gallium: remove TGSI opcode BREAKC
[mesa.git] / src / gallium / auxiliary / tgsi / tgsi_exec.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * TGSI interpreter/executor.
31 *
32 * Flow control information:
33 *
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
38 *
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
42 * See store_dest().
43 *
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47 *
48 *
49 * Authors:
50 * Michal Krol
51 * Brian Paul
52 */
53
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_half.h"
62 #include "util/u_memory.h"
63 #include "util/u_math.h"
64 #include "util/rounding.h"
65
66
67 #define DEBUG_EXECUTION 0
68
69
70 #define FAST_MATH 0
71
72 #define TILE_TOP_LEFT 0
73 #define TILE_TOP_RIGHT 1
74 #define TILE_BOTTOM_LEFT 2
75 #define TILE_BOTTOM_RIGHT 3
76
77 union tgsi_double_channel {
78 double d[TGSI_QUAD_SIZE];
79 unsigned u[TGSI_QUAD_SIZE][2];
80 uint64_t u64[TGSI_QUAD_SIZE];
81 int64_t i64[TGSI_QUAD_SIZE];
82 };
83
84 struct tgsi_double_vector {
85 union tgsi_double_channel xy;
86 union tgsi_double_channel zw;
87 };
88
89 static void
90 micro_abs(union tgsi_exec_channel *dst,
91 const union tgsi_exec_channel *src)
92 {
93 dst->f[0] = fabsf(src->f[0]);
94 dst->f[1] = fabsf(src->f[1]);
95 dst->f[2] = fabsf(src->f[2]);
96 dst->f[3] = fabsf(src->f[3]);
97 }
98
99 static void
100 micro_arl(union tgsi_exec_channel *dst,
101 const union tgsi_exec_channel *src)
102 {
103 dst->i[0] = (int)floorf(src->f[0]);
104 dst->i[1] = (int)floorf(src->f[1]);
105 dst->i[2] = (int)floorf(src->f[2]);
106 dst->i[3] = (int)floorf(src->f[3]);
107 }
108
109 static void
110 micro_arr(union tgsi_exec_channel *dst,
111 const union tgsi_exec_channel *src)
112 {
113 dst->i[0] = (int)floorf(src->f[0] + 0.5f);
114 dst->i[1] = (int)floorf(src->f[1] + 0.5f);
115 dst->i[2] = (int)floorf(src->f[2] + 0.5f);
116 dst->i[3] = (int)floorf(src->f[3] + 0.5f);
117 }
118
119 static void
120 micro_ceil(union tgsi_exec_channel *dst,
121 const union tgsi_exec_channel *src)
122 {
123 dst->f[0] = ceilf(src->f[0]);
124 dst->f[1] = ceilf(src->f[1]);
125 dst->f[2] = ceilf(src->f[2]);
126 dst->f[3] = ceilf(src->f[3]);
127 }
128
129 static void
130 micro_cmp(union tgsi_exec_channel *dst,
131 const union tgsi_exec_channel *src0,
132 const union tgsi_exec_channel *src1,
133 const union tgsi_exec_channel *src2)
134 {
135 dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
136 dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
137 dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
138 dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
139 }
140
141 static void
142 micro_cos(union tgsi_exec_channel *dst,
143 const union tgsi_exec_channel *src)
144 {
145 dst->f[0] = cosf(src->f[0]);
146 dst->f[1] = cosf(src->f[1]);
147 dst->f[2] = cosf(src->f[2]);
148 dst->f[3] = cosf(src->f[3]);
149 }
150
151 static void
152 micro_d2f(union tgsi_exec_channel *dst,
153 const union tgsi_double_channel *src)
154 {
155 dst->f[0] = (float)src->d[0];
156 dst->f[1] = (float)src->d[1];
157 dst->f[2] = (float)src->d[2];
158 dst->f[3] = (float)src->d[3];
159 }
160
161 static void
162 micro_d2i(union tgsi_exec_channel *dst,
163 const union tgsi_double_channel *src)
164 {
165 dst->i[0] = (int)src->d[0];
166 dst->i[1] = (int)src->d[1];
167 dst->i[2] = (int)src->d[2];
168 dst->i[3] = (int)src->d[3];
169 }
170
171 static void
172 micro_d2u(union tgsi_exec_channel *dst,
173 const union tgsi_double_channel *src)
174 {
175 dst->u[0] = (unsigned)src->d[0];
176 dst->u[1] = (unsigned)src->d[1];
177 dst->u[2] = (unsigned)src->d[2];
178 dst->u[3] = (unsigned)src->d[3];
179 }
180 static void
181 micro_dabs(union tgsi_double_channel *dst,
182 const union tgsi_double_channel *src)
183 {
184 dst->d[0] = src->d[0] >= 0.0 ? src->d[0] : -src->d[0];
185 dst->d[1] = src->d[1] >= 0.0 ? src->d[1] : -src->d[1];
186 dst->d[2] = src->d[2] >= 0.0 ? src->d[2] : -src->d[2];
187 dst->d[3] = src->d[3] >= 0.0 ? src->d[3] : -src->d[3];
188 }
189
190 static void
191 micro_dadd(union tgsi_double_channel *dst,
192 const union tgsi_double_channel *src)
193 {
194 dst->d[0] = src[0].d[0] + src[1].d[0];
195 dst->d[1] = src[0].d[1] + src[1].d[1];
196 dst->d[2] = src[0].d[2] + src[1].d[2];
197 dst->d[3] = src[0].d[3] + src[1].d[3];
198 }
199
200 static void
201 micro_ddiv(union tgsi_double_channel *dst,
202 const union tgsi_double_channel *src)
203 {
204 dst->d[0] = src[0].d[0] / src[1].d[0];
205 dst->d[1] = src[0].d[1] / src[1].d[1];
206 dst->d[2] = src[0].d[2] / src[1].d[2];
207 dst->d[3] = src[0].d[3] / src[1].d[3];
208 }
209
210 static void
211 micro_ddx(union tgsi_exec_channel *dst,
212 const union tgsi_exec_channel *src)
213 {
214 dst->f[0] =
215 dst->f[1] =
216 dst->f[2] =
217 dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
218 }
219
220 static void
221 micro_ddy(union tgsi_exec_channel *dst,
222 const union tgsi_exec_channel *src)
223 {
224 dst->f[0] =
225 dst->f[1] =
226 dst->f[2] =
227 dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
228 }
229
230 static void
231 micro_dmul(union tgsi_double_channel *dst,
232 const union tgsi_double_channel *src)
233 {
234 dst->d[0] = src[0].d[0] * src[1].d[0];
235 dst->d[1] = src[0].d[1] * src[1].d[1];
236 dst->d[2] = src[0].d[2] * src[1].d[2];
237 dst->d[3] = src[0].d[3] * src[1].d[3];
238 }
239
240 static void
241 micro_dmax(union tgsi_double_channel *dst,
242 const union tgsi_double_channel *src)
243 {
244 dst->d[0] = src[0].d[0] > src[1].d[0] ? src[0].d[0] : src[1].d[0];
245 dst->d[1] = src[0].d[1] > src[1].d[1] ? src[0].d[1] : src[1].d[1];
246 dst->d[2] = src[0].d[2] > src[1].d[2] ? src[0].d[2] : src[1].d[2];
247 dst->d[3] = src[0].d[3] > src[1].d[3] ? src[0].d[3] : src[1].d[3];
248 }
249
250 static void
251 micro_dmin(union tgsi_double_channel *dst,
252 const union tgsi_double_channel *src)
253 {
254 dst->d[0] = src[0].d[0] < src[1].d[0] ? src[0].d[0] : src[1].d[0];
255 dst->d[1] = src[0].d[1] < src[1].d[1] ? src[0].d[1] : src[1].d[1];
256 dst->d[2] = src[0].d[2] < src[1].d[2] ? src[0].d[2] : src[1].d[2];
257 dst->d[3] = src[0].d[3] < src[1].d[3] ? src[0].d[3] : src[1].d[3];
258 }
259
260 static void
261 micro_dneg(union tgsi_double_channel *dst,
262 const union tgsi_double_channel *src)
263 {
264 dst->d[0] = -src->d[0];
265 dst->d[1] = -src->d[1];
266 dst->d[2] = -src->d[2];
267 dst->d[3] = -src->d[3];
268 }
269
270 static void
271 micro_dslt(union tgsi_double_channel *dst,
272 const union tgsi_double_channel *src)
273 {
274 dst->u[0][0] = src[0].d[0] < src[1].d[0] ? ~0U : 0U;
275 dst->u[1][0] = src[0].d[1] < src[1].d[1] ? ~0U : 0U;
276 dst->u[2][0] = src[0].d[2] < src[1].d[2] ? ~0U : 0U;
277 dst->u[3][0] = src[0].d[3] < src[1].d[3] ? ~0U : 0U;
278 }
279
280 static void
281 micro_dsne(union tgsi_double_channel *dst,
282 const union tgsi_double_channel *src)
283 {
284 dst->u[0][0] = src[0].d[0] != src[1].d[0] ? ~0U : 0U;
285 dst->u[1][0] = src[0].d[1] != src[1].d[1] ? ~0U : 0U;
286 dst->u[2][0] = src[0].d[2] != src[1].d[2] ? ~0U : 0U;
287 dst->u[3][0] = src[0].d[3] != src[1].d[3] ? ~0U : 0U;
288 }
289
290 static void
291 micro_dsge(union tgsi_double_channel *dst,
292 const union tgsi_double_channel *src)
293 {
294 dst->u[0][0] = src[0].d[0] >= src[1].d[0] ? ~0U : 0U;
295 dst->u[1][0] = src[0].d[1] >= src[1].d[1] ? ~0U : 0U;
296 dst->u[2][0] = src[0].d[2] >= src[1].d[2] ? ~0U : 0U;
297 dst->u[3][0] = src[0].d[3] >= src[1].d[3] ? ~0U : 0U;
298 }
299
300 static void
301 micro_dseq(union tgsi_double_channel *dst,
302 const union tgsi_double_channel *src)
303 {
304 dst->u[0][0] = src[0].d[0] == src[1].d[0] ? ~0U : 0U;
305 dst->u[1][0] = src[0].d[1] == src[1].d[1] ? ~0U : 0U;
306 dst->u[2][0] = src[0].d[2] == src[1].d[2] ? ~0U : 0U;
307 dst->u[3][0] = src[0].d[3] == src[1].d[3] ? ~0U : 0U;
308 }
309
310 static void
311 micro_drcp(union tgsi_double_channel *dst,
312 const union tgsi_double_channel *src)
313 {
314 dst->d[0] = 1.0 / src->d[0];
315 dst->d[1] = 1.0 / src->d[1];
316 dst->d[2] = 1.0 / src->d[2];
317 dst->d[3] = 1.0 / src->d[3];
318 }
319
320 static void
321 micro_dsqrt(union tgsi_double_channel *dst,
322 const union tgsi_double_channel *src)
323 {
324 dst->d[0] = sqrt(src->d[0]);
325 dst->d[1] = sqrt(src->d[1]);
326 dst->d[2] = sqrt(src->d[2]);
327 dst->d[3] = sqrt(src->d[3]);
328 }
329
330 static void
331 micro_drsq(union tgsi_double_channel *dst,
332 const union tgsi_double_channel *src)
333 {
334 dst->d[0] = 1.0 / sqrt(src->d[0]);
335 dst->d[1] = 1.0 / sqrt(src->d[1]);
336 dst->d[2] = 1.0 / sqrt(src->d[2]);
337 dst->d[3] = 1.0 / sqrt(src->d[3]);
338 }
339
340 static void
341 micro_dmad(union tgsi_double_channel *dst,
342 const union tgsi_double_channel *src)
343 {
344 dst->d[0] = src[0].d[0] * src[1].d[0] + src[2].d[0];
345 dst->d[1] = src[0].d[1] * src[1].d[1] + src[2].d[1];
346 dst->d[2] = src[0].d[2] * src[1].d[2] + src[2].d[2];
347 dst->d[3] = src[0].d[3] * src[1].d[3] + src[2].d[3];
348 }
349
350 static void
351 micro_dfrac(union tgsi_double_channel *dst,
352 const union tgsi_double_channel *src)
353 {
354 dst->d[0] = src->d[0] - floor(src->d[0]);
355 dst->d[1] = src->d[1] - floor(src->d[1]);
356 dst->d[2] = src->d[2] - floor(src->d[2]);
357 dst->d[3] = src->d[3] - floor(src->d[3]);
358 }
359
360 static void
361 micro_dldexp(union tgsi_double_channel *dst,
362 const union tgsi_double_channel *src0,
363 union tgsi_exec_channel *src1)
364 {
365 dst->d[0] = ldexp(src0->d[0], src1->i[0]);
366 dst->d[1] = ldexp(src0->d[1], src1->i[1]);
367 dst->d[2] = ldexp(src0->d[2], src1->i[2]);
368 dst->d[3] = ldexp(src0->d[3], src1->i[3]);
369 }
370
371 static void
372 micro_dfracexp(union tgsi_double_channel *dst,
373 union tgsi_exec_channel *dst_exp,
374 const union tgsi_double_channel *src)
375 {
376 dst->d[0] = frexp(src->d[0], &dst_exp->i[0]);
377 dst->d[1] = frexp(src->d[1], &dst_exp->i[1]);
378 dst->d[2] = frexp(src->d[2], &dst_exp->i[2]);
379 dst->d[3] = frexp(src->d[3], &dst_exp->i[3]);
380 }
381
382 static void
383 micro_exp2(union tgsi_exec_channel *dst,
384 const union tgsi_exec_channel *src)
385 {
386 #if FAST_MATH
387 dst->f[0] = util_fast_exp2(src->f[0]);
388 dst->f[1] = util_fast_exp2(src->f[1]);
389 dst->f[2] = util_fast_exp2(src->f[2]);
390 dst->f[3] = util_fast_exp2(src->f[3]);
391 #else
392 #if DEBUG
393 /* Inf is okay for this instruction, so clamp it to silence assertions. */
394 uint i;
395 union tgsi_exec_channel clamped;
396
397 for (i = 0; i < 4; i++) {
398 if (src->f[i] > 127.99999f) {
399 clamped.f[i] = 127.99999f;
400 } else if (src->f[i] < -126.99999f) {
401 clamped.f[i] = -126.99999f;
402 } else {
403 clamped.f[i] = src->f[i];
404 }
405 }
406 src = &clamped;
407 #endif /* DEBUG */
408
409 dst->f[0] = powf(2.0f, src->f[0]);
410 dst->f[1] = powf(2.0f, src->f[1]);
411 dst->f[2] = powf(2.0f, src->f[2]);
412 dst->f[3] = powf(2.0f, src->f[3]);
413 #endif /* FAST_MATH */
414 }
415
416 static void
417 micro_f2d(union tgsi_double_channel *dst,
418 const union tgsi_exec_channel *src)
419 {
420 dst->d[0] = (double)src->f[0];
421 dst->d[1] = (double)src->f[1];
422 dst->d[2] = (double)src->f[2];
423 dst->d[3] = (double)src->f[3];
424 }
425
426 static void
427 micro_flr(union tgsi_exec_channel *dst,
428 const union tgsi_exec_channel *src)
429 {
430 dst->f[0] = floorf(src->f[0]);
431 dst->f[1] = floorf(src->f[1]);
432 dst->f[2] = floorf(src->f[2]);
433 dst->f[3] = floorf(src->f[3]);
434 }
435
436 static void
437 micro_frc(union tgsi_exec_channel *dst,
438 const union tgsi_exec_channel *src)
439 {
440 dst->f[0] = src->f[0] - floorf(src->f[0]);
441 dst->f[1] = src->f[1] - floorf(src->f[1]);
442 dst->f[2] = src->f[2] - floorf(src->f[2]);
443 dst->f[3] = src->f[3] - floorf(src->f[3]);
444 }
445
446 static void
447 micro_i2d(union tgsi_double_channel *dst,
448 const union tgsi_exec_channel *src)
449 {
450 dst->d[0] = (double)src->i[0];
451 dst->d[1] = (double)src->i[1];
452 dst->d[2] = (double)src->i[2];
453 dst->d[3] = (double)src->i[3];
454 }
455
456 static void
457 micro_iabs(union tgsi_exec_channel *dst,
458 const union tgsi_exec_channel *src)
459 {
460 dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
461 dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
462 dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
463 dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
464 }
465
466 static void
467 micro_ineg(union tgsi_exec_channel *dst,
468 const union tgsi_exec_channel *src)
469 {
470 dst->i[0] = -src->i[0];
471 dst->i[1] = -src->i[1];
472 dst->i[2] = -src->i[2];
473 dst->i[3] = -src->i[3];
474 }
475
476 static void
477 micro_lg2(union tgsi_exec_channel *dst,
478 const union tgsi_exec_channel *src)
479 {
480 #if FAST_MATH
481 dst->f[0] = util_fast_log2(src->f[0]);
482 dst->f[1] = util_fast_log2(src->f[1]);
483 dst->f[2] = util_fast_log2(src->f[2]);
484 dst->f[3] = util_fast_log2(src->f[3]);
485 #else
486 dst->f[0] = logf(src->f[0]) * 1.442695f;
487 dst->f[1] = logf(src->f[1]) * 1.442695f;
488 dst->f[2] = logf(src->f[2]) * 1.442695f;
489 dst->f[3] = logf(src->f[3]) * 1.442695f;
490 #endif
491 }
492
493 static void
494 micro_lrp(union tgsi_exec_channel *dst,
495 const union tgsi_exec_channel *src0,
496 const union tgsi_exec_channel *src1,
497 const union tgsi_exec_channel *src2)
498 {
499 dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
500 dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
501 dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
502 dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
503 }
504
505 static void
506 micro_mad(union tgsi_exec_channel *dst,
507 const union tgsi_exec_channel *src0,
508 const union tgsi_exec_channel *src1,
509 const union tgsi_exec_channel *src2)
510 {
511 dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
512 dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
513 dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
514 dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
515 }
516
517 static void
518 micro_mov(union tgsi_exec_channel *dst,
519 const union tgsi_exec_channel *src)
520 {
521 dst->u[0] = src->u[0];
522 dst->u[1] = src->u[1];
523 dst->u[2] = src->u[2];
524 dst->u[3] = src->u[3];
525 }
526
527 static void
528 micro_rcp(union tgsi_exec_channel *dst,
529 const union tgsi_exec_channel *src)
530 {
531 #if 0 /* for debugging */
532 assert(src->f[0] != 0.0f);
533 assert(src->f[1] != 0.0f);
534 assert(src->f[2] != 0.0f);
535 assert(src->f[3] != 0.0f);
536 #endif
537 dst->f[0] = 1.0f / src->f[0];
538 dst->f[1] = 1.0f / src->f[1];
539 dst->f[2] = 1.0f / src->f[2];
540 dst->f[3] = 1.0f / src->f[3];
541 }
542
543 static void
544 micro_rnd(union tgsi_exec_channel *dst,
545 const union tgsi_exec_channel *src)
546 {
547 dst->f[0] = _mesa_roundevenf(src->f[0]);
548 dst->f[1] = _mesa_roundevenf(src->f[1]);
549 dst->f[2] = _mesa_roundevenf(src->f[2]);
550 dst->f[3] = _mesa_roundevenf(src->f[3]);
551 }
552
553 static void
554 micro_rsq(union tgsi_exec_channel *dst,
555 const union tgsi_exec_channel *src)
556 {
557 #if 0 /* for debugging */
558 assert(src->f[0] != 0.0f);
559 assert(src->f[1] != 0.0f);
560 assert(src->f[2] != 0.0f);
561 assert(src->f[3] != 0.0f);
562 #endif
563 dst->f[0] = 1.0f / sqrtf(src->f[0]);
564 dst->f[1] = 1.0f / sqrtf(src->f[1]);
565 dst->f[2] = 1.0f / sqrtf(src->f[2]);
566 dst->f[3] = 1.0f / sqrtf(src->f[3]);
567 }
568
569 static void
570 micro_sqrt(union tgsi_exec_channel *dst,
571 const union tgsi_exec_channel *src)
572 {
573 dst->f[0] = sqrtf(src->f[0]);
574 dst->f[1] = sqrtf(src->f[1]);
575 dst->f[2] = sqrtf(src->f[2]);
576 dst->f[3] = sqrtf(src->f[3]);
577 }
578
579 static void
580 micro_seq(union tgsi_exec_channel *dst,
581 const union tgsi_exec_channel *src0,
582 const union tgsi_exec_channel *src1)
583 {
584 dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
585 dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
586 dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
587 dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
588 }
589
590 static void
591 micro_sge(union tgsi_exec_channel *dst,
592 const union tgsi_exec_channel *src0,
593 const union tgsi_exec_channel *src1)
594 {
595 dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
596 dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
597 dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
598 dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
599 }
600
601 static void
602 micro_sgn(union tgsi_exec_channel *dst,
603 const union tgsi_exec_channel *src)
604 {
605 dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
606 dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
607 dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
608 dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
609 }
610
611 static void
612 micro_isgn(union tgsi_exec_channel *dst,
613 const union tgsi_exec_channel *src)
614 {
615 dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
616 dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
617 dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
618 dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
619 }
620
621 static void
622 micro_sgt(union tgsi_exec_channel *dst,
623 const union tgsi_exec_channel *src0,
624 const union tgsi_exec_channel *src1)
625 {
626 dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
627 dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
628 dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
629 dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
630 }
631
632 static void
633 micro_sin(union tgsi_exec_channel *dst,
634 const union tgsi_exec_channel *src)
635 {
636 dst->f[0] = sinf(src->f[0]);
637 dst->f[1] = sinf(src->f[1]);
638 dst->f[2] = sinf(src->f[2]);
639 dst->f[3] = sinf(src->f[3]);
640 }
641
642 static void
643 micro_sle(union tgsi_exec_channel *dst,
644 const union tgsi_exec_channel *src0,
645 const union tgsi_exec_channel *src1)
646 {
647 dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
648 dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
649 dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
650 dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
651 }
652
653 static void
654 micro_slt(union tgsi_exec_channel *dst,
655 const union tgsi_exec_channel *src0,
656 const union tgsi_exec_channel *src1)
657 {
658 dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
659 dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
660 dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
661 dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
662 }
663
664 static void
665 micro_sne(union tgsi_exec_channel *dst,
666 const union tgsi_exec_channel *src0,
667 const union tgsi_exec_channel *src1)
668 {
669 dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
670 dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
671 dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
672 dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
673 }
674
675 static void
676 micro_trunc(union tgsi_exec_channel *dst,
677 const union tgsi_exec_channel *src)
678 {
679 dst->f[0] = truncf(src->f[0]);
680 dst->f[1] = truncf(src->f[1]);
681 dst->f[2] = truncf(src->f[2]);
682 dst->f[3] = truncf(src->f[3]);
683 }
684
685 static void
686 micro_u2d(union tgsi_double_channel *dst,
687 const union tgsi_exec_channel *src)
688 {
689 dst->d[0] = (double)src->u[0];
690 dst->d[1] = (double)src->u[1];
691 dst->d[2] = (double)src->u[2];
692 dst->d[3] = (double)src->u[3];
693 }
694
695 static void
696 micro_i64abs(union tgsi_double_channel *dst,
697 const union tgsi_double_channel *src)
698 {
699 dst->i64[0] = src->i64[0] >= 0.0 ? src->i64[0] : -src->i64[0];
700 dst->i64[1] = src->i64[1] >= 0.0 ? src->i64[1] : -src->i64[1];
701 dst->i64[2] = src->i64[2] >= 0.0 ? src->i64[2] : -src->i64[2];
702 dst->i64[3] = src->i64[3] >= 0.0 ? src->i64[3] : -src->i64[3];
703 }
704
705 static void
706 micro_i64sgn(union tgsi_double_channel *dst,
707 const union tgsi_double_channel *src)
708 {
709 dst->i64[0] = src->i64[0] < 0 ? -1 : src->i64[0] > 0 ? 1 : 0;
710 dst->i64[1] = src->i64[1] < 0 ? -1 : src->i64[1] > 0 ? 1 : 0;
711 dst->i64[2] = src->i64[2] < 0 ? -1 : src->i64[2] > 0 ? 1 : 0;
712 dst->i64[3] = src->i64[3] < 0 ? -1 : src->i64[3] > 0 ? 1 : 0;
713 }
714
715 static void
716 micro_i64neg(union tgsi_double_channel *dst,
717 const union tgsi_double_channel *src)
718 {
719 dst->i64[0] = -src->i64[0];
720 dst->i64[1] = -src->i64[1];
721 dst->i64[2] = -src->i64[2];
722 dst->i64[3] = -src->i64[3];
723 }
724
725 static void
726 micro_u64seq(union tgsi_double_channel *dst,
727 const union tgsi_double_channel *src)
728 {
729 dst->u[0][0] = src[0].u64[0] == src[1].u64[0] ? ~0U : 0U;
730 dst->u[1][0] = src[0].u64[1] == src[1].u64[1] ? ~0U : 0U;
731 dst->u[2][0] = src[0].u64[2] == src[1].u64[2] ? ~0U : 0U;
732 dst->u[3][0] = src[0].u64[3] == src[1].u64[3] ? ~0U : 0U;
733 }
734
735 static void
736 micro_u64sne(union tgsi_double_channel *dst,
737 const union tgsi_double_channel *src)
738 {
739 dst->u[0][0] = src[0].u64[0] != src[1].u64[0] ? ~0U : 0U;
740 dst->u[1][0] = src[0].u64[1] != src[1].u64[1] ? ~0U : 0U;
741 dst->u[2][0] = src[0].u64[2] != src[1].u64[2] ? ~0U : 0U;
742 dst->u[3][0] = src[0].u64[3] != src[1].u64[3] ? ~0U : 0U;
743 }
744
745 static void
746 micro_i64slt(union tgsi_double_channel *dst,
747 const union tgsi_double_channel *src)
748 {
749 dst->u[0][0] = src[0].i64[0] < src[1].i64[0] ? ~0U : 0U;
750 dst->u[1][0] = src[0].i64[1] < src[1].i64[1] ? ~0U : 0U;
751 dst->u[2][0] = src[0].i64[2] < src[1].i64[2] ? ~0U : 0U;
752 dst->u[3][0] = src[0].i64[3] < src[1].i64[3] ? ~0U : 0U;
753 }
754
755 static void
756 micro_u64slt(union tgsi_double_channel *dst,
757 const union tgsi_double_channel *src)
758 {
759 dst->u[0][0] = src[0].u64[0] < src[1].u64[0] ? ~0U : 0U;
760 dst->u[1][0] = src[0].u64[1] < src[1].u64[1] ? ~0U : 0U;
761 dst->u[2][0] = src[0].u64[2] < src[1].u64[2] ? ~0U : 0U;
762 dst->u[3][0] = src[0].u64[3] < src[1].u64[3] ? ~0U : 0U;
763 }
764
765 static void
766 micro_i64sge(union tgsi_double_channel *dst,
767 const union tgsi_double_channel *src)
768 {
769 dst->u[0][0] = src[0].i64[0] >= src[1].i64[0] ? ~0U : 0U;
770 dst->u[1][0] = src[0].i64[1] >= src[1].i64[1] ? ~0U : 0U;
771 dst->u[2][0] = src[0].i64[2] >= src[1].i64[2] ? ~0U : 0U;
772 dst->u[3][0] = src[0].i64[3] >= src[1].i64[3] ? ~0U : 0U;
773 }
774
775 static void
776 micro_u64sge(union tgsi_double_channel *dst,
777 const union tgsi_double_channel *src)
778 {
779 dst->u[0][0] = src[0].u64[0] >= src[1].u64[0] ? ~0U : 0U;
780 dst->u[1][0] = src[0].u64[1] >= src[1].u64[1] ? ~0U : 0U;
781 dst->u[2][0] = src[0].u64[2] >= src[1].u64[2] ? ~0U : 0U;
782 dst->u[3][0] = src[0].u64[3] >= src[1].u64[3] ? ~0U : 0U;
783 }
784
785 static void
786 micro_u64max(union tgsi_double_channel *dst,
787 const union tgsi_double_channel *src)
788 {
789 dst->u64[0] = src[0].u64[0] > src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
790 dst->u64[1] = src[0].u64[1] > src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
791 dst->u64[2] = src[0].u64[2] > src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
792 dst->u64[3] = src[0].u64[3] > src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
793 }
794
795 static void
796 micro_i64max(union tgsi_double_channel *dst,
797 const union tgsi_double_channel *src)
798 {
799 dst->i64[0] = src[0].i64[0] > src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
800 dst->i64[1] = src[0].i64[1] > src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
801 dst->i64[2] = src[0].i64[2] > src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
802 dst->i64[3] = src[0].i64[3] > src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
803 }
804
805 static void
806 micro_u64min(union tgsi_double_channel *dst,
807 const union tgsi_double_channel *src)
808 {
809 dst->u64[0] = src[0].u64[0] < src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
810 dst->u64[1] = src[0].u64[1] < src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
811 dst->u64[2] = src[0].u64[2] < src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
812 dst->u64[3] = src[0].u64[3] < src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
813 }
814
815 static void
816 micro_i64min(union tgsi_double_channel *dst,
817 const union tgsi_double_channel *src)
818 {
819 dst->i64[0] = src[0].i64[0] < src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
820 dst->i64[1] = src[0].i64[1] < src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
821 dst->i64[2] = src[0].i64[2] < src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
822 dst->i64[3] = src[0].i64[3] < src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
823 }
824
825 static void
826 micro_u64add(union tgsi_double_channel *dst,
827 const union tgsi_double_channel *src)
828 {
829 dst->u64[0] = src[0].u64[0] + src[1].u64[0];
830 dst->u64[1] = src[0].u64[1] + src[1].u64[1];
831 dst->u64[2] = src[0].u64[2] + src[1].u64[2];
832 dst->u64[3] = src[0].u64[3] + src[1].u64[3];
833 }
834
835 static void
836 micro_u64mul(union tgsi_double_channel *dst,
837 const union tgsi_double_channel *src)
838 {
839 dst->u64[0] = src[0].u64[0] * src[1].u64[0];
840 dst->u64[1] = src[0].u64[1] * src[1].u64[1];
841 dst->u64[2] = src[0].u64[2] * src[1].u64[2];
842 dst->u64[3] = src[0].u64[3] * src[1].u64[3];
843 }
844
845 static void
846 micro_u64div(union tgsi_double_channel *dst,
847 const union tgsi_double_channel *src)
848 {
849 dst->u64[0] = src[1].u64[0] ? src[0].u64[0] / src[1].u64[0] : ~0ull;
850 dst->u64[1] = src[1].u64[1] ? src[0].u64[1] / src[1].u64[1] : ~0ull;
851 dst->u64[2] = src[1].u64[2] ? src[0].u64[2] / src[1].u64[2] : ~0ull;
852 dst->u64[3] = src[1].u64[3] ? src[0].u64[3] / src[1].u64[3] : ~0ull;
853 }
854
855 static void
856 micro_i64div(union tgsi_double_channel *dst,
857 const union tgsi_double_channel *src)
858 {
859 dst->i64[0] = src[1].i64[0] ? src[0].i64[0] / src[1].i64[0] : 0;
860 dst->i64[1] = src[1].i64[1] ? src[0].i64[1] / src[1].i64[1] : 0;
861 dst->i64[2] = src[1].i64[2] ? src[0].i64[2] / src[1].i64[2] : 0;
862 dst->i64[3] = src[1].i64[3] ? src[0].i64[3] / src[1].i64[3] : 0;
863 }
864
865 static void
866 micro_u64mod(union tgsi_double_channel *dst,
867 const union tgsi_double_channel *src)
868 {
869 dst->u64[0] = src[1].u64[0] ? src[0].u64[0] % src[1].u64[0] : ~0ull;
870 dst->u64[1] = src[1].u64[1] ? src[0].u64[1] % src[1].u64[1] : ~0ull;
871 dst->u64[2] = src[1].u64[2] ? src[0].u64[2] % src[1].u64[2] : ~0ull;
872 dst->u64[3] = src[1].u64[3] ? src[0].u64[3] % src[1].u64[3] : ~0ull;
873 }
874
875 static void
876 micro_i64mod(union tgsi_double_channel *dst,
877 const union tgsi_double_channel *src)
878 {
879 dst->i64[0] = src[1].i64[0] ? src[0].i64[0] % src[1].i64[0] : ~0ll;
880 dst->i64[1] = src[1].i64[1] ? src[0].i64[1] % src[1].i64[1] : ~0ll;
881 dst->i64[2] = src[1].i64[2] ? src[0].i64[2] % src[1].i64[2] : ~0ll;
882 dst->i64[3] = src[1].i64[3] ? src[0].i64[3] % src[1].i64[3] : ~0ll;
883 }
884
885 static void
886 micro_u64shl(union tgsi_double_channel *dst,
887 const union tgsi_double_channel *src0,
888 union tgsi_exec_channel *src1)
889 {
890 unsigned masked_count;
891 masked_count = src1->u[0] & 0x3f;
892 dst->u64[0] = src0->u64[0] << masked_count;
893 masked_count = src1->u[1] & 0x3f;
894 dst->u64[1] = src0->u64[1] << masked_count;
895 masked_count = src1->u[2] & 0x3f;
896 dst->u64[2] = src0->u64[2] << masked_count;
897 masked_count = src1->u[3] & 0x3f;
898 dst->u64[3] = src0->u64[3] << masked_count;
899 }
900
901 static void
902 micro_i64shr(union tgsi_double_channel *dst,
903 const union tgsi_double_channel *src0,
904 union tgsi_exec_channel *src1)
905 {
906 unsigned masked_count;
907 masked_count = src1->u[0] & 0x3f;
908 dst->i64[0] = src0->i64[0] >> masked_count;
909 masked_count = src1->u[1] & 0x3f;
910 dst->i64[1] = src0->i64[1] >> masked_count;
911 masked_count = src1->u[2] & 0x3f;
912 dst->i64[2] = src0->i64[2] >> masked_count;
913 masked_count = src1->u[3] & 0x3f;
914 dst->i64[3] = src0->i64[3] >> masked_count;
915 }
916
917 static void
918 micro_u64shr(union tgsi_double_channel *dst,
919 const union tgsi_double_channel *src0,
920 union tgsi_exec_channel *src1)
921 {
922 unsigned masked_count;
923 masked_count = src1->u[0] & 0x3f;
924 dst->u64[0] = src0->u64[0] >> masked_count;
925 masked_count = src1->u[1] & 0x3f;
926 dst->u64[1] = src0->u64[1] >> masked_count;
927 masked_count = src1->u[2] & 0x3f;
928 dst->u64[2] = src0->u64[2] >> masked_count;
929 masked_count = src1->u[3] & 0x3f;
930 dst->u64[3] = src0->u64[3] >> masked_count;
931 }
932
933 enum tgsi_exec_datatype {
934 TGSI_EXEC_DATA_FLOAT,
935 TGSI_EXEC_DATA_INT,
936 TGSI_EXEC_DATA_UINT,
937 TGSI_EXEC_DATA_DOUBLE,
938 TGSI_EXEC_DATA_INT64,
939 TGSI_EXEC_DATA_UINT64,
940 };
941
942 /*
943 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
944 */
945 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
946 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
947 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
948 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
949 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
950 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
951
952
953 /** The execution mask depends on the conditional mask and the loop mask */
954 #define UPDATE_EXEC_MASK(MACH) \
955 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
956
957
958 static const union tgsi_exec_channel ZeroVec =
959 { { 0.0, 0.0, 0.0, 0.0 } };
960
961 static const union tgsi_exec_channel OneVec = {
962 {1.0f, 1.0f, 1.0f, 1.0f}
963 };
964
965 static const union tgsi_exec_channel P128Vec = {
966 {128.0f, 128.0f, 128.0f, 128.0f}
967 };
968
969 static const union tgsi_exec_channel M128Vec = {
970 {-128.0f, -128.0f, -128.0f, -128.0f}
971 };
972
973
974 /**
975 * Assert that none of the float values in 'chan' are infinite or NaN.
976 * NaN and Inf may occur normally during program execution and should
977 * not lead to crashes, etc. But when debugging, it's helpful to catch
978 * them.
979 */
980 static inline void
981 check_inf_or_nan(const union tgsi_exec_channel *chan)
982 {
983 assert(!util_is_inf_or_nan((chan)->f[0]));
984 assert(!util_is_inf_or_nan((chan)->f[1]));
985 assert(!util_is_inf_or_nan((chan)->f[2]));
986 assert(!util_is_inf_or_nan((chan)->f[3]));
987 }
988
989
990 #ifdef DEBUG
991 static void
992 print_chan(const char *msg, const union tgsi_exec_channel *chan)
993 {
994 debug_printf("%s = {%f, %f, %f, %f}\n",
995 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
996 }
997 #endif
998
999
1000 #ifdef DEBUG
1001 static void
1002 print_temp(const struct tgsi_exec_machine *mach, uint index)
1003 {
1004 const struct tgsi_exec_vector *tmp = &mach->Temps[index];
1005 int i;
1006 debug_printf("Temp[%u] =\n", index);
1007 for (i = 0; i < 4; i++) {
1008 debug_printf(" %c: { %f, %f, %f, %f }\n",
1009 "XYZW"[i],
1010 tmp->xyzw[i].f[0],
1011 tmp->xyzw[i].f[1],
1012 tmp->xyzw[i].f[2],
1013 tmp->xyzw[i].f[3]);
1014 }
1015 }
1016 #endif
1017
1018
1019 void
1020 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
1021 unsigned num_bufs,
1022 const void **bufs,
1023 const unsigned *buf_sizes)
1024 {
1025 unsigned i;
1026
1027 for (i = 0; i < num_bufs; i++) {
1028 mach->Consts[i] = bufs[i];
1029 mach->ConstsSize[i] = buf_sizes[i];
1030 }
1031 }
1032
1033
1034 /**
1035 * Check if there's a potential src/dst register data dependency when
1036 * using SOA execution.
1037 * Example:
1038 * MOV T, T.yxwz;
1039 * This would expand into:
1040 * MOV t0, t1;
1041 * MOV t1, t0;
1042 * MOV t2, t3;
1043 * MOV t3, t2;
1044 * The second instruction will have the wrong value for t0 if executed as-is.
1045 */
1046 boolean
1047 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
1048 {
1049 uint i, chan;
1050
1051 uint writemask = inst->Dst[0].Register.WriteMask;
1052 if (writemask == TGSI_WRITEMASK_X ||
1053 writemask == TGSI_WRITEMASK_Y ||
1054 writemask == TGSI_WRITEMASK_Z ||
1055 writemask == TGSI_WRITEMASK_W ||
1056 writemask == TGSI_WRITEMASK_NONE) {
1057 /* no chance of data dependency */
1058 return FALSE;
1059 }
1060
1061 /* loop over src regs */
1062 for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
1063 if ((inst->Src[i].Register.File ==
1064 inst->Dst[0].Register.File) &&
1065 ((inst->Src[i].Register.Index ==
1066 inst->Dst[0].Register.Index) ||
1067 inst->Src[i].Register.Indirect ||
1068 inst->Dst[0].Register.Indirect)) {
1069 /* loop over dest channels */
1070 uint channelsWritten = 0x0;
1071 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1072 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1073 /* check if we're reading a channel that's been written */
1074 uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
1075 if (channelsWritten & (1 << swizzle)) {
1076 return TRUE;
1077 }
1078
1079 channelsWritten |= (1 << chan);
1080 }
1081 }
1082 }
1083 }
1084 return FALSE;
1085 }
1086
1087
1088 /**
1089 * Initialize machine state by expanding tokens to full instructions,
1090 * allocating temporary storage, setting up constants, etc.
1091 * After this, we can call tgsi_exec_machine_run() many times.
1092 */
1093 void
1094 tgsi_exec_machine_bind_shader(
1095 struct tgsi_exec_machine *mach,
1096 const struct tgsi_token *tokens,
1097 struct tgsi_sampler *sampler,
1098 struct tgsi_image *image,
1099 struct tgsi_buffer *buffer)
1100 {
1101 uint k;
1102 struct tgsi_parse_context parse;
1103 struct tgsi_full_instruction *instructions;
1104 struct tgsi_full_declaration *declarations;
1105 uint maxInstructions = 10, numInstructions = 0;
1106 uint maxDeclarations = 10, numDeclarations = 0;
1107
1108 #if 0
1109 tgsi_dump(tokens, 0);
1110 #endif
1111
1112 util_init_math();
1113
1114
1115 mach->Tokens = tokens;
1116 mach->Sampler = sampler;
1117 mach->Image = image;
1118 mach->Buffer = buffer;
1119
1120 if (!tokens) {
1121 /* unbind and free all */
1122 FREE(mach->Declarations);
1123 mach->Declarations = NULL;
1124 mach->NumDeclarations = 0;
1125
1126 FREE(mach->Instructions);
1127 mach->Instructions = NULL;
1128 mach->NumInstructions = 0;
1129
1130 return;
1131 }
1132
1133 k = tgsi_parse_init (&parse, mach->Tokens);
1134 if (k != TGSI_PARSE_OK) {
1135 debug_printf( "Problem parsing!\n" );
1136 return;
1137 }
1138
1139 mach->ImmLimit = 0;
1140 mach->NumOutputs = 0;
1141
1142 for (k = 0; k < TGSI_SEMANTIC_COUNT; k++)
1143 mach->SysSemanticToIndex[k] = -1;
1144
1145 if (mach->ShaderType == PIPE_SHADER_GEOMETRY &&
1146 !mach->UsedGeometryShader) {
1147 struct tgsi_exec_vector *inputs;
1148 struct tgsi_exec_vector *outputs;
1149
1150 inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1151 TGSI_MAX_PRIM_VERTICES * PIPE_MAX_SHADER_INPUTS,
1152 16);
1153
1154 if (!inputs)
1155 return;
1156
1157 outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1158 TGSI_MAX_TOTAL_VERTICES, 16);
1159
1160 if (!outputs) {
1161 align_free(inputs);
1162 return;
1163 }
1164
1165 align_free(mach->Inputs);
1166 align_free(mach->Outputs);
1167
1168 mach->Inputs = inputs;
1169 mach->Outputs = outputs;
1170 mach->UsedGeometryShader = TRUE;
1171 }
1172
1173 declarations = (struct tgsi_full_declaration *)
1174 MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
1175
1176 if (!declarations) {
1177 return;
1178 }
1179
1180 instructions = (struct tgsi_full_instruction *)
1181 MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
1182
1183 if (!instructions) {
1184 FREE( declarations );
1185 return;
1186 }
1187
1188 while( !tgsi_parse_end_of_tokens( &parse ) ) {
1189 uint i;
1190
1191 tgsi_parse_token( &parse );
1192 switch( parse.FullToken.Token.Type ) {
1193 case TGSI_TOKEN_TYPE_DECLARATION:
1194 /* save expanded declaration */
1195 if (numDeclarations == maxDeclarations) {
1196 declarations = REALLOC(declarations,
1197 maxDeclarations
1198 * sizeof(struct tgsi_full_declaration),
1199 (maxDeclarations + 10)
1200 * sizeof(struct tgsi_full_declaration));
1201 maxDeclarations += 10;
1202 }
1203 if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
1204 unsigned reg;
1205 for (reg = parse.FullToken.FullDeclaration.Range.First;
1206 reg <= parse.FullToken.FullDeclaration.Range.Last;
1207 ++reg) {
1208 ++mach->NumOutputs;
1209 }
1210 }
1211 else if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
1212 const struct tgsi_full_declaration *decl = &parse.FullToken.FullDeclaration;
1213 mach->SysSemanticToIndex[decl->Semantic.Name] = decl->Range.First;
1214 }
1215
1216 memcpy(declarations + numDeclarations,
1217 &parse.FullToken.FullDeclaration,
1218 sizeof(declarations[0]));
1219 numDeclarations++;
1220 break;
1221
1222 case TGSI_TOKEN_TYPE_IMMEDIATE:
1223 {
1224 uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1225 assert( size <= 4 );
1226 assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
1227
1228 for( i = 0; i < size; i++ ) {
1229 mach->Imms[mach->ImmLimit][i] =
1230 parse.FullToken.FullImmediate.u[i].Float;
1231 }
1232 mach->ImmLimit += 1;
1233 }
1234 break;
1235
1236 case TGSI_TOKEN_TYPE_INSTRUCTION:
1237
1238 /* save expanded instruction */
1239 if (numInstructions == maxInstructions) {
1240 instructions = REALLOC(instructions,
1241 maxInstructions
1242 * sizeof(struct tgsi_full_instruction),
1243 (maxInstructions + 10)
1244 * sizeof(struct tgsi_full_instruction));
1245 maxInstructions += 10;
1246 }
1247
1248 memcpy(instructions + numInstructions,
1249 &parse.FullToken.FullInstruction,
1250 sizeof(instructions[0]));
1251
1252 numInstructions++;
1253 break;
1254
1255 case TGSI_TOKEN_TYPE_PROPERTY:
1256 if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
1257 if (parse.FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
1258 mach->MaxOutputVertices = parse.FullToken.FullProperty.u[0].Data;
1259 }
1260 }
1261 break;
1262
1263 default:
1264 assert( 0 );
1265 }
1266 }
1267 tgsi_parse_free (&parse);
1268
1269 FREE(mach->Declarations);
1270 mach->Declarations = declarations;
1271 mach->NumDeclarations = numDeclarations;
1272
1273 FREE(mach->Instructions);
1274 mach->Instructions = instructions;
1275 mach->NumInstructions = numInstructions;
1276 }
1277
1278
1279 struct tgsi_exec_machine *
1280 tgsi_exec_machine_create(enum pipe_shader_type shader_type)
1281 {
1282 struct tgsi_exec_machine *mach;
1283 uint i;
1284
1285 mach = align_malloc( sizeof *mach, 16 );
1286 if (!mach)
1287 goto fail;
1288
1289 memset(mach, 0, sizeof(*mach));
1290
1291 mach->ShaderType = shader_type;
1292 mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
1293 mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
1294
1295 if (shader_type != PIPE_SHADER_COMPUTE) {
1296 mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_INPUTS, 16);
1297 mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_OUTPUTS, 16);
1298 if (!mach->Inputs || !mach->Outputs)
1299 goto fail;
1300 }
1301
1302 /* Setup constants needed by the SSE2 executor. */
1303 for( i = 0; i < 4; i++ ) {
1304 mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
1305 mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
1306 mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
1307 mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF; /* not used */
1308 mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
1309 mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f; /* not used */
1310 mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
1311 mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
1312 mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
1313 mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
1314 }
1315
1316 #ifdef DEBUG
1317 /* silence warnings */
1318 (void) print_chan;
1319 (void) print_temp;
1320 #endif
1321
1322 return mach;
1323
1324 fail:
1325 if (mach) {
1326 align_free(mach->Inputs);
1327 align_free(mach->Outputs);
1328 align_free(mach);
1329 }
1330 return NULL;
1331 }
1332
1333
1334 void
1335 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
1336 {
1337 if (mach) {
1338 FREE(mach->Instructions);
1339 FREE(mach->Declarations);
1340
1341 align_free(mach->Inputs);
1342 align_free(mach->Outputs);
1343
1344 align_free(mach);
1345 }
1346 }
1347
1348 static void
1349 micro_add(union tgsi_exec_channel *dst,
1350 const union tgsi_exec_channel *src0,
1351 const union tgsi_exec_channel *src1)
1352 {
1353 dst->f[0] = src0->f[0] + src1->f[0];
1354 dst->f[1] = src0->f[1] + src1->f[1];
1355 dst->f[2] = src0->f[2] + src1->f[2];
1356 dst->f[3] = src0->f[3] + src1->f[3];
1357 }
1358
1359 static void
1360 micro_div(
1361 union tgsi_exec_channel *dst,
1362 const union tgsi_exec_channel *src0,
1363 const union tgsi_exec_channel *src1 )
1364 {
1365 if (src1->f[0] != 0) {
1366 dst->f[0] = src0->f[0] / src1->f[0];
1367 }
1368 if (src1->f[1] != 0) {
1369 dst->f[1] = src0->f[1] / src1->f[1];
1370 }
1371 if (src1->f[2] != 0) {
1372 dst->f[2] = src0->f[2] / src1->f[2];
1373 }
1374 if (src1->f[3] != 0) {
1375 dst->f[3] = src0->f[3] / src1->f[3];
1376 }
1377 }
1378
1379 static void
1380 micro_lt(
1381 union tgsi_exec_channel *dst,
1382 const union tgsi_exec_channel *src0,
1383 const union tgsi_exec_channel *src1,
1384 const union tgsi_exec_channel *src2,
1385 const union tgsi_exec_channel *src3 )
1386 {
1387 dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
1388 dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
1389 dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
1390 dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
1391 }
1392
1393 static void
1394 micro_max(union tgsi_exec_channel *dst,
1395 const union tgsi_exec_channel *src0,
1396 const union tgsi_exec_channel *src1)
1397 {
1398 dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
1399 dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
1400 dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
1401 dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
1402 }
1403
1404 static void
1405 micro_min(union tgsi_exec_channel *dst,
1406 const union tgsi_exec_channel *src0,
1407 const union tgsi_exec_channel *src1)
1408 {
1409 dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
1410 dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
1411 dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
1412 dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
1413 }
1414
1415 static void
1416 micro_mul(union tgsi_exec_channel *dst,
1417 const union tgsi_exec_channel *src0,
1418 const union tgsi_exec_channel *src1)
1419 {
1420 dst->f[0] = src0->f[0] * src1->f[0];
1421 dst->f[1] = src0->f[1] * src1->f[1];
1422 dst->f[2] = src0->f[2] * src1->f[2];
1423 dst->f[3] = src0->f[3] * src1->f[3];
1424 }
1425
1426 static void
1427 micro_neg(
1428 union tgsi_exec_channel *dst,
1429 const union tgsi_exec_channel *src )
1430 {
1431 dst->f[0] = -src->f[0];
1432 dst->f[1] = -src->f[1];
1433 dst->f[2] = -src->f[2];
1434 dst->f[3] = -src->f[3];
1435 }
1436
1437 static void
1438 micro_pow(
1439 union tgsi_exec_channel *dst,
1440 const union tgsi_exec_channel *src0,
1441 const union tgsi_exec_channel *src1 )
1442 {
1443 #if FAST_MATH
1444 dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1445 dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1446 dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1447 dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1448 #else
1449 dst->f[0] = powf( src0->f[0], src1->f[0] );
1450 dst->f[1] = powf( src0->f[1], src1->f[1] );
1451 dst->f[2] = powf( src0->f[2], src1->f[2] );
1452 dst->f[3] = powf( src0->f[3], src1->f[3] );
1453 #endif
1454 }
1455
1456 static void
1457 micro_sub(union tgsi_exec_channel *dst,
1458 const union tgsi_exec_channel *src0,
1459 const union tgsi_exec_channel *src1)
1460 {
1461 dst->f[0] = src0->f[0] - src1->f[0];
1462 dst->f[1] = src0->f[1] - src1->f[1];
1463 dst->f[2] = src0->f[2] - src1->f[2];
1464 dst->f[3] = src0->f[3] - src1->f[3];
1465 }
1466
1467 static void
1468 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1469 const uint chan_index,
1470 const uint file,
1471 const uint swizzle,
1472 const union tgsi_exec_channel *index,
1473 const union tgsi_exec_channel *index2D,
1474 union tgsi_exec_channel *chan)
1475 {
1476 uint i;
1477
1478 assert(swizzle < 4);
1479
1480 switch (file) {
1481 case TGSI_FILE_CONSTANT:
1482 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1483 assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1484 assert(mach->Consts[index2D->i[i]]);
1485
1486 if (index->i[i] < 0) {
1487 chan->u[i] = 0;
1488 } else {
1489 /* NOTE: copying the const value as a uint instead of float */
1490 const uint constbuf = index2D->i[i];
1491 const uint *buf = (const uint *)mach->Consts[constbuf];
1492 const int pos = index->i[i] * 4 + swizzle;
1493 /* const buffer bounds check */
1494 if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
1495 if (0) {
1496 /* Debug: print warning */
1497 static int count = 0;
1498 if (count++ < 100)
1499 debug_printf("TGSI Exec: const buffer index %d"
1500 " out of bounds\n", pos);
1501 }
1502 chan->u[i] = 0;
1503 }
1504 else
1505 chan->u[i] = buf[pos];
1506 }
1507 }
1508 break;
1509
1510 case TGSI_FILE_INPUT:
1511 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1512 /*
1513 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1514 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1515 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1516 index2D->i[i], index->i[i]);
1517 }*/
1518 int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1519 assert(pos >= 0);
1520 assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1521 chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1522 }
1523 break;
1524
1525 case TGSI_FILE_SYSTEM_VALUE:
1526 /* XXX no swizzling at this point. Will be needed if we put
1527 * gl_FragCoord, for example, in a sys value register.
1528 */
1529 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1530 chan->u[i] = mach->SystemValue[index->i[i]].xyzw[swizzle].u[i];
1531 }
1532 break;
1533
1534 case TGSI_FILE_TEMPORARY:
1535 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1536 assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1537 assert(index2D->i[i] == 0);
1538
1539 chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1540 }
1541 break;
1542
1543 case TGSI_FILE_IMMEDIATE:
1544 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1545 assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1546 assert(index2D->i[i] == 0);
1547
1548 chan->f[i] = mach->Imms[index->i[i]][swizzle];
1549 }
1550 break;
1551
1552 case TGSI_FILE_ADDRESS:
1553 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1554 assert(index->i[i] >= 0);
1555 assert(index2D->i[i] == 0);
1556
1557 chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1558 }
1559 break;
1560
1561 case TGSI_FILE_OUTPUT:
1562 /* vertex/fragment output vars can be read too */
1563 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1564 assert(index->i[i] >= 0);
1565 assert(index2D->i[i] == 0);
1566
1567 chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1568 }
1569 break;
1570
1571 default:
1572 assert(0);
1573 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1574 chan->u[i] = 0;
1575 }
1576 }
1577 }
1578
1579 static void
1580 fetch_source_d(const struct tgsi_exec_machine *mach,
1581 union tgsi_exec_channel *chan,
1582 const struct tgsi_full_src_register *reg,
1583 const uint chan_index,
1584 enum tgsi_exec_datatype src_datatype)
1585 {
1586 union tgsi_exec_channel index;
1587 union tgsi_exec_channel index2D;
1588 uint swizzle;
1589
1590 /* We start with a direct index into a register file.
1591 *
1592 * file[1],
1593 * where:
1594 * file = Register.File
1595 * [1] = Register.Index
1596 */
1597 index.i[0] =
1598 index.i[1] =
1599 index.i[2] =
1600 index.i[3] = reg->Register.Index;
1601
1602 /* There is an extra source register that indirectly subscripts
1603 * a register file. The direct index now becomes an offset
1604 * that is being added to the indirect register.
1605 *
1606 * file[ind[2].x+1],
1607 * where:
1608 * ind = Indirect.File
1609 * [2] = Indirect.Index
1610 * .x = Indirect.SwizzleX
1611 */
1612 if (reg->Register.Indirect) {
1613 union tgsi_exec_channel index2;
1614 union tgsi_exec_channel indir_index;
1615 const uint execmask = mach->ExecMask;
1616 uint i;
1617
1618 /* which address register (always zero now) */
1619 index2.i[0] =
1620 index2.i[1] =
1621 index2.i[2] =
1622 index2.i[3] = reg->Indirect.Index;
1623 /* get current value of address register[swizzle] */
1624 swizzle = reg->Indirect.Swizzle;
1625 fetch_src_file_channel(mach,
1626 chan_index,
1627 reg->Indirect.File,
1628 swizzle,
1629 &index2,
1630 &ZeroVec,
1631 &indir_index);
1632
1633 /* add value of address register to the offset */
1634 index.i[0] += indir_index.i[0];
1635 index.i[1] += indir_index.i[1];
1636 index.i[2] += indir_index.i[2];
1637 index.i[3] += indir_index.i[3];
1638
1639 /* for disabled execution channels, zero-out the index to
1640 * avoid using a potential garbage value.
1641 */
1642 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1643 if ((execmask & (1 << i)) == 0)
1644 index.i[i] = 0;
1645 }
1646 }
1647
1648 /* There is an extra source register that is a second
1649 * subscript to a register file. Effectively it means that
1650 * the register file is actually a 2D array of registers.
1651 *
1652 * file[3][1],
1653 * where:
1654 * [3] = Dimension.Index
1655 */
1656 if (reg->Register.Dimension) {
1657 index2D.i[0] =
1658 index2D.i[1] =
1659 index2D.i[2] =
1660 index2D.i[3] = reg->Dimension.Index;
1661
1662 /* Again, the second subscript index can be addressed indirectly
1663 * identically to the first one.
1664 * Nothing stops us from indirectly addressing the indirect register,
1665 * but there is no need for that, so we won't exercise it.
1666 *
1667 * file[ind[4].y+3][1],
1668 * where:
1669 * ind = DimIndirect.File
1670 * [4] = DimIndirect.Index
1671 * .y = DimIndirect.SwizzleX
1672 */
1673 if (reg->Dimension.Indirect) {
1674 union tgsi_exec_channel index2;
1675 union tgsi_exec_channel indir_index;
1676 const uint execmask = mach->ExecMask;
1677 uint i;
1678
1679 index2.i[0] =
1680 index2.i[1] =
1681 index2.i[2] =
1682 index2.i[3] = reg->DimIndirect.Index;
1683
1684 swizzle = reg->DimIndirect.Swizzle;
1685 fetch_src_file_channel(mach,
1686 chan_index,
1687 reg->DimIndirect.File,
1688 swizzle,
1689 &index2,
1690 &ZeroVec,
1691 &indir_index);
1692
1693 index2D.i[0] += indir_index.i[0];
1694 index2D.i[1] += indir_index.i[1];
1695 index2D.i[2] += indir_index.i[2];
1696 index2D.i[3] += indir_index.i[3];
1697
1698 /* for disabled execution channels, zero-out the index to
1699 * avoid using a potential garbage value.
1700 */
1701 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1702 if ((execmask & (1 << i)) == 0) {
1703 index2D.i[i] = 0;
1704 }
1705 }
1706 }
1707
1708 /* If by any chance there was a need for a 3D array of register
1709 * files, we would have to check whether Dimension is followed
1710 * by a dimension register and continue the saga.
1711 */
1712 } else {
1713 index2D.i[0] =
1714 index2D.i[1] =
1715 index2D.i[2] =
1716 index2D.i[3] = 0;
1717 }
1718
1719 swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1720 fetch_src_file_channel(mach,
1721 chan_index,
1722 reg->Register.File,
1723 swizzle,
1724 &index,
1725 &index2D,
1726 chan);
1727 }
1728
1729 static void
1730 fetch_source(const struct tgsi_exec_machine *mach,
1731 union tgsi_exec_channel *chan,
1732 const struct tgsi_full_src_register *reg,
1733 const uint chan_index,
1734 enum tgsi_exec_datatype src_datatype)
1735 {
1736 fetch_source_d(mach, chan, reg, chan_index, src_datatype);
1737
1738 if (reg->Register.Absolute) {
1739 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1740 micro_abs(chan, chan);
1741 } else {
1742 micro_iabs(chan, chan);
1743 }
1744 }
1745
1746 if (reg->Register.Negate) {
1747 if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1748 micro_neg(chan, chan);
1749 } else {
1750 micro_ineg(chan, chan);
1751 }
1752 }
1753 }
1754
1755 static union tgsi_exec_channel *
1756 store_dest_dstret(struct tgsi_exec_machine *mach,
1757 const union tgsi_exec_channel *chan,
1758 const struct tgsi_full_dst_register *reg,
1759 const struct tgsi_full_instruction *inst,
1760 uint chan_index,
1761 enum tgsi_exec_datatype dst_datatype)
1762 {
1763 static union tgsi_exec_channel null;
1764 union tgsi_exec_channel *dst;
1765 union tgsi_exec_channel index2D;
1766 int offset = 0; /* indirection offset */
1767 int index;
1768
1769 /* for debugging */
1770 if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1771 check_inf_or_nan(chan);
1772 }
1773
1774 /* There is an extra source register that indirectly subscripts
1775 * a register file. The direct index now becomes an offset
1776 * that is being added to the indirect register.
1777 *
1778 * file[ind[2].x+1],
1779 * where:
1780 * ind = Indirect.File
1781 * [2] = Indirect.Index
1782 * .x = Indirect.SwizzleX
1783 */
1784 if (reg->Register.Indirect) {
1785 union tgsi_exec_channel index;
1786 union tgsi_exec_channel indir_index;
1787 uint swizzle;
1788
1789 /* which address register (always zero for now) */
1790 index.i[0] =
1791 index.i[1] =
1792 index.i[2] =
1793 index.i[3] = reg->Indirect.Index;
1794
1795 /* get current value of address register[swizzle] */
1796 swizzle = reg->Indirect.Swizzle;
1797
1798 /* fetch values from the address/indirection register */
1799 fetch_src_file_channel(mach,
1800 chan_index,
1801 reg->Indirect.File,
1802 swizzle,
1803 &index,
1804 &ZeroVec,
1805 &indir_index);
1806
1807 /* save indirection offset */
1808 offset = indir_index.i[0];
1809 }
1810
1811 /* There is an extra source register that is a second
1812 * subscript to a register file. Effectively it means that
1813 * the register file is actually a 2D array of registers.
1814 *
1815 * file[3][1],
1816 * where:
1817 * [3] = Dimension.Index
1818 */
1819 if (reg->Register.Dimension) {
1820 index2D.i[0] =
1821 index2D.i[1] =
1822 index2D.i[2] =
1823 index2D.i[3] = reg->Dimension.Index;
1824
1825 /* Again, the second subscript index can be addressed indirectly
1826 * identically to the first one.
1827 * Nothing stops us from indirectly addressing the indirect register,
1828 * but there is no need for that, so we won't exercise it.
1829 *
1830 * file[ind[4].y+3][1],
1831 * where:
1832 * ind = DimIndirect.File
1833 * [4] = DimIndirect.Index
1834 * .y = DimIndirect.SwizzleX
1835 */
1836 if (reg->Dimension.Indirect) {
1837 union tgsi_exec_channel index2;
1838 union tgsi_exec_channel indir_index;
1839 const uint execmask = mach->ExecMask;
1840 unsigned swizzle;
1841 uint i;
1842
1843 index2.i[0] =
1844 index2.i[1] =
1845 index2.i[2] =
1846 index2.i[3] = reg->DimIndirect.Index;
1847
1848 swizzle = reg->DimIndirect.Swizzle;
1849 fetch_src_file_channel(mach,
1850 chan_index,
1851 reg->DimIndirect.File,
1852 swizzle,
1853 &index2,
1854 &ZeroVec,
1855 &indir_index);
1856
1857 index2D.i[0] += indir_index.i[0];
1858 index2D.i[1] += indir_index.i[1];
1859 index2D.i[2] += indir_index.i[2];
1860 index2D.i[3] += indir_index.i[3];
1861
1862 /* for disabled execution channels, zero-out the index to
1863 * avoid using a potential garbage value.
1864 */
1865 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1866 if ((execmask & (1 << i)) == 0) {
1867 index2D.i[i] = 0;
1868 }
1869 }
1870 }
1871
1872 /* If by any chance there was a need for a 3D array of register
1873 * files, we would have to check whether Dimension is followed
1874 * by a dimension register and continue the saga.
1875 */
1876 } else {
1877 index2D.i[0] =
1878 index2D.i[1] =
1879 index2D.i[2] =
1880 index2D.i[3] = 0;
1881 }
1882
1883 switch (reg->Register.File) {
1884 case TGSI_FILE_NULL:
1885 dst = &null;
1886 break;
1887
1888 case TGSI_FILE_OUTPUT:
1889 index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1890 + reg->Register.Index;
1891 dst = &mach->Outputs[offset + index].xyzw[chan_index];
1892 #if 0
1893 debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1894 mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1895 reg->Register.Index);
1896 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1897 debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1898 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1899 if (execmask & (1 << i))
1900 debug_printf("%f, ", chan->f[i]);
1901 debug_printf(")\n");
1902 }
1903 #endif
1904 break;
1905
1906 case TGSI_FILE_TEMPORARY:
1907 index = reg->Register.Index;
1908 assert( index < TGSI_EXEC_NUM_TEMPS );
1909 dst = &mach->Temps[offset + index].xyzw[chan_index];
1910 break;
1911
1912 case TGSI_FILE_ADDRESS:
1913 index = reg->Register.Index;
1914 dst = &mach->Addrs[index].xyzw[chan_index];
1915 break;
1916
1917 default:
1918 assert( 0 );
1919 return NULL;
1920 }
1921
1922 return dst;
1923 }
1924
1925 static void
1926 store_dest_double(struct tgsi_exec_machine *mach,
1927 const union tgsi_exec_channel *chan,
1928 const struct tgsi_full_dst_register *reg,
1929 const struct tgsi_full_instruction *inst,
1930 uint chan_index,
1931 enum tgsi_exec_datatype dst_datatype)
1932 {
1933 union tgsi_exec_channel *dst;
1934 const uint execmask = mach->ExecMask;
1935 int i;
1936
1937 dst = store_dest_dstret(mach, chan, reg, inst, chan_index,
1938 dst_datatype);
1939 if (!dst)
1940 return;
1941
1942 /* doubles path */
1943 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1944 if (execmask & (1 << i))
1945 dst->i[i] = chan->i[i];
1946 }
1947
1948 static void
1949 store_dest(struct tgsi_exec_machine *mach,
1950 const union tgsi_exec_channel *chan,
1951 const struct tgsi_full_dst_register *reg,
1952 const struct tgsi_full_instruction *inst,
1953 uint chan_index,
1954 enum tgsi_exec_datatype dst_datatype)
1955 {
1956 union tgsi_exec_channel *dst;
1957 const uint execmask = mach->ExecMask;
1958 int i;
1959
1960 dst = store_dest_dstret(mach, chan, reg, inst, chan_index,
1961 dst_datatype);
1962 if (!dst)
1963 return;
1964
1965 if (!inst->Instruction.Saturate) {
1966 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1967 if (execmask & (1 << i))
1968 dst->i[i] = chan->i[i];
1969 }
1970 else {
1971 for (i = 0; i < TGSI_QUAD_SIZE; i++)
1972 if (execmask & (1 << i)) {
1973 if (chan->f[i] < 0.0f)
1974 dst->f[i] = 0.0f;
1975 else if (chan->f[i] > 1.0f)
1976 dst->f[i] = 1.0f;
1977 else
1978 dst->i[i] = chan->i[i];
1979 }
1980 }
1981 }
1982
1983 #define FETCH(VAL,INDEX,CHAN)\
1984 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1985
1986 #define IFETCH(VAL,INDEX,CHAN)\
1987 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1988
1989
1990 /**
1991 * Execute ARB-style KIL which is predicated by a src register.
1992 * Kill fragment if any of the four values is less than zero.
1993 */
1994 static void
1995 exec_kill_if(struct tgsi_exec_machine *mach,
1996 const struct tgsi_full_instruction *inst)
1997 {
1998 uint uniquemask;
1999 uint chan_index;
2000 uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2001 union tgsi_exec_channel r[1];
2002
2003 /* This mask stores component bits that were already tested. */
2004 uniquemask = 0;
2005
2006 for (chan_index = 0; chan_index < 4; chan_index++)
2007 {
2008 uint swizzle;
2009 uint i;
2010
2011 /* unswizzle channel */
2012 swizzle = tgsi_util_get_full_src_register_swizzle (
2013 &inst->Src[0],
2014 chan_index);
2015
2016 /* check if the component has not been already tested */
2017 if (uniquemask & (1 << swizzle))
2018 continue;
2019 uniquemask |= 1 << swizzle;
2020
2021 FETCH(&r[0], 0, chan_index);
2022 for (i = 0; i < 4; i++)
2023 if (r[0].f[i] < 0.0f)
2024 kilmask |= 1 << i;
2025 }
2026
2027 /* restrict to fragments currently executing */
2028 kilmask &= mach->ExecMask;
2029
2030 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2031 }
2032
2033 /**
2034 * Unconditional fragment kill/discard.
2035 */
2036 static void
2037 exec_kill(struct tgsi_exec_machine *mach,
2038 const struct tgsi_full_instruction *inst)
2039 {
2040 uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2041
2042 /* kill fragment for all fragments currently executing */
2043 kilmask = mach->ExecMask;
2044 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2045 }
2046
2047 static void
2048 emit_vertex(struct tgsi_exec_machine *mach)
2049 {
2050 /* FIXME: check for exec mask correctly
2051 unsigned i;
2052 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2053 if ((mach->ExecMask & (1 << i)))
2054 */
2055 if (mach->ExecMask) {
2056 if (mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] >= mach->MaxOutputVertices)
2057 return;
2058
2059 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
2060 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
2061 }
2062 }
2063
2064 static void
2065 emit_primitive(struct tgsi_exec_machine *mach)
2066 {
2067 unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
2068 /* FIXME: check for exec mask correctly
2069 unsigned i;
2070 for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2071 if ((mach->ExecMask & (1 << i)))
2072 */
2073 if (mach->ExecMask) {
2074 ++(*prim_count);
2075 debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
2076 mach->Primitives[*prim_count] = 0;
2077 }
2078 }
2079
2080 static void
2081 conditional_emit_primitive(struct tgsi_exec_machine *mach)
2082 {
2083 if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
2084 int emitted_verts =
2085 mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
2086 if (emitted_verts) {
2087 emit_primitive(mach);
2088 }
2089 }
2090 }
2091
2092
2093 /*
2094 * Fetch four texture samples using STR texture coordinates.
2095 */
2096 static void
2097 fetch_texel( struct tgsi_sampler *sampler,
2098 const unsigned sview_idx,
2099 const unsigned sampler_idx,
2100 const union tgsi_exec_channel *s,
2101 const union tgsi_exec_channel *t,
2102 const union tgsi_exec_channel *p,
2103 const union tgsi_exec_channel *c0,
2104 const union tgsi_exec_channel *c1,
2105 float derivs[3][2][TGSI_QUAD_SIZE],
2106 const int8_t offset[3],
2107 enum tgsi_sampler_control control,
2108 union tgsi_exec_channel *r,
2109 union tgsi_exec_channel *g,
2110 union tgsi_exec_channel *b,
2111 union tgsi_exec_channel *a )
2112 {
2113 uint j;
2114 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2115
2116 /* FIXME: handle explicit derivs, offsets */
2117 sampler->get_samples(sampler, sview_idx, sampler_idx,
2118 s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
2119
2120 for (j = 0; j < 4; j++) {
2121 r->f[j] = rgba[0][j];
2122 g->f[j] = rgba[1][j];
2123 b->f[j] = rgba[2][j];
2124 a->f[j] = rgba[3][j];
2125 }
2126 }
2127
2128
2129 #define TEX_MODIFIER_NONE 0
2130 #define TEX_MODIFIER_PROJECTED 1
2131 #define TEX_MODIFIER_LOD_BIAS 2
2132 #define TEX_MODIFIER_EXPLICIT_LOD 3
2133 #define TEX_MODIFIER_LEVEL_ZERO 4
2134 #define TEX_MODIFIER_GATHER 5
2135
2136 /*
2137 * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
2138 */
2139 static void
2140 fetch_texel_offsets(struct tgsi_exec_machine *mach,
2141 const struct tgsi_full_instruction *inst,
2142 int8_t offsets[3])
2143 {
2144 if (inst->Texture.NumOffsets == 1) {
2145 union tgsi_exec_channel index;
2146 union tgsi_exec_channel offset[3];
2147 index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
2148 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2149 inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
2150 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2151 inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
2152 fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2153 inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
2154 offsets[0] = offset[0].i[0];
2155 offsets[1] = offset[1].i[0];
2156 offsets[2] = offset[2].i[0];
2157 } else {
2158 assert(inst->Texture.NumOffsets == 0);
2159 offsets[0] = offsets[1] = offsets[2] = 0;
2160 }
2161 }
2162
2163
2164 /*
2165 * Fetch dx and dy values for one channel (s, t or r).
2166 * Put dx values into one float array, dy values into another.
2167 */
2168 static void
2169 fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
2170 const struct tgsi_full_instruction *inst,
2171 unsigned regdsrcx,
2172 unsigned chan,
2173 float derivs[2][TGSI_QUAD_SIZE])
2174 {
2175 union tgsi_exec_channel d;
2176 FETCH(&d, regdsrcx, chan);
2177 derivs[0][0] = d.f[0];
2178 derivs[0][1] = d.f[1];
2179 derivs[0][2] = d.f[2];
2180 derivs[0][3] = d.f[3];
2181 FETCH(&d, regdsrcx + 1, chan);
2182 derivs[1][0] = d.f[0];
2183 derivs[1][1] = d.f[1];
2184 derivs[1][2] = d.f[2];
2185 derivs[1][3] = d.f[3];
2186 }
2187
2188 static uint
2189 fetch_sampler_unit(struct tgsi_exec_machine *mach,
2190 const struct tgsi_full_instruction *inst,
2191 uint sampler)
2192 {
2193 uint unit = 0;
2194 int i;
2195 if (inst->Src[sampler].Register.Indirect) {
2196 const struct tgsi_full_src_register *reg = &inst->Src[sampler];
2197 union tgsi_exec_channel indir_index, index2;
2198 const uint execmask = mach->ExecMask;
2199 index2.i[0] =
2200 index2.i[1] =
2201 index2.i[2] =
2202 index2.i[3] = reg->Indirect.Index;
2203
2204 fetch_src_file_channel(mach,
2205 0,
2206 reg->Indirect.File,
2207 reg->Indirect.Swizzle,
2208 &index2,
2209 &ZeroVec,
2210 &indir_index);
2211 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2212 if (execmask & (1 << i)) {
2213 unit = inst->Src[sampler].Register.Index + indir_index.i[i];
2214 break;
2215 }
2216 }
2217
2218 } else {
2219 unit = inst->Src[sampler].Register.Index;
2220 }
2221 return unit;
2222 }
2223
2224 /*
2225 * execute a texture instruction.
2226 *
2227 * modifier is used to control the channel routing for the
2228 * instruction variants like proj, lod, and texture with lod bias.
2229 * sampler indicates which src register the sampler is contained in.
2230 */
2231 static void
2232 exec_tex(struct tgsi_exec_machine *mach,
2233 const struct tgsi_full_instruction *inst,
2234 uint modifier, uint sampler)
2235 {
2236 const union tgsi_exec_channel *args[5], *proj = NULL;
2237 union tgsi_exec_channel r[5];
2238 enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2239 uint chan;
2240 uint unit;
2241 int8_t offsets[3];
2242 int dim, shadow_ref, i;
2243
2244 unit = fetch_sampler_unit(mach, inst, sampler);
2245 /* always fetch all 3 offsets, overkill but keeps code simple */
2246 fetch_texel_offsets(mach, inst, offsets);
2247
2248 assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
2249 assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
2250
2251 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2252 shadow_ref = tgsi_util_get_shadow_ref_src_index(inst->Texture.Texture);
2253
2254 assert(dim <= 4);
2255 if (shadow_ref >= 0)
2256 assert(shadow_ref >= dim && shadow_ref < ARRAY_SIZE(args));
2257
2258 /* fetch modifier to the last argument */
2259 if (modifier != TEX_MODIFIER_NONE) {
2260 const int last = ARRAY_SIZE(args) - 1;
2261
2262 /* fetch modifier from src0.w or src1.x */
2263 if (sampler == 1) {
2264 assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
2265 FETCH(&r[last], 0, TGSI_CHAN_W);
2266 }
2267 else {
2268 assert(shadow_ref != 4);
2269 FETCH(&r[last], 1, TGSI_CHAN_X);
2270 }
2271
2272 if (modifier != TEX_MODIFIER_PROJECTED) {
2273 args[last] = &r[last];
2274 }
2275 else {
2276 proj = &r[last];
2277 args[last] = &ZeroVec;
2278 }
2279
2280 /* point unused arguments to zero vector */
2281 for (i = dim; i < last; i++)
2282 args[i] = &ZeroVec;
2283
2284 if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
2285 control = TGSI_SAMPLER_LOD_EXPLICIT;
2286 else if (modifier == TEX_MODIFIER_LOD_BIAS)
2287 control = TGSI_SAMPLER_LOD_BIAS;
2288 else if (modifier == TEX_MODIFIER_GATHER)
2289 control = TGSI_SAMPLER_GATHER;
2290 }
2291 else {
2292 for (i = dim; i < ARRAY_SIZE(args); i++)
2293 args[i] = &ZeroVec;
2294 }
2295
2296 /* fetch coordinates */
2297 for (i = 0; i < dim; i++) {
2298 FETCH(&r[i], 0, TGSI_CHAN_X + i);
2299
2300 if (proj)
2301 micro_div(&r[i], &r[i], proj);
2302
2303 args[i] = &r[i];
2304 }
2305
2306 /* fetch reference value */
2307 if (shadow_ref >= 0) {
2308 FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
2309
2310 if (proj)
2311 micro_div(&r[shadow_ref], &r[shadow_ref], proj);
2312
2313 args[shadow_ref] = &r[shadow_ref];
2314 }
2315
2316 fetch_texel(mach->Sampler, unit, unit,
2317 args[0], args[1], args[2], args[3], args[4],
2318 NULL, offsets, control,
2319 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2320
2321 #if 0
2322 debug_printf("fetch r: %g %g %g %g\n",
2323 r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
2324 debug_printf("fetch g: %g %g %g %g\n",
2325 r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
2326 debug_printf("fetch b: %g %g %g %g\n",
2327 r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
2328 debug_printf("fetch a: %g %g %g %g\n",
2329 r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
2330 #endif
2331
2332 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2333 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2334 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2335 }
2336 }
2337 }
2338
2339 static void
2340 exec_lodq(struct tgsi_exec_machine *mach,
2341 const struct tgsi_full_instruction *inst)
2342 {
2343 uint unit;
2344 int dim;
2345 int i;
2346 union tgsi_exec_channel coords[4];
2347 const union tgsi_exec_channel *args[ARRAY_SIZE(coords)];
2348 union tgsi_exec_channel r[2];
2349
2350 unit = fetch_sampler_unit(mach, inst, 1);
2351 dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2352 assert(dim <= ARRAY_SIZE(coords));
2353 /* fetch coordinates */
2354 for (i = 0; i < dim; i++) {
2355 FETCH(&coords[i], 0, TGSI_CHAN_X + i);
2356 args[i] = &coords[i];
2357 }
2358 for (i = dim; i < ARRAY_SIZE(coords); i++) {
2359 args[i] = &ZeroVec;
2360 }
2361 mach->Sampler->query_lod(mach->Sampler, unit, unit,
2362 args[0]->f,
2363 args[1]->f,
2364 args[2]->f,
2365 args[3]->f,
2366 TGSI_SAMPLER_LOD_NONE,
2367 r[0].f,
2368 r[1].f);
2369
2370 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2371 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2372 TGSI_EXEC_DATA_FLOAT);
2373 }
2374 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2375 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2376 TGSI_EXEC_DATA_FLOAT);
2377 }
2378 }
2379
2380 static void
2381 exec_txd(struct tgsi_exec_machine *mach,
2382 const struct tgsi_full_instruction *inst)
2383 {
2384 union tgsi_exec_channel r[4];
2385 float derivs[3][2][TGSI_QUAD_SIZE];
2386 uint chan;
2387 uint unit;
2388 int8_t offsets[3];
2389
2390 unit = fetch_sampler_unit(mach, inst, 3);
2391 /* always fetch all 3 offsets, overkill but keeps code simple */
2392 fetch_texel_offsets(mach, inst, offsets);
2393
2394 switch (inst->Texture.Texture) {
2395 case TGSI_TEXTURE_1D:
2396 FETCH(&r[0], 0, TGSI_CHAN_X);
2397
2398 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2399
2400 fetch_texel(mach->Sampler, unit, unit,
2401 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2402 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2403 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2404 break;
2405
2406 case TGSI_TEXTURE_SHADOW1D:
2407 case TGSI_TEXTURE_1D_ARRAY:
2408 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2409 /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
2410 FETCH(&r[0], 0, TGSI_CHAN_X);
2411 FETCH(&r[1], 0, TGSI_CHAN_Y);
2412 FETCH(&r[2], 0, TGSI_CHAN_Z);
2413
2414 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2415
2416 fetch_texel(mach->Sampler, unit, unit,
2417 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2418 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2419 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2420 break;
2421
2422 case TGSI_TEXTURE_2D:
2423 case TGSI_TEXTURE_RECT:
2424 FETCH(&r[0], 0, TGSI_CHAN_X);
2425 FETCH(&r[1], 0, TGSI_CHAN_Y);
2426
2427 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2428 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2429
2430 fetch_texel(mach->Sampler, unit, unit,
2431 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2432 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2433 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2434 break;
2435
2436
2437 case TGSI_TEXTURE_SHADOW2D:
2438 case TGSI_TEXTURE_SHADOWRECT:
2439 case TGSI_TEXTURE_2D_ARRAY:
2440 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2441 /* only SHADOW2D_ARRAY actually needs W */
2442 FETCH(&r[0], 0, TGSI_CHAN_X);
2443 FETCH(&r[1], 0, TGSI_CHAN_Y);
2444 FETCH(&r[2], 0, TGSI_CHAN_Z);
2445 FETCH(&r[3], 0, TGSI_CHAN_W);
2446
2447 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2448 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2449
2450 fetch_texel(mach->Sampler, unit, unit,
2451 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
2452 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2453 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2454 break;
2455
2456 case TGSI_TEXTURE_3D:
2457 case TGSI_TEXTURE_CUBE:
2458 case TGSI_TEXTURE_CUBE_ARRAY:
2459 case TGSI_TEXTURE_SHADOWCUBE:
2460 /* only TEXTURE_CUBE_ARRAY and TEXTURE_SHADOWCUBE actually need W */
2461 FETCH(&r[0], 0, TGSI_CHAN_X);
2462 FETCH(&r[1], 0, TGSI_CHAN_Y);
2463 FETCH(&r[2], 0, TGSI_CHAN_Z);
2464 FETCH(&r[3], 0, TGSI_CHAN_W);
2465
2466 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2467 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2468 fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
2469
2470 fetch_texel(mach->Sampler, unit, unit,
2471 &r[0], &r[1], &r[2], &r[3], &ZeroVec, /* inputs */
2472 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2473 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2474 break;
2475
2476 default:
2477 assert(0);
2478 }
2479
2480 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2481 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2482 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2483 }
2484 }
2485 }
2486
2487
2488 static void
2489 exec_txf(struct tgsi_exec_machine *mach,
2490 const struct tgsi_full_instruction *inst)
2491 {
2492 union tgsi_exec_channel r[4];
2493 uint chan;
2494 uint unit;
2495 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2496 int j;
2497 int8_t offsets[3];
2498 unsigned target;
2499
2500 unit = fetch_sampler_unit(mach, inst, 1);
2501 /* always fetch all 3 offsets, overkill but keeps code simple */
2502 fetch_texel_offsets(mach, inst, offsets);
2503
2504 IFETCH(&r[3], 0, TGSI_CHAN_W);
2505
2506 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2507 inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2508 target = mach->SamplerViews[unit].Resource;
2509 }
2510 else {
2511 target = inst->Texture.Texture;
2512 }
2513 switch(target) {
2514 case TGSI_TEXTURE_3D:
2515 case TGSI_TEXTURE_2D_ARRAY:
2516 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2517 case TGSI_TEXTURE_2D_ARRAY_MSAA:
2518 IFETCH(&r[2], 0, TGSI_CHAN_Z);
2519 /* fallthrough */
2520 case TGSI_TEXTURE_2D:
2521 case TGSI_TEXTURE_RECT:
2522 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2523 case TGSI_TEXTURE_SHADOW2D:
2524 case TGSI_TEXTURE_SHADOWRECT:
2525 case TGSI_TEXTURE_1D_ARRAY:
2526 case TGSI_TEXTURE_2D_MSAA:
2527 IFETCH(&r[1], 0, TGSI_CHAN_Y);
2528 /* fallthrough */
2529 case TGSI_TEXTURE_BUFFER:
2530 case TGSI_TEXTURE_1D:
2531 case TGSI_TEXTURE_SHADOW1D:
2532 IFETCH(&r[0], 0, TGSI_CHAN_X);
2533 break;
2534 default:
2535 assert(0);
2536 break;
2537 }
2538
2539 mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2540 offsets, rgba);
2541
2542 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2543 r[0].f[j] = rgba[0][j];
2544 r[1].f[j] = rgba[1][j];
2545 r[2].f[j] = rgba[2][j];
2546 r[3].f[j] = rgba[3][j];
2547 }
2548
2549 if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2550 inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2551 unsigned char swizzles[4];
2552 swizzles[0] = inst->Src[1].Register.SwizzleX;
2553 swizzles[1] = inst->Src[1].Register.SwizzleY;
2554 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2555 swizzles[3] = inst->Src[1].Register.SwizzleW;
2556
2557 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2558 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2559 store_dest(mach, &r[swizzles[chan]],
2560 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2561 }
2562 }
2563 }
2564 else {
2565 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2566 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2567 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2568 }
2569 }
2570 }
2571 }
2572
2573 static void
2574 exec_txq(struct tgsi_exec_machine *mach,
2575 const struct tgsi_full_instruction *inst)
2576 {
2577 int result[4];
2578 union tgsi_exec_channel r[4], src;
2579 uint chan;
2580 uint unit;
2581 int i,j;
2582
2583 unit = fetch_sampler_unit(mach, inst, 1);
2584
2585 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2586
2587 /* XXX: This interface can't return per-pixel values */
2588 mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2589
2590 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2591 for (j = 0; j < 4; j++) {
2592 r[j].i[i] = result[j];
2593 }
2594 }
2595
2596 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2597 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2598 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2599 TGSI_EXEC_DATA_INT);
2600 }
2601 }
2602 }
2603
2604 static void
2605 exec_sample(struct tgsi_exec_machine *mach,
2606 const struct tgsi_full_instruction *inst,
2607 uint modifier, boolean compare)
2608 {
2609 const uint resource_unit = inst->Src[1].Register.Index;
2610 const uint sampler_unit = inst->Src[2].Register.Index;
2611 union tgsi_exec_channel r[5], c1;
2612 const union tgsi_exec_channel *lod = &ZeroVec;
2613 enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2614 uint chan;
2615 unsigned char swizzles[4];
2616 int8_t offsets[3];
2617
2618 /* always fetch all 3 offsets, overkill but keeps code simple */
2619 fetch_texel_offsets(mach, inst, offsets);
2620
2621 assert(modifier != TEX_MODIFIER_PROJECTED);
2622
2623 if (modifier != TEX_MODIFIER_NONE) {
2624 if (modifier == TEX_MODIFIER_LOD_BIAS) {
2625 FETCH(&c1, 3, TGSI_CHAN_X);
2626 lod = &c1;
2627 control = TGSI_SAMPLER_LOD_BIAS;
2628 }
2629 else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2630 FETCH(&c1, 3, TGSI_CHAN_X);
2631 lod = &c1;
2632 control = TGSI_SAMPLER_LOD_EXPLICIT;
2633 }
2634 else {
2635 assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2636 control = TGSI_SAMPLER_LOD_ZERO;
2637 }
2638 }
2639
2640 FETCH(&r[0], 0, TGSI_CHAN_X);
2641
2642 switch (mach->SamplerViews[resource_unit].Resource) {
2643 case TGSI_TEXTURE_1D:
2644 if (compare) {
2645 FETCH(&r[2], 3, TGSI_CHAN_X);
2646 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2647 &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2648 NULL, offsets, control,
2649 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2650 }
2651 else {
2652 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2653 &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2654 NULL, offsets, control,
2655 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2656 }
2657 break;
2658
2659 case TGSI_TEXTURE_1D_ARRAY:
2660 case TGSI_TEXTURE_2D:
2661 case TGSI_TEXTURE_RECT:
2662 FETCH(&r[1], 0, TGSI_CHAN_Y);
2663 if (compare) {
2664 FETCH(&r[2], 3, TGSI_CHAN_X);
2665 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2666 &r[0], &r[1], &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2667 NULL, offsets, control,
2668 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2669 }
2670 else {
2671 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2672 &r[0], &r[1], &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2673 NULL, offsets, control,
2674 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2675 }
2676 break;
2677
2678 case TGSI_TEXTURE_2D_ARRAY:
2679 case TGSI_TEXTURE_3D:
2680 case TGSI_TEXTURE_CUBE:
2681 FETCH(&r[1], 0, TGSI_CHAN_Y);
2682 FETCH(&r[2], 0, TGSI_CHAN_Z);
2683 if(compare) {
2684 FETCH(&r[3], 3, TGSI_CHAN_X);
2685 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2686 &r[0], &r[1], &r[2], &r[3], lod,
2687 NULL, offsets, control,
2688 &r[0], &r[1], &r[2], &r[3]);
2689 }
2690 else {
2691 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2692 &r[0], &r[1], &r[2], &ZeroVec, lod,
2693 NULL, offsets, control,
2694 &r[0], &r[1], &r[2], &r[3]);
2695 }
2696 break;
2697
2698 case TGSI_TEXTURE_CUBE_ARRAY:
2699 FETCH(&r[1], 0, TGSI_CHAN_Y);
2700 FETCH(&r[2], 0, TGSI_CHAN_Z);
2701 FETCH(&r[3], 0, TGSI_CHAN_W);
2702 if(compare) {
2703 FETCH(&r[4], 3, TGSI_CHAN_X);
2704 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2705 &r[0], &r[1], &r[2], &r[3], &r[4],
2706 NULL, offsets, control,
2707 &r[0], &r[1], &r[2], &r[3]);
2708 }
2709 else {
2710 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2711 &r[0], &r[1], &r[2], &r[3], lod,
2712 NULL, offsets, control,
2713 &r[0], &r[1], &r[2], &r[3]);
2714 }
2715 break;
2716
2717
2718 default:
2719 assert(0);
2720 }
2721
2722 swizzles[0] = inst->Src[1].Register.SwizzleX;
2723 swizzles[1] = inst->Src[1].Register.SwizzleY;
2724 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2725 swizzles[3] = inst->Src[1].Register.SwizzleW;
2726
2727 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2728 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2729 store_dest(mach, &r[swizzles[chan]],
2730 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2731 }
2732 }
2733 }
2734
2735 static void
2736 exec_sample_d(struct tgsi_exec_machine *mach,
2737 const struct tgsi_full_instruction *inst)
2738 {
2739 const uint resource_unit = inst->Src[1].Register.Index;
2740 const uint sampler_unit = inst->Src[2].Register.Index;
2741 union tgsi_exec_channel r[4];
2742 float derivs[3][2][TGSI_QUAD_SIZE];
2743 uint chan;
2744 unsigned char swizzles[4];
2745 int8_t offsets[3];
2746
2747 /* always fetch all 3 offsets, overkill but keeps code simple */
2748 fetch_texel_offsets(mach, inst, offsets);
2749
2750 FETCH(&r[0], 0, TGSI_CHAN_X);
2751
2752 switch (mach->SamplerViews[resource_unit].Resource) {
2753 case TGSI_TEXTURE_1D:
2754 case TGSI_TEXTURE_1D_ARRAY:
2755 /* only 1D array actually needs Y */
2756 FETCH(&r[1], 0, TGSI_CHAN_Y);
2757
2758 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2759
2760 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2761 &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec, /* S, T, P, C, LOD */
2762 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2763 &r[0], &r[1], &r[2], &r[3]); /* R, G, B, A */
2764 break;
2765
2766 case TGSI_TEXTURE_2D:
2767 case TGSI_TEXTURE_RECT:
2768 case TGSI_TEXTURE_2D_ARRAY:
2769 /* only 2D array actually needs Z */
2770 FETCH(&r[1], 0, TGSI_CHAN_Y);
2771 FETCH(&r[2], 0, TGSI_CHAN_Z);
2772
2773 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2774 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2775
2776 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2777 &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec, /* inputs */
2778 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2779 &r[0], &r[1], &r[2], &r[3]); /* outputs */
2780 break;
2781
2782 case TGSI_TEXTURE_3D:
2783 case TGSI_TEXTURE_CUBE:
2784 case TGSI_TEXTURE_CUBE_ARRAY:
2785 /* only cube array actually needs W */
2786 FETCH(&r[1], 0, TGSI_CHAN_Y);
2787 FETCH(&r[2], 0, TGSI_CHAN_Z);
2788 FETCH(&r[3], 0, TGSI_CHAN_W);
2789
2790 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2791 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2792 fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2793
2794 fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2795 &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2796 derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2797 &r[0], &r[1], &r[2], &r[3]);
2798 break;
2799
2800 default:
2801 assert(0);
2802 }
2803
2804 swizzles[0] = inst->Src[1].Register.SwizzleX;
2805 swizzles[1] = inst->Src[1].Register.SwizzleY;
2806 swizzles[2] = inst->Src[1].Register.SwizzleZ;
2807 swizzles[3] = inst->Src[1].Register.SwizzleW;
2808
2809 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2810 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2811 store_dest(mach, &r[swizzles[chan]],
2812 &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2813 }
2814 }
2815 }
2816
2817
2818 /**
2819 * Evaluate a constant-valued coefficient at the position of the
2820 * current quad.
2821 */
2822 static void
2823 eval_constant_coef(
2824 struct tgsi_exec_machine *mach,
2825 unsigned attrib,
2826 unsigned chan )
2827 {
2828 unsigned i;
2829
2830 for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2831 mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2832 }
2833 }
2834
2835 /**
2836 * Evaluate a linear-valued coefficient at the position of the
2837 * current quad.
2838 */
2839 static void
2840 eval_linear_coef(
2841 struct tgsi_exec_machine *mach,
2842 unsigned attrib,
2843 unsigned chan )
2844 {
2845 const float x = mach->QuadPos.xyzw[0].f[0];
2846 const float y = mach->QuadPos.xyzw[1].f[0];
2847 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2848 const float dady = mach->InterpCoefs[attrib].dady[chan];
2849 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2850 mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2851 mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2852 mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2853 mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2854 }
2855
2856 /**
2857 * Evaluate a perspective-valued coefficient at the position of the
2858 * current quad.
2859 */
2860 static void
2861 eval_perspective_coef(
2862 struct tgsi_exec_machine *mach,
2863 unsigned attrib,
2864 unsigned chan )
2865 {
2866 const float x = mach->QuadPos.xyzw[0].f[0];
2867 const float y = mach->QuadPos.xyzw[1].f[0];
2868 const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2869 const float dady = mach->InterpCoefs[attrib].dady[chan];
2870 const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2871 const float *w = mach->QuadPos.xyzw[3].f;
2872 /* divide by W here */
2873 mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2874 mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2875 mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2876 mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2877 }
2878
2879
2880 typedef void (* eval_coef_func)(
2881 struct tgsi_exec_machine *mach,
2882 unsigned attrib,
2883 unsigned chan );
2884
2885 static void
2886 exec_declaration(struct tgsi_exec_machine *mach,
2887 const struct tgsi_full_declaration *decl)
2888 {
2889 if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2890 mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2891 return;
2892 }
2893
2894 if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
2895 if (decl->Declaration.File == TGSI_FILE_INPUT) {
2896 uint first, last, mask;
2897
2898 first = decl->Range.First;
2899 last = decl->Range.Last;
2900 mask = decl->Declaration.UsageMask;
2901
2902 /* XXX we could remove this special-case code since
2903 * mach->InterpCoefs[first].a0 should already have the
2904 * front/back-face value. But we should first update the
2905 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2906 * Then, we could remove the tgsi_exec_machine::Face field.
2907 */
2908 /* XXX make FACE a system value */
2909 if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2910 uint i;
2911
2912 assert(decl->Semantic.Index == 0);
2913 assert(first == last);
2914
2915 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2916 mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2917 }
2918 } else {
2919 eval_coef_func eval;
2920 uint i, j;
2921
2922 switch (decl->Interp.Interpolate) {
2923 case TGSI_INTERPOLATE_CONSTANT:
2924 eval = eval_constant_coef;
2925 break;
2926
2927 case TGSI_INTERPOLATE_LINEAR:
2928 eval = eval_linear_coef;
2929 break;
2930
2931 case TGSI_INTERPOLATE_PERSPECTIVE:
2932 eval = eval_perspective_coef;
2933 break;
2934
2935 case TGSI_INTERPOLATE_COLOR:
2936 eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2937 break;
2938
2939 default:
2940 assert(0);
2941 return;
2942 }
2943
2944 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2945 if (mask & (1 << j)) {
2946 for (i = first; i <= last; i++) {
2947 eval(mach, i, j);
2948 }
2949 }
2950 }
2951 }
2952
2953 if (DEBUG_EXECUTION) {
2954 uint i, j;
2955 for (i = first; i <= last; ++i) {
2956 debug_printf("IN[%2u] = ", i);
2957 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2958 if (j > 0) {
2959 debug_printf(" ");
2960 }
2961 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
2962 mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
2963 mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
2964 mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
2965 mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
2966 }
2967 }
2968 }
2969 }
2970 }
2971
2972 }
2973
2974 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
2975 const union tgsi_exec_channel *src);
2976
2977 static void
2978 exec_scalar_unary(struct tgsi_exec_machine *mach,
2979 const struct tgsi_full_instruction *inst,
2980 micro_unary_op op,
2981 enum tgsi_exec_datatype dst_datatype,
2982 enum tgsi_exec_datatype src_datatype)
2983 {
2984 unsigned int chan;
2985 union tgsi_exec_channel src;
2986 union tgsi_exec_channel dst;
2987
2988 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
2989 op(&dst, &src);
2990 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2991 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2992 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
2993 }
2994 }
2995 }
2996
2997 static void
2998 exec_vector_unary(struct tgsi_exec_machine *mach,
2999 const struct tgsi_full_instruction *inst,
3000 micro_unary_op op,
3001 enum tgsi_exec_datatype dst_datatype,
3002 enum tgsi_exec_datatype src_datatype)
3003 {
3004 unsigned int chan;
3005 struct tgsi_exec_vector dst;
3006
3007 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3008 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3009 union tgsi_exec_channel src;
3010
3011 fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
3012 op(&dst.xyzw[chan], &src);
3013 }
3014 }
3015 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3016 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3017 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3018 }
3019 }
3020 }
3021
3022 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
3023 const union tgsi_exec_channel *src0,
3024 const union tgsi_exec_channel *src1);
3025
3026 static void
3027 exec_scalar_binary(struct tgsi_exec_machine *mach,
3028 const struct tgsi_full_instruction *inst,
3029 micro_binary_op op,
3030 enum tgsi_exec_datatype dst_datatype,
3031 enum tgsi_exec_datatype src_datatype)
3032 {
3033 unsigned int chan;
3034 union tgsi_exec_channel src[2];
3035 union tgsi_exec_channel dst;
3036
3037 fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
3038 fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
3039 op(&dst, &src[0], &src[1]);
3040 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3041 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3042 store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3043 }
3044 }
3045 }
3046
3047 static void
3048 exec_vector_binary(struct tgsi_exec_machine *mach,
3049 const struct tgsi_full_instruction *inst,
3050 micro_binary_op op,
3051 enum tgsi_exec_datatype dst_datatype,
3052 enum tgsi_exec_datatype src_datatype)
3053 {
3054 unsigned int chan;
3055 struct tgsi_exec_vector dst;
3056
3057 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3058 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3059 union tgsi_exec_channel src[2];
3060
3061 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3062 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3063 op(&dst.xyzw[chan], &src[0], &src[1]);
3064 }
3065 }
3066 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3067 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3068 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3069 }
3070 }
3071 }
3072
3073 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
3074 const union tgsi_exec_channel *src0,
3075 const union tgsi_exec_channel *src1,
3076 const union tgsi_exec_channel *src2);
3077
3078 static void
3079 exec_vector_trinary(struct tgsi_exec_machine *mach,
3080 const struct tgsi_full_instruction *inst,
3081 micro_trinary_op op,
3082 enum tgsi_exec_datatype dst_datatype,
3083 enum tgsi_exec_datatype src_datatype)
3084 {
3085 unsigned int chan;
3086 struct tgsi_exec_vector dst;
3087
3088 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3089 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3090 union tgsi_exec_channel src[3];
3091
3092 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3093 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3094 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3095 op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3096 }
3097 }
3098 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3099 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3100 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3101 }
3102 }
3103 }
3104
3105 typedef void (* micro_quaternary_op)(union tgsi_exec_channel *dst,
3106 const union tgsi_exec_channel *src0,
3107 const union tgsi_exec_channel *src1,
3108 const union tgsi_exec_channel *src2,
3109 const union tgsi_exec_channel *src3);
3110
3111 static void
3112 exec_vector_quaternary(struct tgsi_exec_machine *mach,
3113 const struct tgsi_full_instruction *inst,
3114 micro_quaternary_op op,
3115 enum tgsi_exec_datatype dst_datatype,
3116 enum tgsi_exec_datatype src_datatype)
3117 {
3118 unsigned int chan;
3119 struct tgsi_exec_vector dst;
3120
3121 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3122 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3123 union tgsi_exec_channel src[4];
3124
3125 fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3126 fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3127 fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3128 fetch_source(mach, &src[3], &inst->Src[3], chan, src_datatype);
3129 op(&dst.xyzw[chan], &src[0], &src[1], &src[2], &src[3]);
3130 }
3131 }
3132 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3133 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3134 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3135 }
3136 }
3137 }
3138
3139 static void
3140 exec_dp3(struct tgsi_exec_machine *mach,
3141 const struct tgsi_full_instruction *inst)
3142 {
3143 unsigned int chan;
3144 union tgsi_exec_channel arg[3];
3145
3146 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3147 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3148 micro_mul(&arg[2], &arg[0], &arg[1]);
3149
3150 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
3151 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3152 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3153 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3154 }
3155
3156 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3157 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3158 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3159 }
3160 }
3161 }
3162
3163 static void
3164 exec_dp4(struct tgsi_exec_machine *mach,
3165 const struct tgsi_full_instruction *inst)
3166 {
3167 unsigned int chan;
3168 union tgsi_exec_channel arg[3];
3169
3170 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3171 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3172 micro_mul(&arg[2], &arg[0], &arg[1]);
3173
3174 for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
3175 fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3176 fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3177 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3178 }
3179
3180 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3181 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3182 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3183 }
3184 }
3185 }
3186
3187 static void
3188 exec_dp2(struct tgsi_exec_machine *mach,
3189 const struct tgsi_full_instruction *inst)
3190 {
3191 unsigned int chan;
3192 union tgsi_exec_channel arg[3];
3193
3194 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3195 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3196 micro_mul(&arg[2], &arg[0], &arg[1]);
3197
3198 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3199 fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3200 micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3201
3202 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3203 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3204 store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3205 }
3206 }
3207 }
3208
3209 static void
3210 exec_pk2h(struct tgsi_exec_machine *mach,
3211 const struct tgsi_full_instruction *inst)
3212 {
3213 unsigned chan;
3214 union tgsi_exec_channel arg[2], dst;
3215
3216 fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3217 fetch_source(mach, &arg[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3218 for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3219 dst.u[chan] = util_float_to_half(arg[0].f[chan]) |
3220 (util_float_to_half(arg[1].f[chan]) << 16);
3221 }
3222 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3223 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3224 store_dest(mach, &dst, &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_UINT);
3225 }
3226 }
3227 }
3228
3229 static void
3230 exec_up2h(struct tgsi_exec_machine *mach,
3231 const struct tgsi_full_instruction *inst)
3232 {
3233 unsigned chan;
3234 union tgsi_exec_channel arg, dst[2];
3235
3236 fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3237 for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3238 dst[0].f[chan] = util_half_to_float(arg.u[chan] & 0xffff);
3239 dst[1].f[chan] = util_half_to_float(arg.u[chan] >> 16);
3240 }
3241 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3242 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3243 store_dest(mach, &dst[chan & 1], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3244 }
3245 }
3246 }
3247
3248 static void
3249 micro_ucmp(union tgsi_exec_channel *dst,
3250 const union tgsi_exec_channel *src0,
3251 const union tgsi_exec_channel *src1,
3252 const union tgsi_exec_channel *src2)
3253 {
3254 dst->f[0] = src0->u[0] ? src1->f[0] : src2->f[0];
3255 dst->f[1] = src0->u[1] ? src1->f[1] : src2->f[1];
3256 dst->f[2] = src0->u[2] ? src1->f[2] : src2->f[2];
3257 dst->f[3] = src0->u[3] ? src1->f[3] : src2->f[3];
3258 }
3259
3260 static void
3261 exec_ucmp(struct tgsi_exec_machine *mach,
3262 const struct tgsi_full_instruction *inst)
3263 {
3264 unsigned int chan;
3265 struct tgsi_exec_vector dst;
3266
3267 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3268 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3269 union tgsi_exec_channel src[3];
3270
3271 fetch_source(mach, &src[0], &inst->Src[0], chan,
3272 TGSI_EXEC_DATA_UINT);
3273 fetch_source(mach, &src[1], &inst->Src[1], chan,
3274 TGSI_EXEC_DATA_FLOAT);
3275 fetch_source(mach, &src[2], &inst->Src[2], chan,
3276 TGSI_EXEC_DATA_FLOAT);
3277 micro_ucmp(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3278 }
3279 }
3280 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3281 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3282 store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan,
3283 TGSI_EXEC_DATA_FLOAT);
3284 }
3285 }
3286 }
3287
3288 static void
3289 exec_scs(struct tgsi_exec_machine *mach,
3290 const struct tgsi_full_instruction *inst)
3291 {
3292 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) {
3293 union tgsi_exec_channel arg;
3294 union tgsi_exec_channel result;
3295
3296 fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3297
3298 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3299 micro_cos(&result, &arg);
3300 store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3301 }
3302 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3303 micro_sin(&result, &arg);
3304 store_dest(mach, &result, &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3305 }
3306 }
3307 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3308 store_dest(mach, &ZeroVec, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3309 }
3310 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3311 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3312 }
3313 }
3314
3315 static void
3316 exec_dst(struct tgsi_exec_machine *mach,
3317 const struct tgsi_full_instruction *inst)
3318 {
3319 union tgsi_exec_channel r[2];
3320 union tgsi_exec_channel d[4];
3321
3322 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3323 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3324 fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3325 micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
3326 }
3327 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3328 fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3329 }
3330 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3331 fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3332 }
3333
3334 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3335 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3336 }
3337 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3338 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3339 }
3340 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3341 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3342 }
3343 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3344 store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3345 }
3346 }
3347
3348 static void
3349 exec_log(struct tgsi_exec_machine *mach,
3350 const struct tgsi_full_instruction *inst)
3351 {
3352 union tgsi_exec_channel r[3];
3353
3354 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3355 micro_abs(&r[2], &r[0]); /* r2 = abs(r0) */
3356 micro_lg2(&r[1], &r[2]); /* r1 = lg2(r2) */
3357 micro_flr(&r[0], &r[1]); /* r0 = floor(r1) */
3358 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3359 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3360 }
3361 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3362 micro_exp2(&r[0], &r[0]); /* r0 = 2 ^ r0 */
3363 micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
3364 store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3365 }
3366 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3367 store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3368 }
3369 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3370 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3371 }
3372 }
3373
3374 static void
3375 exec_exp(struct tgsi_exec_machine *mach,
3376 const struct tgsi_full_instruction *inst)
3377 {
3378 union tgsi_exec_channel r[3];
3379
3380 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3381 micro_flr(&r[1], &r[0]); /* r1 = floor(r0) */
3382 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3383 micro_exp2(&r[2], &r[1]); /* r2 = 2 ^ r1 */
3384 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3385 }
3386 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3387 micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3388 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3389 }
3390 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3391 micro_exp2(&r[2], &r[0]); /* r2 = 2 ^ r0 */
3392 store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3393 }
3394 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3395 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3396 }
3397 }
3398
3399 static void
3400 exec_lit(struct tgsi_exec_machine *mach,
3401 const struct tgsi_full_instruction *inst)
3402 {
3403 union tgsi_exec_channel r[3];
3404 union tgsi_exec_channel d[3];
3405
3406 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3407 fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3408 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3409 fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3410 micro_max(&r[1], &r[1], &ZeroVec);
3411
3412 fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3413 micro_min(&r[2], &r[2], &P128Vec);
3414 micro_max(&r[2], &r[2], &M128Vec);
3415 micro_pow(&r[1], &r[1], &r[2]);
3416 micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3417 store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3418 }
3419 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3420 micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3421 store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3422 }
3423 }
3424 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3425 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3426 }
3427
3428 if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3429 store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3430 }
3431 }
3432
3433 static void
3434 exec_break(struct tgsi_exec_machine *mach)
3435 {
3436 if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3437 /* turn off loop channels for each enabled exec channel */
3438 mach->LoopMask &= ~mach->ExecMask;
3439 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3440 UPDATE_EXEC_MASK(mach);
3441 } else {
3442 assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3443
3444 mach->Switch.mask = 0x0;
3445
3446 UPDATE_EXEC_MASK(mach);
3447 }
3448 }
3449
3450 static void
3451 exec_switch(struct tgsi_exec_machine *mach,
3452 const struct tgsi_full_instruction *inst)
3453 {
3454 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3455 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3456
3457 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3458 fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3459 mach->Switch.mask = 0x0;
3460 mach->Switch.defaultMask = 0x0;
3461
3462 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3463 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3464
3465 UPDATE_EXEC_MASK(mach);
3466 }
3467
3468 static void
3469 exec_case(struct tgsi_exec_machine *mach,
3470 const struct tgsi_full_instruction *inst)
3471 {
3472 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3473 union tgsi_exec_channel src;
3474 uint mask = 0;
3475
3476 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3477
3478 if (mach->Switch.selector.u[0] == src.u[0]) {
3479 mask |= 0x1;
3480 }
3481 if (mach->Switch.selector.u[1] == src.u[1]) {
3482 mask |= 0x2;
3483 }
3484 if (mach->Switch.selector.u[2] == src.u[2]) {
3485 mask |= 0x4;
3486 }
3487 if (mach->Switch.selector.u[3] == src.u[3]) {
3488 mask |= 0x8;
3489 }
3490
3491 mach->Switch.defaultMask |= mask;
3492
3493 mach->Switch.mask |= mask & prevMask;
3494
3495 UPDATE_EXEC_MASK(mach);
3496 }
3497
3498 /* FIXME: this will only work if default is last */
3499 static void
3500 exec_default(struct tgsi_exec_machine *mach)
3501 {
3502 uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3503
3504 mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3505
3506 UPDATE_EXEC_MASK(mach);
3507 }
3508
3509 static void
3510 exec_endswitch(struct tgsi_exec_machine *mach)
3511 {
3512 mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3513 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3514
3515 UPDATE_EXEC_MASK(mach);
3516 }
3517
3518 typedef void (* micro_dop)(union tgsi_double_channel *dst,
3519 const union tgsi_double_channel *src);
3520
3521 typedef void (* micro_dop_sop)(union tgsi_double_channel *dst,
3522 const union tgsi_double_channel *src0,
3523 union tgsi_exec_channel *src1);
3524
3525 typedef void (* micro_dop_s)(union tgsi_double_channel *dst,
3526 const union tgsi_exec_channel *src);
3527
3528 typedef void (* micro_sop_d)(union tgsi_exec_channel *dst,
3529 const union tgsi_double_channel *src);
3530
3531 static void
3532 fetch_double_channel(struct tgsi_exec_machine *mach,
3533 union tgsi_double_channel *chan,
3534 const struct tgsi_full_src_register *reg,
3535 uint chan_0,
3536 uint chan_1)
3537 {
3538 union tgsi_exec_channel src[2];
3539 uint i;
3540
3541 fetch_source_d(mach, &src[0], reg, chan_0, TGSI_EXEC_DATA_UINT);
3542 fetch_source_d(mach, &src[1], reg, chan_1, TGSI_EXEC_DATA_UINT);
3543
3544 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3545 chan->u[i][0] = src[0].u[i];
3546 chan->u[i][1] = src[1].u[i];
3547 }
3548 if (reg->Register.Absolute) {
3549 micro_dabs(chan, chan);
3550 }
3551 if (reg->Register.Negate) {
3552 micro_dneg(chan, chan);
3553 }
3554 }
3555
3556 static void
3557 store_double_channel(struct tgsi_exec_machine *mach,
3558 const union tgsi_double_channel *chan,
3559 const struct tgsi_full_dst_register *reg,
3560 const struct tgsi_full_instruction *inst,
3561 uint chan_0,
3562 uint chan_1)
3563 {
3564 union tgsi_exec_channel dst[2];
3565 uint i;
3566 union tgsi_double_channel temp;
3567 const uint execmask = mach->ExecMask;
3568
3569 if (!inst->Instruction.Saturate) {
3570 for (i = 0; i < TGSI_QUAD_SIZE; i++)
3571 if (execmask & (1 << i)) {
3572 dst[0].u[i] = chan->u[i][0];
3573 dst[1].u[i] = chan->u[i][1];
3574 }
3575 }
3576 else {
3577 for (i = 0; i < TGSI_QUAD_SIZE; i++)
3578 if (execmask & (1 << i)) {
3579 if (chan->d[i] < 0.0)
3580 temp.d[i] = 0.0;
3581 else if (chan->d[i] > 1.0)
3582 temp.d[i] = 1.0;
3583 else
3584 temp.d[i] = chan->d[i];
3585
3586 dst[0].u[i] = temp.u[i][0];
3587 dst[1].u[i] = temp.u[i][1];
3588 }
3589 }
3590
3591 store_dest_double(mach, &dst[0], reg, inst, chan_0, TGSI_EXEC_DATA_UINT);
3592 if (chan_1 != -1)
3593 store_dest_double(mach, &dst[1], reg, inst, chan_1, TGSI_EXEC_DATA_UINT);
3594 }
3595
3596 static void
3597 exec_double_unary(struct tgsi_exec_machine *mach,
3598 const struct tgsi_full_instruction *inst,
3599 micro_dop op)
3600 {
3601 union tgsi_double_channel src;
3602 union tgsi_double_channel dst;
3603
3604 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3605 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3606 op(&dst, &src);
3607 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3608 }
3609 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3610 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3611 op(&dst, &src);
3612 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3613 }
3614 }
3615
3616 static void
3617 exec_double_binary(struct tgsi_exec_machine *mach,
3618 const struct tgsi_full_instruction *inst,
3619 micro_dop op,
3620 enum tgsi_exec_datatype dst_datatype)
3621 {
3622 union tgsi_double_channel src[2];
3623 union tgsi_double_channel dst;
3624 int first_dest_chan, second_dest_chan;
3625 int wmask;
3626
3627 wmask = inst->Dst[0].Register.WriteMask;
3628 /* these are & because of the way DSLT etc store their destinations */
3629 if (wmask & TGSI_WRITEMASK_XY) {
3630 first_dest_chan = TGSI_CHAN_X;
3631 second_dest_chan = TGSI_CHAN_Y;
3632 if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3633 first_dest_chan = (wmask & TGSI_WRITEMASK_X) ? TGSI_CHAN_X : TGSI_CHAN_Y;
3634 second_dest_chan = -1;
3635 }
3636
3637 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3638 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3639 op(&dst, src);
3640 store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3641 }
3642
3643 if (wmask & TGSI_WRITEMASK_ZW) {
3644 first_dest_chan = TGSI_CHAN_Z;
3645 second_dest_chan = TGSI_CHAN_W;
3646 if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3647 first_dest_chan = (wmask & TGSI_WRITEMASK_Z) ? TGSI_CHAN_Z : TGSI_CHAN_W;
3648 second_dest_chan = -1;
3649 }
3650
3651 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3652 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3653 op(&dst, src);
3654 store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3655 }
3656 }
3657
3658 static void
3659 exec_double_trinary(struct tgsi_exec_machine *mach,
3660 const struct tgsi_full_instruction *inst,
3661 micro_dop op)
3662 {
3663 union tgsi_double_channel src[3];
3664 union tgsi_double_channel dst;
3665
3666 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3667 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3668 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3669 fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_X, TGSI_CHAN_Y);
3670 op(&dst, src);
3671 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3672 }
3673 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3674 fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3675 fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3676 fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_CHAN_W);
3677 op(&dst, src);
3678 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3679 }
3680 }
3681
3682 static void
3683 exec_dldexp(struct tgsi_exec_machine *mach,
3684 const struct tgsi_full_instruction *inst)
3685 {
3686 union tgsi_double_channel src0;
3687 union tgsi_exec_channel src1;
3688 union tgsi_double_channel dst;
3689 int wmask;
3690
3691 wmask = inst->Dst[0].Register.WriteMask;
3692 if (wmask & TGSI_WRITEMASK_XY) {
3693 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3694 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3695 micro_dldexp(&dst, &src0, &src1);
3696 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3697 }
3698
3699 if (wmask & TGSI_WRITEMASK_ZW) {
3700 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3701 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3702 micro_dldexp(&dst, &src0, &src1);
3703 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3704 }
3705 }
3706
3707 static void
3708 exec_dfracexp(struct tgsi_exec_machine *mach,
3709 const struct tgsi_full_instruction *inst)
3710 {
3711 union tgsi_double_channel src;
3712 union tgsi_double_channel dst;
3713 union tgsi_exec_channel dst_exp;
3714
3715 if (((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY)) {
3716 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3717 micro_dfracexp(&dst, &dst_exp, &src);
3718 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3719 store_dest(mach, &dst_exp, &inst->Dst[1], inst, ffs(inst->Dst[1].Register.WriteMask) - 1, TGSI_EXEC_DATA_INT);
3720 }
3721 if (((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW)) {
3722 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3723 micro_dfracexp(&dst, &dst_exp, &src);
3724 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3725 store_dest(mach, &dst_exp, &inst->Dst[1], inst, ffs(inst->Dst[1].Register.WriteMask) - 1, TGSI_EXEC_DATA_INT);
3726 }
3727 }
3728
3729 static void
3730 exec_arg0_64_arg1_32(struct tgsi_exec_machine *mach,
3731 const struct tgsi_full_instruction *inst,
3732 micro_dop_sop op)
3733 {
3734 union tgsi_double_channel src0;
3735 union tgsi_exec_channel src1;
3736 union tgsi_double_channel dst;
3737 int wmask;
3738
3739 wmask = inst->Dst[0].Register.WriteMask;
3740 if (wmask & TGSI_WRITEMASK_XY) {
3741 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3742 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3743 op(&dst, &src0, &src1);
3744 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3745 }
3746
3747 if (wmask & TGSI_WRITEMASK_ZW) {
3748 fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3749 fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3750 op(&dst, &src0, &src1);
3751 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3752 }
3753 }
3754
3755 static int
3756 get_image_coord_dim(unsigned tgsi_tex)
3757 {
3758 int dim;
3759 switch (tgsi_tex) {
3760 case TGSI_TEXTURE_BUFFER:
3761 case TGSI_TEXTURE_1D:
3762 dim = 1;
3763 break;
3764 case TGSI_TEXTURE_2D:
3765 case TGSI_TEXTURE_RECT:
3766 case TGSI_TEXTURE_1D_ARRAY:
3767 case TGSI_TEXTURE_2D_MSAA:
3768 dim = 2;
3769 break;
3770 case TGSI_TEXTURE_3D:
3771 case TGSI_TEXTURE_CUBE:
3772 case TGSI_TEXTURE_2D_ARRAY:
3773 case TGSI_TEXTURE_2D_ARRAY_MSAA:
3774 case TGSI_TEXTURE_CUBE_ARRAY:
3775 dim = 3;
3776 break;
3777 default:
3778 assert(!"unknown texture target");
3779 dim = 0;
3780 break;
3781 }
3782
3783 return dim;
3784 }
3785
3786 static int
3787 get_image_coord_sample(unsigned tgsi_tex)
3788 {
3789 int sample = 0;
3790 switch (tgsi_tex) {
3791 case TGSI_TEXTURE_2D_MSAA:
3792 sample = 3;
3793 break;
3794 case TGSI_TEXTURE_2D_ARRAY_MSAA:
3795 sample = 4;
3796 break;
3797 default:
3798 break;
3799 }
3800 return sample;
3801 }
3802
3803 static void
3804 exec_load_img(struct tgsi_exec_machine *mach,
3805 const struct tgsi_full_instruction *inst)
3806 {
3807 union tgsi_exec_channel r[4], sample_r;
3808 uint unit;
3809 int sample;
3810 int i, j;
3811 int dim;
3812 uint chan;
3813 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3814 struct tgsi_image_params params;
3815 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3816
3817 unit = fetch_sampler_unit(mach, inst, 0);
3818 dim = get_image_coord_dim(inst->Memory.Texture);
3819 sample = get_image_coord_sample(inst->Memory.Texture);
3820 assert(dim <= 3);
3821
3822 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3823 params.unit = unit;
3824 params.tgsi_tex_instr = inst->Memory.Texture;
3825 params.format = inst->Memory.Format;
3826
3827 for (i = 0; i < dim; i++) {
3828 IFETCH(&r[i], 1, TGSI_CHAN_X + i);
3829 }
3830
3831 if (sample)
3832 IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
3833
3834 mach->Image->load(mach->Image, &params,
3835 r[0].i, r[1].i, r[2].i, sample_r.i,
3836 rgba);
3837 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3838 r[0].f[j] = rgba[0][j];
3839 r[1].f[j] = rgba[1][j];
3840 r[2].f[j] = rgba[2][j];
3841 r[3].f[j] = rgba[3][j];
3842 }
3843 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3844 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3845 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3846 }
3847 }
3848 }
3849
3850 static void
3851 exec_load_buf(struct tgsi_exec_machine *mach,
3852 const struct tgsi_full_instruction *inst)
3853 {
3854 union tgsi_exec_channel r[4];
3855 uint unit;
3856 int j;
3857 uint chan;
3858 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3859 struct tgsi_buffer_params params;
3860 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3861
3862 unit = fetch_sampler_unit(mach, inst, 0);
3863
3864 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3865 params.unit = unit;
3866 IFETCH(&r[0], 1, TGSI_CHAN_X);
3867
3868 mach->Buffer->load(mach->Buffer, &params,
3869 r[0].i, rgba);
3870 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3871 r[0].f[j] = rgba[0][j];
3872 r[1].f[j] = rgba[1][j];
3873 r[2].f[j] = rgba[2][j];
3874 r[3].f[j] = rgba[3][j];
3875 }
3876 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3877 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3878 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3879 }
3880 }
3881 }
3882
3883 static void
3884 exec_load_mem(struct tgsi_exec_machine *mach,
3885 const struct tgsi_full_instruction *inst)
3886 {
3887 union tgsi_exec_channel r[4];
3888 uint chan;
3889 char *ptr = mach->LocalMem;
3890 uint32_t offset;
3891 int j;
3892
3893 IFETCH(&r[0], 1, TGSI_CHAN_X);
3894 if (r[0].u[0] >= mach->LocalMemSize)
3895 return;
3896
3897 offset = r[0].u[0];
3898 ptr += offset;
3899
3900 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3901 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3902 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3903 memcpy(&r[chan].u[j], ptr + (4 * chan), 4);
3904 }
3905 }
3906 }
3907
3908 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3909 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3910 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3911 }
3912 }
3913 }
3914
3915 static void
3916 exec_load(struct tgsi_exec_machine *mach,
3917 const struct tgsi_full_instruction *inst)
3918 {
3919 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
3920 exec_load_img(mach, inst);
3921 else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
3922 exec_load_buf(mach, inst);
3923 else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
3924 exec_load_mem(mach, inst);
3925 }
3926
3927 static void
3928 exec_store_img(struct tgsi_exec_machine *mach,
3929 const struct tgsi_full_instruction *inst)
3930 {
3931 union tgsi_exec_channel r[3], sample_r;
3932 union tgsi_exec_channel value[4];
3933 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3934 struct tgsi_image_params params;
3935 int dim;
3936 int sample;
3937 int i, j;
3938 uint unit;
3939 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3940 unit = inst->Dst[0].Register.Index;
3941 dim = get_image_coord_dim(inst->Memory.Texture);
3942 sample = get_image_coord_sample(inst->Memory.Texture);
3943 assert(dim <= 3);
3944
3945 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3946 params.unit = unit;
3947 params.tgsi_tex_instr = inst->Memory.Texture;
3948 params.format = inst->Memory.Format;
3949
3950 for (i = 0; i < dim; i++) {
3951 IFETCH(&r[i], 0, TGSI_CHAN_X + i);
3952 }
3953
3954 for (i = 0; i < 4; i++) {
3955 FETCH(&value[i], 1, TGSI_CHAN_X + i);
3956 }
3957 if (sample)
3958 IFETCH(&sample_r, 0, TGSI_CHAN_X + sample);
3959
3960 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3961 rgba[0][j] = value[0].f[j];
3962 rgba[1][j] = value[1].f[j];
3963 rgba[2][j] = value[2].f[j];
3964 rgba[3][j] = value[3].f[j];
3965 }
3966
3967 mach->Image->store(mach->Image, &params,
3968 r[0].i, r[1].i, r[2].i, sample_r.i,
3969 rgba);
3970 }
3971
3972 static void
3973 exec_store_buf(struct tgsi_exec_machine *mach,
3974 const struct tgsi_full_instruction *inst)
3975 {
3976 union tgsi_exec_channel r[3];
3977 union tgsi_exec_channel value[4];
3978 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3979 struct tgsi_buffer_params params;
3980 int i, j;
3981 uint unit;
3982 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3983
3984 unit = inst->Dst[0].Register.Index;
3985
3986 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3987 params.unit = unit;
3988 params.writemask = inst->Dst[0].Register.WriteMask;
3989
3990 IFETCH(&r[0], 0, TGSI_CHAN_X);
3991 for (i = 0; i < 4; i++) {
3992 FETCH(&value[i], 1, TGSI_CHAN_X + i);
3993 }
3994
3995 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3996 rgba[0][j] = value[0].f[j];
3997 rgba[1][j] = value[1].f[j];
3998 rgba[2][j] = value[2].f[j];
3999 rgba[3][j] = value[3].f[j];
4000 }
4001
4002 mach->Buffer->store(mach->Buffer, &params,
4003 r[0].i,
4004 rgba);
4005 }
4006
4007 static void
4008 exec_store_mem(struct tgsi_exec_machine *mach,
4009 const struct tgsi_full_instruction *inst)
4010 {
4011 union tgsi_exec_channel r[3];
4012 union tgsi_exec_channel value[4];
4013 uint i, chan;
4014 char *ptr = mach->LocalMem;
4015 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4016 int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4017
4018 IFETCH(&r[0], 0, TGSI_CHAN_X);
4019
4020 for (i = 0; i < 4; i++) {
4021 FETCH(&value[i], 1, TGSI_CHAN_X + i);
4022 }
4023
4024 if (r[0].u[0] >= mach->LocalMemSize)
4025 return;
4026 ptr += r[0].u[0];
4027
4028 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4029 if (execmask & (1 << i)) {
4030 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4031 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4032 memcpy(ptr + (chan * 4), &value[chan].u[0], 4);
4033 }
4034 }
4035 }
4036 }
4037 }
4038
4039 static void
4040 exec_store(struct tgsi_exec_machine *mach,
4041 const struct tgsi_full_instruction *inst)
4042 {
4043 if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE)
4044 exec_store_img(mach, inst);
4045 else if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER)
4046 exec_store_buf(mach, inst);
4047 else if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY)
4048 exec_store_mem(mach, inst);
4049 }
4050
4051 static void
4052 exec_atomop_img(struct tgsi_exec_machine *mach,
4053 const struct tgsi_full_instruction *inst)
4054 {
4055 union tgsi_exec_channel r[4], sample_r;
4056 union tgsi_exec_channel value[4], value2[4];
4057 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4058 float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4059 struct tgsi_image_params params;
4060 int dim;
4061 int sample;
4062 int i, j;
4063 uint unit, chan;
4064 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4065 unit = fetch_sampler_unit(mach, inst, 0);
4066 dim = get_image_coord_dim(inst->Memory.Texture);
4067 sample = get_image_coord_sample(inst->Memory.Texture);
4068 assert(dim <= 3);
4069
4070 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4071 params.unit = unit;
4072 params.tgsi_tex_instr = inst->Memory.Texture;
4073 params.format = inst->Memory.Format;
4074
4075 for (i = 0; i < dim; i++) {
4076 IFETCH(&r[i], 1, TGSI_CHAN_X + i);
4077 }
4078
4079 for (i = 0; i < 4; i++) {
4080 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4081 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4082 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4083 }
4084 if (sample)
4085 IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
4086
4087 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4088 rgba[0][j] = value[0].f[j];
4089 rgba[1][j] = value[1].f[j];
4090 rgba[2][j] = value[2].f[j];
4091 rgba[3][j] = value[3].f[j];
4092 }
4093 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4094 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4095 rgba2[0][j] = value2[0].f[j];
4096 rgba2[1][j] = value2[1].f[j];
4097 rgba2[2][j] = value2[2].f[j];
4098 rgba2[3][j] = value2[3].f[j];
4099 }
4100 }
4101
4102 mach->Image->op(mach->Image, &params, inst->Instruction.Opcode,
4103 r[0].i, r[1].i, r[2].i, sample_r.i,
4104 rgba, rgba2);
4105
4106 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4107 r[0].f[j] = rgba[0][j];
4108 r[1].f[j] = rgba[1][j];
4109 r[2].f[j] = rgba[2][j];
4110 r[3].f[j] = rgba[3][j];
4111 }
4112 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4113 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4114 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4115 }
4116 }
4117 }
4118
4119 static void
4120 exec_atomop_buf(struct tgsi_exec_machine *mach,
4121 const struct tgsi_full_instruction *inst)
4122 {
4123 union tgsi_exec_channel r[4];
4124 union tgsi_exec_channel value[4], value2[4];
4125 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4126 float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4127 struct tgsi_buffer_params params;
4128 int i, j;
4129 uint unit, chan;
4130 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4131
4132 unit = fetch_sampler_unit(mach, inst, 0);
4133
4134 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4135 params.unit = unit;
4136 params.writemask = inst->Dst[0].Register.WriteMask;
4137
4138 IFETCH(&r[0], 1, TGSI_CHAN_X);
4139
4140 for (i = 0; i < 4; i++) {
4141 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4142 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4143 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4144 }
4145
4146 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4147 rgba[0][j] = value[0].f[j];
4148 rgba[1][j] = value[1].f[j];
4149 rgba[2][j] = value[2].f[j];
4150 rgba[3][j] = value[3].f[j];
4151 }
4152 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4153 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4154 rgba2[0][j] = value2[0].f[j];
4155 rgba2[1][j] = value2[1].f[j];
4156 rgba2[2][j] = value2[2].f[j];
4157 rgba2[3][j] = value2[3].f[j];
4158 }
4159 }
4160
4161 mach->Buffer->op(mach->Buffer, &params, inst->Instruction.Opcode,
4162 r[0].i,
4163 rgba, rgba2);
4164
4165 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4166 r[0].f[j] = rgba[0][j];
4167 r[1].f[j] = rgba[1][j];
4168 r[2].f[j] = rgba[2][j];
4169 r[3].f[j] = rgba[3][j];
4170 }
4171 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4172 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4173 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4174 }
4175 }
4176 }
4177
4178 static void
4179 exec_atomop_mem(struct tgsi_exec_machine *mach,
4180 const struct tgsi_full_instruction *inst)
4181 {
4182 union tgsi_exec_channel r[4];
4183 union tgsi_exec_channel value[4], value2[4];
4184 char *ptr = mach->LocalMem;
4185 uint32_t val;
4186 uint chan, i;
4187 uint32_t offset;
4188 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4189 int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4190 IFETCH(&r[0], 1, TGSI_CHAN_X);
4191
4192 if (r[0].u[0] >= mach->LocalMemSize)
4193 return;
4194
4195 offset = r[0].u[0];
4196 ptr += offset;
4197 for (i = 0; i < 4; i++) {
4198 FETCH(&value[i], 2, TGSI_CHAN_X + i);
4199 if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4200 FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4201 }
4202
4203 memcpy(&r[0].u[0], ptr, 4);
4204 val = r[0].u[0];
4205 switch (inst->Instruction.Opcode) {
4206 case TGSI_OPCODE_ATOMUADD:
4207 val += value[0].u[0];
4208 break;
4209 case TGSI_OPCODE_ATOMXOR:
4210 val ^= value[0].u[0];
4211 break;
4212 case TGSI_OPCODE_ATOMOR:
4213 val |= value[0].u[0];
4214 break;
4215 case TGSI_OPCODE_ATOMAND:
4216 val &= value[0].u[0];
4217 break;
4218 case TGSI_OPCODE_ATOMUMIN:
4219 val = MIN2(val, value[0].u[0]);
4220 break;
4221 case TGSI_OPCODE_ATOMUMAX:
4222 val = MAX2(val, value[0].u[0]);
4223 break;
4224 case TGSI_OPCODE_ATOMIMIN:
4225 val = MIN2(r[0].i[0], value[0].i[0]);
4226 break;
4227 case TGSI_OPCODE_ATOMIMAX:
4228 val = MAX2(r[0].i[0], value[0].i[0]);
4229 break;
4230 case TGSI_OPCODE_ATOMXCHG:
4231 val = value[0].i[0];
4232 break;
4233 case TGSI_OPCODE_ATOMCAS:
4234 if (val == value[0].u[0])
4235 val = value2[0].u[0];
4236 break;
4237 default:
4238 break;
4239 }
4240 for (i = 0; i < TGSI_QUAD_SIZE; i++)
4241 if (execmask & (1 << i))
4242 memcpy(ptr, &val, 4);
4243
4244 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4245 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4246 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4247 }
4248 }
4249 }
4250
4251 static void
4252 exec_atomop(struct tgsi_exec_machine *mach,
4253 const struct tgsi_full_instruction *inst)
4254 {
4255 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4256 exec_atomop_img(mach, inst);
4257 else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
4258 exec_atomop_buf(mach, inst);
4259 else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
4260 exec_atomop_mem(mach, inst);
4261 }
4262
4263 static void
4264 exec_resq_img(struct tgsi_exec_machine *mach,
4265 const struct tgsi_full_instruction *inst)
4266 {
4267 int result[4];
4268 union tgsi_exec_channel r[4];
4269 uint unit;
4270 int i, chan, j;
4271 struct tgsi_image_params params;
4272 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4273
4274 unit = fetch_sampler_unit(mach, inst, 0);
4275
4276 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4277 params.unit = unit;
4278 params.tgsi_tex_instr = inst->Memory.Texture;
4279 params.format = inst->Memory.Format;
4280
4281 mach->Image->get_dims(mach->Image, &params, result);
4282
4283 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4284 for (j = 0; j < 4; j++) {
4285 r[j].i[i] = result[j];
4286 }
4287 }
4288
4289 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4290 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4291 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4292 TGSI_EXEC_DATA_INT);
4293 }
4294 }
4295 }
4296
4297 static void
4298 exec_resq_buf(struct tgsi_exec_machine *mach,
4299 const struct tgsi_full_instruction *inst)
4300 {
4301 int result;
4302 union tgsi_exec_channel r[4];
4303 uint unit;
4304 int i, chan;
4305 struct tgsi_buffer_params params;
4306 int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4307
4308 unit = fetch_sampler_unit(mach, inst, 0);
4309
4310 params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4311 params.unit = unit;
4312
4313 mach->Buffer->get_dims(mach->Buffer, &params, &result);
4314
4315 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4316 r[0].i[i] = result;
4317 }
4318
4319 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4320 if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4321 store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4322 TGSI_EXEC_DATA_INT);
4323 }
4324 }
4325 }
4326
4327 static void
4328 exec_resq(struct tgsi_exec_machine *mach,
4329 const struct tgsi_full_instruction *inst)
4330 {
4331 if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4332 exec_resq_img(mach, inst);
4333 else
4334 exec_resq_buf(mach, inst);
4335 }
4336
4337 static void
4338 micro_f2u64(union tgsi_double_channel *dst,
4339 const union tgsi_exec_channel *src)
4340 {
4341 dst->u64[0] = (uint64_t)src->f[0];
4342 dst->u64[1] = (uint64_t)src->f[1];
4343 dst->u64[2] = (uint64_t)src->f[2];
4344 dst->u64[3] = (uint64_t)src->f[3];
4345 }
4346
4347 static void
4348 micro_f2i64(union tgsi_double_channel *dst,
4349 const union tgsi_exec_channel *src)
4350 {
4351 dst->i64[0] = (int64_t)src->f[0];
4352 dst->i64[1] = (int64_t)src->f[1];
4353 dst->i64[2] = (int64_t)src->f[2];
4354 dst->i64[3] = (int64_t)src->f[3];
4355 }
4356
4357 static void
4358 micro_u2i64(union tgsi_double_channel *dst,
4359 const union tgsi_exec_channel *src)
4360 {
4361 dst->u64[0] = (uint64_t)src->u[0];
4362 dst->u64[1] = (uint64_t)src->u[1];
4363 dst->u64[2] = (uint64_t)src->u[2];
4364 dst->u64[3] = (uint64_t)src->u[3];
4365 }
4366
4367 static void
4368 micro_i2i64(union tgsi_double_channel *dst,
4369 const union tgsi_exec_channel *src)
4370 {
4371 dst->i64[0] = (int64_t)src->i[0];
4372 dst->i64[1] = (int64_t)src->i[1];
4373 dst->i64[2] = (int64_t)src->i[2];
4374 dst->i64[3] = (int64_t)src->i[3];
4375 }
4376
4377 static void
4378 micro_d2u64(union tgsi_double_channel *dst,
4379 const union tgsi_double_channel *src)
4380 {
4381 dst->u64[0] = (uint64_t)src->d[0];
4382 dst->u64[1] = (uint64_t)src->d[1];
4383 dst->u64[2] = (uint64_t)src->d[2];
4384 dst->u64[3] = (uint64_t)src->d[3];
4385 }
4386
4387 static void
4388 micro_d2i64(union tgsi_double_channel *dst,
4389 const union tgsi_double_channel *src)
4390 {
4391 dst->i64[0] = (int64_t)src->d[0];
4392 dst->i64[1] = (int64_t)src->d[1];
4393 dst->i64[2] = (int64_t)src->d[2];
4394 dst->i64[3] = (int64_t)src->d[3];
4395 }
4396
4397 static void
4398 micro_u642d(union tgsi_double_channel *dst,
4399 const union tgsi_double_channel *src)
4400 {
4401 dst->d[0] = (double)src->u64[0];
4402 dst->d[1] = (double)src->u64[1];
4403 dst->d[2] = (double)src->u64[2];
4404 dst->d[3] = (double)src->u64[3];
4405 }
4406
4407 static void
4408 micro_i642d(union tgsi_double_channel *dst,
4409 const union tgsi_double_channel *src)
4410 {
4411 dst->d[0] = (double)src->i64[0];
4412 dst->d[1] = (double)src->i64[1];
4413 dst->d[2] = (double)src->i64[2];
4414 dst->d[3] = (double)src->i64[3];
4415 }
4416
4417 static void
4418 micro_u642f(union tgsi_exec_channel *dst,
4419 const union tgsi_double_channel *src)
4420 {
4421 dst->f[0] = (float)src->u64[0];
4422 dst->f[1] = (float)src->u64[1];
4423 dst->f[2] = (float)src->u64[2];
4424 dst->f[3] = (float)src->u64[3];
4425 }
4426
4427 static void
4428 micro_i642f(union tgsi_exec_channel *dst,
4429 const union tgsi_double_channel *src)
4430 {
4431 dst->f[0] = (float)src->i64[0];
4432 dst->f[1] = (float)src->i64[1];
4433 dst->f[2] = (float)src->i64[2];
4434 dst->f[3] = (float)src->i64[3];
4435 }
4436
4437 static void
4438 exec_t_2_64(struct tgsi_exec_machine *mach,
4439 const struct tgsi_full_instruction *inst,
4440 micro_dop_s op,
4441 enum tgsi_exec_datatype src_datatype)
4442 {
4443 union tgsi_exec_channel src;
4444 union tgsi_double_channel dst;
4445
4446 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
4447 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
4448 op(&dst, &src);
4449 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
4450 }
4451 if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
4452 fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_Y, src_datatype);
4453 op(&dst, &src);
4454 store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
4455 }
4456 }
4457
4458 static void
4459 exec_64_2_t(struct tgsi_exec_machine *mach,
4460 const struct tgsi_full_instruction *inst,
4461 micro_sop_d op,
4462 enum tgsi_exec_datatype dst_datatype)
4463 {
4464 union tgsi_double_channel src;
4465 union tgsi_exec_channel dst;
4466 int wm = inst->Dst[0].Register.WriteMask;
4467 int i;
4468 int bit;
4469 for (i = 0; i < 2; i++) {
4470 bit = ffs(wm);
4471 if (bit) {
4472 wm &= ~(1 << (bit - 1));
4473 if (i == 0)
4474 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
4475 else
4476 fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
4477 op(&dst, &src);
4478 store_dest(mach, &dst, &inst->Dst[0], inst, bit - 1, dst_datatype);
4479 }
4480 }
4481 }
4482
4483 static void
4484 micro_i2f(union tgsi_exec_channel *dst,
4485 const union tgsi_exec_channel *src)
4486 {
4487 dst->f[0] = (float)src->i[0];
4488 dst->f[1] = (float)src->i[1];
4489 dst->f[2] = (float)src->i[2];
4490 dst->f[3] = (float)src->i[3];
4491 }
4492
4493 static void
4494 micro_not(union tgsi_exec_channel *dst,
4495 const union tgsi_exec_channel *src)
4496 {
4497 dst->u[0] = ~src->u[0];
4498 dst->u[1] = ~src->u[1];
4499 dst->u[2] = ~src->u[2];
4500 dst->u[3] = ~src->u[3];
4501 }
4502
4503 static void
4504 micro_shl(union tgsi_exec_channel *dst,
4505 const union tgsi_exec_channel *src0,
4506 const union tgsi_exec_channel *src1)
4507 {
4508 unsigned masked_count;
4509 masked_count = src1->u[0] & 0x1f;
4510 dst->u[0] = src0->u[0] << masked_count;
4511 masked_count = src1->u[1] & 0x1f;
4512 dst->u[1] = src0->u[1] << masked_count;
4513 masked_count = src1->u[2] & 0x1f;
4514 dst->u[2] = src0->u[2] << masked_count;
4515 masked_count = src1->u[3] & 0x1f;
4516 dst->u[3] = src0->u[3] << masked_count;
4517 }
4518
4519 static void
4520 micro_and(union tgsi_exec_channel *dst,
4521 const union tgsi_exec_channel *src0,
4522 const union tgsi_exec_channel *src1)
4523 {
4524 dst->u[0] = src0->u[0] & src1->u[0];
4525 dst->u[1] = src0->u[1] & src1->u[1];
4526 dst->u[2] = src0->u[2] & src1->u[2];
4527 dst->u[3] = src0->u[3] & src1->u[3];
4528 }
4529
4530 static void
4531 micro_or(union tgsi_exec_channel *dst,
4532 const union tgsi_exec_channel *src0,
4533 const union tgsi_exec_channel *src1)
4534 {
4535 dst->u[0] = src0->u[0] | src1->u[0];
4536 dst->u[1] = src0->u[1] | src1->u[1];
4537 dst->u[2] = src0->u[2] | src1->u[2];
4538 dst->u[3] = src0->u[3] | src1->u[3];
4539 }
4540
4541 static void
4542 micro_xor(union tgsi_exec_channel *dst,
4543 const union tgsi_exec_channel *src0,
4544 const union tgsi_exec_channel *src1)
4545 {
4546 dst->u[0] = src0->u[0] ^ src1->u[0];
4547 dst->u[1] = src0->u[1] ^ src1->u[1];
4548 dst->u[2] = src0->u[2] ^ src1->u[2];
4549 dst->u[3] = src0->u[3] ^ src1->u[3];
4550 }
4551
4552 static void
4553 micro_mod(union tgsi_exec_channel *dst,
4554 const union tgsi_exec_channel *src0,
4555 const union tgsi_exec_channel *src1)
4556 {
4557 dst->i[0] = src1->i[0] ? src0->i[0] % src1->i[0] : ~0;
4558 dst->i[1] = src1->i[1] ? src0->i[1] % src1->i[1] : ~0;
4559 dst->i[2] = src1->i[2] ? src0->i[2] % src1->i[2] : ~0;
4560 dst->i[3] = src1->i[3] ? src0->i[3] % src1->i[3] : ~0;
4561 }
4562
4563 static void
4564 micro_f2i(union tgsi_exec_channel *dst,
4565 const union tgsi_exec_channel *src)
4566 {
4567 dst->i[0] = (int)src->f[0];
4568 dst->i[1] = (int)src->f[1];
4569 dst->i[2] = (int)src->f[2];
4570 dst->i[3] = (int)src->f[3];
4571 }
4572
4573 static void
4574 micro_fseq(union tgsi_exec_channel *dst,
4575 const union tgsi_exec_channel *src0,
4576 const union tgsi_exec_channel *src1)
4577 {
4578 dst->u[0] = src0->f[0] == src1->f[0] ? ~0 : 0;
4579 dst->u[1] = src0->f[1] == src1->f[1] ? ~0 : 0;
4580 dst->u[2] = src0->f[2] == src1->f[2] ? ~0 : 0;
4581 dst->u[3] = src0->f[3] == src1->f[3] ? ~0 : 0;
4582 }
4583
4584 static void
4585 micro_fsge(union tgsi_exec_channel *dst,
4586 const union tgsi_exec_channel *src0,
4587 const union tgsi_exec_channel *src1)
4588 {
4589 dst->u[0] = src0->f[0] >= src1->f[0] ? ~0 : 0;
4590 dst->u[1] = src0->f[1] >= src1->f[1] ? ~0 : 0;
4591 dst->u[2] = src0->f[2] >= src1->f[2] ? ~0 : 0;
4592 dst->u[3] = src0->f[3] >= src1->f[3] ? ~0 : 0;
4593 }
4594
4595 static void
4596 micro_fslt(union tgsi_exec_channel *dst,
4597 const union tgsi_exec_channel *src0,
4598 const union tgsi_exec_channel *src1)
4599 {
4600 dst->u[0] = src0->f[0] < src1->f[0] ? ~0 : 0;
4601 dst->u[1] = src0->f[1] < src1->f[1] ? ~0 : 0;
4602 dst->u[2] = src0->f[2] < src1->f[2] ? ~0 : 0;
4603 dst->u[3] = src0->f[3] < src1->f[3] ? ~0 : 0;
4604 }
4605
4606 static void
4607 micro_fsne(union tgsi_exec_channel *dst,
4608 const union tgsi_exec_channel *src0,
4609 const union tgsi_exec_channel *src1)
4610 {
4611 dst->u[0] = src0->f[0] != src1->f[0] ? ~0 : 0;
4612 dst->u[1] = src0->f[1] != src1->f[1] ? ~0 : 0;
4613 dst->u[2] = src0->f[2] != src1->f[2] ? ~0 : 0;
4614 dst->u[3] = src0->f[3] != src1->f[3] ? ~0 : 0;
4615 }
4616
4617 static void
4618 micro_idiv(union tgsi_exec_channel *dst,
4619 const union tgsi_exec_channel *src0,
4620 const union tgsi_exec_channel *src1)
4621 {
4622 dst->i[0] = src1->i[0] ? src0->i[0] / src1->i[0] : 0;
4623 dst->i[1] = src1->i[1] ? src0->i[1] / src1->i[1] : 0;
4624 dst->i[2] = src1->i[2] ? src0->i[2] / src1->i[2] : 0;
4625 dst->i[3] = src1->i[3] ? src0->i[3] / src1->i[3] : 0;
4626 }
4627
4628 static void
4629 micro_imax(union tgsi_exec_channel *dst,
4630 const union tgsi_exec_channel *src0,
4631 const union tgsi_exec_channel *src1)
4632 {
4633 dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
4634 dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
4635 dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
4636 dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
4637 }
4638
4639 static void
4640 micro_imin(union tgsi_exec_channel *dst,
4641 const union tgsi_exec_channel *src0,
4642 const union tgsi_exec_channel *src1)
4643 {
4644 dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
4645 dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
4646 dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
4647 dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
4648 }
4649
4650 static void
4651 micro_isge(union tgsi_exec_channel *dst,
4652 const union tgsi_exec_channel *src0,
4653 const union tgsi_exec_channel *src1)
4654 {
4655 dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
4656 dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
4657 dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
4658 dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
4659 }
4660
4661 static void
4662 micro_ishr(union tgsi_exec_channel *dst,
4663 const union tgsi_exec_channel *src0,
4664 const union tgsi_exec_channel *src1)
4665 {
4666 unsigned masked_count;
4667 masked_count = src1->i[0] & 0x1f;
4668 dst->i[0] = src0->i[0] >> masked_count;
4669 masked_count = src1->i[1] & 0x1f;
4670 dst->i[1] = src0->i[1] >> masked_count;
4671 masked_count = src1->i[2] & 0x1f;
4672 dst->i[2] = src0->i[2] >> masked_count;
4673 masked_count = src1->i[3] & 0x1f;
4674 dst->i[3] = src0->i[3] >> masked_count;
4675 }
4676
4677 static void
4678 micro_islt(union tgsi_exec_channel *dst,
4679 const union tgsi_exec_channel *src0,
4680 const union tgsi_exec_channel *src1)
4681 {
4682 dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
4683 dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
4684 dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
4685 dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
4686 }
4687
4688 static void
4689 micro_f2u(union tgsi_exec_channel *dst,
4690 const union tgsi_exec_channel *src)
4691 {
4692 dst->u[0] = (uint)src->f[0];
4693 dst->u[1] = (uint)src->f[1];
4694 dst->u[2] = (uint)src->f[2];
4695 dst->u[3] = (uint)src->f[3];
4696 }
4697
4698 static void
4699 micro_u2f(union tgsi_exec_channel *dst,
4700 const union tgsi_exec_channel *src)
4701 {
4702 dst->f[0] = (float)src->u[0];
4703 dst->f[1] = (float)src->u[1];
4704 dst->f[2] = (float)src->u[2];
4705 dst->f[3] = (float)src->u[3];
4706 }
4707
4708 static void
4709 micro_uadd(union tgsi_exec_channel *dst,
4710 const union tgsi_exec_channel *src0,
4711 const union tgsi_exec_channel *src1)
4712 {
4713 dst->u[0] = src0->u[0] + src1->u[0];
4714 dst->u[1] = src0->u[1] + src1->u[1];
4715 dst->u[2] = src0->u[2] + src1->u[2];
4716 dst->u[3] = src0->u[3] + src1->u[3];
4717 }
4718
4719 static void
4720 micro_udiv(union tgsi_exec_channel *dst,
4721 const union tgsi_exec_channel *src0,
4722 const union tgsi_exec_channel *src1)
4723 {
4724 dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
4725 dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
4726 dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
4727 dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
4728 }
4729
4730 static void
4731 micro_umad(union tgsi_exec_channel *dst,
4732 const union tgsi_exec_channel *src0,
4733 const union tgsi_exec_channel *src1,
4734 const union tgsi_exec_channel *src2)
4735 {
4736 dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
4737 dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
4738 dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
4739 dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
4740 }
4741
4742 static void
4743 micro_umax(union tgsi_exec_channel *dst,
4744 const union tgsi_exec_channel *src0,
4745 const union tgsi_exec_channel *src1)
4746 {
4747 dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
4748 dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
4749 dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
4750 dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
4751 }
4752
4753 static void
4754 micro_umin(union tgsi_exec_channel *dst,
4755 const union tgsi_exec_channel *src0,
4756 const union tgsi_exec_channel *src1)
4757 {
4758 dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
4759 dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
4760 dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
4761 dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
4762 }
4763
4764 static void
4765 micro_umod(union tgsi_exec_channel *dst,
4766 const union tgsi_exec_channel *src0,
4767 const union tgsi_exec_channel *src1)
4768 {
4769 dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
4770 dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
4771 dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
4772 dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
4773 }
4774
4775 static void
4776 micro_umul(union tgsi_exec_channel *dst,
4777 const union tgsi_exec_channel *src0,
4778 const union tgsi_exec_channel *src1)
4779 {
4780 dst->u[0] = src0->u[0] * src1->u[0];
4781 dst->u[1] = src0->u[1] * src1->u[1];
4782 dst->u[2] = src0->u[2] * src1->u[2];
4783 dst->u[3] = src0->u[3] * src1->u[3];
4784 }
4785
4786 static void
4787 micro_imul_hi(union tgsi_exec_channel *dst,
4788 const union tgsi_exec_channel *src0,
4789 const union tgsi_exec_channel *src1)
4790 {
4791 #define I64M(x, y) ((((int64_t)x) * ((int64_t)y)) >> 32)
4792 dst->i[0] = I64M(src0->i[0], src1->i[0]);
4793 dst->i[1] = I64M(src0->i[1], src1->i[1]);
4794 dst->i[2] = I64M(src0->i[2], src1->i[2]);
4795 dst->i[3] = I64M(src0->i[3], src1->i[3]);
4796 #undef I64M
4797 }
4798
4799 static void
4800 micro_umul_hi(union tgsi_exec_channel *dst,
4801 const union tgsi_exec_channel *src0,
4802 const union tgsi_exec_channel *src1)
4803 {
4804 #define U64M(x, y) ((((uint64_t)x) * ((uint64_t)y)) >> 32)
4805 dst->u[0] = U64M(src0->u[0], src1->u[0]);
4806 dst->u[1] = U64M(src0->u[1], src1->u[1]);
4807 dst->u[2] = U64M(src0->u[2], src1->u[2]);
4808 dst->u[3] = U64M(src0->u[3], src1->u[3]);
4809 #undef U64M
4810 }
4811
4812 static void
4813 micro_useq(union tgsi_exec_channel *dst,
4814 const union tgsi_exec_channel *src0,
4815 const union tgsi_exec_channel *src1)
4816 {
4817 dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
4818 dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
4819 dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
4820 dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
4821 }
4822
4823 static void
4824 micro_usge(union tgsi_exec_channel *dst,
4825 const union tgsi_exec_channel *src0,
4826 const union tgsi_exec_channel *src1)
4827 {
4828 dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
4829 dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
4830 dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
4831 dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
4832 }
4833
4834 static void
4835 micro_ushr(union tgsi_exec_channel *dst,
4836 const union tgsi_exec_channel *src0,
4837 const union tgsi_exec_channel *src1)
4838 {
4839 unsigned masked_count;
4840 masked_count = src1->u[0] & 0x1f;
4841 dst->u[0] = src0->u[0] >> masked_count;
4842 masked_count = src1->u[1] & 0x1f;
4843 dst->u[1] = src0->u[1] >> masked_count;
4844 masked_count = src1->u[2] & 0x1f;
4845 dst->u[2] = src0->u[2] >> masked_count;
4846 masked_count = src1->u[3] & 0x1f;
4847 dst->u[3] = src0->u[3] >> masked_count;
4848 }
4849
4850 static void
4851 micro_uslt(union tgsi_exec_channel *dst,
4852 const union tgsi_exec_channel *src0,
4853 const union tgsi_exec_channel *src1)
4854 {
4855 dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
4856 dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
4857 dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
4858 dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
4859 }
4860
4861 static void
4862 micro_usne(union tgsi_exec_channel *dst,
4863 const union tgsi_exec_channel *src0,
4864 const union tgsi_exec_channel *src1)
4865 {
4866 dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
4867 dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
4868 dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
4869 dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
4870 }
4871
4872 static void
4873 micro_uarl(union tgsi_exec_channel *dst,
4874 const union tgsi_exec_channel *src)
4875 {
4876 dst->i[0] = src->u[0];
4877 dst->i[1] = src->u[1];
4878 dst->i[2] = src->u[2];
4879 dst->i[3] = src->u[3];
4880 }
4881
4882 /**
4883 * Signed bitfield extract (i.e. sign-extend the extracted bits)
4884 */
4885 static void
4886 micro_ibfe(union tgsi_exec_channel *dst,
4887 const union tgsi_exec_channel *src0,
4888 const union tgsi_exec_channel *src1,
4889 const union tgsi_exec_channel *src2)
4890 {
4891 int i;
4892 for (i = 0; i < 4; i++) {
4893 int width = src2->i[i] & 0x1f;
4894 int offset = src1->i[i] & 0x1f;
4895 if (width == 0)
4896 dst->i[i] = 0;
4897 else if (width + offset < 32)
4898 dst->i[i] = (src0->i[i] << (32 - width - offset)) >> (32 - width);
4899 else
4900 dst->i[i] = src0->i[i] >> offset;
4901 }
4902 }
4903
4904 /**
4905 * Unsigned bitfield extract
4906 */
4907 static void
4908 micro_ubfe(union tgsi_exec_channel *dst,
4909 const union tgsi_exec_channel *src0,
4910 const union tgsi_exec_channel *src1,
4911 const union tgsi_exec_channel *src2)
4912 {
4913 int i;
4914 for (i = 0; i < 4; i++) {
4915 int width = src2->u[i] & 0x1f;
4916 int offset = src1->u[i] & 0x1f;
4917 if (width == 0)
4918 dst->u[i] = 0;
4919 else if (width + offset < 32)
4920 dst->u[i] = (src0->u[i] << (32 - width - offset)) >> (32 - width);
4921 else
4922 dst->u[i] = src0->u[i] >> offset;
4923 }
4924 }
4925
4926 /**
4927 * Bitfield insert: copy low bits from src1 into a region of src0.
4928 */
4929 static void
4930 micro_bfi(union tgsi_exec_channel *dst,
4931 const union tgsi_exec_channel *src0,
4932 const union tgsi_exec_channel *src1,
4933 const union tgsi_exec_channel *src2,
4934 const union tgsi_exec_channel *src3)
4935 {
4936 int i;
4937 for (i = 0; i < 4; i++) {
4938 int width = src3->u[i] & 0x1f;
4939 int offset = src2->u[i] & 0x1f;
4940 int bitmask = ((1 << width) - 1) << offset;
4941 dst->u[i] = ((src1->u[i] << offset) & bitmask) | (src0->u[i] & ~bitmask);
4942 }
4943 }
4944
4945 static void
4946 micro_brev(union tgsi_exec_channel *dst,
4947 const union tgsi_exec_channel *src)
4948 {
4949 dst->u[0] = util_bitreverse(src->u[0]);
4950 dst->u[1] = util_bitreverse(src->u[1]);
4951 dst->u[2] = util_bitreverse(src->u[2]);
4952 dst->u[3] = util_bitreverse(src->u[3]);
4953 }
4954
4955 static void
4956 micro_popc(union tgsi_exec_channel *dst,
4957 const union tgsi_exec_channel *src)
4958 {
4959 dst->u[0] = util_bitcount(src->u[0]);
4960 dst->u[1] = util_bitcount(src->u[1]);
4961 dst->u[2] = util_bitcount(src->u[2]);
4962 dst->u[3] = util_bitcount(src->u[3]);
4963 }
4964
4965 static void
4966 micro_lsb(union tgsi_exec_channel *dst,
4967 const union tgsi_exec_channel *src)
4968 {
4969 dst->i[0] = ffs(src->u[0]) - 1;
4970 dst->i[1] = ffs(src->u[1]) - 1;
4971 dst->i[2] = ffs(src->u[2]) - 1;
4972 dst->i[3] = ffs(src->u[3]) - 1;
4973 }
4974
4975 static void
4976 micro_imsb(union tgsi_exec_channel *dst,
4977 const union tgsi_exec_channel *src)
4978 {
4979 dst->i[0] = util_last_bit_signed(src->i[0]) - 1;
4980 dst->i[1] = util_last_bit_signed(src->i[1]) - 1;
4981 dst->i[2] = util_last_bit_signed(src->i[2]) - 1;
4982 dst->i[3] = util_last_bit_signed(src->i[3]) - 1;
4983 }
4984
4985 static void
4986 micro_umsb(union tgsi_exec_channel *dst,
4987 const union tgsi_exec_channel *src)
4988 {
4989 dst->i[0] = util_last_bit(src->u[0]) - 1;
4990 dst->i[1] = util_last_bit(src->u[1]) - 1;
4991 dst->i[2] = util_last_bit(src->u[2]) - 1;
4992 dst->i[3] = util_last_bit(src->u[3]) - 1;
4993 }
4994
4995 /**
4996 * Execute a TGSI instruction.
4997 * Returns TRUE if a barrier instruction is hit,
4998 * otherwise FALSE.
4999 */
5000 static boolean
5001 exec_instruction(
5002 struct tgsi_exec_machine *mach,
5003 const struct tgsi_full_instruction *inst,
5004 int *pc )
5005 {
5006 union tgsi_exec_channel r[10];
5007
5008 (*pc)++;
5009
5010 switch (inst->Instruction.Opcode) {
5011 case TGSI_OPCODE_ARL:
5012 exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5013 break;
5014
5015 case TGSI_OPCODE_MOV:
5016 exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5017 break;
5018
5019 case TGSI_OPCODE_LIT:
5020 exec_lit(mach, inst);
5021 break;
5022
5023 case TGSI_OPCODE_RCP:
5024 exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5025 break;
5026
5027 case TGSI_OPCODE_RSQ:
5028 exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5029 break;
5030
5031 case TGSI_OPCODE_EXP:
5032 exec_exp(mach, inst);
5033 break;
5034
5035 case TGSI_OPCODE_LOG:
5036 exec_log(mach, inst);
5037 break;
5038
5039 case TGSI_OPCODE_MUL:
5040 exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5041 break;
5042
5043 case TGSI_OPCODE_ADD:
5044 exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5045 break;
5046
5047 case TGSI_OPCODE_DP3:
5048 exec_dp3(mach, inst);
5049 break;
5050
5051 case TGSI_OPCODE_DP4:
5052 exec_dp4(mach, inst);
5053 break;
5054
5055 case TGSI_OPCODE_DST:
5056 exec_dst(mach, inst);
5057 break;
5058
5059 case TGSI_OPCODE_MIN:
5060 exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5061 break;
5062
5063 case TGSI_OPCODE_MAX:
5064 exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5065 break;
5066
5067 case TGSI_OPCODE_SLT:
5068 exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5069 break;
5070
5071 case TGSI_OPCODE_SGE:
5072 exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5073 break;
5074
5075 case TGSI_OPCODE_MAD:
5076 exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5077 break;
5078
5079 case TGSI_OPCODE_LRP:
5080 exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5081 break;
5082
5083 case TGSI_OPCODE_SQRT:
5084 exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5085 break;
5086
5087 case TGSI_OPCODE_FRC:
5088 exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5089 break;
5090
5091 case TGSI_OPCODE_FLR:
5092 exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5093 break;
5094
5095 case TGSI_OPCODE_ROUND:
5096 exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5097 break;
5098
5099 case TGSI_OPCODE_EX2:
5100 exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5101 break;
5102
5103 case TGSI_OPCODE_LG2:
5104 exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5105 break;
5106
5107 case TGSI_OPCODE_POW:
5108 exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5109 break;
5110
5111 case TGSI_OPCODE_COS:
5112 exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5113 break;
5114
5115 case TGSI_OPCODE_DDX:
5116 exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5117 break;
5118
5119 case TGSI_OPCODE_DDY:
5120 exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5121 break;
5122
5123 case TGSI_OPCODE_KILL:
5124 exec_kill (mach, inst);
5125 break;
5126
5127 case TGSI_OPCODE_KILL_IF:
5128 exec_kill_if (mach, inst);
5129 break;
5130
5131 case TGSI_OPCODE_PK2H:
5132 exec_pk2h(mach, inst);
5133 break;
5134
5135 case TGSI_OPCODE_PK2US:
5136 assert (0);
5137 break;
5138
5139 case TGSI_OPCODE_PK4B:
5140 assert (0);
5141 break;
5142
5143 case TGSI_OPCODE_PK4UB:
5144 assert (0);
5145 break;
5146
5147 case TGSI_OPCODE_SEQ:
5148 exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5149 break;
5150
5151 case TGSI_OPCODE_SGT:
5152 exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5153 break;
5154
5155 case TGSI_OPCODE_SIN:
5156 exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5157 break;
5158
5159 case TGSI_OPCODE_SLE:
5160 exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5161 break;
5162
5163 case TGSI_OPCODE_SNE:
5164 exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5165 break;
5166
5167 case TGSI_OPCODE_TEX:
5168 /* simple texture lookup */
5169 /* src[0] = texcoord */
5170 /* src[1] = sampler unit */
5171 exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
5172 break;
5173
5174 case TGSI_OPCODE_TXB:
5175 /* Texture lookup with lod bias */
5176 /* src[0] = texcoord (src[0].w = LOD bias) */
5177 /* src[1] = sampler unit */
5178 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
5179 break;
5180
5181 case TGSI_OPCODE_TXD:
5182 /* Texture lookup with explict partial derivatives */
5183 /* src[0] = texcoord */
5184 /* src[1] = d[strq]/dx */
5185 /* src[2] = d[strq]/dy */
5186 /* src[3] = sampler unit */
5187 exec_txd(mach, inst);
5188 break;
5189
5190 case TGSI_OPCODE_TXL:
5191 /* Texture lookup with explit LOD */
5192 /* src[0] = texcoord (src[0].w = LOD) */
5193 /* src[1] = sampler unit */
5194 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
5195 break;
5196
5197 case TGSI_OPCODE_TXP:
5198 /* Texture lookup with projection */
5199 /* src[0] = texcoord (src[0].w = projection) */
5200 /* src[1] = sampler unit */
5201 exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
5202 break;
5203
5204 case TGSI_OPCODE_TG4:
5205 /* src[0] = texcoord */
5206 /* src[1] = component */
5207 /* src[2] = sampler unit */
5208 exec_tex(mach, inst, TEX_MODIFIER_GATHER, 2);
5209 break;
5210
5211 case TGSI_OPCODE_LODQ:
5212 /* src[0] = texcoord */
5213 /* src[1] = sampler unit */
5214 exec_lodq(mach, inst);
5215 break;
5216
5217 case TGSI_OPCODE_UP2H:
5218 exec_up2h(mach, inst);
5219 break;
5220
5221 case TGSI_OPCODE_UP2US:
5222 assert (0);
5223 break;
5224
5225 case TGSI_OPCODE_UP4B:
5226 assert (0);
5227 break;
5228
5229 case TGSI_OPCODE_UP4UB:
5230 assert (0);
5231 break;
5232
5233 case TGSI_OPCODE_ARR:
5234 exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5235 break;
5236
5237 case TGSI_OPCODE_CAL:
5238 /* skip the call if no execution channels are enabled */
5239 if (mach->ExecMask) {
5240 /* do the call */
5241
5242 /* First, record the depths of the execution stacks.
5243 * This is important for deeply nested/looped return statements.
5244 * We have to unwind the stacks by the correct amount. For a
5245 * real code generator, we could determine the number of entries
5246 * to pop off each stack with simple static analysis and avoid
5247 * implementing this data structure at run time.
5248 */
5249 mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
5250 mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
5251 mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
5252 mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
5253 mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
5254 /* note that PC was already incremented above */
5255 mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
5256
5257 mach->CallStackTop++;
5258
5259 /* Second, push the Cond, Loop, Cont, Func stacks */
5260 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5261 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5262 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5263 assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
5264 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5265 assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
5266
5267 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5268 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5269 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5270 mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
5271 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5272 mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
5273
5274 /* Finally, jump to the subroutine. The label is a pointer
5275 * (an instruction number) to the BGNSUB instruction.
5276 */
5277 *pc = inst->Label.Label;
5278 assert(mach->Instructions[*pc].Instruction.Opcode
5279 == TGSI_OPCODE_BGNSUB);
5280 }
5281 break;
5282
5283 case TGSI_OPCODE_RET:
5284 mach->FuncMask &= ~mach->ExecMask;
5285 UPDATE_EXEC_MASK(mach);
5286
5287 if (mach->FuncMask == 0x0) {
5288 /* really return now (otherwise, keep executing */
5289
5290 if (mach->CallStackTop == 0) {
5291 /* returning from main() */
5292 mach->CondStackTop = 0;
5293 mach->LoopStackTop = 0;
5294 mach->ContStackTop = 0;
5295 mach->LoopLabelStackTop = 0;
5296 mach->SwitchStackTop = 0;
5297 mach->BreakStackTop = 0;
5298 *pc = -1;
5299 return FALSE;
5300 }
5301
5302 assert(mach->CallStackTop > 0);
5303 mach->CallStackTop--;
5304
5305 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5306 mach->CondMask = mach->CondStack[mach->CondStackTop];
5307
5308 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5309 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5310
5311 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5312 mach->ContMask = mach->ContStack[mach->ContStackTop];
5313
5314 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5315 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5316
5317 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5318 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5319
5320 assert(mach->FuncStackTop > 0);
5321 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5322
5323 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5324
5325 UPDATE_EXEC_MASK(mach);
5326 }
5327 break;
5328
5329 case TGSI_OPCODE_SSG:
5330 exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5331 break;
5332
5333 case TGSI_OPCODE_CMP:
5334 exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5335 break;
5336
5337 case TGSI_OPCODE_SCS:
5338 exec_scs(mach, inst);
5339 break;
5340
5341 case TGSI_OPCODE_DIV:
5342 exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5343 break;
5344
5345 case TGSI_OPCODE_DP2:
5346 exec_dp2(mach, inst);
5347 break;
5348
5349 case TGSI_OPCODE_IF:
5350 /* push CondMask */
5351 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5352 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5353 FETCH( &r[0], 0, TGSI_CHAN_X );
5354 /* update CondMask */
5355 if( ! r[0].f[0] ) {
5356 mach->CondMask &= ~0x1;
5357 }
5358 if( ! r[0].f[1] ) {
5359 mach->CondMask &= ~0x2;
5360 }
5361 if( ! r[0].f[2] ) {
5362 mach->CondMask &= ~0x4;
5363 }
5364 if( ! r[0].f[3] ) {
5365 mach->CondMask &= ~0x8;
5366 }
5367 UPDATE_EXEC_MASK(mach);
5368 /* Todo: If CondMask==0, jump to ELSE */
5369 break;
5370
5371 case TGSI_OPCODE_UIF:
5372 /* push CondMask */
5373 assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5374 mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5375 IFETCH( &r[0], 0, TGSI_CHAN_X );
5376 /* update CondMask */
5377 if( ! r[0].u[0] ) {
5378 mach->CondMask &= ~0x1;
5379 }
5380 if( ! r[0].u[1] ) {
5381 mach->CondMask &= ~0x2;
5382 }
5383 if( ! r[0].u[2] ) {
5384 mach->CondMask &= ~0x4;
5385 }
5386 if( ! r[0].u[3] ) {
5387 mach->CondMask &= ~0x8;
5388 }
5389 UPDATE_EXEC_MASK(mach);
5390 /* Todo: If CondMask==0, jump to ELSE */
5391 break;
5392
5393 case TGSI_OPCODE_ELSE:
5394 /* invert CondMask wrt previous mask */
5395 {
5396 uint prevMask;
5397 assert(mach->CondStackTop > 0);
5398 prevMask = mach->CondStack[mach->CondStackTop - 1];
5399 mach->CondMask = ~mach->CondMask & prevMask;
5400 UPDATE_EXEC_MASK(mach);
5401 /* Todo: If CondMask==0, jump to ENDIF */
5402 }
5403 break;
5404
5405 case TGSI_OPCODE_ENDIF:
5406 /* pop CondMask */
5407 assert(mach->CondStackTop > 0);
5408 mach->CondMask = mach->CondStack[--mach->CondStackTop];
5409 UPDATE_EXEC_MASK(mach);
5410 break;
5411
5412 case TGSI_OPCODE_END:
5413 /* make sure we end primitives which haven't
5414 * been explicitly emitted */
5415 conditional_emit_primitive(mach);
5416 /* halt execution */
5417 *pc = -1;
5418 break;
5419
5420 case TGSI_OPCODE_CEIL:
5421 exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5422 break;
5423
5424 case TGSI_OPCODE_I2F:
5425 exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
5426 break;
5427
5428 case TGSI_OPCODE_NOT:
5429 exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5430 break;
5431
5432 case TGSI_OPCODE_TRUNC:
5433 exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5434 break;
5435
5436 case TGSI_OPCODE_SHL:
5437 exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5438 break;
5439
5440 case TGSI_OPCODE_AND:
5441 exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5442 break;
5443
5444 case TGSI_OPCODE_OR:
5445 exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5446 break;
5447
5448 case TGSI_OPCODE_MOD:
5449 exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5450 break;
5451
5452 case TGSI_OPCODE_XOR:
5453 exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5454 break;
5455
5456 case TGSI_OPCODE_TXF:
5457 exec_txf(mach, inst);
5458 break;
5459
5460 case TGSI_OPCODE_TXQ:
5461 exec_txq(mach, inst);
5462 break;
5463
5464 case TGSI_OPCODE_EMIT:
5465 emit_vertex(mach);
5466 break;
5467
5468 case TGSI_OPCODE_ENDPRIM:
5469 emit_primitive(mach);
5470 break;
5471
5472 case TGSI_OPCODE_BGNLOOP:
5473 /* push LoopMask and ContMasks */
5474 assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5475 assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5476 assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5477 assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5478
5479 mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5480 mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5481 mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
5482 mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5483 mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
5484 break;
5485
5486 case TGSI_OPCODE_ENDLOOP:
5487 /* Restore ContMask, but don't pop */
5488 assert(mach->ContStackTop > 0);
5489 mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
5490 UPDATE_EXEC_MASK(mach);
5491 if (mach->ExecMask) {
5492 /* repeat loop: jump to instruction just past BGNLOOP */
5493 assert(mach->LoopLabelStackTop > 0);
5494 *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
5495 }
5496 else {
5497 /* exit loop: pop LoopMask */
5498 assert(mach->LoopStackTop > 0);
5499 mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
5500 /* pop ContMask */
5501 assert(mach->ContStackTop > 0);
5502 mach->ContMask = mach->ContStack[--mach->ContStackTop];
5503 assert(mach->LoopLabelStackTop > 0);
5504 --mach->LoopLabelStackTop;
5505
5506 mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
5507 }
5508 UPDATE_EXEC_MASK(mach);
5509 break;
5510
5511 case TGSI_OPCODE_BRK:
5512 exec_break(mach);
5513 break;
5514
5515 case TGSI_OPCODE_CONT:
5516 /* turn off cont channels for each enabled exec channel */
5517 mach->ContMask &= ~mach->ExecMask;
5518 /* Todo: if mach->LoopMask == 0, jump to end of loop */
5519 UPDATE_EXEC_MASK(mach);
5520 break;
5521
5522 case TGSI_OPCODE_BGNSUB:
5523 /* no-op */
5524 break;
5525
5526 case TGSI_OPCODE_ENDSUB:
5527 /*
5528 * XXX: This really should be a no-op. We should never reach this opcode.
5529 */
5530
5531 assert(mach->CallStackTop > 0);
5532 mach->CallStackTop--;
5533
5534 mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5535 mach->CondMask = mach->CondStack[mach->CondStackTop];
5536
5537 mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5538 mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5539
5540 mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5541 mach->ContMask = mach->ContStack[mach->ContStackTop];
5542
5543 mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5544 mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5545
5546 mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5547 mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5548
5549 assert(mach->FuncStackTop > 0);
5550 mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5551
5552 *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5553
5554 UPDATE_EXEC_MASK(mach);
5555 break;
5556
5557 case TGSI_OPCODE_NOP:
5558 break;
5559
5560 case TGSI_OPCODE_F2I:
5561 exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5562 break;
5563
5564 case TGSI_OPCODE_FSEQ:
5565 exec_vector_binary(mach, inst, micro_fseq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5566 break;
5567
5568 case TGSI_OPCODE_FSGE:
5569 exec_vector_binary(mach, inst, micro_fsge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5570 break;
5571
5572 case TGSI_OPCODE_FSLT:
5573 exec_vector_binary(mach, inst, micro_fslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5574 break;
5575
5576 case TGSI_OPCODE_FSNE:
5577 exec_vector_binary(mach, inst, micro_fsne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5578 break;
5579
5580 case TGSI_OPCODE_IDIV:
5581 exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5582 break;
5583
5584 case TGSI_OPCODE_IMAX:
5585 exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5586 break;
5587
5588 case TGSI_OPCODE_IMIN:
5589 exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5590 break;
5591
5592 case TGSI_OPCODE_INEG:
5593 exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5594 break;
5595
5596 case TGSI_OPCODE_ISGE:
5597 exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5598 break;
5599
5600 case TGSI_OPCODE_ISHR:
5601 exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5602 break;
5603
5604 case TGSI_OPCODE_ISLT:
5605 exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5606 break;
5607
5608 case TGSI_OPCODE_F2U:
5609 exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5610 break;
5611
5612 case TGSI_OPCODE_U2F:
5613 exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
5614 break;
5615
5616 case TGSI_OPCODE_UADD:
5617 exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5618 break;
5619
5620 case TGSI_OPCODE_UDIV:
5621 exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5622 break;
5623
5624 case TGSI_OPCODE_UMAD:
5625 exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5626 break;
5627
5628 case TGSI_OPCODE_UMAX:
5629 exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5630 break;
5631
5632 case TGSI_OPCODE_UMIN:
5633 exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5634 break;
5635
5636 case TGSI_OPCODE_UMOD:
5637 exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5638 break;
5639
5640 case TGSI_OPCODE_UMUL:
5641 exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5642 break;
5643
5644 case TGSI_OPCODE_IMUL_HI:
5645 exec_vector_binary(mach, inst, micro_imul_hi, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5646 break;
5647
5648 case TGSI_OPCODE_UMUL_HI:
5649 exec_vector_binary(mach, inst, micro_umul_hi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5650 break;
5651
5652 case TGSI_OPCODE_USEQ:
5653 exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5654 break;
5655
5656 case TGSI_OPCODE_USGE:
5657 exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5658 break;
5659
5660 case TGSI_OPCODE_USHR:
5661 exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5662 break;
5663
5664 case TGSI_OPCODE_USLT:
5665 exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5666 break;
5667
5668 case TGSI_OPCODE_USNE:
5669 exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5670 break;
5671
5672 case TGSI_OPCODE_SWITCH:
5673 exec_switch(mach, inst);
5674 break;
5675
5676 case TGSI_OPCODE_CASE:
5677 exec_case(mach, inst);
5678 break;
5679
5680 case TGSI_OPCODE_DEFAULT:
5681 exec_default(mach);
5682 break;
5683
5684 case TGSI_OPCODE_ENDSWITCH:
5685 exec_endswitch(mach);
5686 break;
5687
5688 case TGSI_OPCODE_SAMPLE_I:
5689 exec_txf(mach, inst);
5690 break;
5691
5692 case TGSI_OPCODE_SAMPLE_I_MS:
5693 exec_txf(mach, inst);
5694 break;
5695
5696 case TGSI_OPCODE_SAMPLE:
5697 exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
5698 break;
5699
5700 case TGSI_OPCODE_SAMPLE_B:
5701 exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
5702 break;
5703
5704 case TGSI_OPCODE_SAMPLE_C:
5705 exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
5706 break;
5707
5708 case TGSI_OPCODE_SAMPLE_C_LZ:
5709 exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
5710 break;
5711
5712 case TGSI_OPCODE_SAMPLE_D:
5713 exec_sample_d(mach, inst);
5714 break;
5715
5716 case TGSI_OPCODE_SAMPLE_L:
5717 exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
5718 break;
5719
5720 case TGSI_OPCODE_GATHER4:
5721 assert(0);
5722 break;
5723
5724 case TGSI_OPCODE_SVIEWINFO:
5725 exec_txq(mach, inst);
5726 break;
5727
5728 case TGSI_OPCODE_SAMPLE_POS:
5729 assert(0);
5730 break;
5731
5732 case TGSI_OPCODE_SAMPLE_INFO:
5733 assert(0);
5734 break;
5735
5736 case TGSI_OPCODE_UARL:
5737 exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5738 break;
5739
5740 case TGSI_OPCODE_UCMP:
5741 exec_ucmp(mach, inst);
5742 break;
5743
5744 case TGSI_OPCODE_IABS:
5745 exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5746 break;
5747
5748 case TGSI_OPCODE_ISSG:
5749 exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5750 break;
5751
5752 case TGSI_OPCODE_TEX2:
5753 /* simple texture lookup */
5754 /* src[0] = texcoord */
5755 /* src[1] = compare */
5756 /* src[2] = sampler unit */
5757 exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
5758 break;
5759 case TGSI_OPCODE_TXB2:
5760 /* simple texture lookup */
5761 /* src[0] = texcoord */
5762 /* src[1] = bias */
5763 /* src[2] = sampler unit */
5764 exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
5765 break;
5766 case TGSI_OPCODE_TXL2:
5767 /* simple texture lookup */
5768 /* src[0] = texcoord */
5769 /* src[1] = lod */
5770 /* src[2] = sampler unit */
5771 exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
5772 break;
5773
5774 case TGSI_OPCODE_IBFE:
5775 exec_vector_trinary(mach, inst, micro_ibfe, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5776 break;
5777 case TGSI_OPCODE_UBFE:
5778 exec_vector_trinary(mach, inst, micro_ubfe, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5779 break;
5780 case TGSI_OPCODE_BFI:
5781 exec_vector_quaternary(mach, inst, micro_bfi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5782 break;
5783 case TGSI_OPCODE_BREV:
5784 exec_vector_unary(mach, inst, micro_brev, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5785 break;
5786 case TGSI_OPCODE_POPC:
5787 exec_vector_unary(mach, inst, micro_popc, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5788 break;
5789 case TGSI_OPCODE_LSB:
5790 exec_vector_unary(mach, inst, micro_lsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5791 break;
5792 case TGSI_OPCODE_IMSB:
5793 exec_vector_unary(mach, inst, micro_imsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5794 break;
5795 case TGSI_OPCODE_UMSB:
5796 exec_vector_unary(mach, inst, micro_umsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5797 break;
5798
5799 case TGSI_OPCODE_F2D:
5800 exec_t_2_64(mach, inst, micro_f2d, TGSI_EXEC_DATA_FLOAT);
5801 break;
5802
5803 case TGSI_OPCODE_D2F:
5804 exec_64_2_t(mach, inst, micro_d2f, TGSI_EXEC_DATA_FLOAT);
5805 break;
5806
5807 case TGSI_OPCODE_DABS:
5808 exec_double_unary(mach, inst, micro_dabs);
5809 break;
5810
5811 case TGSI_OPCODE_DNEG:
5812 exec_double_unary(mach, inst, micro_dneg);
5813 break;
5814
5815 case TGSI_OPCODE_DADD:
5816 exec_double_binary(mach, inst, micro_dadd, TGSI_EXEC_DATA_DOUBLE);
5817 break;
5818
5819 case TGSI_OPCODE_DDIV:
5820 exec_double_binary(mach, inst, micro_ddiv, TGSI_EXEC_DATA_DOUBLE);
5821 break;
5822
5823 case TGSI_OPCODE_DMUL:
5824 exec_double_binary(mach, inst, micro_dmul, TGSI_EXEC_DATA_DOUBLE);
5825 break;
5826
5827 case TGSI_OPCODE_DMAX:
5828 exec_double_binary(mach, inst, micro_dmax, TGSI_EXEC_DATA_DOUBLE);
5829 break;
5830
5831 case TGSI_OPCODE_DMIN:
5832 exec_double_binary(mach, inst, micro_dmin, TGSI_EXEC_DATA_DOUBLE);
5833 break;
5834
5835 case TGSI_OPCODE_DSLT:
5836 exec_double_binary(mach, inst, micro_dslt, TGSI_EXEC_DATA_UINT);
5837 break;
5838
5839 case TGSI_OPCODE_DSGE:
5840 exec_double_binary(mach, inst, micro_dsge, TGSI_EXEC_DATA_UINT);
5841 break;
5842
5843 case TGSI_OPCODE_DSEQ:
5844 exec_double_binary(mach, inst, micro_dseq, TGSI_EXEC_DATA_UINT);
5845 break;
5846
5847 case TGSI_OPCODE_DSNE:
5848 exec_double_binary(mach, inst, micro_dsne, TGSI_EXEC_DATA_UINT);
5849 break;
5850
5851 case TGSI_OPCODE_DRCP:
5852 exec_double_unary(mach, inst, micro_drcp);
5853 break;
5854
5855 case TGSI_OPCODE_DSQRT:
5856 exec_double_unary(mach, inst, micro_dsqrt);
5857 break;
5858
5859 case TGSI_OPCODE_DRSQ:
5860 exec_double_unary(mach, inst, micro_drsq);
5861 break;
5862
5863 case TGSI_OPCODE_DMAD:
5864 exec_double_trinary(mach, inst, micro_dmad);
5865 break;
5866
5867 case TGSI_OPCODE_DFRAC:
5868 exec_double_unary(mach, inst, micro_dfrac);
5869 break;
5870
5871 case TGSI_OPCODE_DLDEXP:
5872 exec_dldexp(mach, inst);
5873 break;
5874
5875 case TGSI_OPCODE_DFRACEXP:
5876 exec_dfracexp(mach, inst);
5877 break;
5878
5879 case TGSI_OPCODE_I2D:
5880 exec_t_2_64(mach, inst, micro_i2d, TGSI_EXEC_DATA_INT);
5881 break;
5882
5883 case TGSI_OPCODE_D2I:
5884 exec_64_2_t(mach, inst, micro_d2i, TGSI_EXEC_DATA_INT);
5885 break;
5886
5887 case TGSI_OPCODE_U2D:
5888 exec_t_2_64(mach, inst, micro_u2d, TGSI_EXEC_DATA_UINT);
5889 break;
5890
5891 case TGSI_OPCODE_D2U:
5892 exec_64_2_t(mach, inst, micro_d2u, TGSI_EXEC_DATA_INT);
5893 break;
5894
5895 case TGSI_OPCODE_LOAD:
5896 exec_load(mach, inst);
5897 break;
5898
5899 case TGSI_OPCODE_STORE:
5900 exec_store(mach, inst);
5901 break;
5902
5903 case TGSI_OPCODE_ATOMUADD:
5904 case TGSI_OPCODE_ATOMXCHG:
5905 case TGSI_OPCODE_ATOMCAS:
5906 case TGSI_OPCODE_ATOMAND:
5907 case TGSI_OPCODE_ATOMOR:
5908 case TGSI_OPCODE_ATOMXOR:
5909 case TGSI_OPCODE_ATOMUMIN:
5910 case TGSI_OPCODE_ATOMUMAX:
5911 case TGSI_OPCODE_ATOMIMIN:
5912 case TGSI_OPCODE_ATOMIMAX:
5913 exec_atomop(mach, inst);
5914 break;
5915
5916 case TGSI_OPCODE_RESQ:
5917 exec_resq(mach, inst);
5918 break;
5919 case TGSI_OPCODE_BARRIER:
5920 case TGSI_OPCODE_MEMBAR:
5921 return TRUE;
5922 break;
5923
5924 case TGSI_OPCODE_I64ABS:
5925 exec_double_unary(mach, inst, micro_i64abs);
5926 break;
5927
5928 case TGSI_OPCODE_I64SSG:
5929 exec_double_unary(mach, inst, micro_i64sgn);
5930 break;
5931
5932 case TGSI_OPCODE_I64NEG:
5933 exec_double_unary(mach, inst, micro_i64neg);
5934 break;
5935
5936 case TGSI_OPCODE_U64SEQ:
5937 exec_double_binary(mach, inst, micro_u64seq, TGSI_EXEC_DATA_UINT);
5938 break;
5939
5940 case TGSI_OPCODE_U64SNE:
5941 exec_double_binary(mach, inst, micro_u64sne, TGSI_EXEC_DATA_UINT);
5942 break;
5943
5944 case TGSI_OPCODE_I64SLT:
5945 exec_double_binary(mach, inst, micro_i64slt, TGSI_EXEC_DATA_UINT);
5946 break;
5947 case TGSI_OPCODE_U64SLT:
5948 exec_double_binary(mach, inst, micro_u64slt, TGSI_EXEC_DATA_UINT);
5949 break;
5950
5951 case TGSI_OPCODE_I64SGE:
5952 exec_double_binary(mach, inst, micro_i64sge, TGSI_EXEC_DATA_UINT);
5953 break;
5954 case TGSI_OPCODE_U64SGE:
5955 exec_double_binary(mach, inst, micro_u64sge, TGSI_EXEC_DATA_UINT);
5956 break;
5957
5958 case TGSI_OPCODE_I64MIN:
5959 exec_double_binary(mach, inst, micro_i64min, TGSI_EXEC_DATA_INT64);
5960 break;
5961 case TGSI_OPCODE_U64MIN:
5962 exec_double_binary(mach, inst, micro_u64min, TGSI_EXEC_DATA_UINT64);
5963 break;
5964 case TGSI_OPCODE_I64MAX:
5965 exec_double_binary(mach, inst, micro_i64max, TGSI_EXEC_DATA_INT64);
5966 break;
5967 case TGSI_OPCODE_U64MAX:
5968 exec_double_binary(mach, inst, micro_u64max, TGSI_EXEC_DATA_UINT64);
5969 break;
5970 case TGSI_OPCODE_U64ADD:
5971 exec_double_binary(mach, inst, micro_u64add, TGSI_EXEC_DATA_UINT64);
5972 break;
5973 case TGSI_OPCODE_U64MUL:
5974 exec_double_binary(mach, inst, micro_u64mul, TGSI_EXEC_DATA_UINT64);
5975 break;
5976 case TGSI_OPCODE_U64SHL:
5977 exec_arg0_64_arg1_32(mach, inst, micro_u64shl);
5978 break;
5979 case TGSI_OPCODE_I64SHR:
5980 exec_arg0_64_arg1_32(mach, inst, micro_i64shr);
5981 break;
5982 case TGSI_OPCODE_U64SHR:
5983 exec_arg0_64_arg1_32(mach, inst, micro_u64shr);
5984 break;
5985 case TGSI_OPCODE_U64DIV:
5986 exec_double_binary(mach, inst, micro_u64div, TGSI_EXEC_DATA_UINT64);
5987 break;
5988 case TGSI_OPCODE_I64DIV:
5989 exec_double_binary(mach, inst, micro_i64div, TGSI_EXEC_DATA_INT64);
5990 break;
5991 case TGSI_OPCODE_U64MOD:
5992 exec_double_binary(mach, inst, micro_u64mod, TGSI_EXEC_DATA_UINT64);
5993 break;
5994 case TGSI_OPCODE_I64MOD:
5995 exec_double_binary(mach, inst, micro_i64mod, TGSI_EXEC_DATA_INT64);
5996 break;
5997
5998 case TGSI_OPCODE_F2U64:
5999 exec_t_2_64(mach, inst, micro_f2u64, TGSI_EXEC_DATA_FLOAT);
6000 break;
6001
6002 case TGSI_OPCODE_F2I64:
6003 exec_t_2_64(mach, inst, micro_f2i64, TGSI_EXEC_DATA_FLOAT);
6004 break;
6005
6006 case TGSI_OPCODE_U2I64:
6007 exec_t_2_64(mach, inst, micro_u2i64, TGSI_EXEC_DATA_INT);
6008 break;
6009 case TGSI_OPCODE_I2I64:
6010 exec_t_2_64(mach, inst, micro_i2i64, TGSI_EXEC_DATA_INT);
6011 break;
6012
6013 case TGSI_OPCODE_D2U64:
6014 exec_double_unary(mach, inst, micro_d2u64);
6015 break;
6016
6017 case TGSI_OPCODE_D2I64:
6018 exec_double_unary(mach, inst, micro_d2i64);
6019 break;
6020
6021 case TGSI_OPCODE_U642F:
6022 exec_64_2_t(mach, inst, micro_u642f, TGSI_EXEC_DATA_FLOAT);
6023 break;
6024 case TGSI_OPCODE_I642F:
6025 exec_64_2_t(mach, inst, micro_i642f, TGSI_EXEC_DATA_FLOAT);
6026 break;
6027
6028 case TGSI_OPCODE_U642D:
6029 exec_double_unary(mach, inst, micro_u642d);
6030 break;
6031 case TGSI_OPCODE_I642D:
6032 exec_double_unary(mach, inst, micro_i642d);
6033 break;
6034
6035 default:
6036 assert( 0 );
6037 }
6038 return FALSE;
6039 }
6040
6041 static void
6042 tgsi_exec_machine_setup_masks(struct tgsi_exec_machine *mach)
6043 {
6044 uint default_mask = 0xf;
6045
6046 mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
6047 mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
6048
6049 if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
6050 mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
6051 mach->Primitives[0] = 0;
6052 /* GS runs on a single primitive for now */
6053 default_mask = 0x1;
6054 }
6055
6056 if (mach->NonHelperMask == 0)
6057 mach->NonHelperMask = default_mask;
6058 mach->CondMask = default_mask;
6059 mach->LoopMask = default_mask;
6060 mach->ContMask = default_mask;
6061 mach->FuncMask = default_mask;
6062 mach->ExecMask = default_mask;
6063
6064 mach->Switch.mask = default_mask;
6065
6066 assert(mach->CondStackTop == 0);
6067 assert(mach->LoopStackTop == 0);
6068 assert(mach->ContStackTop == 0);
6069 assert(mach->SwitchStackTop == 0);
6070 assert(mach->BreakStackTop == 0);
6071 assert(mach->CallStackTop == 0);
6072 }
6073
6074 /**
6075 * Run TGSI interpreter.
6076 * \return bitmask of "alive" quad components
6077 */
6078 uint
6079 tgsi_exec_machine_run( struct tgsi_exec_machine *mach, int start_pc )
6080 {
6081 uint i;
6082
6083 mach->pc = start_pc;
6084
6085 if (!start_pc) {
6086 tgsi_exec_machine_setup_masks(mach);
6087
6088 /* execute declarations (interpolants) */
6089 for (i = 0; i < mach->NumDeclarations; i++) {
6090 exec_declaration( mach, mach->Declarations+i );
6091 }
6092 }
6093
6094 {
6095 #if DEBUG_EXECUTION
6096 struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
6097 struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
6098 uint inst = 1;
6099
6100 if (!start_pc) {
6101 memset(mach->Temps, 0, sizeof(temps));
6102 if (mach->Outputs)
6103 memset(mach->Outputs, 0, sizeof(outputs));
6104 memset(temps, 0, sizeof(temps));
6105 memset(outputs, 0, sizeof(outputs));
6106 }
6107 #endif
6108
6109 /* execute instructions, until pc is set to -1 */
6110 while (mach->pc != -1) {
6111 boolean barrier_hit;
6112 #if DEBUG_EXECUTION
6113 uint i;
6114
6115 tgsi_dump_instruction(&mach->Instructions[mach->pc], inst++);
6116 #endif
6117
6118 assert(mach->pc < (int) mach->NumInstructions);
6119 barrier_hit = exec_instruction(mach, mach->Instructions + mach->pc, &mach->pc);
6120
6121 /* for compute shaders if we hit a barrier return now for later rescheduling */
6122 if (barrier_hit && mach->ShaderType == PIPE_SHADER_COMPUTE)
6123 return 0;
6124
6125 #if DEBUG_EXECUTION
6126 for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
6127 if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
6128 uint j;
6129
6130 memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
6131 debug_printf("TEMP[%2u] = ", i);
6132 for (j = 0; j < 4; j++) {
6133 if (j > 0) {
6134 debug_printf(" ");
6135 }
6136 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6137 temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
6138 temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
6139 temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
6140 temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
6141 }
6142 }
6143 }
6144 if (mach->Outputs) {
6145 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
6146 if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
6147 uint j;
6148
6149 memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
6150 debug_printf("OUT[%2u] = ", i);
6151 for (j = 0; j < 4; j++) {
6152 if (j > 0) {
6153 debug_printf(" ");
6154 }
6155 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6156 outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
6157 outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
6158 outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
6159 outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
6160 }
6161 }
6162 }
6163 }
6164 #endif
6165 }
6166 }
6167
6168 #if 0
6169 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
6170 if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
6171 /*
6172 * Scale back depth component.
6173 */
6174 for (i = 0; i < 4; i++)
6175 mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
6176 }
6177 #endif
6178
6179 /* Strictly speaking, these assertions aren't really needed but they
6180 * can potentially catch some bugs in the control flow code.
6181 */
6182 assert(mach->CondStackTop == 0);
6183 assert(mach->LoopStackTop == 0);
6184 assert(mach->ContStackTop == 0);
6185 assert(mach->SwitchStackTop == 0);
6186 assert(mach->BreakStackTop == 0);
6187 assert(mach->CallStackTop == 0);
6188
6189 return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
6190 }