked_count = src1->u[2] & 0x3f;
928 dst->u64[2] = src0->u64[2] >> masked_count;
929 masked_count = src1->u[3] & 0x3f;
930 dst->u64[3] = src0->u64[3] >> masked_count;
931 }
932
933 enum tgsi_exec_datatype {
934 TGSI_EXEC_DATA_FLOAT,
935 TGSI_EXEC_DATA_INT,
936 TGSI_EXEC_DATA_UINT,
937 TGSI_EXEC_DATA_DOUBLE,
938 TGSI_EXEC_DATA_INT64,
939 TGSI_EXEC_DATA_UINT64,
940 };
941
942 /*
943 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
944 */
945 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
946 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
947 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
948 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
949 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
950 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
951
952
953 /** The execution mask depends on the conditional mask and the loop mask */
954 #define UPDATE_EXEC_MASK(MACH) \
955 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
956
957
958 static const union tgsi_exec_channel ZeroVec =
959 { { 0.0, 0.0, 0.0, 0.0 } };
960
961 static const union tgsi_exec_channel OneVec = {
962 {1.0f, 1.0f, 1.0f, 1.0f}
963 };
964
965 static const union tgsi_exec_channel P128Vec = {
966 {128.0f, 128.0f, 128.0f, 128.0f}
967 };
968
969 static const union tgsi_exec_channel M128Vec = {
970 {-128.0f, -128.0f, -128.0f, -128.0f}
971 };
972
973
974 /**
975 * Assert that none of the float values in 'chan' are infinite or NaN.
976 * NaN and Inf may occur normally during program execution and should
977 * not lead to crashes, etc. But when debugging, it's helpful to catch
978 * them.
979 */
980 static inline void
981 check_inf_or_nan(const union tgsi_exec_channel *chan)
982 {
983 assert(!util_is_inf_or_nan((chan)->f[0]));
984 assert(!util_is_inf_or_nan((chan)->f[1]));
985 assert(!util_is_inf_or_nan((chan)->f[2]));
986 assert(!util_is_inf_or_nan((chan)->f[3]));
987 }
988
989
990 #ifdef DEBUG
991 static void
992 print_chan(const char *msg, const union tgsi_exec_channel *chan)
993 {
994 debug_printf("%s = {%f, %f, %f, %f}\n",
995 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
996 }
997 #endif
998
999
1000 #ifdef DEBUG
1001 static void
1002 print_temp(const struct tgsi_exec_machine *mach, uint index)
1003 {
1004 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
1005 int i;
1006 debug_printf("Temp[%u] =\n", index);
1007 for (i = 0; i < 4; i++) {
1008 debug_printf(" %c: { %f, %f, %f, %f }\n",
1009 "XYZW"[i],
1010 tmp->xyzw[i].f[0],
1011 tmp->xyzw[i].f[1],
1012 tmp->xyzw[i].f[2],
1013 tmp->xyzw[i].f[3]);
1014 }
1015 }
1016 #endif
1017
1018
1019 void
1020 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
1021 unsigned num_bufs,
1022 const void **bufs,
1023 const unsigned *buf_sizes)
1024 {
1025 unsigned i;
1026
1027 for (i = 0; i < num_bufs; i++) {
1028 mach->Consts[i] = bufs[i];
1029 mach->ConstsSize[i] = buf_sizes[i];
1030 }
1031 }
1032
1033
1034 /**
1035 * Check if there's a potential src/dst register data dependency when
1036 * using SOA execution.
1037 * Example:
1038 * MOV T, T.yxwz;
1039 * This would expand into:
1040 * MOV t0, t1;
1041 * MOV t1, t0;
1042 * MOV t2, t3;
1043 * MOV t3, t2;
1044 * The second instruction will have the wrong value for t0 if executed as-is.
1045 */
1046 boolean
1047 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
1048 {
1049 uint i, chan;
1050
1051 uint writemask = inst->Dst[0].Register.WriteMask;
1052 if (writemask == TGSI_WRITEMASK_X ||
1053 writemask == TGSI_WRITEMASK_Y ||
1054 writemask == TGSI_WRITEMASK_Z ||
1055 writemask == TGSI_WRITEMASK_W ||
1056 writemask == TGSI_WRITEMASK_NONE) {
1057 /* no chance of data dependency */
1058 return FALSE;
1059 }
1060
1061 /* loop over src regs */
1062 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
1063 if ((inst->Src[i].Register.File ==
1064 inst->Dst[0].Register.File) &&
1065 ((inst->Src[i].Register.Index ==
1066 inst->Dst[0].Register.Index) ||
1067 inst->Src[i].Register.Indirect ||
1068 inst->Dst[0].Register.Indirect)) {
1069 /* loop over dest channels */
1070 uint channelsWritten = 0x0;
1071 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1072 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1073 /* check if we're reading a channel that's been written */
1074 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
1075 if (channelsWritten & (1 << swizzle)) {
1076 return TRUE;
1077 }
1078
1079 channelsWritten |= (1 << chan);
1080 }
1081 }
1082 }
1083 }
1084 return FALSE;
1085 }
1086
1087
1088 /**
1089 * Initialize machine state by expanding tokens to full instructions,
1090 * allocating temporary storage, setting up constants, etc.
1091 * After this, we can call tgsi_exec_machine_run() many times.
1092 */
1093 void
1094 tgsi_exec_machine_bind_shader(
1095 struct tgsi_exec_machine *mach,
1096 const struct tgsi_token *tokens,
1097 struct tgsi_sampler *sampler,
1098 struct tgsi_image *image,
1099 struct tgsi_buffer *buffer)
1100 {
1101 uint k;
1102 struct tgsi_parse_context parse;
1103 struct tgsi_full_instruction *instructions;
1104 struct tgsi_full_declaration *declarations;
1105 uint maxInstructions = 10, numInstructions = 0;
1106 uint maxDeclarations = 10, numDeclarations = 0;
1107
1108 #if 0
1109 tgsi_dump(tokens, 0);
1110 #endif
1111
1112 util_init_math();
1113
1114
1115 mach->Tokens = tokens;
1116 mach->Sampler = sampler;
1117 mach->Image = image;
1118 mach->Buffer = buffer;
1119
1120 if (!tokens) {
1121 /* unbind and free all */
1122 FREE(mach->Declarations);
1123 mach->Declarations = NULL;
1124 mach->NumDeclarations = 0;
1125
1126 FREE(mach->Instructions);
1127 mach->Instructions = NULL;
1128 mach->NumInstructions = 0;
1129
1130 return;
1131 }
1132
1133 k = tgsi_parse_init (&parse, mach->Tokens);
1134 if (k != TGSI_PARSE_OK) {
1135 debug_printf( "Problem parsing!\n" );
1136 return;
1137 }
1138
1139 mach->ImmLimit = 0;
1140 mach->NumOutputs = 0;
1141
1142 for (k = 0; k < TGSI_SEMANTIC_COUNT; k++)
1143 mach->SysSemanticToIndex[k] = -1;
1144
1145 if (mach->ShaderType == PIPE_SHADER_GEOMETRY &&
1146 !mach->UsedGeometryShader) {
1147 struct tgsi_exec_vector *inputs;
1148 struct tgsi_exec_vector *outputs;
1149
1150 inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1151 TGSI_MAX_PRIM_VERTICES * PIPE_MAX_SHADER_INPUTS,
1152 16);
1153
1154 if (!inputs)
1155 return;
1156
1157 outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1158 TGSI_MAX_TOTAL_VERTICES, 16);
1159
1160 if (!outputs) {
1161 align_free(inputs);
1162 return;
1163 }
1164
1165 align_free(mach->Inputs);
1166 align_free(mach->Outputs);
1167
1168 mach->Inputs = inputs;
1169 mach->Outputs = outputs;
1170 mach->UsedGeometryShader = TRUE;
1171 }
1172
1173 declarations = (struct tgsi_full_declaration *)
1174 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
1175
1176 if (!declarations) {
1177 return;
1178 }
1179
1180 instructions = (struct tgsi_full_instruction *)
1181 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
1182
1183 if (!instructions) {
1184 FREE( declarations );
1185 return;
1186 }
1187
1188 while( !tgsi_parse_end_of_tokens( &parse ) ) {
1189 uint i;
1190
1191 tgsi_parse_token( &parse );
1192 switch( parse.FullToken.Token.Type ) {
1193 case TGSI_TOKEN_TYPE_DECLARATION:
1194 /* save expanded declaration */
1195 if (numDeclarations == maxDeclarations) {
1196 declarations = REALLOC(declarations,
1197 maxDeclarations
1198 * sizeof(struct tgsi_full_declaration),
1199 (maxDeclarations + 10)
1200 * sizeof(struct tgsi_full_declaration));
1201 maxDeclarations += 10;
1202 }
1203 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
1204 unsigned reg;
1205 for (reg = parse.FullToken.FullDeclaration.Range.First;
1206 reg <= parse.FullToken.FullDeclaration.Range.Last;
1207 ++reg) {
1208 ++mach->NumOutputs;
1209 }
1210 }
1211 else if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
1212 const struct tgsi_full_declaration *decl = &parse.FullToken.FullDeclaration;
1213 mach->SysSemanticToIndex[decl->Semantic.Name] = decl->Range.First;
1214 }
1215
1216 memcpy(declarations + numDeclarations,
1217 &parse.FullToken.FullDeclaration,
1218 sizeof(declarations[0]));
1219 numDeclarations++;
1220 break;
1221
1222 case TGSI_TOKEN_TYPE_IMMEDIATE:
1223 {
1224 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1225 assert( size <= 4 );
1226 assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
1227
1228 for( i = 0; i < size; i++ ) {
1229 mach->Imms[mach->ImmLimit][i] =
1230 parse.FullToken.FullImmediate.u[i].Float;
1231 }
1232 mach->ImmLimit += 1;
1233 }
1234 break;
1235
1236 case TGSI_TOKEN_TYPE_INSTRUCTION:
1237
1238 /* save expanded instruction */
1239 if (numInstructions == maxInstructions) {
1240 instructions = REALLOC(instructions,
1241 maxInstructions
1242 * sizeof(struct tgsi_full_instruction),
1243 (maxInstructions + 10)
1244 * sizeof(struct tgsi_full_instruction));
1245 maxInstructions += 10;
1246 }
1247
1248 memcpy(instructions + numInstructions,
1249 &parse.FullToken.FullInstruction,
1250 sizeof(instructions[0]));
1251
1252 numInstructions++;
1253 break;
1254
1255 case TGSI_TOKEN_TYPE_PROPERTY:
1256 if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
1257 if (parse.FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
1258 mach->MaxOutputVertices = parse.FullToken.FullProperty.u[0].Data;
1259 }
1260 }
1261 break;
1262
1263 default:
1264 assert( 0 );
1265 }
1266 }
1267 tgsi_parse_free (&parse);
1268
1269 FREE(mach->Declarations);
1270 mach->Declarations = declarations;
1271 mach->NumDeclarations = numDeclarations;
1272
1273 FREE(mach->Instructions);
1274 mach->Instructions = instructions;
1275 mach->NumInstructions = numInstructions;
1276 }
1277
1278
1279 struct tgsi_exec_machine *
1280 tgsi_exec_machine_create(enum pipe_shader_type shader_type)
1281 {
1282 struct tgsi_exec_machine *mach;
1283 uint i;
1284
1285 mach = align_malloc( sizeof *mach, 16 );
1286 if (!mach)
1287 goto fail;
1288
1289 memset(mach, 0, sizeof(*mach));
1290
1291 mach->ShaderType = shader_type;
1292 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
1293 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
1294
1295 if (shader_type != PIPE_SHADER_COMPUTE) {
1296 mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_INPUTS, 16);
1297 mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_OUTPUTS, 16);
1298 if (!mach->Inputs || !mach->Outputs)
1299 goto fail;
1300 }
1301
1302 /* Setup constants needed by the SSE2 executor. */
1303 for( i = 0; i < 4; i++ ) {
1304 mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
1305 mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
1306 mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
1307 mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
1308 mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
1309 mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
1310 mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
1311 mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
1312 mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
1313 mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
1314 }
1315
1316 #ifdef DEBUG
1317 /* silence warnings */
1318 (void) print_chan;
1319 (void) print_temp;
1320 #endif
1321
1322 return mach;
1323
1324 fail:
1325 if (mach) {
1326 align_free(mach->Inputs);
1327 align_free(mach->Outputs);
1328 align_free(mach);
1329 }
1330 return NULL;
1331 }
1332
1333
1334 void
1335 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
1336 {
1337 if (mach) {
1338 FREE(mach->Instructions);
1339 FREE(mach->Declarations);
1340
1341 align_free(mach->Inputs);
1342 align_free(mach->Outputs);
1343
1344 align_free(mach);
1345 }
1346 }
1347
1348 static void
1349 micro_add(union tgsi_exec_channel *dst,
1350 const union tgsi_exec_channel *src0,
1351 const union tgsi_exec_channel *src1)
1352 {
1353 dst->f[0] = src0->f[0] + src1->f[0];
1354 dst->f[1] = src0->f[1] + src1->f[1];
1355 dst->f[2] = src0->f[2] + src1->f[2];
1356 dst->f[3] = src0->f[3] + src1->f[3];
1357 }
1358
1359 static void
1360 micro_div(
1361 union tgsi_exec_channel *dst,
1362 const union tgsi_exec_channel *src0,
1363 const union tgsi_exec_channel *src1 )
1364 {
1365 if (src1->f[0] != 0) {
1366 dst->f[0] = src0->f[0] / src1->f[0];
1367 }
1368 if (src1->f[1] != 0) {
1369 dst->f[1] = src0->f[1] / src1->f[1];
1370 }
1371 if (src1->f[2] != 0) {
1372 dst->f[2] = src0->f[2] / src1->f[2];
1373 }
1374 if (src1->f[3] != 0) {
1375 dst->f[3] = src0->f[3] / src1->f[3];
1376 }
1377 }
1378
1379 static void
1380 micro_lt(
1381 union tgsi_exec_channel *dst,
1382 const union tgsi_exec_channel *src0,
1383 const union tgsi_exec_channel *src1,
1384 const union tgsi_exec_channel *src2,
1385 const union tgsi_exec_channel *src3 )
1386 {
1387 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
1388 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
1389 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
1390 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
1391 }
1392
1393 static void
1394 micro_max(union tgsi_exec_channel *dst,
1395 const union tgsi_exec_channel *src0,
1396 const union tgsi_exec_channel *src1)
1397 {
1398 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
1399 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
1400 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
1401 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
1402 }
1403
1404 static void
1405 micro_min(union tgsi_exec_channel *dst,
1406 const union tgsi_exec_channel *src0,
1407 const union tgsi_exec_channel *src1)
1408 {
1409 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
1410 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
1411 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
1412 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
1413 }
1414
1415 static void
1416 micro_mul(union tgsi_exec_channel *dst,
1417 const union tgsi_exec_channel *src0,
1418 const union tgsi_exec_channel *src1)
1419 {
1420 dst->f[0] = src0->f[0] * src1->f[0];
1421 dst->f[1] = src0->f[1] * src1->f[1];
1422 dst->f[2] = src0->f[2] * src1->f[2];
1423 dst->f[3] = src0->f[3] * src1->f[3];
1424 }
1425
1426 static void
1427 micro_neg(
1428 union tgsi_exec_channel *dst,
1429 const union tgsi_exec_channel *src )
1430 {
1431 dst->f[0] = -src->f[0];
1432 dst->f[1] = -src->f[1];
1433 dst->f[2] = -src->f[2];
1434 dst->f[3] = -src->f[3];
1435 }
1436
1437 static void
1438 micro_pow(
1439 union tgsi_exec_channel *dst,
1440 const union tgsi_exec_channel *src0,
1441 const union tgsi_exec_channel *src1 )
1442 {
1443 #if FAST_MATH
1444 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1445 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1446 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1447 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1448 #else
1449 dst->f[0] = powf( src0->f[0], src1->f[0] );
1450 dst->f[1] = powf( src0->f[1], src1->f[1] );
1451 dst->f[2] = powf( src0->f[2], src1->f[2] );
1452 dst->f[3] = powf( src0->f[3], src1->f[3] );
1453 #endif
1454 }
1455
1456 static void
1457 micro_ldexp(union tgsi_exec_channel *dst,
1458 const union tgsi_exec_channel *src0,
1459 const union tgsi_exec_channel *src1)
1460 {
1461 dst->f[0] = ldexpf(src0->f[0], src1->i[0]);
1462 dst->f[1] = ldexpf(src0->f[1], src1->i[1]);
1463 dst->f[2] = ldexpf(src0->f[2], src1->i[2]);
1464 dst->f[3] = ldexpf(src0->f[3], src1->i[3]);
1465 }
1466
1467 static void
1468 micro_sub(union tgsi_exec_channel *dst,
1469 const union tgsi_exec_channel *src0,
1470 const union tgsi_exec_channel *src1)
1471 {
1472 dst->f[0] = src0->f[0] - src1->f[0];
1473 dst->f[1] = src0->f[1] - src1->f[1];
1474 dst->f[2] = src0->f[2] - src1->f[2];
1475 dst->f[3] = src0->f[3] - src1->f[3];
1476 }
1477
1478 static void
1479 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1480 const uint chan_index,
1481 const uint file,
1482 const uint swizzle,
1483 const union tgsi_exec_channel *index,
1484 const union tgsi_exec_channel *index2D,
1485 union tgsi_exec_channel *chan)
1486 {
1487 uint i;
1488
1489 assert(swizzle < 4);
1490
1491 switch (file) {
1492 case TGSI_FILE_CONSTANT:
1493 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1494 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1495 assert(mach->Consts[index2D->i[i]]);
1496
1497 if (index->i[i] < 0) {
1498 chan->u[i] = 0;
1499 } else {
1500 /* NOTE: copying the const value as a uint instead of float */
1501 const uint constbuf = index2D->i[i];
1502 const uint *buf = (const uint *)mach->Consts[constbuf];
1503 const int pos = index->i[i] * 4 + swizzle;
1504 /* const buffer bounds check */
1505 if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
1506 if (0) {
1507 /* Debug: print warning */
1508 static int count = 0;
1509 if (count++ < 100)
1510 debug_printf("TGSI Exec: const buffer index %d"
1511 " out of bounds\n", pos);
1512 }
1513 chan->u[i] = 0;
1514 }
1515 else
1516 chan->u[i] = buf[pos];
1517 }
1518 }
1519 break;
1520
1521 case TGSI_FILE_INPUT:
1522 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1523 /*
1524 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1525 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1526 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1527 index2D->i[i], index->i[i]);
1528 }*/
1529 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1530 assert(pos >= 0);
1531 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1532 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1533 }
1534 break;
1535
1536 case TGSI_FILE_SYSTEM_VALUE:
1537 /* XXX no swizzling at this point. Will be needed if we put
1538 * gl_FragCoord, for example, in a sys value register.
1539 */
1540 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1541 chan->u[i] = mach->SystemValue[index->i[i]].xyzw[swizzle].u[i];
1542 }
1543 break;
1544
1545 case TGSI_FILE_TEMPORARY:
1546 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1547 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1548 assert(index2D->i[i] == 0);
1549
1550 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1551 }
1552 break;
1553
1554 case TGSI_FILE_IMMEDIATE:
1555 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1556 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1557 assert(index2D->i[i] == 0);
1558
1559 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1560 }
1561 break;
1562
1563 case TGSI_FILE_ADDRESS:
1564 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1565 assert(index->i[i] >= 0);
1566 assert(index2D->i[i] == 0);
1567
1568 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1569 }
1570 break;
1571
1572 case TGSI_FILE_OUTPUT:
1573 /* vertex/fragment output vars can be read too */
1574 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1575 assert(index->i[i] >= 0);
1576 assert(index2D->i[i] == 0);
1577
1578 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1579 }
1580 break;
1581
1582 default:
1583 assert(0);
1584 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1585 chan->u[i] = 0;
1586 }
1587 }
1588 }
1589
1590 static void
1591 fetch_source_d(const struct tgsi_exec_machine *mach,
1592 union tgsi_exec_channel *chan,
1593 const struct tgsi_full_src_register *reg,
1594 const uint chan_index,
1595 enum tgsi_exec_datatype src_datatype)
1596 {
1597 union tgsi_exec_channel index;
1598 union tgsi_exec_channel index2D;
1599 uint swizzle;
1600
1601 /* We start with a direct index into a register file.
1602 *
1603 * file[1],
1604 * where:
1605 * file = Register.File
1606 * [1] = Register.Index
1607 */
1608 index.i[0] =
1609 index.i[1] =
1610 index.i[2] =
1611 index.i[3] = reg->Register.Index;
1612
1613 /* There is an extra source register that indirectly subscripts
1614 * a register file. The direct index now becomes an offset
1615 * that is being added to the indirect register.
1616 *
1617 * file[ind[2].x+1],
1618 * where:
1619 * ind = Indirect.File
1620 * [2] = Indirect.Index
1621 * .x = Indirect.SwizzleX
1622 */
1623 if (reg->Register.Indirect) {
1624 union tgsi_exec_channel index2;
1625 union tgsi_exec_channel indir_index;
1626 const uint execmask = mach->ExecMask;
1627 uint i;
1628
1629 /* which address register (always zero now) */
1630 index2.i[0] =
1631 index2.i[1] =
1632 index2.i[2] =
1633 index2.i[3] = reg->Indirect.Index;
1634 /* get current value of address register[swizzle] */
1635 swizzle = reg->Indirect.Swizzle;
1636 fetch_src_file_channel(mach,
1637 chan_index,
1638 reg->Indirect.File,
1639 swizzle,
1640 &index2,
1641 &ZeroVec,
1642 &indir_index);
1643
1644 /* add value of address register to the offset */
1645 index.i[0] += indir_index.i[0];
1646 index.i[1] += indir_index.i[1];
1647 index.i[2] += indir_index.i[2];
1648 index.i[3] += indir_index.i[3];
1649
1650 /* for disabled execution channels, zero-out the index to
1651 * avoid using a potential garbage value.
1652 */
1653 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1654 if ((execmask & (1 << i)) == 0)
1655 index.i[i] = 0;
1656 }
1657 }
1658
1659 /* There is an extra source register that is a second
1660 * subscript to a register file. Effectively it means that
1661 * the register file is actually a 2D array of registers.
1662 *
1663 * file[3][1],
1664 * where:
1665 * [3] = Dimension.Index
1666 */
1667 if (reg->Register.Dimension) {
1668 index2D.i[0] =
1669 index2D.i[1] =
1670 index2D.i[2] =
1671 index2D.i[3] = reg->Dimension.Index;
1672
1673 /* Again, the second subscript index can be addressed indirectly
1674 * identically to the first one.
1675 * Nothing stops us from indirectly addressing the indirect register,
1676 * but there is no need for that, so we won't exercise it.
1677 *
1678 * file[ind[4].y+3][1],
1679 * where:
1680 * ind = DimIndirect.File
1681 * [4] = DimIndirect.Index
1682 * .y = DimIndirect.SwizzleX
1683 */
1684 if (reg->Dimension.Indirect) {
1685 union tgsi_exec_channel index2;
1686 union tgsi_exec_channel indir_index;
1687 const uint execmask = mach->ExecMask;
1688 uint i;
1689
1690 index2.i[0] =
1691 index2.i[1] =
1692 index2.i[2] =
1693 index2.i[3] = reg->DimIndirect.Index;
1694
1695 swizzle = reg->DimIndirect.Swizzle;
1696 fetch_src_file_channel(mach,
1697 chan_index,
1698 reg->DimIndirect.File,
1699 swizzle,
1700 &index2,
1701 &ZeroVec,
1702 &indir_index);
1703
1704 index2D.i[0] += indir_index.i[0];
1705 index2D.i[1] += indir_index.i[1];
1706 index2D.i[2] += indir_index.i[2];
1707 index2D.i[3] += indir_index.i[3];
1708
1709 /* for disabled execution channels, zero-out the index to
1710 * avoid using a potential garbage value.
1711 */
1712 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1713 if ((execmask & (1 << i)) == 0) {
1714 index2D.i[i] = 0;
1715 }
1716 }
1717 }
1718
1719 /* If by any chance there was a need for a 3D array of register
1720 * files, we would have to check whether Dimension is followed
1721 * by a dimension register and continue the saga.
1722 */
1723 } else {
1724 index2D.i[0] =
1725 index2D.i[1] =
1726 index2D.i[2] =
1727 index2D.i[3] = 0;
1728 }
1729
1730 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1731 fetch_src_file_channel(mach,
1732 chan_index,
1733 reg->Register.File,
1734 swizzle,
1735 &index,
1736 &index2D,
1737 chan);
1738 }
1739
1740 static void
1741 fetch_source(const struct tgsi_exec_machine *mach,
1742 union tgsi_exec_channel *chan,
1743 const struct tgsi_full_src_register *reg,
1744 const uint chan_index,
1745 enum tgsi_exec_datatype src_datatype)
1746 {
1747 fetch_source_d(mach, chan, reg, chan_index, src_datatype);
1748
1749 if (reg->Register.Absolute) {
1750 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1751 micro_abs(chan, chan);
1752 } else {
1753 micro_iabs(chan, chan);
1754 }
1755 }
1756
1757 if (reg->Register.Negate) {
1758 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1759 micro_neg(chan, chan);
1760 } else {
1761 micro_ineg(chan, chan);
1762 }
1763 }
1764 }
1765
1766 static union tgsi_exec_channel *
1767 store_dest_dstret(struct tgsi_exec_machine *mach,
1768 const union tgsi_exec_channel *chan,
1769 const struct tgsi_full_dst_register *reg,
1770 const struct tgsi_full_instruction *inst,
1771 uint chan_index,
1772 enum tgsi_exec_datatype dst_datatype)
1773 {
1774 static union tgsi_exec_channel null;
1775 union tgsi_exec_channel *dst;
1776 union tgsi_exec_channel index2D;
1777 int offset = 0; /* indirection offset */
1778 int index;
1779
1780 /* for debugging */
1781 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1782 check_inf_or_nan(chan);
1783 }
1784
1785 /* There is an extra source register that indirectly subscripts
1786 * a register file. The direct index now becomes an offset
1787 * that is being added to the indirect register.
1788 *
1789 * file[ind[2].x+1],
1790 * where:
1791 * ind = Indirect.File
1792 * [2] = Indirect.Index
1793 * .x = Indirect.SwizzleX
1794 */
1795 if (reg->Register.Indirect) {
1796 union tgsi_exec_channel index;
1797 union tgsi_exec_channel indir_index;
1798 uint swizzle;
1799
1800 /* which address register (always zero for now) */
1801 index.i[0] =
1802 index.i[1] =
1803 index.i[2] =
1804 index.i[3] = reg->Indirect.Index;
1805
1806 /* get current value of address register[swizzle] */
1807 swizzle = reg->Indirect.Swizzle;
1808
1809 /* fetch values from the address/indirection register */
1810 fetch_src_file_channel(mach,
1811 chan_index,
1812 reg->Indirect.File,
1813 swizzle,
1814 &index,
1815 &ZeroVec,
1816 &indir_index);
1817
1818 /* save indirection offset */
1819 offset = indir_index.i[0];
1820 }
1821
1822 /* There is an extra source register that is a second
1823 * subscript to a register file. Effectively it means that
1824 * the register file is actually a 2D array of registers.
1825 *
1826 * file[3][1],
1827 * where:
1828 * [3] = Dimension.Index
1829 */
1830 if (reg->Register.Dimension) {
1831 index2D.i[0] =
1832 index2D.i[1] =
1833 index2D.i[2] =
1834 index2D.i[3] = reg->Dimension.Index;
1835
1836 /* Again, the second subscript index can be addressed indirectly
1837 * identically to the first one.
1838 * Nothing stops us from indirectly addressing the indirect register,
1839 * but there is no need for that, so we won't exercise it.
1840 *
1841 * file[ind[4].y+3][1],
1842 * where:
1843 * ind = DimIndirect.File
1844 * [4] = DimIndirect.Index
1845 * .y = DimIndirect.SwizzleX
1846 */
1847 if (reg->Dimension.Indirect) {
1848 union tgsi_exec_channel index2;
1849 union tgsi_exec_channel indir_index;
1850 const uint execmask = mach->ExecMask;
1851 unsigned swizzle;
1852 uint i;
1853
1854 index2.i[0] =
1855 index2.i[1] =
1856 index2.i[2] =
1857 index2.i[3] = reg->DimIndirect.Index;
1858
1859 swizzle = reg->DimIndirect.Swizzle;
1860 fetch_src_file_channel(mach,
1861 chan_index,
1862 reg->DimIndirect.File,
1863 swizzle,
1864 &index2,
1865 &ZeroVec,
1866 &indir_index);
1867
1868 index2D.i[0] += indir_index.i[0];
1869 index2D.i[1] += indir_index.i[1];
1870 index2D.i[2] += indir_index.i[2];
1871 index2D.i[3] += indir_index.i[3];
1872
1873 /* for disabled execution channels, zero-out the index to
1874 * avoid using a potential garbage value.
1875 */
1876 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1877 if ((execmask & (1 << i)) == 0) {
1878 index2D.i[i] = 0;
1879 }
1880 }
1881 }
1882
1883 /* If by any chance there was a need for a 3D array of register
1884 * files, we would have to check whether Dimension is followed
1885 * by a dimension register and continue the saga.
1886 */
1887 } else {
1888 index2D.i[0] =
1889 index2D.i[1] =
1890 index2D.i[2] =
1891 index2D.i[3] = 0;
1892 }
1893
1894 switch (reg->Register.File) {
1895 case TGSI_FILE_NULL:
1896 dst = &null;
1897 break;
1898
1899 case TGSI_FILE_OUTPUT:
1900 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1901 + reg->Register.Index;
1902 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1903 #if 0
1904 debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1905 mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1906 reg->Register.Index);
1907 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1908 debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1909 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1910 if (execmask & (1 << i))
1911 debug_printf("%f, ", chan->f[i]);
1912 debug_printf(")\n");
1913 }
1914 #endif
1915 break;
1916
1917 case TGSI_FILE_TEMPORARY:
1918 index = reg->Register.Index;
1919 assert( index < TGSI_EXEC_NUM_TEMPS );
1920 dst = &mach->Temps[offset + index].xyzw[chan_index];
1921 break;
1922
1923 case TGSI_FILE_ADDRESS:
1924 index = reg->Register.Index;
1925 dst = &mach->Addrs[index].xyzw[chan_index];
1926 break;
1927
1928 default:
1929 assert( 0 );
1930 return NULL;
1931 }
1932
1933 return dst;
1934 }
1935
1936 static void
1937 store_dest_double(struct tgsi_exec_machine *mach,
1938 const union tgsi_exec_channel *chan,
1939 const struct tgsi_full_dst_register *reg,
1940 const struct tgsi_full_instruction *inst,
1941 uint chan_index,
1942 enum tgsi_exec_datatype dst_datatype)
1943 {
1944 union tgsi_exec_channel *dst;
1945 const uint execmask = mach->ExecMask;
1946 int i;
1947
1948 dst = store_dest_dstret(mach, chan, reg, inst, chan_index,
1949 dst_datatype);
1950 if (!dst)
1951 return;
1952
1953 /* doubles path */
1954 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1955 if (execmask & (1 << i))
1956 dst->i[i] = chan->i[i];
1957 }
1958
1959 static void
1960 store_dest(struct tgsi_exec_machine *mach,
1961 const union tgsi_exec_channel *chan,
1962 const struct tgsi_full_dst_register *reg,
1963 const struct tgsi_full_instruction *inst,
1964 uint chan_index,
1965 enum tgsi_exec_datatype dst_datatype)
1966 {
1967 union tgsi_exec_channel *dst;
1968 const uint execmask = mach->ExecMask;
1969 int i;
1970
1971 dst = store_dest_dstret(mach, chan, reg, inst, chan_index,
1972 dst_datatype);
1973 if (!dst)
1974 return;
1975
1976 if (!inst->Instruction.Saturate) {
1977 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1978 if (execmask & (1 << i))
1979 dst->i[i] = chan->i[i];
1980 }
1981 else {
1982 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1983 if (execmask & (1 << i)) {
1984 if (chan->f[i] < 0.0f)
1985 dst->f[i] = 0.0f;
1986 else if (chan->f[i] > 1.0f)
1987 dst->f[i] = 1.0f;
1988 else
1989 dst->i[i] = chan->i[i];
1990 }
1991 }
1992 }
1993
1994 #define FETCH(VAL,INDEX,CHAN)\
1995 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1996
1997 #define IFETCH(VAL,INDEX,CHAN)\
1998 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1999
2000
2001 /**
2002 * Execute ARB-style KIL which is predicated by a src register.
2003 * Kill fragment if any of the four values is less than zero.
2004 */
2005 static void
2006 exec_kill_if(struct tgsi_exec_machine *mach,
2007 const struct tgsi_full_instruction *inst)
2008 {
2009 uint uniquemask;
2010 uint chan_index;
2011 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2012 union tgsi_exec_channel r[1];
2013
2014 /* This mask stores component bits that were already tested. */
2015 uniquemask = 0;
2016
2017 for (chan_index = 0; chan_index < 4; chan_index++)
2018 {
2019 uint swizzle;
2020 uint i;
2021
2022 /* unswizzle channel */
2023 swizzle = tgsi_util_get_full_src_register_swizzle (
2024 &inst->Src[0],
2025 chan_index);
2026
2027 /* check if the component has not been already tested */
2028 if (uniquemask & (1 << swizzle))
2029 continue;
2030 uniquemask |= 1 << swizzle;
2031
2032 FETCH(&r[0], 0, chan_index);
2033 for (i = 0; i < 4; i++)
2034 if (r[0].f[i] < 0.0f)
2035 kilmask |= 1 << i;
2036 }
2037
2038 /* restrict to fragments currently executing */
2039 kilmask &= mach->ExecMask;
2040
2041 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2042 }
2043
2044 /**
2045 * Unconditional fragment kill/discard.
2046 */
2047 static void
2048 exec_kill(struct tgsi_exec_machine *mach,
2049 const struct tgsi_full_instruction *inst)
2050 {
2051 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2052
2053 /* kill fragment for all fragments currently executing */
2054 kilmask = mach->ExecMask;
2055 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2056 }
2057
2058 static void
2059 emit_vertex(struct tgsi_exec_machine *mach)
2060 {
2061 /* FIXME: check for exec mask correctly
2062 unsigned i;
2063 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2064 if ((mach->ExecMask & (1 << i)))
2065 */
2066 if (mach->ExecMask) {
2067 if (mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] >= mach->MaxOutputVertices)
2068 return;
2069
2070 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
2071 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
2072 }
2073 }
2074
2075 static void
2076 emit_primitive(struct tgsi_exec_machine *mach)
2077 {
2078 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
2079 /* FIXME: check for exec mask correctly
2080 unsigned i;
2081 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2082 if ((mach->ExecMask & (1 << i)))
2083 */
2084 if (mach->ExecMask) {
2085 ++(*prim_count);
2086 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
2087 mach->Primitives[*prim_count] = 0;
2088 }
2089 }
2090
2091 static void
2092 conditional_emit_primitive(struct tgsi_exec_machine *mach)
2093 {
2094 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
2095 int emitted_verts =
2096 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
2097 if (emitted_verts) {
2098 emit_primitive(mach);
2099 }
2100 }
2101 }
2102
2103
2104 /*
2105 * Fetch four texture samples using STR texture coordinates.
2106 */
2107 static void
2108 fetch_texel( struct tgsi_sampler *sampler,
2109 const unsigned sview_idx,
2110 const unsigned sampler_idx,
2111 const union tgsi_exec_channel *s,
2112 const union tgsi_exec_channel *t,
2113 const union tgsi_exec_channel *p,
2114 const union tgsi_exec_channel *c0,
2115 const union tgsi_exec_channel *c1,
2116 float derivs[3][2][TGSI_QUAD_SIZE],
2117 const int8_t offset[3],
2118 enum tgsi_sampler_control control,
2119 union tgsi_exec_channel *r,
2120 union tgsi_exec_channel *g,
2121 union tgsi_exec_channel *b,
2122 union tgsi_exec_channel *a )
2123 {
2124 uint j;
2125 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2126
2127 /* FIXME: handle explicit derivs, offsets */
2128 sampler->get_samples(sampler, sview_idx, sampler_idx,
2129 s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
2130
2131 for (j = 0; j < 4; j++) {
2132 r->f[j] = rgba[0][j];
2133 g->f[j] = rgba[1][j];
2134 b->f[j] = rgba[2][j];
2135 a->f[j] = rgba[3][j];
2136 }
2137 }
2138
2139
2140 #define TEX_MODIFIER_NONE 0
2141 #define TEX_MODIFIER_PROJECTED 1
2142 #define TEX_MODIFIER_LOD_BIAS 2
2143 #define TEX_MODIFIER_EXPLICIT_LOD 3
2144 #define TEX_MODIFIER_LEVEL_ZERO 4
2145 #define TEX_MODIFIER_GATHER 5
2146
2147 /*
2148 * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
2149 */
2150 static void
2151 fetch_texel_offsets(struct tgsi_exec_machine *mach,
2152 const struct tgsi_full_instruction *inst,
2153 int8_t offsets[3])
2154 {
2155 if (inst->Texture.NumOffsets == 1) {
2156 union tgsi_exec_channel index;
2157 union tgsi_exec_channel offset[3];
2158 index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
2159 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2160 inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
2161 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2162 inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
2163 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2164 inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
2165 offsets[0] = offset[0].i[0];
2166 offsets[1] = offset[1].i[0];
2167 offsets[2] = offset[2].i[0];
2168 } else {
2169 assert(inst->Texture.NumOffsets == 0);
2170 offsets[0] = offsets[1] = offsets[2] = 0;
2171 }
2172 }
2173
2174
2175 /*
2176 * Fetch dx and dy values for one channel (s, t or r).
2177 * Put dx values into one float array, dy values into another.
2178 */
2179 static void
2180 fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
2181 const struct tgsi_full_instruction *inst,
2182 unsigned regdsrcx,
2183 unsigned chan,
2184 float derivs[2][TGSI_QUAD_SIZE])
2185 {
2186 union tgsi_exec_channel d;
2187 FETCH(&d, regdsrcx, chan);
2188 derivs[0][0] = d.f[0];
2189 derivs[0][1] = d.f[1];
2190 derivs[0][2] = d.f[2];
2191 derivs[0][3] = d.f[3];
2192 FETCH(&d, regdsrcx + 1, chan);
2193 derivs[1][0] = d.f[0];
2194 derivs[1][1] = d.f[1];
2195 derivs[1][2] = d.f[2];
2196 derivs[1][3] = d.f[3];
2197 }
2198
2199 static uint
2200 fetch_sampler_unit(struct tgsi_exec_machine *mach,
2201 const struct tgsi_full_instruction *inst,
2202 uint sampler)
2203 {
2204 uint unit = 0;
2205 int i;
2206 if (inst->Src[sampler].Register.Indirect) {
2207 const struct tgsi_full_src_register *reg = &inst->Src[sampler];
2208 union tgsi_exec_channel indir_index, index2;
2209 const uint execmask = mach->ExecMask;
2210 index2.i[0] =
2211 index2.i[1] =
2212 index2.i[2] =
2213 index2.i[3] = reg->Indirect.Index;
2214
2215 fetch_src_file_channel(mach,
2216 0,
2217 reg->Indirect.File,
2218 reg->Indirect.Swizzle,
2219 &index2,
2220 &ZeroVec,
2221 &indir_index);
2222 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2223 if (execmask & (1 << i)) {
2224 unit = inst->Src[sampler].Register.Index + indir_index.i[i];
2225 break;
2226 }
2227 }
2228
2229 } else {
2230 unit = inst->Src[sampler].Register.Index;
2231 }
2232 return unit;
2233 }
2234
2235 /*
2236 * execute a texture instruction.
2237 *
2238 * modifier is used to control the channel routing for the
2239 * instruction variants like proj, lod, and texture with lod bias.
2240 * sampler indicates which src register the sampler is contained in.
2241 */
2242 static void
2243 exec_tex(struct tgsi_exec_machine *mach,
2244 const struct tgsi_full_instruction *inst,
2245 uint modifier, uint sampler)
2246 {
2247 const union tgsi_exec_channel *args[5], *proj = NULL;
2248 union tgsi_exec_channel r[5];
2249 enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2250 uint chan;
2251 uint unit;
2252 int8_t offsets[3];
2253 int dim, shadow_ref, i;
2254
2255 unit = fetch_sampler_unit(mach, inst, sampler);
2256 /* always fetch all 3 offsets, overkill but keeps code simple */
2257 fetch_texel_offsets(mach, inst, offsets);
2258
2259 assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
2260 assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
2261
2262 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2263 shadow_ref = tgsi_util_get_shadow_ref_src_index(inst->Texture.Texture);
2264
2265 assert(dim <= 4);
2266 if (shadow_ref >= 0)
2267 assert(shadow_ref >= dim && shadow_ref < ARRAY_SIZE(args));
2268
2269 /* fetch modifier to the last argument */
2270 if (modifier != TEX_MODIFIER_NONE) {
2271 const int last = ARRAY_SIZE(args) - 1;
2272
2273 /* fetch modifier from src0.w or src1.x */
2274 if (sampler == 1) {
2275 assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
2276 FETCH(&r[last], 0, TGSI_CHAN_W);
2277 }
2278 else {
2279 assert(shadow_ref != 4);
2280 FETCH(&r[last], 1, TGSI_CHAN_X);
2281 }
2282
2283 if (modifier != TEX_MODIFIER_PROJECTED) {
2284 args[last] = &r[last];
2285 }
2286 else {
2287 proj = &r[last];
2288 args[last] = &ZeroVec;
2289 }
2290
2291 /* point unused arguments to zero vector */
2292 for (i = dim; i < last; i++)
2293 args[i] = &ZeroVec;
2294
2295 if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
2296 control = TGSI_SAMPLER_LOD_EXPLICIT;
2297 else if (modifier == TEX_MODIFIER_LOD_BIAS)
2298 control = TGSI_SAMPLER_LOD_BIAS;
2299 else if (modifier == TEX_MODIFIER_GATHER)
2300 control = TGSI_SAMPLER_GATHER;
2301 }
2302 else {
2303 for (i = dim; i < ARRAY_SIZE(args); i++)
2304 args[i] = &ZeroVec;
2305 }
2306
2307 /* fetch coordinates */
2308 for (i = 0; i < dim; i++) {
2309 FETCH(&r[i], 0, TGSI_CHAN_X + i);
2310
2311 if (proj)
2312 micro_div(&r[i], &r[i], proj);
2313
2314 args[i] = &r[i];
2315 }
2316
2317 /* fetch reference value */
2318 if (shadow_ref >= 0) {
2319 FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
2320
2321 if (proj)
2322 micro_div(&r[shadow_ref], &r[shadow_ref], proj);
2323
2324 args[shadow_ref] = &r[shadow_ref];
2325 }
2326
2327 fetch_texel(mach->Sampler, unit, unit,
2328 args[0], args[1], args[2], args[3], args[4],
2329 NULL, offsets, control,
2330 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2331
2332 #if 0
2333 debug_printf("fetch r: %g %g %g %g\n",
2334 r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
2335 debug_printf("fetch g: %g %g %g %g\n",
2336 r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
2337 debug_printf("fetch b: %g %g %g %g\n",
2338 r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
2339 debug_printf("fetch a: %g %g %g %g\n",
2340 r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
2341 #endif
2342
2343 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2344 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2345 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2346 }
2347 }
2348 }
2349
2350 static void
2351 exec_lodq(struct tgsi_exec_machine *mach,
2352 const struct tgsi_full_instruction *inst)
2353 {
2354 uint resource_unit, sampler_unit;
2355 int dim;
2356 int i;
2357 union tgsi_exec_channel coords[4];
2358 const union tgsi_exec_channel *args[ARRAY_SIZE(coords)];
2359 union tgsi_exec_channel r[2];
2360
2361 resource_unit = fetch_sampler_unit(mach, inst, 1);
2362 if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2363 uint target = mach->SamplerViews[resource_unit].Resource;
2364 dim = tgsi_util_get_texture_coord_dim(target);
2365 sampler_unit = fetch_sampler_unit(mach, inst, 2);
2366 } else {
2367 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2368 sampler_unit = resource_unit;
2369 }
2370 assert(dim <= ARRAY_SIZE(coords));
2371 /* fetch coordinates */
2372 for (i = 0; i < dim; i++) {
2373 FETCH(&coords[i], 0, TGSI_CHAN_X + i);
2374 args[i] = &coords[i];
2375 }
2376 for (i = dim; i < ARRAY_SIZE(coords); i++) {
2377 args[i] = &ZeroVec;
2378 }
2379 mach->Sampler->query_lod(mach->Sampler, resource_unit, sampler_unit,
2380 args[0]->f,
2381 args[1]->f,
2382 args[2]->f,
2383 args[3]->f,
2384 TGSI_SAMPLER_LOD_NONE,
2385 r[0].f,
2386 r[1].f);
2387
2388 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2389 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2390 TGSI_EXEC_DATA_FLOAT);
2391 }
2392 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2393 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2394 TGSI_EXEC_DATA_FLOAT);
2395 }
2396 if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2397 unsigned char swizzles[4];
2398 unsigned chan;
2399 swizzles[0] = inst->Src[1].Register.SwizzleX;
2400 swizzles[1] = inst->Src[1].Register.SwizzleY;
2401 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2402 swizzles[3] = inst->Src[1].Register.SwizzleW;
2403
2404 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2405 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2406 if (swizzles[chan] >= 2) {
2407 store_dest(mach, &ZeroVec,
2408 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2409 } else {
2410 store_dest(mach, &r[swizzles[chan]],
2411 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2412 }
2413 }
2414 }
2415 } else {
2416 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2417 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2418 TGSI_EXEC_DATA_FLOAT);
2419 }
2420 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2421 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2422 TGSI_EXEC_DATA_FLOAT);
2423 }
2424 }
2425 }
2426
2427 static void
2428 exec_txd(struct tgsi_exec_machine *mach,
2429 const struct tgsi_full_instruction *inst)
2430 {
2431 union tgsi_exec_channel r[4];
2432 float derivs[3][2][TGSI_QUAD_SIZE];
2433 uint chan;
2434 uint unit;
2435 int8_t offsets[3];
2436
2437 unit = fetch_sampler_unit(mach, inst, 3);
2438 /* always fetch all 3 offsets, overkill but keeps code simple */
2439 fetch_texel_offsets(mach, inst, offsets);
2440
2441 switch (inst->Texture.Texture) {
2442 case TGSI_TEXTURE_1D:
2443 FETCH(&r[0], 0, TGSI_CHAN_X);
2444
2445 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2446
2447 fetch_texel(mach->Sampler, unit, unit,
2448 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2449 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2450 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2451 break;
2452
2453 case TGSI_TEXTURE_SHADOW1D:
2454 case TGSI_TEXTURE_1D_ARRAY:
2455 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2456 /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
2457 FETCH(&r[0], 0, TGSI_CHAN_X);
2458 FETCH(&r[1], 0, TGSI_CHAN_Y);
2459 FETCH(&r[2], 0, TGSI_CHAN_Z);
2460
2461 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2462
2463 fetch_texel(mach->Sampler, unit, unit,
2464 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2465 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2466 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2467 break;
2468
2469 case TGSI_TEXTURE_2D:
2470 case TGSI_TEXTURE_RECT:
2471 FETCH(&r[0], 0, TGSI_CHAN_X);
2472 FETCH(&r[1], 0, TGSI_CHAN_Y);
2473
2474 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2475 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2476
2477 fetch_texel(mach->Sampler, unit, unit,
2478 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2479 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2480 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2481 break;
2482
2483
2484 case TGSI_TEXTURE_SHADOW2D:
2485 case TGSI_TEXTURE_SHADOWRECT:
2486 case TGSI_TEXTURE_2D_ARRAY:
2487 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2488 /* only SHADOW2D_ARRAY actually needs W */
2489 FETCH(&r[0], 0, TGSI_CHAN_X);
2490 FETCH(&r[1], 0, TGSI_CHAN_Y);
2491 FETCH(&r[2], 0, TGSI_CHAN_Z);
2492 FETCH(&r[3], 0, TGSI_CHAN_W);
2493
2494 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2495 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2496
2497 fetch_texel(mach->Sampler, unit, unit,
2498 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
2499 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2500 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2501 break;
2502
2503 case TGSI_TEXTURE_3D:
2504 case TGSI_TEXTURE_CUBE:
2505 case TGSI_TEXTURE_CUBE_ARRAY:
2506 case TGSI_TEXTURE_SHADOWCUBE:
2507 /* only TEXTURE_CUBE_ARRAY and TEXTURE_SHADOWCUBE actually need W */
2508 FETCH(&r[0], 0, TGSI_CHAN_X);
2509 FETCH(&r[1], 0, TGSI_CHAN_Y);
2510 FETCH(&r[2], 0, TGSI_CHAN_Z);
2511 FETCH(&r[3], 0, TGSI_CHAN_W);
2512
2513 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2514 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2515 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
2516
2517 fetch_texel(mach->Sampler, unit, unit,
2518 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
2519 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2520 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2521 break;
2522
2523 default:
2524 assert(0);
2525 }
2526
2527 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2528 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2529 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2530 }
2531 }
2532 }
2533
2534
2535 static void
2536 exec_txf(struct tgsi_exec_machine *mach,
2537 const struct tgsi_full_instruction *inst)
2538 {
2539 union tgsi_exec_channel r[4];
2540 uint chan;
2541 uint unit;
2542 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2543 int j;
2544 int8_t offsets[3];
2545 unsigned target;
2546
2547 unit = fetch_sampler_unit(mach, inst, 1);
2548 /* always fetch all 3 offsets, overkill but keeps code simple */
2549 fetch_texel_offsets(mach, inst, offsets);
2550
2551 IFETCH(&r[3], 0, TGSI_CHAN_W);
2552
2553 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2554 inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2555 target = mach->SamplerViews[unit].Resource;
2556 }
2557 else {
2558 target = inst->Texture.Texture;
2559 }
2560 switch(target) {
2561 case TGSI_TEXTURE_3D:
2562 case TGSI_TEXTURE_2D_ARRAY:
2563 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2564 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2565 IFETCH(&r[2], 0, TGSI_CHAN_Z);
2566 /* fallthrough */
2567 case TGSI_TEXTURE_2D:
2568 case TGSI_TEXTURE_RECT:
2569 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2570 case TGSI_TEXTURE_SHADOW2D:
2571 case TGSI_TEXTURE_SHADOWRECT:
2572 case TGSI_TEXTURE_1D_ARRAY:
2573 case TGSI_TEXTURE_2D_MSAA:
2574 IFETCH(&r[1], 0, TGSI_CHAN_Y);
2575 /* fallthrough */
2576 case TGSI_TEXTURE_BUFFER:
2577 case TGSI_TEXTURE_1D:
2578 case TGSI_TEXTURE_SHADOW1D:
2579 IFETCH(&r[0], 0, TGSI_CHAN_X);
2580 break;
2581 default:
2582 assert(0);
2583 break;
2584 }
2585
2586 mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2587 offsets, rgba);
2588
2589 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2590 r[0].f[j] = rgba[0][j];
2591 r[1].f[j] = rgba[1][j];
2592 r[2].f[j] = rgba[2][j];
2593 r[3].f[j] = rgba[3][j];
2594 }
2595
2596 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2597 inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2598 unsigned char swizzles[4];
2599 swizzles[0] = inst->Src[1].Register.SwizzleX;
2600 swizzles[1] = inst->Src[1].Register.SwizzleY;
2601 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2602 swizzles[3] = inst->Src[1].Register.SwizzleW;
2603
2604 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2605 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2606 store_dest(mach, &r[swizzles[chan]],
2607 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2608 }
2609 }
2610 }
2611 else {
2612 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2613 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2614 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2615 }
2616 }
2617 }
2618 }
2619
2620 static void
2621 exec_txq(struct tgsi_exec_machine *mach,
2622 const struct tgsi_full_instruction *inst)
2623 {
2624 int result[4];
2625 union tgsi_exec_channel r[4], src;
2626 uint chan;
2627 uint unit;
2628 int i,j;
2629
2630 unit = fetch_sampler_unit(mach, inst, 1);
2631
2632 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2633
2634 /* XXX: This interface can't return per-pixel values */
2635 mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2636
2637 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2638 for (j = 0; j < 4; j++) {
2639 r[j].i[i] = result[j];
2640 }
2641 }
2642
2643 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2644 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2645 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2646 TGSI_EXEC_DATA_INT);
2647 }
2648 }
2649 }
2650
2651 static void
2652 exec_sample(struct tgsi_exec_machine *mach,
2653 const struct tgsi_full_instruction *inst,
2654 uint modifier, boolean compare)
2655 {
2656 const uint resource_unit = inst->Src[1].Register.Index;
2657 const uint sampler_unit = inst->Src[2].Register.Index;
2658 union tgsi_exec_channel r[5], c1;
2659 const union tgsi_exec_channel *lod = &ZeroVec;
2660 enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2661 uint chan;
2662 unsigned char swizzles[4];
2663 int8_t offsets[3];
2664
2665 /* always fetch all 3 offsets, overkill but keeps code simple */
2666 fetch_texel_offsets(mach, inst, offsets);
2667
2668 assert(modifier != TEX_MODIFIER_PROJECTED);
2669
2670 if (modifier != TEX_MODIFIER_NONE) {
2671 if (modifier == TEX_MODIFIER_LOD_BIAS) {
2672 FETCH(&c1, 3, TGSI_CHAN_X);
2673 lod = &c1;
2674 control = TGSI_SAMPLER_LOD_BIAS;
2675 }
2676 else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2677 FETCH(&c1, 3, TGSI_CHAN_X);
2678 lod = &c1;
2679 control = TGSI_SAMPLER_LOD_EXPLICIT;
2680 }
2681 else if (modifier == TEX_MODIFIER_GATHER) {
2682 control = TGSI_SAMPLER_GATHER;
2683 }
2684 else {
2685 assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2686 control = TGSI_SAMPLER_LOD_ZERO;
2687 }
2688 }
2689
2690 FETCH(&r[0], 0, TGSI_CHAN_X);
2691
2692 switch (mach->SamplerViews[resource_unit].Resource) {
2693 case TGSI_TEXTURE_1D:
2694 if (compare) {
2695 FETCH(&r[2], 3, TGSI_CHAN_X);
2696 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2697 &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2698 NULL, offsets, control,
2699 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2700 }
2701 else {
2702 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2703 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2704 NULL, offsets, control,
2705 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2706 }
2707 break;
2708
2709 case TGSI_TEXTURE_1D_ARRAY:
2710 case TGSI_TEXTURE_2D:
2711 case TGSI_TEXTURE_RECT:
2712 FETCH(&r[1], 0, TGSI_CHAN_Y);
2713 if (compare) {
2714 FETCH(&r[2], 3, TGSI_CHAN_X);
2715 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2716 &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2717 NULL, offsets, control,
2718 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2719 }
2720 else {
2721 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2722 &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2723 NULL, offsets, control,
2724 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2725 }
2726 break;
2727
2728 case TGSI_TEXTURE_2D_ARRAY:
2729 case TGSI_TEXTURE_3D:
2730 case TGSI_TEXTURE_CUBE:
2731 FETCH(&r[1], 0, TGSI_CHAN_Y);
2732 FETCH(&r[2], 0, TGSI_CHAN_Z);
2733 if(compare) {
2734 FETCH(&r[3], 3, TGSI_CHAN_X);
2735 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2736 &r[0], &r[1], &r[2], &r[3], lod,
2737 NULL, offsets, control,
2738 &r[0], &r[1], &r[2], &r[3]);
2739 }
2740 else {
2741 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2742 &r[0], &r[1], &r[2], &ZeroVec, lod,
2743 NULL, offsets, control,
2744 &r[0], &r[1], &r[2], &r[3]);
2745 }
2746 break;
2747
2748 case TGSI_TEXTURE_CUBE_ARRAY:
2749 FETCH(&r[1], 0, TGSI_CHAN_Y);
2750 FETCH(&r[2], 0, TGSI_CHAN_Z);
2751 FETCH(&r[3], 0, TGSI_CHAN_W);
2752 if(compare) {
2753 FETCH(&r[4], 3, TGSI_CHAN_X);
2754 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2755 &r[0], &r[1], &r[2], &r[3], &r[4],
2756 NULL, offsets, control,
2757 &r[0], &r[1], &r[2], &r[3]);
2758 }
2759 else {
2760 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2761 &r[0], &r[1], &r[2], &r[3], lod,
2762 NULL, offsets, control,
2763 &r[0], &r[1], &r[2], &r[3]);
2764 }
2765 break;
2766
2767
2768 default:
2769 assert(0);
2770 }
2771
2772 swizzles[0] = inst->Src[1].Register.SwizzleX;
2773 swizzles[1] = inst->Src[1].Register.SwizzleY;
2774 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2775 swizzles[3] = inst->Src[1].Register.SwizzleW;
2776
2777 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2778 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2779 store_dest(mach, &r[swizzles[chan]],
2780 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2781 }
2782 }
2783 }
2784
2785 static void
2786 exec_sample_d(struct tgsi_exec_machine *mach,
2787 const struct tgsi_full_instruction *inst)
2788 {
2789 const uint resource_unit = inst->Src[1].Register.Index;
2790 const uint sampler_unit = inst->Src[2].Register.Index;
2791 union tgsi_exec_channel r[4];
2792 float derivs[3][2][TGSI_QUAD_SIZE];
2793 uint chan;
2794 unsigned char swizzles[4];
2795 int8_t offsets[3];
2796
2797 /* always fetch all 3 offsets, overkill but keeps code simple */
2798 fetch_texel_offsets(mach, inst, offsets);
2799
2800 FETCH(&r[0], 0, TGSI_CHAN_X);
2801
2802 switch (mach->SamplerViews[resource_unit].Resource) {
2803 case TGSI_TEXTURE_1D:
2804 case TGSI_TEXTURE_1D_ARRAY:
2805 /* only 1D array actually needs Y */
2806 FETCH(&r[1], 0, TGSI_CHAN_Y);
2807
2808 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2809
2810 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2811 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2812 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2813 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2814 break;
2815
2816 case TGSI_TEXTURE_2D:
2817 case TGSI_TEXTURE_RECT:
2818 case TGSI_TEXTURE_2D_ARRAY:
2819 /* only 2D array actually needs Z */
2820 FETCH(&r[1], 0, TGSI_CHAN_Y);
2821 FETCH(&r[2], 0, TGSI_CHAN_Z);
2822
2823 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2824 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2825
2826 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2827 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */
2828 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2829 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2830 break;
2831
2832 case TGSI_TEXTURE_3D:
2833 case TGSI_TEXTURE_CUBE:
2834 case TGSI_TEXTURE_CUBE_ARRAY:
2835 /* only cube array actually needs W */
2836 FETCH(&r[1], 0, TGSI_CHAN_Y);
2837 FETCH(&r[2], 0, TGSI_CHAN_Z);
2838 FETCH(&r[3], 0, TGSI_CHAN_W);
2839
2840 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2841 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2842 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2843
2844 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2845 &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2846 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2847 &r[0], &r[1], &r[2], &r[3]);
2848 break;
2849
2850 default:
2851 assert(0);
2852 }
2853
2854 swizzles[0] = inst->Src[1].Register.SwizzleX;
2855 swizzles[1] = inst->Src[1].Register.SwizzleY;
2856 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2857 swizzles[3] = inst->Src[1].Register.SwizzleW;
2858
2859 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2860 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2861 store_dest(mach, &r[swizzles[chan]],
2862 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2863 }
2864 }
2865 }
2866
2867
2868 /**
2869 * Evaluate a constant-valued coefficient at the position of the
2870 * current quad.
2871 */
2872 static void
2873 eval_constant_coef(
2874 struct tgsi_exec_machine *mach,
2875 unsigned attrib,
2876 unsigned chan )
2877 {
2878 unsigned i;
2879
2880 for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2881 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2882 }
2883 }
2884
2885 /**
2886 * Evaluate a linear-valued coefficient at the position of the
2887 * current quad.
2888 */
2889 static void
2890 eval_linear_coef(
2891 struct tgsi_exec_machine *mach,
2892 unsigned attrib,
2893 unsigned chan )
2894 {
2895 const float x = mach->QuadPos.xyzw[0].f[0];
2896 const float y = mach->QuadPos.xyzw[1].f[0];
2897 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2898 const float dady = mach->InterpCoefs[attrib].dady[chan];
2899 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2900 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2901 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2902 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2903 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2904 }
2905
2906 /**
2907 * Evaluate a perspective-valued coefficient at the position of the
2908 * current quad.
2909 */
2910 static void
2911 eval_perspective_coef(
2912 struct tgsi_exec_machine *mach,
2913 unsigned attrib,
2914 unsigned chan )
2915 {
2916 const float x = mach->QuadPos.xyzw[0].f[0];
2917 const float y = mach->QuadPos.xyzw[1].f[0];
2918 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2919 const float dady = mach->InterpCoefs[attrib].dady[chan];
2920 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2921 const float *w = mach->QuadPos.xyzw[3].f;
2922 /* divide by W here */
2923 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2924 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2925 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2926 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2927 }
2928
2929
2930 typedef void (* eval_coef_func)(
2931 struct tgsi_exec_machine *mach,
2932 unsigned attrib,
2933 unsigned chan );
2934
2935 static void
2936 exec_declaration(struct tgsi_exec_machine *mach,
2937 const struct tgsi_full_declaration *decl)
2938 {
2939 if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2940 mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2941 return;
2942 }
2943
2944 if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
2945 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2946 uint first, last, mask;
2947
2948 first = decl->Range.First;
2949 last = decl->Range.Last;
2950 mask = decl->Declaration.UsageMask;
2951
2952 /* XXX we could remove this special-case code since
2953 * mach->InterpCoefs[first].a0 should already have the
2954 * front/back-face value. But we should first update the
2955 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2956 * Then, we could remove the tgsi_exec_machine::Face field.
2957 */
2958 /* XXX make FACE a system value */
2959 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2960 uint i;
2961
2962 assert(decl->Semantic.Index == 0);
2963 assert(first == last);
2964
2965 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2966 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2967 }
2968 } else {
2969 eval_coef_func eval;
2970 uint i, j;
2971
2972 switch (decl->Interp.Interpolate) {
2973 case TGSI_INTERPOLATE_CONSTANT:
2974 eval = eval_constant_coef;
2975 break;
2976
2977 case TGSI_INTERPOLATE_LINEAR:
2978 eval = eval_linear_coef;
2979 break;
2980
2981 case TGSI_INTERPOLATE_PERSPECTIVE:
2982 eval = eval_perspective_coef;
2983 break;
2984
2985 case TGSI_INTERPOLATE_COLOR:
2986 eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2987 break;
2988
2989 default:
2990 assert(0);
2991 return;
2992 }
2993
2994 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2995 if (mask & (1 << j)) {
2996 for (i = first; i <= last; i++) {
2997 eval(mach, i, j);
2998 }
2999 }
3000 }
3001 }
3002
3003 if (DEBUG_EXECUTION) {
3004 uint i, j;
3005 for (i = first; i <= last; ++i) {
3006 debug_printf("IN[%2u] = ", i);
3007 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3008 if (j > 0) {
3009 debug_printf(" ");
3010 }
3011 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
3012 mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
3013 mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
3014 mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
3015 mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
3016 }
3017 }
3018 }
3019 }
3020 }
3021
3022 }
3023
3024 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
3025 const union tgsi_exec_channel *src);
3026
3027 static void
3028 exec_scalar_unary(struct tgsi_exec_machine *mach,
3029 const struct tgsi_full_instruction *inst,
3030 micro_unary_op op,
3031 enum tgsi_exec_datatype dst_datatype,
3032 enum tgsi_exec_datatype src_datatype)
3033 {
3034 unsigned int chan;
3035 union tgsi_exec_channel src;
3036 union tgsi_exec_channel dst;
3037
3038 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
3039 op(&dst, &src);
3040 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3041 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3042 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3043 }
3044 }
3045 }
3046
3047 static void
3048 exec_vector_unary(struct tgsi_exec_machine *mach,
3049 const struct tgsi_full_instruction *inst,
3050 micro_unary_op op,
3051 enum tgsi_exec_datatype dst_datatype,
3052 enum tgsi_exec_datatype src_datatype)
3053 {
3054 unsigned int chan;
3055 struct tgsi_exec_vector dst;
3056
3057 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3058 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3059 union tgsi_exec_channel src;
3060
3061 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
3062 op(&dst.xyzw[chan], &src);
3063 }
3064 }
3065 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3066 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3067 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3068 }
3069 }
3070 }
3071
3072 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
3073 const union tgsi_exec_channel *src0,
3074 const union tgsi_exec_channel *src1);
3075
3076 static void
3077 exec_scalar_binary(struct tgsi_exec_machine *mach,
3078 const struct tgsi_full_instruction *inst,
3079 micro_binary_op op,
3080 enum tgsi_exec_datatype dst_datatype,
3081 enum tgsi_exec_datatype src_datatype)
3082 {
3083 unsigned int chan;
3084 union tgsi_exec_channel src[2];
3085 union tgsi_exec_channel dst;
3086
3087 fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
3088 fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
3089 op(&dst, &src[0], &src[1]);
3090 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3091 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3092 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3093 }
3094 }
3095 }
3096
3097 static void
3098 exec_vector_binary(struct tgsi_exec_machine *mach,
3099 const struct tgsi_full_instruction *inst,
3100 micro_binary_op op,
3101 enum tgsi_exec_datatype dst_datatype,
3102 enum tgsi_exec_datatype src_datatype)
3103 {
3104 unsigned int chan;
3105 struct tgsi_exec_vector dst;
3106
3107 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3108 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3109 union tgsi_exec_channel src[2];
3110
3111 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3112 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3113 op(&dst.xyzw[chan], &src[0], &src[1]);
3114 }
3115 }
3116 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3117 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3118 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3119 }
3120 }
3121 }
3122
3123 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
3124 const union tgsi_exec_channel *src0,
3125 const union tgsi_exec_channel *src1,
3126 const union tgsi_exec_channel *src2);
3127
3128 static void
3129 exec_vector_trinary(struct tgsi_exec_machine *mach,
3130 const struct tgsi_full_instruction *inst,
3131 micro_trinary_op op,
3132 enum tgsi_exec_datatype dst_datatype,
3133 enum tgsi_exec_datatype src_datatype)
3134 {
3135 unsigned int chan;
3136 struct tgsi_exec_vector dst;
3137
3138 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3139 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3140 union tgsi_exec_channel src[3];
3141
3142 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3143 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3144 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3145 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3146 }
3147 }
3148 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3149 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3150 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3151 }
3152 }
3153 }
3154
3155 typedef void (* micro_quaternary_op)(union tgsi_exec_channel *dst,
3156 const union tgsi_exec_channel *src0,
3157 const union tgsi_exec_channel *src1,
3158 const union tgsi_exec_channel *src2,
3159 const union tgsi_exec_channel *src3);
3160
3161 static void
3162 exec_vector_quaternary(struct tgsi_exec_machine *mach,
3163 const struct tgsi_full_instruction *inst,
3164 micro_quaternary_op op,
3165 enum tgsi_exec_datatype dst_datatype,
3166 enum tgsi_exec_datatype src_datatype)
3167 {
3168 unsigned int chan;
3169 struct tgsi_exec_vector dst;
3170
3171 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3172 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3173 union tgsi_exec_channel src[4];
3174
3175 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3176 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3177 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3178 fetch_source(mach, &src[3], &inst->Src[3], chan, src_datatype);
3179 op(&dst.xyzw[chan], &src[0], &src[1], &src[2], &src[3]);
3180 }
3181 }
3182 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3183 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3184 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3185 }
3186 }
3187 }
3188
3189 static void
3190 exec_dp3(struct tgsi_exec_machine *mach,
3191 const struct tgsi_full_instruction *inst)
3192 {
3193 unsigned int chan;
3194 union tgsi_exec_channel arg[3];
3195
3196 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3197 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3198 micro_mul(&arg[2], &arg[0], &arg[1]);
3199
3200 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
3201 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3202 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3203 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3204 }
3205
3206 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3207 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3208 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3209 }
3210 }
3211 }
3212
3213 static void
3214 exec_dp4(struct tgsi_exec_machine *mach,
3215 const struct tgsi_full_instruction *inst)
3216 {
3217 unsigned int chan;
3218 union tgsi_exec_channel arg[3];
3219
3220 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3221 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3222 micro_mul(&arg[2], &arg[0], &arg[1]);
3223
3224 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
3225 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3226 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3227 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3228 }
3229
3230 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3231 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3232 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3233 }
3234 }
3235 }
3236
3237 static void
3238 exec_dp2(struct tgsi_exec_machine *mach,
3239 const struct tgsi_full_instruction *inst)
3240 {
3241 unsigned int chan;
3242 union tgsi_exec_channel arg[3];
3243
3244 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3245 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3246 micro_mul(&arg[2], &arg[0], &arg[1]);
3247
3248 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3249 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3250 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3251
3252 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3253 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3254 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3255 }
3256 }
3257 }
3258
3259 static void
3260 exec_pk2h(struct tgsi_exec_machine *mach,
3261 const struct tgsi_full_instruction *inst)
3262 {
3263 unsigned chan;
3264 union tgsi_exec_channel arg[2], dst;
3265
3266 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3267 fetch_source(mach, &arg[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3268 for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3269 dst.u[chan] = util_float_to_half(arg[0].f[chan]) |
3270 (util_float_to_half(arg[1].f[chan]) << 16);
3271 }
3272 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3273 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3274 store_dest(mach, &dst, &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_UINT);
3275 }
3276 }
3277 }
3278
3279 static void
3280 exec_up2h(struct tgsi_exec_machine *mach,
3281 const struct tgsi_full_instruction *inst)
3282 {
3283 unsigned chan;
3284 union tgsi_exec_channel arg, dst[2];
3285
3286 fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3287 for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3288 dst[0].f[chan] = util_half_to_float(arg.u[chan] & 0xffff);
3289 dst[1].f[chan] = util_half_to_float(arg.u[chan] >> 16);
3290 }
3291 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3292 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3293 store_dest(mach, &dst[chan & 1], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3294 }
3295 }
3296 }
3297
3298 static void
3299 micro_ucmp(union tgsi_exec_channel *dst,
3300 const union tgsi_exec_channel *src0,
3301 const union tgsi_exec_channel *src1,
3302 const union tgsi_exec_channel *src2)
3303 {
3304 dst->f[0] = src0->u[0] ? src1->f[0] : src2->f[0];
3305 dst->f[1] = src0->u[1] ? src1->f[1] : src2->f[1];
3306 dst->f[2] = src0->u[2] ? src1->f[2] : src2->f[2];
3307 dst->f[3] = src0->u[3] ? src1->f[3] : src2->f[3];
3308 }
3309
3310 static void
3311 exec_ucmp(struct tgsi_exec_machine *mach,
3312 const struct tgsi_full_instruction *inst)
3313 {
3314 unsigned int chan;
3315 struct tgsi_exec_vector dst;
3316
3317 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3318 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3319 union tgsi_exec_channel src[3];
3320
3321 fetch_source(mach, &src[0], &inst->Src[0], chan,
3322 TGSI_EXEC_DATA_UINT);
3323 fetch_source(mach, &src[1], &inst->Src[1], chan,
3324 TGSI_EXEC_DATA_FLOAT);
3325 fetch_source(mach, &src[2], &inst->Src[2], chan,
3326 TGSI_EXEC_DATA_FLOAT);
3327 micro_ucmp(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3328 }
3329 }
3330 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3331 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3332 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan,
3333 TGSI_EXEC_DATA_FLOAT);
3334 }
3335 }
3336 }
3337
3338 static void
3339 exec_dst(struct tgsi_exec_machine *mach,
3340 const struct tgsi_full_instruction *inst)
3341 {
3342 union tgsi_exec_channel r[2];
3343 union tgsi_exec_channel d[4];
3344
3345 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3346 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3347 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3348 micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
3349 }
3350 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3351 fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3352 }
3353 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3354 fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3355 }
3356
3357 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3358 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3359 }
3360 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3361 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3362 }
3363 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3364 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3365 }
3366 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3367 store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3368 }
3369 }
3370
3371 static void
3372 exec_log(struct tgsi_exec_machine *mach,
3373 const struct tgsi_full_instruction *inst)
3374 {
3375 union tgsi_exec_channel r[3];
3376
3377 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3378 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
3379 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
3380 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
3381 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3382 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3383 }
3384 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3385 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
3386 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
3387 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3388 }
3389 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3390 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3391 }
3392 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3393 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3394 }
3395 }
3396
3397 static void
3398 exec_exp(struct tgsi_exec_machine *mach,
3399 const struct tgsi_full_instruction *inst)
3400 {
3401 union tgsi_exec_channel r[3];
3402
3403 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3404 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
3405 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3406 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
3407 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3408 }
3409 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3410 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3411 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3412 }
3413 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3414 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
3415 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3416 }
3417 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3418 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3419 }
3420 }
3421
3422 static void
3423 exec_lit(struct tgsi_exec_machine *mach,
3424 const struct tgsi_full_instruction *inst)
3425 {
3426 union tgsi_exec_channel r[3];
3427 union tgsi_exec_channel d[3];
3428
3429 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3430 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3431 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3432 fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3433 micro_max(&r[1], &r[1], &ZeroVec);
3434
3435 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3436 micro_min(&r[2], &r[2], &P128Vec);
3437 micro_max(&r[2], &r[2], &M128Vec);
3438 micro_pow(&r[1], &r[1], &r[2]);
3439 micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3440 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3441 }
3442 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3443 micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3444 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3445 }
3446 }
3447 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3448 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3449 }
3450
3451 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3452 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3453 }
3454 }
3455
3456 static void
3457 exec_break(struct tgsi_exec_machine *mach)
3458 {
3459 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3460 /* turn off loop channels for each enabled exec channel */
3461 mach->LoopMask &= ~mach->ExecMask;
3462 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3463 UPDATE_EXEC_MASK(mach);
3464 } else {
3465 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3466
3467 mach->Switch.mask = 0x0;
3468
3469 UPDATE_EXEC_MASK(mach);
3470 }
3471 }
3472
3473 static void
3474 exec_switch(struct tgsi_exec_machine *mach,
3475 const struct tgsi_full_instruction *inst)
3476 {
3477 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3478 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3479
3480 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3481 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3482 mach->Switch.mask = 0x0;
3483 mach->Switch.defaultMask = 0x0;
3484
3485 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3486 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3487
3488 UPDATE_EXEC_MASK(mach);
3489 }
3490
3491 static void
3492 exec_case(struct tgsi_exec_machine *mach,
3493 const struct tgsi_full_instruction *inst)
3494 {
3495 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3496 union tgsi_exec_channel src;
3497 uint mask = 0;
3498
3499 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3500
3501 if (mach->Switch.selector.u[0] == src.u[0]) {
3502 mask |= 0x1;
3503 }
3504 if (mach->Switch.selector.u[1] == src.u[1]) {
3505 mask |= 0x2;
3506 }
3507 if (mach->Switch.selector.u[2] == src.u[2]) {
3508 mask |= 0x4;
3509 }
3510 if (mach->Switch.selector.u[3] == src.u[3]) {
3511 mask |= 0x8;
3512 }
3513
3514 mach->Switch.defaultMask |= mask;
3515
3516 mach->Switch.mask |= mask & prevMask;
3517
3518 UPDATE_EXEC_MASK(mach);
3519 }
3520
3521 /* FIXME: this will only work if default is last */
3522 static void
3523 exec_default(struct tgsi_exec_machine *mach)
3524 {
3525 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3526
3527 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3528
3529 UPDATE_EXEC_MASK(mach);
3530 }
3531
3532 static void
3533 exec_endswitch(struct tgsi_exec_machine *mach)
3534 {
3535 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3536 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3537
3538 UPDATE_EXEC_MASK(mach);
3539 }
3540
3541 typedef void (* micro_dop)(union tgsi_double_channel *dst,
3542 const union tgsi_double_channel *src);
3543
3544 typedef void (* micro_dop_sop)(union tgsi_double_channel *dst,
3545 const union tgsi_double_channel *src0,
3546 union tgsi_exec_channel *src1);
3547
3548 typedef void (* micro_dop_s)(union tgsi_double_channel *dst,
3549 const union tgsi_exec_channel *src);
3550
3551 typedef void (* micro_sop_d)(union tgsi_exec_channel *dst,
3552 const union tgsi_double_channel *src);
3553
3554 static void
3555 fetch_double_channel(struct tgsi_exec_machine *mach,
3556 union tgsi_double_channel *chan,
3557 const struct tgsi_full_src_register *reg,
3558 uint chan_0,
3559 uint chan_1)
3560 {
3561 union tgsi_exec_channel src[2];
3562 uint i;
3563
3564 fetch_source_d(mach, &src[0], reg, chan_0, TGSI_EXEC_DATA_UINT);
3565 fetch_source_d(mach, &src[1], reg, chan_1, TGSI_EXEC_DATA_UINT);
3566
3567 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3568 chan->u[i][0] = src[0].u[i];
3569 chan->u[i][1] = src[1].u[i];
3570 }
3571 if (reg->Register.Absolute) {
3572 micro_dabs(chan, chan);
3573 }
3574 if (reg->Register.Negate) {
3575 micro_dneg(chan, chan);
3576 }
3577 }
3578
3579 static void
3580 store_double_channel(struct tgsi_exec_machine *mach,
3581 const union tgsi_double_channel *chan,
3582 const struct tgsi_full_dst_register *reg,
3583 const struct tgsi_full_instruction *inst,
3584 uint chan_0,
3585 uint chan_1)
3586 {
3587 union tgsi_exec_channel dst[2];
3588 uint i;
3589 union tgsi_double_channel temp;
3590 const uint execmask = mach->ExecMask;
3591
3592 if (!inst->Instruction.Saturate) {
3593 for (i = 0; i < TGSI_QUAD_SIZE; i++)
3594 if (execmask & (1 << i)) {
3595 dst[0].u[i] = chan->u[i][0];
3596 dst[1].u[i] = chan->u[i][1];
3597 }
3598 }
3599 else {
3600 for (i = 0; i < TGSI_QUAD_SIZE; i++)
3601 if (execmask & (1 << i)) {
3602 if (chan->d[i] < 0.0)
3603 temp.d[i] = 0.0;
3604 else if (chan->d[i] > 1.0)
3605 temp.d[i] = 1.0;
3606 else
3607 temp.d[i] = chan->d[i];
3608
3609 dst[0].u[i] = temp.u[i][0];
3610 dst[1].u[i] = temp.u[i][1];
3611 }
3612 }
3613
3614 store_dest_double(mach, &dst[0], reg, inst, chan_0, TGSI_EXEC_DATA_UINT);
3615 if (chan_1 != -1)
3616 store_dest_double(mach, &dst[1], reg, inst, chan_1, TGSI_EXEC_DATA_UINT);
3617 }
3618
3619 static void
3620 exec_double_unary(struct tgsi_exec_machine *mach,
3621 const struct tgsi_full_instruction *inst,
3622 micro_dop op)
3623 {
3624 union tgsi_double_channel src;
3625 union tgsi_double_channel dst;
3626
3627 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3628 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3629 op(&dst, &src);
3630 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3631 }
3632 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3633 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3634 op(&dst, &src);
3635 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3636 }
3637 }
3638
3639 static void
3640 exec_double_binary(struct tgsi_exec_machine *mach,
3641 const struct tgsi_full_instruction *inst,
3642 micro_dop op,
3643 enum tgsi_exec_datatype dst_datatype)
3644 {
3645 union tgsi_double_channel src[2];
3646 union tgsi_double_channel dst;
3647 int first_dest_chan, second_dest_chan;
3648 int wmask;
3649
3650 wmask = inst->Dst[0].Register.WriteMask;
3651 /* these are & because of the way DSLT etc store their destinations */
3652 if (wmask & TGSI_WRITEMASK_XY) {
3653 first_dest_chan = TGSI_CHAN_X;
3654 second_dest_chan = TGSI_CHAN_Y;
3655 if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3656 first_dest_chan = (wmask & TGSI_WRITEMASK_X) ? TGSI_CHAN_X : TGSI_CHAN_Y;
3657 second_dest_chan = -1;
3658 }
3659
3660 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3661 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3662 op(&dst, src);
3663 store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3664 }
3665
3666 if (wmask & TGSI_WRITEMASK_ZW) {
3667 first_dest_chan = TGSI_CHAN_Z;
3668 second_dest_chan = TGSI_CHAN_W;
3669 if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3670 first_dest_chan = (wmask & TGSI_WRITEMASK_Z) ? TGSI_CHAN_Z : TGSI_CHAN_W;
3671 second_dest_chan = -1;
3672 }
3673
3674 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3675 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3676 op(&dst, src);
3677 store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3678 }
3679 }
3680
3681 static void
3682 exec_double_trinary(struct tgsi_exec_machine *mach,
3683 const struct tgsi_full_instruction *inst,
3684 micro_dop op)
3685 {
3686 union tgsi_double_channel src[3];
3687 union tgsi_double_channel dst;
3688
3689 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3690 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3691 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3692 fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_X, TGSI_CHAN_Y);
3693 op(&dst, src);
3694 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3695 }
3696 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3697 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3698 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3699 fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_CHAN_W);
3700 op(&dst, src);
3701 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3702 }
3703 }
3704
3705 static void
3706 exec_dldexp(struct tgsi_exec_machine *mach,
3707 const struct tgsi_full_instruction *inst)
3708 {
3709 union tgsi_double_channel src0;
3710 union tgsi_exec_channel src1;
3711 union tgsi_double_channel dst;
3712 int wmask;
3713
3714 wmask = inst->Dst[0].Register.WriteMask;
3715 if (wmask & TGSI_WRITEMASK_XY) {
3716 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3717 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3718 micro_dldexp(&dst, &src0, &src1);
3719 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3720 }
3721
3722 if (wmask & TGSI_WRITEMASK_ZW) {
3723 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3724 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3725 micro_dldexp(&dst, &src0, &src1);
3726 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3727 }
3728 }
3729
3730 static void
3731 exec_dfracexp(struct tgsi_exec_machine *mach,
3732 const struct tgsi_full_instruction *inst)
3733 {
3734 union tgsi_double_channel src;
3735 union tgsi_double_channel dst;
3736 union tgsi_exec_channel dst_exp;
3737
3738 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3739 micro_dfracexp(&dst, &dst_exp, &src);
3740 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY)
3741 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3742 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW)
3743 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3744 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3745 if (inst->Dst[1].Register.WriteMask & (1 << chan))
3746 store_dest(mach, &dst_exp, &inst->Dst[1], inst, chan, TGSI_EXEC_DATA_INT);
3747 }
3748 }
3749
3750 static void
3751 exec_arg0_64_arg1_32(struct tgsi_exec_machine *mach,
3752 const struct tgsi_full_instruction *inst,
3753 micro_dop_sop op)
3754 {
3755 union tgsi_double_channel src0;
3756 union tgsi_exec_channel src1;
3757 union tgsi_double_channel dst;
3758 int wmask;
3759
3760 wmask = inst->Dst[0].Register.WriteMask;
3761 if (wmask & TGSI_WRITEMASK_XY) {
3762 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3763 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3764 op(&dst, &src0, &src1);
3765 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3766 }
3767
3768 if (wmask & TGSI_WRITEMASK_ZW) {
3769 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3770 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3771 op(&dst, &src0, &src1);
3772 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3773 }
3774 }
3775
3776 static int
3777 get_image_coord_dim(unsigned tgsi_tex)
3778 {
3779 int dim;
3780 switch (tgsi_tex) {
3781 case TGSI_TEXTURE_BUFFER:
3782 case TGSI_TEXTURE_1D:
3783 dim = 1;
3784 break;
3785 case TGSI_TEXTURE_2D:
3786 case TGSI_TEXTURE_RECT:
3787 case TGSI_TEXTURE_1D_ARRAY:
3788 case TGSI_TEXTURE_2D_MSAA:
3789 dim = 2;
3790 break;
3791 case TGSI_TEXTURE_3D:
3792 case TGSI_TEXTURE_CUBE:
3793 case TGSI_TEXTURE_2D_ARRAY:
3794 case TGSI_TEXTURE_2D_ARRAY_MSAA:
3795 case TGSI_TEXTURE_CUBE_ARRAY:
3796 dim = 3;
3797 break;
3798 default:
3799 assert(!"unknown texture target");
3800 dim = 0;
3801 break;
3802 }
3803
3804 return dim;
3805 }
3806
3807 static int
3808 get_image_coord_sample(unsigned tgsi_tex)
3809 {
3810 int sample = 0;
3811 switch (tgsi_tex) {
3812 case TGSI_TEXTURE_2D_MSAA:
3813 sample = 3;
3814 break;
3815 case TGSI_TEXTURE_2D_ARRAY_MSAA:
3816 sample = 4;
3817 break;
3818 default:
3819 break;
3820 }
3821 return sample;
3822 }
3823
3824 static void
3825 exec_load_img(struct tgsi_exec_machine *mach,
3826 const struct tgsi_full_instruction *inst)
3827 {
3828 union tgsi_exec_channel r[4], sample_r;
3829 uint unit;
3830 int sample;
3831 int i, j;
3832 int dim;
3833 uint chan;
3834 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3835 struct tgsi_image_params params;
3836 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3837
3838 unit = fetch_sampler_unit(mach, inst, 0);
3839 dim = get_image_coord_dim(inst->Memory.Texture);
3840 sample = get_image_coord_sample(inst->Memory.Texture);
3841 assert(dim <= 3);
3842
3843 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3844 params.unit = unit;
3845 params.tgsi_tex_instr = inst->Memory.Texture;
3846 params.format = inst->Memory.Format;
3847
3848 for (i = 0; i < dim; i++) {
3849 IFETCH(&r[i], 1, TGSI_CHAN_X + i);
3850 }
3851
3852 if (sample)
3853 IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
3854
3855 mach->Image->load(mach->Image, &params,
3856 r[0].i, r[1].i, r[2].i, sample_r.i,
3857 rgba);
3858 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3859 r[0].f[j] = rgba[0][j];
3860 r[1].f[j] = rgba[1][j];
3861 r[2].f[j] = rgba[2][j];
3862 r[3].f[j] = rgba[3][j];
3863 }
3864 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3865 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3866 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3867 }
3868 }
3869 }
3870
3871 static void
3872 exec_load_buf(struct tgsi_exec_machine *mach,
3873 const struct tgsi_full_instruction *inst)
3874 {
3875 union tgsi_exec_channel r[4];
3876 uint unit;
3877 int j;
3878 uint chan;
3879 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3880 struct tgsi_buffer_params params;
3881 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3882
3883 unit = fetch_sampler_unit(mach, inst, 0);
3884
3885 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3886 params.unit = unit;
3887 IFETCH(&r[0], 1, TGSI_CHAN_X);
3888
3889 mach->Buffer->load(mach->Buffer, &params,
3890 r[0].i, rgba);
3891 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3892 r[0].f[j] = rgba[0][j];
3893 r[1].f[j] = rgba[1][j];
3894 r[2].f[j] = rgba[2][j];
3895 r[3].f[j] = rgba[3][j];
3896 }
3897 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3898 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3899 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3900 }
3901 }
3902 }
3903
3904 static void
3905 exec_load_mem(struct tgsi_exec_machine *mach,
3906 const struct tgsi_full_instruction *inst)
3907 {
3908 union tgsi_exec_channel r[4];
3909 uint chan;
3910 char *ptr = mach->LocalMem;
3911 uint32_t offset;
3912 int j;
3913
3914 IFETCH(&r[0], 1, TGSI_CHAN_X);
3915 if (r[0].u[0] >= mach->LocalMemSize)
3916 return;
3917
3918 offset = r[0].u[0];
3919 ptr += offset;
3920
3921 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3922 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3923 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3924 memcpy(&r[chan].u[j], ptr + (4 * chan), 4);
3925 }
3926 }
3927 }
3928
3929 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3930 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3931 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3932 }
3933 }
3934 }
3935
3936 static void
3937 exec_load(struct tgsi_exec_machine *mach,
3938 const struct tgsi_full_instruction *inst)
3939 {
3940 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
3941 exec_load_img(mach, inst);
3942 else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
3943 exec_load_buf(mach, inst);
3944 else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
3945 exec_load_mem(mach, inst);
3946 }
3947
3948 static void
3949 exec_store_img(struct tgsi_exec_machine *mach,
3950 const struct tgsi_full_instruction *inst)
3951 {
3952 union tgsi_exec_channel r[3], sample_r;
3953 union tgsi_exec_channel value[4];
3954 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3955 struct tgsi_image_params params;
3956 int dim;
3957 int sample;
3958 int i, j;
3959 uint unit;
3960 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3961 unit = inst->Dst[0].Register.Index;
3962 dim = get_image_coord_dim(inst->Memory.Texture);
3963 sample = get_image_coord_sample(inst->Memory.Texture);
3964 assert(dim <= 3);
3965
3966 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3967 params.unit = unit;
3968 params.tgsi_tex_instr = inst->Memory.Texture;
3969 params.format = inst->Memory.Format;
3970
3971 for (i = 0; i < dim; i++) {
3972 IFETCH(&r[i], 0, TGSI_CHAN_X + i);
3973 }
3974
3975 for (i = 0; i < 4; i++) {
3976 FETCH(&value[i], 1, TGSI_CHAN_X + i);
3977 }
3978 if (sample)
3979 IFETCH(&sample_r, 0, TGSI_CHAN_X + sample);
3980
3981 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3982 rgba[0][j] = value[0].f[j];
3983 rgba[1][j] = value[1].f[j];
3984 rgba[2][j] = value[2].f[j];
3985 rgba[3][j] = value[3].f[j];
3986 }
3987
3988 mach->Image->store(mach->Image, &params,
3989 r[0].i, r[1].i, r[2].i, sample_r.i,
3990 rgba);
3991 }
3992
3993 static void
3994 exec_store_buf(struct tgsi_exec_machine *mach,
3995 const struct tgsi_full_instruction *inst)
3996 {
3997 union tgsi_exec_channel r[3];
3998 union tgsi_exec_channel value[4];
3999 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4000 struct tgsi_buffer_params params;
4001 int i, j;
4002 uint unit;
4003 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4004
4005 unit = inst->Dst[0].Register.Index;
4006
4007 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4008 params.unit = unit;
4009 params.writemask = inst->Dst[0].Register.WriteMask;
4010
4011 IFETCH(&r[0], 0, TGSI_CHAN_X);
4012 for (i = 0; i < 4; i++) {
4013 FETCH(&value[i], 1, TGSI_CHAN_X + i);
4014 }
4015
4016 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4017 rgba[0][j] = value[0].f[j];
4018 rgba[1][j] = value[1].f[j];
4019 rgba[2][j] = value[2].f[j];
4020 rgba[3][j] = value[3].f[j];
4021 }
4022
4023 mach->Buffer->store(mach->Buffer, &params,
4024 r[0].i,
4025 rgba);
4026 }
4027
4028 static void
4029 exec_store_mem(struct tgsi_exec_machine *mach,
4030 const struct tgsi_full_instruction *inst)
4031 {
4032 union tgsi_exec_channel r[3];
4033 union tgsi_exec_channel value[4];
4034 uint i, chan;
4035 char *ptr = mach->LocalMem;
4036 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4037 int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4038
4039 IFETCH(&r[0], 0, TGSI_CHAN_X);
4040
4041 for (i = 0; i < 4; i++) {
4042 FETCH(&value[i], 1, TGSI_CHAN_X + i);
4043 }
4044
4045 if (r[0].u[0] >= mach->LocalMemSize)
4046 return;
4047 ptr += r[0].u[0];
4048
4049 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4050 if (execmask & (1 << i)) {
4051 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4052 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4053 memcpy(ptr + (chan * 4), &value[chan].u[0], 4);
4054 }
4055 }
4056 }
4057 }
4058 }
4059
4060 static void
4061 exec_store(struct tgsi_exec_machine *mach,
4062 const struct tgsi_full_instruction *inst)
4063 {
4064 if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE)
4065 exec_store_img(mach, inst);
4066 else if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER)
4067 exec_store_buf(mach, inst);
4068 else if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY)
4069 exec_store_mem(mach, inst);
4070 }
4071
4072 static void
4073 exec_atomop_img(struct tgsi_exec_machine *mach,
4074 const struct tgsi_full_instruction *inst)
4075 {
4076 union tgsi_exec_channel r[4], sample_r;
4077 union tgsi_exec_channel value[4], value2[4];
4078 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4079 float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4080 struct tgsi_image_params params;
4081 int dim;
4082 int sample;
4083 int i, j;
4084 uint unit, chan;
4085 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4086 unit = fetch_sampler_unit(mach, inst, 0);
4087 dim = get_image_coord_dim(inst->Memory.Texture);
4088 sample = get_image_coord_sample(inst->Memory.Texture);
4089 assert(dim <= 3);
4090
4091 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4092 params.unit = unit;
4093 params.tgsi_tex_instr = inst->Memory.Texture;
4094 params.format = inst->Memory.Format;
4095
4096 for (i = 0; i < dim; i++) {
4097 IFETCH(&r[i], 1, TGSI_CHAN_X + i);
4098 }
4099
4100 for (i = 0; i < 4; i++) {
4101 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4102 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4103 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4104 }
4105 if (sample)
4106 IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
4107
4108 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4109 rgba[0][j] = value[0].f[j];
4110 rgba[1][j] = value[1].f[j];
4111 rgba[2][j] = value[2].f[j];
4112 rgba[3][j] = value[3].f[j];
4113 }
4114 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4115 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4116 rgba2[0][j] = value2[0].f[j];
4117 rgba2[1][j] = value2[1].f[j];
4118 rgba2[2][j] = value2[2].f[j];
4119 rgba2[3][j] = value2[3].f[j];
4120 }
4121 }
4122
4123 mach->Image->op(mach->Image, &params, inst->Instruction.Opcode,
4124 r[0].i, r[1].i, r[2].i, sample_r.i,
4125 rgba, rgba2);
4126
4127 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4128 r[0].f[j] = rgba[0][j];
4129 r[1].f[j] = rgba[1][j];
4130 r[2].f[j] = rgba[2][j];
4131 r[3].f[j] = rgba[3][j];
4132 }
4133 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4134 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4135 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4136 }
4137 }
4138 }
4139
4140 static void
4141 exec_atomop_buf(struct tgsi_exec_machine *mach,
4142 const struct tgsi_full_instruction *inst)
4143 {
4144 union tgsi_exec_channel r[4];
4145 union tgsi_exec_channel value[4], value2[4];
4146 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4147 float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4148 struct tgsi_buffer_params params;
4149 int i, j;
4150 uint unit, chan;
4151 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4152
4153 unit = fetch_sampler_unit(mach, inst, 0);
4154
4155 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4156 params.unit = unit;
4157 params.writemask = inst->Dst[0].Register.WriteMask;
4158
4159 IFETCH(&r[0], 1, TGSI_CHAN_X);
4160
4161 for (i = 0; i < 4; i++) {
4162 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4163 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4164 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4165 }
4166
4167 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4168 rgba[0][j] = value[0].f[j];
4169 rgba[1][j] = value[1].f[j];
4170 rgba[2][j] = value[2].f[j];
4171 rgba[3][j] = value[3].f[j];
4172 }
4173 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4174 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4175 rgba2[0][j] = value2[0].f[j];
4176 rgba2[1][j] = value2[1].f[j];
4177 rgba2[2][j] = value2[2].f[j];
4178 rgba2[3][j] = value2[3].f[j];
4179 }
4180 }
4181
4182 mach->Buffer->op(mach->Buffer, &params, inst->Instruction.Opcode,
4183 r[0].i,
4184 rgba, rgba2);
4185
4186 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4187 r[0].f[j] = rgba[0][j];
4188 r[1].f[j] = rgba[1][j];
4189 r[2].f[j] = rgba[2][j];
4190 r[3].f[j] = rgba[3][j];
4191 }
4192 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4193 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4194 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4195 }
4196 }
4197 }
4198
4199 static void
4200 exec_atomop_mem(struct tgsi_exec_machine *mach,
4201 const struct tgsi_full_instruction *inst)
4202 {
4203 union tgsi_exec_channel r[4];
4204 union tgsi_exec_channel value[4], value2[4];
4205 char *ptr = mach->LocalMem;
4206 uint32_t val;
4207 uint chan, i;
4208 uint32_t offset;
4209 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4210 int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4211 IFETCH(&r[0], 1, TGSI_CHAN_X);
4212
4213 if (r[0].u[0] >= mach->LocalMemSize)
4214 return;
4215
4216 offset = r[0].u[0];
4217 ptr += offset;
4218 for (i = 0; i < 4; i++) {
4219 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4220 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4221 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4222 }
4223
4224 memcpy(&r[0].u[0], ptr, 4);
4225 val = r[0].u[0];
4226 switch (inst->Instruction.Opcode) {
4227 case TGSI_OPCODE_ATOMUADD:
4228 val += value[0].u[0];
4229 break;
4230 case TGSI_OPCODE_ATOMXOR:
4231 val ^= value[0].u[0];
4232 break;
4233 case TGSI_OPCODE_ATOMOR:
4234 val |= value[0].u[0];
4235 break;
4236 case TGSI_OPCODE_ATOMAND:
4237 val &= value[0].u[0];
4238 break;
4239 case TGSI_OPCODE_ATOMUMIN:
4240 val = MIN2(val, value[0].u[0]);
4241 break;
4242 case TGSI_OPCODE_ATOMUMAX:
4243 val = MAX2(val, value[0].u[0]);
4244 break;
4245 case TGSI_OPCODE_ATOMIMIN:
4246 val = MIN2(r[0].i[0], value[0].i[0]);
4247 break;
4248 case TGSI_OPCODE_ATOMIMAX:
4249 val = MAX2(r[0].i[0], value[0].i[0]);
4250 break;
4251 case TGSI_OPCODE_ATOMXCHG:
4252 val = value[0].i[0];
4253 break;
4254 case TGSI_OPCODE_ATOMCAS:
4255 if (val == value[0].u[0])
4256 val = value2[0].u[0];
4257 break;
4258 default:
4259 break;
4260 }
4261 for (i = 0; i < TGSI_QUAD_SIZE; i++)
4262 if (execmask & (1 << i))
4263 memcpy(ptr, &val, 4);
4264
4265 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4266 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4267 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4268 }
4269 }
4270 }
4271
4272 static void
4273 exec_atomop(struct tgsi_exec_machine *mach,
4274 const struct tgsi_full_instruction *inst)
4275 {
4276 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4277 exec_atomop_img(mach, inst);
4278 else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
4279 exec_atomop_buf(mach, inst);
4280 else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
4281 exec_atomop_mem(mach, inst);
4282 }
4283
4284 static void
4285 exec_resq_img(struct tgsi_exec_machine *mach,
4286 const struct tgsi_full_instruction *inst)
4287 {
4288 int result[4];
4289 union tgsi_exec_channel r[4];
4290 uint unit;
4291 int i, chan, j;
4292 struct tgsi_image_params params;
4293 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4294
4295 unit = fetch_sampler_unit(mach, inst, 0);
4296
4297 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4298 params.unit = unit;
4299 params.tgsi_tex_instr = inst->Memory.Texture;
4300 params.format = inst->Memory.Format;
4301
4302 mach->Image->get_dims(mach->Image, &params, result);
4303
4304 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4305 for (j = 0; j < 4; j++) {
4306 r[j].i[i] = result[j];
4307 }
4308 }
4309
4310 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4311 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4312 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4313 TGSI_EXEC_DATA_INT);
4314 }
4315 }
4316 }
4317
4318 static void
4319 exec_resq_buf(struct tgsi_exec_machine *mach,
4320 const struct tgsi_full_instruction *inst)
4321 {
4322 int result;
4323 union tgsi_exec_channel r[4];
4324 uint unit;
4325 int i, chan;
4326 struct tgsi_buffer_params params;
4327 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4328
4329 unit = fetch_sampler_unit(mach, inst, 0);
4330
4331 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4332 params.unit = unit;
4333
4334 mach->Buffer->get_dims(mach->Buffer, &params, &result);
4335
4336 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4337 r[0].i[i] = result;
4338 }
4339
4340 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4341 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4342 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4343 TGSI_EXEC_DATA_INT);
4344 }
4345 }
4346 }
4347
4348 static void
4349 exec_resq(struct tgsi_exec_machine *mach,
4350 const struct tgsi_full_instruction *inst)
4351 {
4352 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4353 exec_resq_img(mach, inst);
4354 else
4355 exec_resq_buf(mach, inst);
4356 }
4357
4358 static void
4359 micro_f2u64(union tgsi_double_channel *dst,
4360 const union tgsi_exec_channel *src)
4361 {
4362 dst->u64[0] = (uint64_t)src->f[0];
4363 dst->u64[1] = (uint64_t)src->f[1];
4364 dst->u64[2] = (uint64_t)src->f[2];
4365 dst->u64[3] = (uint64_t)src->f[3];
4366 }
4367
4368 static void
4369 micro_f2i64(union tgsi_double_channel *dst,
4370 const union tgsi_exec_channel *src)
4371 {
4372 dst->i64[0] = (int64_t)src->f[0];
4373 dst->i64[1] = (int64_t)src->f[1];
4374 dst->i64[2] = (int64_t)src->f[2];
4375 dst->i64[3] = (int64_t)src->f[3];
4376 }
4377
4378 static void
4379 micro_u2i64(union tgsi_double_channel *dst,
4380 const union tgsi_exec_channel *src)
4381 {
4382 dst->u64[0] = (uint64_t)src->u[0];
4383 dst->u64[1] = (uint64_t)src->u[1];
4384 dst->u64[2] = (uint64_t)src->u[2];
4385 dst->u64[3] = (uint64_t)src->u[3];
4386 }
4387
4388 static void
4389 micro_i2i64(union tgsi_double_channel *dst,
4390 const union tgsi_exec_channel *src)
4391 {
4392 dst->i64[0] = (int64_t)src->i[0];
4393 dst->i64[1] = (int64_t)src->i[1];
4394 dst->i64[2] = (int64_t)src->i[2];
4395 dst->i64[3] = (int64_t)src->i[3];
4396 }
4397
4398 static void
4399 micro_d2u64(union tgsi_double_channel *dst,
4400 const union tgsi_double_channel *src)
4401 {
4402 dst->u64[0] = (uint64_t)src->d[0];
4403 dst->u64[1] = (uint64_t)src->d[1];
4404 dst->u64[2] = (uint64_t)src->d[2];
4405 dst->u64[3] = (uint64_t)src->d[3];
4406 }
4407
4408 static void
4409 micro_d2i64(union tgsi_double_channel *dst,
4410 const union tgsi_double_channel *src)
4411 {
4412 dst->i64[0] = (int64_t)src->d[0];
4413 dst->i64[1] = (int64_t)src->d[1];
4414 dst->i64[2] = (int64_t)src->d[2];
4415 dst->i64[3] = (int64_t)src->d[3];
4416 }
4417
4418 static void
4419 micro_u642d(union tgsi_double_channel *dst,
4420 const union tgsi_double_channel *src)
4421 {
4422 dst->d[0] = (double)src->u64[0];
4423 dst->d[1] = (double)src->u64[1];
4424 dst->d[2] = (double)src->u64[2];
4425 dst->d[3] = (double)src->u64[3];
4426 }
4427
4428 static void
4429 micro_i642d(union tgsi_double_channel *dst,
4430 const union tgsi_double_channel *src)
4431 {
4432 dst->d[0] = (double)src->i64[0];
4433 dst->d[1] = (double)src->i64[1];
4434 dst->d[2] = (double)src->i64[2];
4435 dst->d[3] = (double)src->i64[3];
4436 }
4437
4438 static void
4439 micro_u642f(union tgsi_exec_channel *dst,
4440 const union tgsi_double_channel *src)
4441 {
4442 dst->f[0] = (float)src->u64[0];
4443 dst->f[1] = (float)src->u64[1];
4444 dst->f[2] = (float)src->u64[2];
4445 dst->f[3] = (float)src->u64[3];
4446 }
4447
4448 static void
4449 micro_i642f(union tgsi_exec_channel *dst,
4450 const union tgsi_double_channel *src)
4451 {
4452 dst->f[0] = (float)src->i64[0];
4453 dst->f[1] = (float)src->i64[1];
4454 dst->f[2] = (float)src->i64[2];
4455 dst->f[3] = (float)src->i64[3];
4456 }
4457
4458 static void
4459 exec_t_2_64(struct tgsi_exec_machine *mach,
4460 const struct tgsi_full_instruction *inst,
4461 micro_dop_s op,
4462 enum tgsi_exec_datatype src_datatype)
4463 {
4464 union tgsi_exec_channel src;
4465 union tgsi_double_channel dst;
4466
4467 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
4468 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
4469 op(&dst, &src);
4470 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
4471 }
4472 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
4473 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_Y, src_datatype);
4474 op(&dst, &src);
4475 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
4476 }
4477 }
4478
4479 static void
4480 exec_64_2_t(struct tgsi_exec_machine *mach,
4481 const struct tgsi_full_instruction *inst,
4482 micro_sop_d op,
4483 enum tgsi_exec_datatype dst_datatype)
4484 {
4485 union tgsi_double_channel src;
4486 union tgsi_exec_channel dst;
4487 int wm = inst->Dst[0].Register.WriteMask;
4488 int i;
4489 int bit;
4490 for (i = 0; i < 2; i++) {
4491 bit = ffs(wm);
4492 if (bit) {
4493 wm &= ~(1 << (bit - 1));
4494 if (i == 0)
4495 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
4496 else
4497 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
4498 op(&dst, &src);
4499 store_dest(mach, &dst, &inst->Dst[0], inst, bit - 1, dst_datatype);
4500 }
4501 }
4502 }
4503
4504 static void
4505 micro_i2f(union tgsi_exec_channel *dst,
4506 const union tgsi_exec_channel *src)
4507 {
4508 dst->f[0] = (float)src->i[0];
4509 dst->f[1] = (float)src->i[1];
4510 dst->f[2] = (float)src->i[2];
4511 dst->f[3] = (float)src->i[3];
4512 }
4513
4514 static void
4515 micro_not(union tgsi_exec_channel *dst,
4516 const union tgsi_exec_channel *src)
4517 {
4518 dst->u[0] = ~src->u[0];
4519 dst->u[1] = ~src->u[1];
4520 dst->u[2] = ~src->u[2];
4521 dst->u[3] = ~src->u[3];
4522 }
4523
4524 static void
4525 micro_shl(union tgsi_exec_channel *dst,
4526 const union tgsi_exec_channel *src0,
4527 const union tgsi_exec_channel *src1)
4528 {
4529 unsigned masked_count;
4530 masked_count = src1->u[0] & 0x1f;
4531 dst->u[0] = src0->u[0] << masked_count;
4532 masked_count = src1->u[1] & 0x1f;
4533 dst->u[1] = src0->u[1] << masked_count;
4534 masked_count = src1->u[2] & 0x1f;
4535 dst->u[2] = src0->u[2] << masked_count;
4536 masked_count = src1->u[3] & 0x1f;
4537 dst->u[3] = src0->u[3] << masked_count;
4538 }
4539
4540 static void
4541 micro_and(union tgsi_exec_channel *dst,
4542 const union tgsi_exec_channel *src0,
4543 const union tgsi_exec_channel *src1)
4544 {
4545 dst->u[0] = src0->u[0] & src1->u[0];
4546 dst->u[1] = src0->u[1] & src1->u[1];
4547 dst->u[2] = src0->u[2] & src1->u[2];
4548 dst->u[3] = src0->u[3] & src1->u[3];
4549 }
4550
4551 static void
4552 micro_or(union tgsi_exec_channel *dst,
4553 const union tgsi_exec_channel *src0,
4554 const union tgsi_exec_channel *src1)
4555 {
4556 dst->u[0] = src0->u[0] | src1->u[0];
4557 dst->u[1] = src0->u[1] | src1->u[1];
4558 dst->u[2] = src0->u[2] | src1->u[2];
4559 dst->u[3] = src0->u[3] | src1->u[3];
4560 }
4561
4562 static void
4563 micro_xor(union tgsi_exec_channel *dst,
4564 const union tgsi_exec_channel *src0,
4565 const union tgsi_exec_channel *src1)
4566 {
4567 dst->u[0] = src0->u[0] ^ src1->u[0];
4568 dst->u[1] = src0->u[1] ^ src1->u[1];
4569 dst->u[2] = src0->u[2] ^ src1->u[2];
4570 dst->u[3] = src0->u[3] ^ src1->u[3];
4571 }
4572
4573 static void
4574 micro_mod(union tgsi_exec_channel *dst,
4575 const union tgsi_exec_channel *src0,
4576 const union tgsi_exec_channel *src1)
4577 {
4578 dst->i[0] = src1->i[0] ? src0->i[0] % src1->i[0] : ~0;
4579 dst->i[1] = src1->i[1] ? src0->i[1] % src1->i[1] : ~0;
4580 dst->i[2] = src1->i[2] ? src0->i[2] % src1->i[2] : ~0;
4581 dst->i[3] = src1->i[3] ? src0->i[3] % src1->i[3] : ~0;
4582 }
4583
4584 static void
4585 micro_f2i(union tgsi_exec_channel *dst,
4586 const union tgsi_exec_channel *src)
4587 {
4588 dst->i[0] = (int)src->f[0];
4589 dst->i[1] = (int)src->f[1];
4590 dst->i[2] = (int)src->f[2];
4591 dst->i[3] = (int)src->f[3];
4592 }
4593
4594 static void
4595 micro_fseq(union tgsi_exec_channel *dst,
4596 const union tgsi_exec_channel *src0,
4597 const union tgsi_exec_channel *src1)
4598 {
4599 dst->u[0] = src0->f[0] == src1->f[0] ? ~0 : 0;
4600 dst->u[1] = src0->f[1] == src1->f[1] ? ~0 : 0;
4601 dst->u[2] = src0->f[2] == src1->f[2] ? ~0 : 0;
4602 dst->u[3] = src0->f[3] == src1->f[3] ? ~0 : 0;
4603 }
4604
4605 static void
4606 micro_fsge(union tgsi_exec_channel *dst,
4607 const union tgsi_exec_channel *src0,
4608 const union tgsi_exec_channel *src1)
4609 {
4610 dst->u[0] = src0->f[0] >= src1->f[0] ? ~0 : 0;
4611 dst->u[1] = src0->f[1] >= src1->f[1] ? ~0 : 0;
4612 dst->u[2] = src0->f[2] >= src1->f[2] ? ~0 : 0;
4613 dst->u[3] = src0->f[3] >= src1->f[3] ? ~0 : 0;
4614 }
4615
4616 static void
4617 micro_fslt(union tgsi_exec_channel *dst,
4618 const union tgsi_exec_channel *src0,
4619 const union tgsi_exec_channel *src1)
4620 {
4621 dst->u[0] = src0->f[0] < src1->f[0] ? ~0 : 0;
4622 dst->u[1] = src0->f[1] < src1->f[1] ? ~0 : 0;
4623 dst->u[2] = src0->f[2] < src1->f[2] ? ~0 : 0;
4624 dst->u[3] = src0->f[3] < src1->f[3] ? ~0 : 0;
4625 }
4626
4627 static void
4628 micro_fsne(union tgsi_exec_channel *dst,
4629 const union tgsi_exec_channel *src0,
4630 const union tgsi_exec_channel *src1)
4631 {
4632 dst->u[0] = src0->f[0] != src1->f[0] ? ~0 : 0;
4633 dst->u[1] = src0->f[1] != src1->f[1] ? ~0 : 0;
4634 dst->u[2] = src0->f[2] != src1->f[2] ? ~0 : 0;
4635 dst->u[3] = src0->f[3] != src1->f[3] ? ~0 : 0;
4636 }
4637
4638 static void
4639 micro_idiv(union tgsi_exec_channel *dst,
4640 const union tgsi_exec_channel *src0,
4641 const union tgsi_exec_channel *src1)
4642 {
4643 dst->i[0] = src1->i[0] ? src0->i[0] / src1->i[0] : 0;
4644 dst->i[1] = src1->i[1] ? src0->i[1] / src1->i[1] : 0;
4645 dst->i[2] = src1->i[2] ? src0->i[2] / src1->i[2] : 0;
4646 dst->i[3] = src1->i[3] ? src0->i[3] / src1->i[3] : 0;
4647 }
4648
4649 static void
4650 micro_imax(union tgsi_exec_channel *dst,
4651 const union tgsi_exec_channel *src0,
4652 const union tgsi_exec_channel *src1)
4653 {
4654 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
4655 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
4656 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
4657 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
4658 }
4659
4660 static void
4661 micro_imin(union tgsi_exec_channel *dst,
4662 const union tgsi_exec_channel *src0,
4663 const union tgsi_exec_channel *src1)
4664 {
4665 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
4666 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
4667 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
4668 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
4669 }
4670
4671 static void
4672 micro_isge(union tgsi_exec_channel *dst,
4673 const union tgsi_exec_channel *src0,
4674 const union tgsi_exec_channel *src1)
4675 {
4676 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
4677 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
4678 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
4679 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
4680 }
4681
4682 static void
4683 micro_ishr(union tgsi_exec_channel *dst,
4684 const union tgsi_exec_channel *src0,
4685 const union tgsi_exec_channel *src1)
4686 {
4687 unsigned masked_count;
4688 masked_count = src1->i[0] & 0x1f;
4689 dst->i[0] = src0->i[0] >> masked_count;
4690 masked_count = src1->i[1] & 0x1f;
4691 dst->i[1] = src0->i[1] >> masked_count;
4692 masked_count = src1->i[2] & 0x1f;
4693 dst->i[2] = src0->i[2] >> masked_count;
4694 masked_count = src1->i[3] & 0x1f;
4695 dst->i[3] = src0->i[3] >> masked_count;
4696 }
4697
4698 static void
4699 micro_islt(union tgsi_exec_channel *dst,
4700 const union tgsi_exec_channel *src0,
4701 const union tgsi_exec_channel *src1)
4702 {
4703 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
4704 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
4705 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
4706 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
4707 }
4708
4709 static void
4710 micro_f2u(union tgsi_exec_channel *dst,
4711 const union tgsi_exec_channel *src)
4712 {
4713 dst->u[0] = (uint)src->f[0];
4714 dst->u[1] = (uint)src->f[1];
4715 dst->u[2] = (uint)src->f[2];
4716 dst->u[3] = (uint)src->f[3];
4717 }
4718
4719 static void
4720 micro_u2f(union tgsi_exec_channel *dst,
4721 const union tgsi_exec_channel *src)
4722 {
4723 dst->f[0] = (float)src->u[0];
4724 dst->f[1] = (float)src->u[1];
4725 dst->f[2] = (float)src->u[2];
4726 dst->f[3] = (float)src->u[3];
4727 }
4728
4729 static void
4730 micro_uadd(union tgsi_exec_channel *dst,
4731 const union tgsi_exec_channel *src0,
4732 const union tgsi_exec_channel *src1)
4733 {
4734 dst->u[0] = src0->u[0] + src1->u[0];
4735 dst->u[1] = src0->u[1] + src1->u[1];
4736 dst->u[2] = src0->u[2] + src1->u[2];
4737 dst->u[3] = src0->u[3] + src1->u[3];
4738 }
4739
4740 static void
4741 micro_udiv(union tgsi_exec_channel *dst,
4742 const union tgsi_exec_channel *src0,
4743 const union tgsi_exec_channel *src1)
4744 {
4745 dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
4746 dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
4747 dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
4748 dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
4749 }
4750
4751 static void
4752 micro_umad(union tgsi_exec_channel *dst,
4753 const union tgsi_exec_channel *src0,
4754 const union tgsi_exec_channel *src1,
4755 const union tgsi_exec_channel *src2)
4756 {
4757 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
4758 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
4759 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
4760 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
4761 }
4762
4763 static void
4764 micro_umax(union tgsi_exec_channel *dst,
4765 const union tgsi_exec_channel *src0,
4766 const union tgsi_exec_channel *src1)
4767 {
4768 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
4769 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
4770 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
4771 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
4772 }
4773
4774 static void
4775 micro_umin(union tgsi_exec_channel *dst,
4776 const union tgsi_exec_channel *src0,
4777 const union tgsi_exec_channel *src1)
4778 {
4779 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
4780 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
4781 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
4782 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
4783 }
4784
4785 static void
4786 micro_umod(union tgsi_exec_channel *dst,
4787 const union tgsi_exec_channel *src0,
4788 const union tgsi_exec_channel *src1)
4789 {
4790 dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
4791 dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
4792 dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
4793 dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
4794 }
4795
4796 static void
4797 micro_umul(union tgsi_exec_channel *dst,
4798 const union tgsi_exec_channel *src0,
4799 const union tgsi_exec_channel *src1)
4800 {
4801 dst->u[0] = src0->u[0] * src1->u[0];
4802 dst->u[1] = src0->u[1] * src1->u[1];
4803 dst->u[2] = src0->u[2] * src1->u[2];
4804 dst->u[3] = src0->u[3] * src1->u[3];
4805 }
4806
4807 static void
4808 micro_imul_hi(union tgsi_exec_channel *dst,
4809 const union tgsi_exec_channel *src0,
4810 const union tgsi_exec_channel *src1)
4811 {
4812 #define I64M(x, y) ((((int64_t)x) * ((int64_t)y)) >> 32)
4813 dst->i[0] = I64M(src0->i[0], src1->i[0]);
4814 dst->i[1] = I64M(src0->i[1], src1->i[1]);
4815 dst->i[2] = I64M(src0->i[2], src1->i[2]);
4816 dst->i[3] = I64M(src0->i[3], src1->i[3]);
4817 #undef I64M
4818 }
4819
4820 static void
4821 micro_umul_hi(union tgsi_exec_channel *dst,
4822 const union tgsi_exec_channel *src0,
4823 const union tgsi_exec_channel *src1)
4824 {
4825 #define U64M(x, y) ((((uint64_t)x) * ((uint64_t)y)) >> 32)
4826 dst->u[0] = U64M(src0->u[0], src1->u[0]);
4827 dst->u[1] = U64M(src0->u[1], src1->u[1]);
4828 dst->u[2] = U64M(src0->u[2], src1->u[2]);
4829 dst->u[3] = U64M(src0->u[3], src1->u[3]);
4830 #undef U64M
4831 }
4832
4833 static void
4834 micro_useq(union tgsi_exec_channel *dst,
4835 const union tgsi_exec_channel *src0,
4836 const union tgsi_exec_channel *src1)
4837 {
4838 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
4839 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
4840 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
4841 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
4842 }
4843
4844 static void
4845 micro_usge(union tgsi_exec_channel *dst,
4846 const union tgsi_exec_channel *src0,
4847 const union tgsi_exec_channel *src1)
4848 {
4849 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
4850 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
4851 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
4852 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
4853 }
4854
4855 static void
4856 micro_ushr(union tgsi_exec_channel *dst,
4857 const union tgsi_exec_channel *src0,
4858 const union tgsi_exec_channel *src1)
4859 {
4860 unsigned masked_count;
4861 masked_count = src1->u[0] & 0x1f;
4862 dst->u[0] = src0->u[0] >> masked_count;
4863 masked_count = src1->u[1] & 0x1f;
4864 dst->u[1] = src0->u[1] >> masked_count;
4865 masked_count = src1->u[2] & 0x1f;
4866 dst->u[2] = src0->u[2] >> masked_count;
4867 masked_count = src1->u[3] & 0x1f;
4868 dst->u[3] = src0->u[3] >> masked_count;
4869 }
4870
4871 static void
4872 micro_uslt(union tgsi_exec_channel *dst,
4873 const union tgsi_exec_channel *src0,
4874 const union tgsi_exec_channel *src1)
4875 {
4876 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
4877 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
4878 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
4879 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
4880 }
4881
4882 static void
4883 micro_usne(union tgsi_exec_channel *dst,
4884 const union tgsi_exec_channel *src0,
4885 const union tgsi_exec_channel *src1)
4886 {
4887 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
4888 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
4889 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
4890 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
4891 }
4892
4893 static void
4894 micro_uarl(union tgsi_exec_channel *dst,
4895 const union tgsi_exec_channel *src)
4896 {
4897 dst->i[0] = src->u[0];
4898 dst->i[1] = src->u[1];
4899 dst->i[2] = src->u[2];
4900 dst->i[3] = src->u[3];
4901 }
4902
4903 /**
4904 * Signed bitfield extract (i.e. sign-extend the extracted bits)
4905 */
4906 static void
4907 micro_ibfe(union tgsi_exec_channel *dst,
4908 const union tgsi_exec_channel *src0,
4909 const union tgsi_exec_channel *src1,
4910 const union tgsi_exec_channel *src2)
4911 {
4912 int i;
4913 for (i = 0; i < 4; i++) {
4914 int width = src2->i[i] & 0x1f;
4915 int offset = src1->i[i] & 0x1f;
4916 if (width == 0)
4917 dst->i[i] = 0;
4918 else if (width + offset < 32)
4919 dst->i[i] = (src0->i[i] << (32 - width - offset)) >> (32 - width);
4920 else
4921 dst->i[i] = src0->i[i] >> offset;
4922 }
4923 }
4924
4925 /**
4926 * Unsigned bitfield extract
4927 */
4928 static void
4929 micro_ubfe(union tgsi_exec_channel *dst,
4930 const union tgsi_exec_channel *src0,
4931 const union tgsi_exec_channel *src1,
4932 const union tgsi_exec_channel *src2)
4933 {
4934 int i;
4935 for (i = 0; i < 4; i++) {
4936 int width = src2->u[i] & 0x1f;
4937 int offset = src1->u[i] & 0x1f;
4938 if (width == 0)
4939 dst->u[i] = 0;
4940 else if (width + offset < 32)
4941 dst->u[i] = (src0->u[i] << (32 - width - offset)) >> (32 - width);
4942 else
4943 dst->u[i] = src0->u[i] >> offset;
4944 }
4945 }
4946
4947 /**
4948 * Bitfield insert: copy low bits from src1 into a region of src0.
4949 */
4950 static void
4951 micro_bfi(union tgsi_exec_channel *dst,
4952 const union tgsi_exec_channel *src0,
4953 const union tgsi_exec_channel *src1,
4954 const union tgsi_exec_channel *src2,
4955 const union tgsi_exec_channel *src3)
4956 {
4957 int i;
4958 for (i = 0; i < 4; i++) {
4959 int width = src3->u[i] & 0x1f;
4960 int offset = src2->u[i] & 0x1f;
4961 int bitmask = ((1 << width) - 1) << offset;
4962 dst->u[i] = ((src1->u[i] << offset) & bitmask) | (src0->u[i] & ~bitmask);
4963 }
4964 }
4965
4966 static void
4967 micro_brev(union tgsi_exec_channel *dst,
4968 const union tgsi_exec_channel *src)
4969 {
4970 dst->u[0] = util_bitreverse(src->u[0]);
4971 dst->u[1] = util_bitreverse(src->u[1]);
4972 dst->u[2] = util_bitreverse(src->u[2]);
4973 dst->u[3] = util_bitreverse(src->u[3]);
4974 }
4975
4976 static void
4977 micro_popc(union tgsi_exec_channel *dst,
4978 const union tgsi_exec_channel *src)
4979 {
4980 dst->u[0] = util_bitcount(src->u[0]);
4981 dst->u[1] = util_bitcount(src->u[1]);
4982 dst->u[2] = util_bitcount(src->u[2]);
4983 dst->u[3] = util_bitcount(src->u[3]);
4984 }
4985
4986 static void
4987 micro_lsb(union tgsi_exec_channel *dst,
4988 const union tgsi_exec_channel *src)
4989 {
4990 dst->i[0] = ffs(src->u[0]) - 1;
4991 dst->i[1] = ffs(src->u[1]) - 1;
4992 dst->i[2] = ffs(src->u[2]) - 1;
4993 dst->i[3] = ffs(src->u[3]) - 1;
4994 }
4995
4996 static void
4997 micro_imsb(union tgsi_exec_channel *dst,
4998 const union tgsi_exec_channel *src)
4999 {
5000 dst->i[0] = util_last_bit_signed(src->i[0]) - 1;
5001 dst->i[1] = util_last_bit_signed(src->i[1]) - 1;
5002 dst->i[2] = util_last_bit_signed(src->i[2]) - 1;
5003 dst->i[3] = util_last_bit_signed(src->i[3]) - 1;
5004 }
5005
5006 static void
5007 micro_umsb(union tgsi_exec_channel *dst,
5008 const union tgsi_exec_channel *src)
5009 {
5010 dst->i[0] = util_last_bit(src->u[0]) - 1;
5011 dst->i[1] = util_last_bit(src->u[1]) - 1;
5012 dst->i[2] = util_last_bit(src->u[2]) - 1;
5013 dst->i[3] = util_last_bit(src->u[3]) - 1;
5014 }
5015
5016 /**
5017 * Execute a TGSI instruction.
5018 * Returns TRUE if a barrier instruction is hit,
5019 * otherwise FALSE.
5020 */
5021 static boolean
5022 exec_instruction(
5023 struct tgsi_exec_machine *mach,
5024 const struct tgsi_full_instruction *inst,
5025 int *pc )
5026 {
5027 union tgsi_exec_channel r[10];
5028
5029 (*pc)++;
5030
5031 switch (inst->Instruction.Opcode) {
5032 case TGSI_OPCODE_ARL:
5033 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5034 break;
5035
5036 case TGSI_OPCODE_MOV:
5037 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5038 break;
5039
5040 case TGSI_OPCODE_LIT:
5041 exec_lit(mach, inst);
5042 break;
5043
5044 case TGSI_OPCODE_RCP:
5045 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5046 break;
5047
5048 case TGSI_OPCODE_RSQ:
5049 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5050 break;
5051
5052 case TGSI_OPCODE_EXP:
5053 exec_exp(mach, inst);
5054 break;
5055
5056 case TGSI_OPCODE_LOG:
5057 exec_log(mach, inst);
5058 break;
5059
5060 case TGSI_OPCODE_MUL:
5061 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5062 break;
5063
5064 case TGSI_OPCODE_ADD:
5065 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5066 break;
5067
5068 case TGSI_OPCODE_DP3:
5069 exec_dp3(mach, inst);
5070 break;
5071
5072 case TGSI_OPCODE_DP4:
5073 exec_dp4(mach, inst);
5074 break;
5075
5076 case TGSI_OPCODE_DST:
5077 exec_dst(mach, inst);
5078 break;
5079
5080 case TGSI_OPCODE_MIN:
5081 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5082 break;
5083
5084 case TGSI_OPCODE_MAX:
5085 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5086 break;
5087
5088 case TGSI_OPCODE_SLT:
5089 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5090 break;
5091
5092 case TGSI_OPCODE_SGE:
5093 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5094 break;
5095
5096 case TGSI_OPCODE_MAD:
5097 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5098 break;
5099
5100 case TGSI_OPCODE_LRP:
5101 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5102 break;
5103
5104 case TGSI_OPCODE_SQRT:
5105 exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5106 break;
5107
5108 case TGSI_OPCODE_FRC:
5109 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5110 break;
5111
5112 case TGSI_OPCODE_FLR:
5113 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5114 break;
5115
5116 case TGSI_OPCODE_ROUND:
5117 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5118 break;
5119
5120 case TGSI_OPCODE_EX2:
5121 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5122 break;
5123
5124 case TGSI_OPCODE_LG2:
5125 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5126 break;
5127
5128 case TGSI_OPCODE_POW:
5129 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5130 break;
5131
5132 case TGSI_OPCODE_LDEXP:
5133 exec_scalar_binary(mach, inst, micro_ldexp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
5134 break;
5135
5136 case TGSI_OPCODE_COS:
5137 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5138 break;
5139
5140 case TGSI_OPCODE_DDX:
5141 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5142 break;
5143
5144 case TGSI_OPCODE_DDY:
5145 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5146 break;
5147
5148 case TGSI_OPCODE_KILL:
5149 exec_kill (mach, inst);
5150 break;
5151
5152 case TGSI_OPCODE_KILL_IF:
5153 exec_kill_if (mach, inst);
5154 break;
5155
5156 case TGSI_OPCODE_PK2H:
5157 exec_pk2h(mach, inst);
5158 break;
5159
5160 case TGSI_OPCODE_PK2US:
5161 assert (0);
5162 break;
5163
5164 case TGSI_OPCODE_PK4B:
5165 assert (0);
5166 break;
5167
5168 case TGSI_OPCODE_PK4UB:
5169 assert (0);
5170 break;
5171
5172 case TGSI_OPCODE_SEQ:
5173 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5174 break;
5175
5176 case TGSI_OPCODE_SGT:
5177 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5178 break;
5179
5180 case TGSI_OPCODE_SIN:
5181 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5182 break;
5183
5184 case TGSI_OPCODE_SLE:
5185 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5186 break;
5187
5188 case TGSI_OPCODE_SNE:
5189 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5190 break;
5191
5192 case TGSI_OPCODE_TEX:
5193 /* simple texture lookup */
5194 /* src[0] = texcoord */
5195 /* src[1] = sampler unit */
5196 exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
5197 break;
5198
5199 case TGSI_OPCODE_TXB:
5200 /* Texture lookup with lod bias */
5201 /* src[0] = texcoord (src[0].w = LOD bias) */
5202 /* src[1] = sampler unit */
5203 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
5204 break;
5205
5206 case TGSI_OPCODE_TXD:
5207 /* Texture lookup with explict partial derivatives */
5208 /* src[0] = texcoord */
5209 /* src[1] = d[strq]/dx */
5210 /* src[2] = d[strq]/dy */
5211 /* src[3] = sampler unit */
5212 exec_txd(mach, inst);
5213 break;
5214
5215 case TGSI_OPCODE_TXL:
5216 /* Texture lookup with explit LOD */
5217 /* src[0] = texcoord (src[0].w = LOD) */
5218 /* src[1] = sampler unit */
5219 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
5220 break;
5221
5222 case TGSI_OPCODE_TXP:
5223 /* Texture lookup with projection */
5224 /* src[0] = texcoord (src[0].w = projection) */
5225 /* src[1] = sampler unit */
5226 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
5227 break;
5228
5229 case TGSI_OPCODE_TG4:
5230 /* src[0] = texcoord */
5231 /* src[1] = component */
5232 /* src[2] = sampler unit */
5233 exec_tex(mach, inst, TEX_MODIFIER_GATHER, 2);
5234 break;
5235
5236 case TGSI_OPCODE_LODQ:
5237 /* src[0] = texcoord */
5238 /* src[1] = sampler unit */
5239 exec_lodq(mach, inst);
5240 break;
5241
5242 case TGSI_OPCODE_UP2H:
5243 exec_up2h(mach, inst);
5244 break;
5245
5246 case TGSI_OPCODE_UP2US:
5247 assert (0);
5248 break;
5249
5250 case TGSI_OPCODE_UP4B:
5251 assert (0);
5252 break;
5253
5254 case TGSI_OPCODE_UP4UB:
5255 assert (0);
5256 break;
5257
5258 case TGSI_OPCODE_ARR:
5259 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5260 break;
5261
5262 case TGSI_OPCODE_CAL:
5263 /* skip the call if no execution channels are enabled */
5264 if (mach->ExecMask) {
5265 /* do the call */
5266
5267 /* First, record the depths of the execution stacks.
5268 * This is important for deeply nested/looped return statements.
5269 * We have to unwind the stacks by the correct amount. For a
5270 * real code generator, we could determine the number of entries
5271 * to pop off each stack with simple static analysis and avoid
5272 * implementing this data structure at run time.
5273 */
5274 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
5275 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
5276 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
5277 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
5278 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
5279 /* note that PC was already incremented above */
5280 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
5281
5282 mach->CallStackTop++;
5283
5284 /* Second, push the Cond, Loop, Cont, Func stacks */
5285 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5286 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5287 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5288 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
5289 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5290 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
5291
5292 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5293 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5294 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5295 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
5296 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5297 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
5298
5299 /* Finally, jump to the subroutine. The label is a pointer
5300 * (an instruction number) to the BGNSUB instruction.
5301 */
5302 *pc = inst->Label.Label;
5303 assert(mach->Instructions[*pc].Instruction.Opcode
5304 == TGSI_OPCODE_BGNSUB);
5305 }
5306 break;
5307
5308 case TGSI_OPCODE_RET:
5309 mach->FuncMask &= ~mach->ExecMask;
5310 UPDATE_EXEC_MASK(mach);
5311
5312 if (mach->FuncMask == 0x0) {
5313 /* really return now (otherwise, keep executing */
5314
5315 if (mach->CallStackTop == 0) {
5316 /* returning from main() */
5317 mach->CondStackTop = 0;
5318 mach->LoopStackTop = 0;
5319 mach->ContStackTop = 0;
5320 mach->LoopLabelStackTop = 0;
5321 mach->SwitchStackTop = 0;
5322 mach->BreakStackTop = 0;
5323 *pc = -1;
5324 return FALSE;
5325 }
5326
5327 assert(mach->CallStackTop > 0);
5328 mach->CallStackTop--;
5329
5330 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5331 mach->CondMask = mach->CondStack[mach->CondStackTop];
5332
5333 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5334 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5335
5336 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5337 mach->ContMask = mach->ContStack[mach->ContStackTop];
5338
5339 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5340 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5341
5342 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5343 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5344
5345 assert(mach->FuncStackTop > 0);
5346 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5347
5348 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5349
5350 UPDATE_EXEC_MASK(mach);
5351 }
5352 break;
5353
5354 case TGSI_OPCODE_SSG:
5355 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5356 break;
5357
5358 case TGSI_OPCODE_CMP:
5359 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5360 break;
5361
5362 case TGSI_OPCODE_DIV:
5363 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5364 break;
5365
5366 case TGSI_OPCODE_DP2:
5367 exec_dp2(mach, inst);
5368 break;
5369
5370 case TGSI_OPCODE_IF:
5371 /* push CondMask */
5372 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5373 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5374 FETCH( &r[0], 0, TGSI_CHAN_X );
5375 /* update CondMask */
5376 if( ! r[0].f[0] ) {
5377 mach->CondMask &= ~0x1;
5378 }
5379 if( ! r[0].f[1] ) {
5380 mach->CondMask &= ~0x2;
5381 }
5382 if( ! r[0].f[2] ) {
5383 mach->CondMask &= ~0x4;
5384 }
5385 if( ! r[0].f[3] ) {
5386 mach->CondMask &= ~0x8;
5387 }
5388 UPDATE_EXEC_MASK(mach);
5389 /* Todo: If CondMask==0, jump to ELSE */
5390 break;
5391
5392 case TGSI_OPCODE_UIF:
5393 /* push CondMask */
5394 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5395 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5396 IFETCH( &r[0], 0, TGSI_CHAN_X );
5397 /* update CondMask */
5398 if( ! r[0].u[0] ) {
5399 mach->CondMask &= ~0x1;
5400 }
5401 if( ! r[0].u[1] ) {
5402 mach->CondMask &= ~0x2;
5403 }
5404 if( ! r[0].u[2] ) {
5405 mach->CondMask &= ~0x4;
5406 }
5407 if( ! r[0].u[3] ) {
5408 mach->CondMask &= ~0x8;
5409 }
5410 UPDATE_EXEC_MASK(mach);
5411 /* Todo: If CondMask==0, jump to ELSE */
5412 break;
5413
5414 case TGSI_OPCODE_ELSE:
5415 /* invert CondMask wrt previous mask */
5416 {
5417 uint prevMask;
5418 assert(mach->CondStackTop > 0);
5419 prevMask = mach->CondStack[mach->CondStackTop - 1];
5420 mach->CondMask = ~mach->CondMask & prevMask;
5421 UPDATE_EXEC_MASK(mach);
5422 /* Todo: If CondMask==0, jump to ENDIF */
5423 }
5424 break;
5425
5426 case TGSI_OPCODE_ENDIF:
5427 /* pop CondMask */
5428 assert(mach->CondStackTop > 0);
5429 mach->CondMask = mach->CondStack[--mach->CondStackTop];
5430 UPDATE_EXEC_MASK(mach);
5431 break;
5432
5433 case TGSI_OPCODE_END:
5434 /* make sure we end primitives which haven't
5435 * been explicitly emitted */
5436 conditional_emit_primitive(mach);
5437 /* halt execution */
5438 *pc = -1;
5439 break;
5440
5441 case TGSI_OPCODE_CEIL:
5442 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5443 break;
5444
5445 case TGSI_OPCODE_I2F:
5446 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
5447 break;
5448
5449 case TGSI_OPCODE_NOT:
5450 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5451 break;
5452
5453 case TGSI_OPCODE_TRUNC:
5454 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5455 break;
5456
5457 case TGSI_OPCODE_SHL:
5458 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5459 break;
5460
5461 case TGSI_OPCODE_AND:
5462 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5463 break;
5464
5465 case TGSI_OPCODE_OR:
5466 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5467 break;
5468
5469 case TGSI_OPCODE_MOD:
5470 exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5471 break;
5472
5473 case TGSI_OPCODE_XOR:
5474 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5475 break;
5476
5477 case TGSI_OPCODE_TXF:
5478 exec_txf(mach, inst);
5479 break;
5480
5481 case TGSI_OPCODE_TXQ:
5482 exec_txq(mach, inst);
5483 break;
5484
5485 case TGSI_OPCODE_EMIT:
5486 emit_vertex(mach);
5487 break;
5488
5489 case TGSI_OPCODE_ENDPRIM:
5490 emit_primitive(mach);
5491 break;
5492
5493 case TGSI_OPCODE_BGNLOOP:
5494 /* push LoopMask and ContMasks */
5495 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5496 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5497 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5498 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5499
5500 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5501 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5502 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
5503 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5504 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
5505 break;
5506
5507 case TGSI_OPCODE_ENDLOOP:
5508 /* Restore ContMask, but don't pop */
5509 assert(mach->ContStackTop > 0);
5510 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
5511 UPDATE_EXEC_MASK(mach);
5512 if (mach->ExecMask) {
5513 /* repeat loop: jump to instruction just past BGNLOOP */
5514 assert(mach->LoopLabelStackTop > 0);
5515 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
5516 }
5517 else {
5518 /* exit loop: pop LoopMask */
5519 assert(mach->LoopStackTop > 0);
5520 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
5521 /* pop ContMask */
5522 assert(mach->ContStackTop > 0);
5523 mach->ContMask = mach->ContStack[--mach->ContStackTop];
5524 assert(mach->LoopLabelStackTop > 0);
5525 --mach->LoopLabelStackTop;
5526
5527 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
5528 }
5529 UPDATE_EXEC_MASK(mach);
5530 break;
5531
5532 case TGSI_OPCODE_BRK:
5533 exec_break(mach);
5534 break;
5535
5536 case TGSI_OPCODE_CONT:
5537 /* turn off cont channels for each enabled exec channel */
5538 mach->ContMask &= ~mach->ExecMask;
5539 /* Todo: if mach->LoopMask == 0, jump to end of loop */
5540 UPDATE_EXEC_MASK(mach);
5541 break;
5542
5543 case TGSI_OPCODE_BGNSUB:
5544 /* no-op */
5545 break;
5546
5547 case TGSI_OPCODE_ENDSUB:
5548 /*
5549 * XXX: This really should be a no-op. We should never reach this opcode.
5550 */
5551
5552 assert(mach->CallStackTop > 0);
5553 mach->CallStackTop--;
5554
5555 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5556 mach->CondMask = mach->CondStack[mach->CondStackTop];
5557
5558 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5559 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5560
5561 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5562 mach->ContMask = mach->ContStack[mach->ContStackTop];
5563
5564 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5565 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5566
5567 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5568 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5569
5570 assert(mach->FuncStackTop > 0);
5571 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5572
5573 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5574
5575 UPDATE_EXEC_MASK(mach);
5576 break;
5577
5578 case TGSI_OPCODE_NOP:
5579 break;
5580
5581 case TGSI_OPCODE_F2I:
5582 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5583 break;
5584
5585 case TGSI_OPCODE_FSEQ:
5586 exec_vector_binary(mach, inst, micro_fseq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5587 break;
5588
5589 case TGSI_OPCODE_FSGE:
5590 exec_vector_binary(mach, inst, micro_fsge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5591 break;
5592
5593 case TGSI_OPCODE_FSLT:
5594 exec_vector_binary(mach, inst, micro_fslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5595 break;
5596
5597 case TGSI_OPCODE_FSNE:
5598 exec_vector_binary(mach, inst, micro_fsne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5599 break;
5600
5601 case TGSI_OPCODE_IDIV:
5602 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5603 break;
5604
5605 case TGSI_OPCODE_IMAX:
5606 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5607 break;
5608
5609 case TGSI_OPCODE_IMIN:
5610 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5611 break;
5612
5613 case TGSI_OPCODE_INEG:
5614 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5615 break;
5616
5617 case TGSI_OPCODE_ISGE:
5618 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5619 break;
5620
5621 case TGSI_OPCODE_ISHR:
5622 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5623 break;
5624
5625 case TGSI_OPCODE_ISLT:
5626 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5627 break;
5628
5629 case TGSI_OPCODE_F2U:
5630 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5631 break;
5632
5633 case TGSI_OPCODE_U2F:
5634 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
5635 break;
5636
5637 case TGSI_OPCODE_UADD:
5638 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5639 break;
5640
5641 case TGSI_OPCODE_UDIV:
5642 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5643 break;
5644
5645 case TGSI_OPCODE_UMAD:
5646 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5647 break;
5648
5649 case TGSI_OPCODE_UMAX:
5650 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5651 break;
5652
5653 case TGSI_OPCODE_UMIN:
5654 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5655 break;
5656
5657 case TGSI_OPCODE_UMOD:
5658 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5659 break;
5660
5661 case TGSI_OPCODE_UMUL:
5662 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5663 break;
5664
5665 case TGSI_OPCODE_IMUL_HI:
5666 exec_vector_binary(mach, inst, micro_imul_hi, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5667 break;
5668
5669 case TGSI_OPCODE_UMUL_HI:
5670 exec_vector_binary(mach, inst, micro_umul_hi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5671 break;
5672
5673 case TGSI_OPCODE_USEQ:
5674 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5675 break;
5676
5677 case TGSI_OPCODE_USGE:
5678 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5679 break;
5680
5681 case TGSI_OPCODE_USHR:
5682 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5683 break;
5684
5685 case TGSI_OPCODE_USLT:
5686 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5687 break;
5688
5689 case TGSI_OPCODE_USNE:
5690 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5691 break;
5692
5693 case TGSI_OPCODE_SWITCH:
5694 exec_switch(mach, inst);
5695 break;
5696
5697 case TGSI_OPCODE_CASE:
5698 exec_case(mach, inst);
5699 break;
5700
5701 case TGSI_OPCODE_DEFAULT:
5702 exec_default(mach);
5703 break;
5704
5705 case TGSI_OPCODE_ENDSWITCH:
5706 exec_endswitch(mach);
5707 break;
5708
5709 case TGSI_OPCODE_SAMPLE_I:
5710 exec_txf(mach, inst);
5711 break;
5712
5713 case TGSI_OPCODE_SAMPLE_I_MS:
5714 exec_txf(mach, inst);
5715 break;
5716
5717 case TGSI_OPCODE_SAMPLE:
5718 exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
5719 break;
5720
5721 case TGSI_OPCODE_SAMPLE_B:
5722 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
5723 break;
5724
5725 case TGSI_OPCODE_SAMPLE_C:
5726 exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
5727 break;
5728
5729 case TGSI_OPCODE_SAMPLE_C_LZ:
5730 exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
5731 break;
5732
5733 case TGSI_OPCODE_SAMPLE_D:
5734 exec_sample_d(mach, inst);
5735 break;
5736
5737 case TGSI_OPCODE_SAMPLE_L:
5738 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
5739 break;
5740
5741 case TGSI_OPCODE_GATHER4:
5742 exec_sample(mach, inst, TEX_MODIFIER_GATHER, FALSE);
5743 break;
5744
5745 case TGSI_OPCODE_SVIEWINFO:
5746 exec_txq(mach, inst);
5747 break;
5748
5749 case TGSI_OPCODE_SAMPLE_POS:
5750 assert(0);
5751 break;
5752
5753 case TGSI_OPCODE_SAMPLE_INFO:
5754 assert(0);
5755 break;
5756
5757 case TGSI_OPCODE_LOD:
5758 exec_lodq(mach, inst);
5759 break;
5760
5761 case TGSI_OPCODE_UARL:
5762 exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5763 break;
5764
5765 case TGSI_OPCODE_UCMP:
5766 exec_ucmp(mach, inst);
5767 break;
5768
5769 case TGSI_OPCODE_IABS:
5770 exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5771 break;
5772
5773 case TGSI_OPCODE_ISSG:
5774 exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5775 break;
5776
5777 case TGSI_OPCODE_TEX2:
5778 /* simple texture lookup */
5779 /* src[0] = texcoord */
5780 /* src[1] = compare */
5781 /* src[2] = sampler unit */
5782 exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
5783 break;
5784 case TGSI_OPCODE_TXB2:
5785 /* simple texture lookup */
5786 /* src[0] = texcoord */
5787 /* src[1] = bias */
5788 /* src[2] = sampler unit */
5789 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
5790 break;
5791 case TGSI_OPCODE_TXL2:
5792 /* simple texture lookup */
5793 /* src[0] = texcoord */
5794 /* src[1] = lod */
5795 /* src[2] = sampler unit */
5796 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
5797 break;
5798
5799 case TGSI_OPCODE_IBFE:
5800 exec_vector_trinary(mach, inst, micro_ibfe, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5801 break;
5802 case TGSI_OPCODE_UBFE:
5803 exec_vector_trinary(mach, inst, micro_ubfe, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5804 break;
5805 case TGSI_OPCODE_BFI:
5806 exec_vector_quaternary(mach, inst, micro_bfi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5807 break;
5808 case TGSI_OPCODE_BREV:
5809 exec_vector_unary(mach, inst, micro_brev, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5810 break;
5811 case TGSI_OPCODE_POPC:
5812 exec_vector_unary(mach, inst, micro_popc, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5813 break;
5814 case TGSI_OPCODE_LSB:
5815 exec_vector_unary(mach, inst, micro_lsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5816 break;
5817 case TGSI_OPCODE_IMSB:
5818 exec_vector_unary(mach, inst, micro_imsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5819 break;
5820 case TGSI_OPCODE_UMSB:
5821 exec_vector_unary(mach, inst, micro_umsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5822 break;
5823
5824 case TGSI_OPCODE_F2D:
5825 exec_t_2_64(mach, inst, micro_f2d, TGSI_EXEC_DATA_FLOAT);
5826 break;
5827
5828 case TGSI_OPCODE_D2F:
5829 exec_64_2_t(mach, inst, micro_d2f, TGSI_EXEC_DATA_FLOAT);
5830 break;
5831
5832 case TGSI_OPCODE_DABS:
5833 exec_double_unary(mach, inst, micro_dabs);
5834 break;
5835
5836 case TGSI_OPCODE_DNEG:
5837 exec_double_unary(mach, inst, micro_dneg);
5838 break;
5839
5840 case TGSI_OPCODE_DADD:
5841 exec_double_binary(mach, inst, micro_dadd, TGSI_EXEC_DATA_DOUBLE);
5842 break;
5843
5844 case TGSI_OPCODE_DDIV:
5845 exec_double_binary(mach, inst, micro_ddiv, TGSI_EXEC_DATA_DOUBLE);
5846 break;
5847
5848 case TGSI_OPCODE_DMUL:
5849 exec_double_binary(mach, inst, micro_dmul, TGSI_EXEC_DATA_DOUBLE);
5850 break;
5851
5852 case TGSI_OPCODE_DMAX:
5853 exec_double_binary(mach, inst, micro_dmax, TGSI_EXEC_DATA_DOUBLE);
5854 break;
5855
5856 case TGSI_OPCODE_DMIN:
5857 exec_double_binary(mach, inst, micro_dmin, TGSI_EXEC_DATA_DOUBLE);
5858 break;
5859
5860 case TGSI_OPCODE_DSLT:
5861 exec_double_binary(mach, inst, micro_dslt, TGSI_EXEC_DATA_UINT);
5862 break;
5863
5864 case TGSI_OPCODE_DSGE:
5865 exec_double_binary(mach, inst, micro_dsge, TGSI_EXEC_DATA_UINT);
5866 break;
5867
5868 case TGSI_OPCODE_DSEQ:
5869 exec_double_binary(mach, inst, micro_dseq, TGSI_EXEC_DATA_UINT);
5870 break;
5871
5872 case TGSI_OPCODE_DSNE:
5873 exec_double_binary(mach, inst, micro_dsne, TGSI_EXEC_DATA_UINT);
5874 break;
5875
5876 case TGSI_OPCODE_DRCP:
5877 exec_double_unary(mach, inst, micro_drcp);
5878 break;
5879
5880 case TGSI_OPCODE_DSQRT:
5881 exec_double_unary(mach, inst, micro_dsqrt);
5882 break;
5883
5884 case TGSI_OPCODE_DRSQ:
5885 exec_double_unary(mach, inst, micro_drsq);
5886 break;
5887
5888 case TGSI_OPCODE_DMAD:
5889 exec_double_trinary(mach, inst, micro_dmad);
5890 break;
5891
5892 case TGSI_OPCODE_DFRAC:
5893 exec_double_unary(mach, inst, micro_dfrac);
5894 break;
5895
5896 case TGSI_OPCODE_DLDEXP:
5897 exec_dldexp(mach, inst);
5898 break;
5899
5900 case TGSI_OPCODE_DFRACEXP:
5901 exec_dfracexp(mach, inst);
5902 break;
5903
5904 case TGSI_OPCODE_I2D:
5905 exec_t_2_64(mach, inst, micro_i2d, TGSI_EXEC_DATA_INT);
5906 break;
5907
5908 case TGSI_OPCODE_D2I:
5909 exec_64_2_t(mach, inst, micro_d2i, TGSI_EXEC_DATA_INT);
5910 break;
5911
5912 case TGSI_OPCODE_U2D:
5913 exec_t_2_64(mach, inst, micro_u2d, TGSI_EXEC_DATA_UINT);
5914 break;
5915
5916 case TGSI_OPCODE_D2U:
5917 exec_64_2_t(mach, inst, micro_d2u, TGSI_EXEC_DATA_INT);
5918 break;
5919
5920 case TGSI_OPCODE_LOAD:
5921 exec_load(mach, inst);
5922 break;
5923
5924 case TGSI_OPCODE_STORE:
5925 exec_store(mach, inst);
5926 break;
5927
5928 case TGSI_OPCODE_ATOMUADD:
5929 case TGSI_OPCODE_ATOMXCHG:
5930 case TGSI_OPCODE_ATOMCAS:
5931 case TGSI_OPCODE_ATOMAND:
5932 case TGSI_OPCODE_ATOMOR:
5933 case TGSI_OPCODE_ATOMXOR:
5934 case TGSI_OPCODE_ATOMUMIN:
5935 case TGSI_OPCODE_ATOMUMAX:
5936 case TGSI_OPCODE_ATOMIMIN:
5937 case TGSI_OPCODE_ATOMIMAX:
5938 exec_atomop(mach, inst);
5939 break;
5940
5941 case TGSI_OPCODE_RESQ:
5942 exec_resq(mach, inst);
5943 break;
5944 case TGSI_OPCODE_BARRIER:
5945 case TGSI_OPCODE_MEMBAR:
5946 return TRUE;
5947 break;
5948
5949 case TGSI_OPCODE_I64ABS:
5950 exec_double_unary(mach, inst, micro_i64abs);
5951 break;
5952
5953 case TGSI_OPCODE_I64SSG:
5954 exec_double_unary(mach, inst, micro_i64sgn);
5955 break;
5956
5957 case TGSI_OPCODE_I64NEG:
5958 exec_double_unary(mach, inst, micro_i64neg);
5959 break;
5960
5961 case TGSI_OPCODE_U64SEQ:
5962 exec_double_binary(mach, inst, micro_u64seq, TGSI_EXEC_DATA_UINT);
5963 break;
5964
5965 case TGSI_OPCODE_U64SNE:
5966 exec_double_binary(mach, inst, micro_u64sne, TGSI_EXEC_DATA_UINT);
5967 break;
5968
5969 case TGSI_OPCODE_I64SLT:
5970 exec_double_binary(mach, inst, micro_i64slt, TGSI_EXEC_DATA_UINT);
5971 break;
5972 case TGSI_OPCODE_U64SLT:
5973 exec_double_binary(mach, inst, micro_u64slt, TGSI_EXEC_DATA_UINT);
5974 break;
5975
5976 case TGSI_OPCODE_I64SGE:
5977 exec_double_binary(mach, inst, micro_i64sge, TGSI_EXEC_DATA_UINT);
5978 break;
5979 case TGSI_OPCODE_U64SGE:
5980 exec_double_binary(mach, inst, micro_u64sge, TGSI_EXEC_DATA_UINT);
5981 break;
5982
5983 case TGSI_OPCODE_I64MIN:
5984 exec_double_binary(mach, inst, micro_i64min, TGSI_EXEC_DATA_INT64);
5985 break;
5986 case TGSI_OPCODE_U64MIN:
5987 exec_double_binary(mach, inst, micro_u64min, TGSI_EXEC_DATA_UINT64);
5988 break;
5989 case TGSI_OPCODE_I64MAX:
5990 exec_double_binary(mach, inst, micro_i64max, TGSI_EXEC_DATA_INT64);
5991 break;
5992 case TGSI_OPCODE_U64MAX:
5993 exec_double_binary(mach, inst, micro_u64max, TGSI_EXEC_DATA_UINT64);
5994 break;
5995 case TGSI_OPCODE_U64ADD:
5996 exec_double_binary(mach, inst, micro_u64add, TGSI_EXEC_DATA_UINT64);
5997 break;
5998 case TGSI_OPCODE_U64MUL:
5999 exec_double_binary(mach, inst, micro_u64mul, TGSI_EXEC_DATA_UINT64);
6000 break;
6001 case TGSI_OPCODE_U64SHL:
6002 exec_arg0_64_arg1_32(mach, inst, micro_u64shl);
6003 break;
6004 case TGSI_OPCODE_I64SHR:
6005 exec_arg0_64_arg1_32(mach, inst, micro_i64shr);
6006 break;
6007 case TGSI_OPCODE_U64SHR:
6008 exec_arg0_64_arg1_32(mach, inst, micro_u64shr);
6009 break;
6010 case TGSI_OPCODE_U64DIV:
6011 exec_double_binary(mach, inst, micro_u64div, TGSI_EXEC_DATA_UINT64);
6012 break;
6013 case TGSI_OPCODE_I64DIV:
6014 exec_double_binary(mach, inst, micro_i64div, TGSI_EXEC_DATA_INT64);
6015 break;
6016 case TGSI_OPCODE_U64MOD:
6017 exec_double_binary(mach, inst, micro_u64mod, TGSI_EXEC_DATA_UINT64);
6018 break;
6019 case TGSI_OPCODE_I64MOD:
6020 exec_double_binary(mach, inst, micro_i64mod, TGSI_EXEC_DATA_INT64);
6021 break;
6022
6023 case TGSI_OPCODE_F2U64:
6024 exec_t_2_64(mach, inst, micro_f2u64, TGSI_EXEC_DATA_FLOAT);
6025 break;
6026
6027 case TGSI_OPCODE_F2I64:
6028 exec_t_2_64(mach, inst, micro_f2i64, TGSI_EXEC_DATA_FLOAT);
6029 break;
6030
6031 case TGSI_OPCODE_U2I64:
6032 exec_t_2_64(mach, inst, micro_u2i64, TGSI_EXEC_DATA_INT);
6033 break;
6034 case TGSI_OPCODE_I2I64:
6035 exec_t_2_64(mach, inst, micro_i2i64, TGSI_EXEC_DATA_INT);
6036 break;
6037
6038 case TGSI_OPCODE_D2U64:
6039 exec_double_unary(mach, inst, micro_d2u64);
6040 break;
6041
6042 case TGSI_OPCODE_D2I64:
6043 exec_double_unary(mach, inst, micro_d2i64);
6044 break;
6045
6046 case TGSI_OPCODE_U642F:
6047 exec_64_2_t(mach, inst, micro_u642f, TGSI_EXEC_DATA_FLOAT);
6048 break;
6049 case TGSI_OPCODE_I642F:
6050 exec_64_2_t(mach, inst, micro_i642f, TGSI_EXEC_DATA_FLOAT);
6051 break;
6052
6053 case TGSI_OPCODE_U642D:
6054 exec_double_unary(mach, inst, micro_u642d);
6055 break;
6056 case TGSI_OPCODE_I642D:
6057 exec_double_unary(mach, inst, micro_i642d);
6058 break;
6059
6060 default:
6061 assert( 0 );
6062 }
6063 return FALSE;
6064 }
6065
6066 static void
6067 tgsi_exec_machine_setup_masks(struct tgsi_exec_machine *mach)
6068 {
6069 uint default_mask = 0xf;
6070
6071 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
6072 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
6073
6074 if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
6075 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
6076 mach->Primitives[0] = 0;
6077 /* GS runs on a single primitive for now */
6078 default_mask = 0x1;
6079 }
6080
6081 if (mach->NonHelperMask == 0)
6082 mach->NonHelperMask = default_mask;
6083 mach->CondMask = default_mask;
6084 mach->LoopMask = default_mask;
6085 mach->ContMask = default_mask;
6086 mach->FuncMask = default_mask;
6087 mach->ExecMask = default_mask;
6088
6089 mach->Switch.mask = default_mask;
6090
6091 assert(mach->CondStackTop == 0);
6092 assert(mach->LoopStackTop == 0);
6093 assert(mach->ContStackTop == 0);
6094 assert(mach->SwitchStackTop == 0);
6095 assert(mach->BreakStackTop == 0);
6096 assert(mach->CallStackTop == 0);
6097 }
6098
6099 /**
6100 * Run TGSI interpreter.
6101 * \return bitmask of "alive" quad components
6102 */
6103 uint
6104 tgsi_exec_machine_run( struct tgsi_exec_machine *mach, int start_pc )
6105 {
6106 uint i;
6107
6108 mach->pc = start_pc;
6109
6110 if (!start_pc) {
6111 tgsi_exec_machine_setup_masks(mach);
6112
6113 /* execute declarations (interpolants) */
6114 for (i = 0; i < mach->NumDeclarations; i++) {
6115 exec_declaration( mach, mach->Declarations+i );
6116 }
6117 }
6118
6119 {
6120 #if DEBUG_EXECUTION
6121 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
6122 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
6123 uint inst = 1;
6124
6125 if (!start_pc) {
6126 memset(mach->Temps, 0, sizeof(temps));
6127 if (mach->Outputs)
6128 memset(mach->Outputs, 0, sizeof(outputs));
6129 memset(temps, 0, sizeof(temps));
6130 memset(outputs, 0, sizeof(outputs));
6131 }
6132 #endif
6133
6134 /* execute instructions, until pc is set to -1 */
6135 while (mach->pc != -1) {
6136 boolean barrier_hit;
6137 #if DEBUG_EXECUTION
6138 uint i;
6139
6140 tgsi_dump_instruction(&mach->Instructions[mach->pc], inst++);
6141 #endif
6142
6143 assert(mach->pc < (int) mach->NumInstructions);
6144 barrier_hit = exec_instruction(mach, mach->Instructions + mach->pc, &mach->pc);
6145
6146 /* for compute shaders if we hit a barrier return now for later rescheduling */
6147 if (barrier_hit && mach->ShaderType == PIPE_SHADER_COMPUTE)
6148 return 0;
6149
6150 #if DEBUG_EXECUTION
6151 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
6152 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
6153 uint j;
6154
6155 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
6156 debug_printf("TEMP[%2u] = ", i);
6157 for (j = 0; j < 4; j++) {
6158 if (j > 0) {
6159 debug_printf(" ");
6160 }
6161 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6162 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
6163 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
6164 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
6165 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
6166 }
6167 }
6168 }
6169 if (mach->Outputs) {
6170 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
6171 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
6172 uint j;
6173
6174 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
6175 debug_printf("OUT[%2u] = ", i);
6176 for (j = 0; j < 4; j++) {
6177 if (j > 0) {
6178 debug_printf(" ");
6179 }
6180 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6181 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
6182 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
6183 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
6184 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
6185 }
6186 }
6187 }
6188 }
6189 #endif
6190 }
6191 }
6192
6193 #if 0
6194 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
6195 if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
6196 /*
6197 * Scale back depth component.
6198 */
6199 for (i = 0; i < 4; i++)
6200 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
6201 }
6202 #endif
6203
6204 /* Strictly speaking, these assertions aren't really needed but they
6205 * can potentially catch some bugs in the control flow code.
6206 */
6207 assert(mach->CondStackTop == 0);
6208 assert(mach->LoopStackTop == 0);
6209 assert(mach->ContStackTop == 0);
6210 assert(mach->SwitchStackTop == 0);
6211 assert(mach->BreakStackTop == 0);
6212 assert(mach->CallStackTop == 0);
6213
6214 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
6215 }