b9b9d6ca341137e801f406d9bffd815c6fecaad4
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: LRP - Linear Interpolate
250
251 .. math::
252
253 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
254
255 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
256
257 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
258
259 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
260
261
262 .. opcode:: FMA - Fused Multiply-Add
263
264 Perform a * b + c with no intermediate rounding step.
265
266 .. math::
267
268 dst.x = src0.x \times src1.x + src2.x
269
270 dst.y = src0.y \times src1.y + src2.y
271
272 dst.z = src0.z \times src1.z + src2.z
273
274 dst.w = src0.w \times src1.w + src2.w
275
276
277 .. opcode:: DP2A - 2-component Dot Product And Add
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289
290 .. opcode:: FRC - Fraction
291
292 .. math::
293
294 dst.x = src.x - \lfloor src.x\rfloor
295
296 dst.y = src.y - \lfloor src.y\rfloor
297
298 dst.z = src.z - \lfloor src.z\rfloor
299
300 dst.w = src.w - \lfloor src.w\rfloor
301
302
303 .. opcode:: FLR - Floor
304
305 .. math::
306
307 dst.x = \lfloor src.x\rfloor
308
309 dst.y = \lfloor src.y\rfloor
310
311 dst.z = \lfloor src.z\rfloor
312
313 dst.w = \lfloor src.w\rfloor
314
315
316 .. opcode:: ROUND - Round
317
318 .. math::
319
320 dst.x = round(src.x)
321
322 dst.y = round(src.y)
323
324 dst.z = round(src.z)
325
326 dst.w = round(src.w)
327
328
329 .. opcode:: EX2 - Exponential Base 2
330
331 This instruction replicates its result.
332
333 .. math::
334
335 dst = 2^{src.x}
336
337
338 .. opcode:: LG2 - Logarithm Base 2
339
340 This instruction replicates its result.
341
342 .. math::
343
344 dst = \log_2{src.x}
345
346
347 .. opcode:: POW - Power
348
349 This instruction replicates its result.
350
351 .. math::
352
353 dst = src0.x^{src1.x}
354
355 .. opcode:: XPD - Cross Product
356
357 .. math::
358
359 dst.x = src0.y \times src1.z - src1.y \times src0.z
360
361 dst.y = src0.z \times src1.x - src1.z \times src0.x
362
363 dst.z = src0.x \times src1.y - src1.x \times src0.y
364
365 dst.w = 1
366
367
368 .. opcode:: DPH - Homogeneous Dot Product
369
370 This instruction replicates its result.
371
372 .. math::
373
374 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
375
376
377 .. opcode:: COS - Cosine
378
379 This instruction replicates its result.
380
381 .. math::
382
383 dst = \cos{src.x}
384
385
386 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
387
388 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
389 advertised. When it is, the fine version guarantees one derivative per row
390 while DDX is allowed to be the same for the entire 2x2 quad.
391
392 .. math::
393
394 dst.x = partialx(src.x)
395
396 dst.y = partialx(src.y)
397
398 dst.z = partialx(src.z)
399
400 dst.w = partialx(src.w)
401
402
403 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
404
405 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
406 advertised. When it is, the fine version guarantees one derivative per column
407 while DDY is allowed to be the same for the entire 2x2 quad.
408
409 .. math::
410
411 dst.x = partialy(src.x)
412
413 dst.y = partialy(src.y)
414
415 dst.z = partialy(src.z)
416
417 dst.w = partialy(src.w)
418
419
420 .. opcode:: PK2H - Pack Two 16-bit Floats
421
422 This instruction replicates its result.
423
424 .. math::
425
426 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
427
428
429 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
430
431 TBD
432
433
434 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
435
436 TBD
437
438
439 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
440
441 TBD
442
443
444 .. opcode:: SEQ - Set On Equal
445
446 .. math::
447
448 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
449
450 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
451
452 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
453
454 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
455
456
457 .. opcode:: SGT - Set On Greater Than
458
459 .. math::
460
461 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
462
463 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
464
465 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
466
467 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
468
469
470 .. opcode:: SIN - Sine
471
472 This instruction replicates its result.
473
474 .. math::
475
476 dst = \sin{src.x}
477
478
479 .. opcode:: SLE - Set On Less Equal Than
480
481 .. math::
482
483 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SNE - Set On Not Equal
493
494 .. math::
495
496 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
497
498 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
499
500 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
501
502 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
503
504
505 .. opcode:: TEX - Texture Lookup
506
507 for array textures src0.y contains the slice for 1D,
508 and src0.z contain the slice for 2D.
509
510 for shadow textures with no arrays (and not cube map),
511 src0.z contains the reference value.
512
513 for shadow textures with arrays, src0.z contains
514 the reference value for 1D arrays, and src0.w contains
515 the reference value for 2D arrays and cube maps.
516
517 for cube map array shadow textures, the reference value
518 cannot be passed in src0.w, and TEX2 must be used instead.
519
520 .. math::
521
522 coord = src0
523
524 shadow_ref = src0.z or src0.w (optional)
525
526 unit = src1
527
528 dst = texture\_sample(unit, coord, shadow_ref)
529
530
531 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
532
533 this is the same as TEX, but uses another reg to encode the
534 reference value.
535
536 .. math::
537
538 coord = src0
539
540 shadow_ref = src1.x
541
542 unit = src2
543
544 dst = texture\_sample(unit, coord, shadow_ref)
545
546
547
548
549 .. opcode:: TXD - Texture Lookup with Derivatives
550
551 .. math::
552
553 coord = src0
554
555 ddx = src1
556
557 ddy = src2
558
559 unit = src3
560
561 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
562
563
564 .. opcode:: TXP - Projective Texture Lookup
565
566 .. math::
567
568 coord.x = src0.x / src0.w
569
570 coord.y = src0.y / src0.w
571
572 coord.z = src0.z / src0.w
573
574 coord.w = src0.w
575
576 unit = src1
577
578 dst = texture\_sample(unit, coord)
579
580
581 .. opcode:: UP2H - Unpack Two 16-Bit Floats
582
583 .. math::
584
585 dst.x = f16\_to\_f32(src0.x \& 0xffff)
586
587 dst.y = f16\_to\_f32(src0.x >> 16)
588
589 dst.z = f16\_to\_f32(src0.x \& 0xffff)
590
591 dst.w = f16\_to\_f32(src0.x >> 16)
592
593 .. note::
594
595 Considered for removal.
596
597 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
598
599 TBD
600
601 .. note::
602
603 Considered for removal.
604
605 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
606
607 TBD
608
609 .. note::
610
611 Considered for removal.
612
613 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
614
615 TBD
616
617 .. note::
618
619 Considered for removal.
620
621
622 .. opcode:: ARR - Address Register Load With Round
623
624 .. math::
625
626 dst.x = (int) round(src.x)
627
628 dst.y = (int) round(src.y)
629
630 dst.z = (int) round(src.z)
631
632 dst.w = (int) round(src.w)
633
634
635 .. opcode:: SSG - Set Sign
636
637 .. math::
638
639 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
640
641 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
642
643 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
644
645 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
646
647
648 .. opcode:: CMP - Compare
649
650 .. math::
651
652 dst.x = (src0.x < 0) ? src1.x : src2.x
653
654 dst.y = (src0.y < 0) ? src1.y : src2.y
655
656 dst.z = (src0.z < 0) ? src1.z : src2.z
657
658 dst.w = (src0.w < 0) ? src1.w : src2.w
659
660
661 .. opcode:: KILL_IF - Conditional Discard
662
663 Conditional discard. Allowed in fragment shaders only.
664
665 .. math::
666
667 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
668 discard
669 endif
670
671
672 .. opcode:: KILL - Discard
673
674 Unconditional discard. Allowed in fragment shaders only.
675
676
677 .. opcode:: SCS - Sine Cosine
678
679 .. math::
680
681 dst.x = \cos{src.x}
682
683 dst.y = \sin{src.x}
684
685 dst.z = 0
686
687 dst.w = 1
688
689
690 .. opcode:: TXB - Texture Lookup With Bias
691
692 for cube map array textures and shadow cube maps, the bias value
693 cannot be passed in src0.w, and TXB2 must be used instead.
694
695 if the target is a shadow texture, the reference value is always
696 in src.z (this prevents shadow 3d and shadow 2d arrays from
697 using this instruction, but this is not needed).
698
699 .. math::
700
701 coord.x = src0.x
702
703 coord.y = src0.y
704
705 coord.z = src0.z
706
707 coord.w = none
708
709 bias = src0.w
710
711 unit = src1
712
713 dst = texture\_sample(unit, coord, bias)
714
715
716 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
717
718 this is the same as TXB, but uses another reg to encode the
719 lod bias value for cube map arrays and shadow cube maps.
720 Presumably shadow 2d arrays and shadow 3d targets could use
721 this encoding too, but this is not legal.
722
723 shadow cube map arrays are neither possible nor required.
724
725 .. math::
726
727 coord = src0
728
729 bias = src1.x
730
731 unit = src2
732
733 dst = texture\_sample(unit, coord, bias)
734
735
736 .. opcode:: DIV - Divide
737
738 .. math::
739
740 dst.x = \frac{src0.x}{src1.x}
741
742 dst.y = \frac{src0.y}{src1.y}
743
744 dst.z = \frac{src0.z}{src1.z}
745
746 dst.w = \frac{src0.w}{src1.w}
747
748
749 .. opcode:: DP2 - 2-component Dot Product
750
751 This instruction replicates its result.
752
753 .. math::
754
755 dst = src0.x \times src1.x + src0.y \times src1.y
756
757
758 .. opcode:: TXL - Texture Lookup With explicit LOD
759
760 for cube map array textures, the explicit lod value
761 cannot be passed in src0.w, and TXL2 must be used instead.
762
763 if the target is a shadow texture, the reference value is always
764 in src.z (this prevents shadow 3d / 2d array / cube targets from
765 using this instruction, but this is not needed).
766
767 .. math::
768
769 coord.x = src0.x
770
771 coord.y = src0.y
772
773 coord.z = src0.z
774
775 coord.w = none
776
777 lod = src0.w
778
779 unit = src1
780
781 dst = texture\_sample(unit, coord, lod)
782
783
784 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
785
786 this is the same as TXL, but uses another reg to encode the
787 explicit lod value.
788 Presumably shadow 3d / 2d array / cube targets could use
789 this encoding too, but this is not legal.
790
791 shadow cube map arrays are neither possible nor required.
792
793 .. math::
794
795 coord = src0
796
797 lod = src1.x
798
799 unit = src2
800
801 dst = texture\_sample(unit, coord, lod)
802
803
804 .. opcode:: PUSHA - Push Address Register On Stack
805
806 push(src.x)
807 push(src.y)
808 push(src.z)
809 push(src.w)
810
811 .. note::
812
813 Considered for cleanup.
814
815 .. note::
816
817 Considered for removal.
818
819 .. opcode:: POPA - Pop Address Register From Stack
820
821 dst.w = pop()
822 dst.z = pop()
823 dst.y = pop()
824 dst.x = pop()
825
826 .. note::
827
828 Considered for cleanup.
829
830 .. note::
831
832 Considered for removal.
833
834
835 .. opcode:: CALLNZ - Subroutine Call If Not Zero
836
837 TBD
838
839 .. note::
840
841 Considered for cleanup.
842
843 .. note::
844
845 Considered for removal.
846
847
848 Compute ISA
849 ^^^^^^^^^^^^^^^^^^^^^^^^
850
851 These opcodes are primarily provided for special-use computational shaders.
852 Support for these opcodes indicated by a special pipe capability bit (TBD).
853
854 XXX doesn't look like most of the opcodes really belong here.
855
856 .. opcode:: CEIL - Ceiling
857
858 .. math::
859
860 dst.x = \lceil src.x\rceil
861
862 dst.y = \lceil src.y\rceil
863
864 dst.z = \lceil src.z\rceil
865
866 dst.w = \lceil src.w\rceil
867
868
869 .. opcode:: TRUNC - Truncate
870
871 .. math::
872
873 dst.x = trunc(src.x)
874
875 dst.y = trunc(src.y)
876
877 dst.z = trunc(src.z)
878
879 dst.w = trunc(src.w)
880
881
882 .. opcode:: MOD - Modulus
883
884 .. math::
885
886 dst.x = src0.x \bmod src1.x
887
888 dst.y = src0.y \bmod src1.y
889
890 dst.z = src0.z \bmod src1.z
891
892 dst.w = src0.w \bmod src1.w
893
894
895 .. opcode:: UARL - Integer Address Register Load
896
897 Moves the contents of the source register, assumed to be an integer, into the
898 destination register, which is assumed to be an address (ADDR) register.
899
900
901 .. opcode:: SAD - Sum Of Absolute Differences
902
903 .. math::
904
905 dst.x = |src0.x - src1.x| + src2.x
906
907 dst.y = |src0.y - src1.y| + src2.y
908
909 dst.z = |src0.z - src1.z| + src2.z
910
911 dst.w = |src0.w - src1.w| + src2.w
912
913
914 .. opcode:: TXF - Texel Fetch
915
916 As per NV_gpu_shader4, extract a single texel from a specified texture
917 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
918 four-component signed integer vector used to identify the single texel
919 accessed. 3 components + level. Just like texture instructions, an optional
920 offset vector is provided, which is subject to various driver restrictions
921 (regarding range, source of offsets).
922 TXF(uint_vec coord, int_vec offset).
923
924
925 .. opcode:: TXQ - Texture Size Query
926
927 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
928 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
929 depth), 1D array (width, layers), 2D array (width, height, layers).
930 Also return the number of accessible levels (last_level - first_level + 1)
931 in W.
932
933 For components which don't return a resource dimension, their value
934 is undefined.
935
936 .. math::
937
938 lod = src0.x
939
940 dst.x = texture\_width(unit, lod)
941
942 dst.y = texture\_height(unit, lod)
943
944 dst.z = texture\_depth(unit, lod)
945
946 dst.w = texture\_levels(unit)
947
948
949 .. opcode:: TXQS - Texture Samples Query
950
951 This retrieves the number of samples in the texture, and stores it
952 into the x component. The other components are undefined.
953
954 .. math::
955
956 dst.x = texture\_samples(unit)
957
958
959 .. opcode:: TG4 - Texture Gather
960
961 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
962 filtering operation and packs them into a single register. Only works with
963 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
964 addressing modes of the sampler and the top level of any mip pyramid are
965 used. Set W to zero. It behaves like the TEX instruction, but a filtered
966 sample is not generated. The four samples that contribute to filtering are
967 placed into xyzw in clockwise order, starting with the (u,v) texture
968 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
969 where the magnitude of the deltas are half a texel.
970
971 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
972 depth compares, single component selection, and a non-constant offset. It
973 doesn't allow support for the GL independent offset to get i0,j0. This would
974 require another CAP is hw can do it natively. For now we lower that before
975 TGSI.
976
977 .. math::
978
979 coord = src0
980
981 component = src1
982
983 dst = texture\_gather4 (unit, coord, component)
984
985 (with SM5 - cube array shadow)
986
987 .. math::
988
989 coord = src0
990
991 compare = src1
992
993 dst = texture\_gather (uint, coord, compare)
994
995 .. opcode:: LODQ - level of detail query
996
997 Compute the LOD information that the texture pipe would use to access the
998 texture. The Y component contains the computed LOD lambda_prime. The X
999 component contains the LOD that will be accessed, based on min/max lod's
1000 and mipmap filters.
1001
1002 .. math::
1003
1004 coord = src0
1005
1006 dst.xy = lodq(uint, coord);
1007
1008 Integer ISA
1009 ^^^^^^^^^^^^^^^^^^^^^^^^
1010 These opcodes are used for integer operations.
1011 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1012
1013
1014 .. opcode:: I2F - Signed Integer To Float
1015
1016 Rounding is unspecified (round to nearest even suggested).
1017
1018 .. math::
1019
1020 dst.x = (float) src.x
1021
1022 dst.y = (float) src.y
1023
1024 dst.z = (float) src.z
1025
1026 dst.w = (float) src.w
1027
1028
1029 .. opcode:: U2F - Unsigned Integer To Float
1030
1031 Rounding is unspecified (round to nearest even suggested).
1032
1033 .. math::
1034
1035 dst.x = (float) src.x
1036
1037 dst.y = (float) src.y
1038
1039 dst.z = (float) src.z
1040
1041 dst.w = (float) src.w
1042
1043
1044 .. opcode:: F2I - Float to Signed Integer
1045
1046 Rounding is towards zero (truncate).
1047 Values outside signed range (including NaNs) produce undefined results.
1048
1049 .. math::
1050
1051 dst.x = (int) src.x
1052
1053 dst.y = (int) src.y
1054
1055 dst.z = (int) src.z
1056
1057 dst.w = (int) src.w
1058
1059
1060 .. opcode:: F2U - Float to Unsigned Integer
1061
1062 Rounding is towards zero (truncate).
1063 Values outside unsigned range (including NaNs) produce undefined results.
1064
1065 .. math::
1066
1067 dst.x = (unsigned) src.x
1068
1069 dst.y = (unsigned) src.y
1070
1071 dst.z = (unsigned) src.z
1072
1073 dst.w = (unsigned) src.w
1074
1075
1076 .. opcode:: UADD - Integer Add
1077
1078 This instruction works the same for signed and unsigned integers.
1079 The low 32bit of the result is returned.
1080
1081 .. math::
1082
1083 dst.x = src0.x + src1.x
1084
1085 dst.y = src0.y + src1.y
1086
1087 dst.z = src0.z + src1.z
1088
1089 dst.w = src0.w + src1.w
1090
1091
1092 .. opcode:: UMAD - Integer Multiply And Add
1093
1094 This instruction works the same for signed and unsigned integers.
1095 The multiplication returns the low 32bit (as does the result itself).
1096
1097 .. math::
1098
1099 dst.x = src0.x \times src1.x + src2.x
1100
1101 dst.y = src0.y \times src1.y + src2.y
1102
1103 dst.z = src0.z \times src1.z + src2.z
1104
1105 dst.w = src0.w \times src1.w + src2.w
1106
1107
1108 .. opcode:: UMUL - Integer Multiply
1109
1110 This instruction works the same for signed and unsigned integers.
1111 The low 32bit of the result is returned.
1112
1113 .. math::
1114
1115 dst.x = src0.x \times src1.x
1116
1117 dst.y = src0.y \times src1.y
1118
1119 dst.z = src0.z \times src1.z
1120
1121 dst.w = src0.w \times src1.w
1122
1123
1124 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1125
1126 The high 32bits of the multiplication of 2 signed integers are returned.
1127
1128 .. math::
1129
1130 dst.x = (src0.x \times src1.x) >> 32
1131
1132 dst.y = (src0.y \times src1.y) >> 32
1133
1134 dst.z = (src0.z \times src1.z) >> 32
1135
1136 dst.w = (src0.w \times src1.w) >> 32
1137
1138
1139 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1140
1141 The high 32bits of the multiplication of 2 unsigned integers are returned.
1142
1143 .. math::
1144
1145 dst.x = (src0.x \times src1.x) >> 32
1146
1147 dst.y = (src0.y \times src1.y) >> 32
1148
1149 dst.z = (src0.z \times src1.z) >> 32
1150
1151 dst.w = (src0.w \times src1.w) >> 32
1152
1153
1154 .. opcode:: IDIV - Signed Integer Division
1155
1156 TBD: behavior for division by zero.
1157
1158 .. math::
1159
1160 dst.x = src0.x \ src1.x
1161
1162 dst.y = src0.y \ src1.y
1163
1164 dst.z = src0.z \ src1.z
1165
1166 dst.w = src0.w \ src1.w
1167
1168
1169 .. opcode:: UDIV - Unsigned Integer Division
1170
1171 For division by zero, 0xffffffff is returned.
1172
1173 .. math::
1174
1175 dst.x = src0.x \ src1.x
1176
1177 dst.y = src0.y \ src1.y
1178
1179 dst.z = src0.z \ src1.z
1180
1181 dst.w = src0.w \ src1.w
1182
1183
1184 .. opcode:: UMOD - Unsigned Integer Remainder
1185
1186 If second arg is zero, 0xffffffff is returned.
1187
1188 .. math::
1189
1190 dst.x = src0.x \ src1.x
1191
1192 dst.y = src0.y \ src1.y
1193
1194 dst.z = src0.z \ src1.z
1195
1196 dst.w = src0.w \ src1.w
1197
1198
1199 .. opcode:: NOT - Bitwise Not
1200
1201 .. math::
1202
1203 dst.x = \sim src.x
1204
1205 dst.y = \sim src.y
1206
1207 dst.z = \sim src.z
1208
1209 dst.w = \sim src.w
1210
1211
1212 .. opcode:: AND - Bitwise And
1213
1214 .. math::
1215
1216 dst.x = src0.x \& src1.x
1217
1218 dst.y = src0.y \& src1.y
1219
1220 dst.z = src0.z \& src1.z
1221
1222 dst.w = src0.w \& src1.w
1223
1224
1225 .. opcode:: OR - Bitwise Or
1226
1227 .. math::
1228
1229 dst.x = src0.x | src1.x
1230
1231 dst.y = src0.y | src1.y
1232
1233 dst.z = src0.z | src1.z
1234
1235 dst.w = src0.w | src1.w
1236
1237
1238 .. opcode:: XOR - Bitwise Xor
1239
1240 .. math::
1241
1242 dst.x = src0.x \oplus src1.x
1243
1244 dst.y = src0.y \oplus src1.y
1245
1246 dst.z = src0.z \oplus src1.z
1247
1248 dst.w = src0.w \oplus src1.w
1249
1250
1251 .. opcode:: IMAX - Maximum of Signed Integers
1252
1253 .. math::
1254
1255 dst.x = max(src0.x, src1.x)
1256
1257 dst.y = max(src0.y, src1.y)
1258
1259 dst.z = max(src0.z, src1.z)
1260
1261 dst.w = max(src0.w, src1.w)
1262
1263
1264 .. opcode:: UMAX - Maximum of Unsigned Integers
1265
1266 .. math::
1267
1268 dst.x = max(src0.x, src1.x)
1269
1270 dst.y = max(src0.y, src1.y)
1271
1272 dst.z = max(src0.z, src1.z)
1273
1274 dst.w = max(src0.w, src1.w)
1275
1276
1277 .. opcode:: IMIN - Minimum of Signed Integers
1278
1279 .. math::
1280
1281 dst.x = min(src0.x, src1.x)
1282
1283 dst.y = min(src0.y, src1.y)
1284
1285 dst.z = min(src0.z, src1.z)
1286
1287 dst.w = min(src0.w, src1.w)
1288
1289
1290 .. opcode:: UMIN - Minimum of Unsigned Integers
1291
1292 .. math::
1293
1294 dst.x = min(src0.x, src1.x)
1295
1296 dst.y = min(src0.y, src1.y)
1297
1298 dst.z = min(src0.z, src1.z)
1299
1300 dst.w = min(src0.w, src1.w)
1301
1302
1303 .. opcode:: SHL - Shift Left
1304
1305 The shift count is masked with 0x1f before the shift is applied.
1306
1307 .. math::
1308
1309 dst.x = src0.x << (0x1f \& src1.x)
1310
1311 dst.y = src0.y << (0x1f \& src1.y)
1312
1313 dst.z = src0.z << (0x1f \& src1.z)
1314
1315 dst.w = src0.w << (0x1f \& src1.w)
1316
1317
1318 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1319
1320 The shift count is masked with 0x1f before the shift is applied.
1321
1322 .. math::
1323
1324 dst.x = src0.x >> (0x1f \& src1.x)
1325
1326 dst.y = src0.y >> (0x1f \& src1.y)
1327
1328 dst.z = src0.z >> (0x1f \& src1.z)
1329
1330 dst.w = src0.w >> (0x1f \& src1.w)
1331
1332
1333 .. opcode:: USHR - Logical Shift Right
1334
1335 The shift count is masked with 0x1f before the shift is applied.
1336
1337 .. math::
1338
1339 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1340
1341 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1342
1343 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1344
1345 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1346
1347
1348 .. opcode:: UCMP - Integer Conditional Move
1349
1350 .. math::
1351
1352 dst.x = src0.x ? src1.x : src2.x
1353
1354 dst.y = src0.y ? src1.y : src2.y
1355
1356 dst.z = src0.z ? src1.z : src2.z
1357
1358 dst.w = src0.w ? src1.w : src2.w
1359
1360
1361
1362 .. opcode:: ISSG - Integer Set Sign
1363
1364 .. math::
1365
1366 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1367
1368 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1369
1370 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1371
1372 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1373
1374
1375
1376 .. opcode:: FSLT - Float Set On Less Than (ordered)
1377
1378 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1379
1380 .. math::
1381
1382 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1383
1384 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1385
1386 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1387
1388 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1389
1390
1391 .. opcode:: ISLT - Signed Integer Set On Less Than
1392
1393 .. math::
1394
1395 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1396
1397 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1398
1399 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1400
1401 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1402
1403
1404 .. opcode:: USLT - Unsigned Integer Set On Less Than
1405
1406 .. math::
1407
1408 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1409
1410 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1411
1412 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1413
1414 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1415
1416
1417 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1418
1419 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1420
1421 .. math::
1422
1423 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1424
1425 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1426
1427 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1428
1429 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1430
1431
1432 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1433
1434 .. math::
1435
1436 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1437
1438 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1439
1440 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1441
1442 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1443
1444
1445 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1446
1447 .. math::
1448
1449 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1450
1451 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1452
1453 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1454
1455 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1456
1457
1458 .. opcode:: FSEQ - Float Set On Equal (ordered)
1459
1460 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1461
1462 .. math::
1463
1464 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1465
1466 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1467
1468 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1469
1470 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1471
1472
1473 .. opcode:: USEQ - Integer Set On Equal
1474
1475 .. math::
1476
1477 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1478
1479 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1480
1481 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1482
1483 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1484
1485
1486 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1487
1488 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1489
1490 .. math::
1491
1492 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1493
1494 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1495
1496 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1497
1498 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1499
1500
1501 .. opcode:: USNE - Integer Set On Not Equal
1502
1503 .. math::
1504
1505 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1506
1507 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1508
1509 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1510
1511 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1512
1513
1514 .. opcode:: INEG - Integer Negate
1515
1516 Two's complement.
1517
1518 .. math::
1519
1520 dst.x = -src.x
1521
1522 dst.y = -src.y
1523
1524 dst.z = -src.z
1525
1526 dst.w = -src.w
1527
1528
1529 .. opcode:: IABS - Integer Absolute Value
1530
1531 .. math::
1532
1533 dst.x = |src.x|
1534
1535 dst.y = |src.y|
1536
1537 dst.z = |src.z|
1538
1539 dst.w = |src.w|
1540
1541 Bitwise ISA
1542 ^^^^^^^^^^^
1543 These opcodes are used for bit-level manipulation of integers.
1544
1545 .. opcode:: IBFE - Signed Bitfield Extract
1546
1547 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1548 sign-extends them if the high bit of the extracted window is set.
1549
1550 Pseudocode::
1551
1552 def ibfe(value, offset, bits):
1553 if offset < 0 or bits < 0 or offset + bits > 32:
1554 return undefined
1555 if bits == 0: return 0
1556 # Note: >> sign-extends
1557 return (value << (32 - offset - bits)) >> (32 - bits)
1558
1559 .. opcode:: UBFE - Unsigned Bitfield Extract
1560
1561 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1562 any sign-extension.
1563
1564 Pseudocode::
1565
1566 def ubfe(value, offset, bits):
1567 if offset < 0 or bits < 0 or offset + bits > 32:
1568 return undefined
1569 if bits == 0: return 0
1570 # Note: >> does not sign-extend
1571 return (value << (32 - offset - bits)) >> (32 - bits)
1572
1573 .. opcode:: BFI - Bitfield Insert
1574
1575 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1576 of 'insert'.
1577
1578 Pseudocode::
1579
1580 def bfi(base, insert, offset, bits):
1581 if offset < 0 or bits < 0 or offset + bits > 32:
1582 return undefined
1583 # << defined such that mask == ~0 when bits == 32, offset == 0
1584 mask = ((1 << bits) - 1) << offset
1585 return ((insert << offset) & mask) | (base & ~mask)
1586
1587 .. opcode:: BREV - Bitfield Reverse
1588
1589 See SM5 instruction BFREV. Reverses the bits of the argument.
1590
1591 .. opcode:: POPC - Population Count
1592
1593 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1594
1595 .. opcode:: LSB - Index of lowest set bit
1596
1597 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1598 bit of the argument. Returns -1 if none are set.
1599
1600 .. opcode:: IMSB - Index of highest non-sign bit
1601
1602 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1603 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1604 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1605 (i.e. for inputs 0 and -1).
1606
1607 .. opcode:: UMSB - Index of highest set bit
1608
1609 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1610 set bit of the argument. Returns -1 if none are set.
1611
1612 Geometry ISA
1613 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1614
1615 These opcodes are only supported in geometry shaders; they have no meaning
1616 in any other type of shader.
1617
1618 .. opcode:: EMIT - Emit
1619
1620 Generate a new vertex for the current primitive into the specified vertex
1621 stream using the values in the output registers.
1622
1623
1624 .. opcode:: ENDPRIM - End Primitive
1625
1626 Complete the current primitive in the specified vertex stream (consisting of
1627 the emitted vertices), and start a new one.
1628
1629
1630 GLSL ISA
1631 ^^^^^^^^^^
1632
1633 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1634 opcodes is determined by a special capability bit, ``GLSL``.
1635 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1636
1637 .. opcode:: CAL - Subroutine Call
1638
1639 push(pc)
1640 pc = target
1641
1642
1643 .. opcode:: RET - Subroutine Call Return
1644
1645 pc = pop()
1646
1647
1648 .. opcode:: CONT - Continue
1649
1650 Unconditionally moves the point of execution to the instruction after the
1651 last bgnloop. The instruction must appear within a bgnloop/endloop.
1652
1653 .. note::
1654
1655 Support for CONT is determined by a special capability bit,
1656 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1657
1658
1659 .. opcode:: BGNLOOP - Begin a Loop
1660
1661 Start a loop. Must have a matching endloop.
1662
1663
1664 .. opcode:: BGNSUB - Begin Subroutine
1665
1666 Starts definition of a subroutine. Must have a matching endsub.
1667
1668
1669 .. opcode:: ENDLOOP - End a Loop
1670
1671 End a loop started with bgnloop.
1672
1673
1674 .. opcode:: ENDSUB - End Subroutine
1675
1676 Ends definition of a subroutine.
1677
1678
1679 .. opcode:: NOP - No Operation
1680
1681 Do nothing.
1682
1683
1684 .. opcode:: BRK - Break
1685
1686 Unconditionally moves the point of execution to the instruction after the
1687 next endloop or endswitch. The instruction must appear within a loop/endloop
1688 or switch/endswitch.
1689
1690
1691 .. opcode:: BREAKC - Break Conditional
1692
1693 Conditionally moves the point of execution to the instruction after the
1694 next endloop or endswitch. The instruction must appear within a loop/endloop
1695 or switch/endswitch.
1696 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1697 as an integer register.
1698
1699 .. note::
1700
1701 Considered for removal as it's quite inconsistent wrt other opcodes
1702 (could emulate with UIF/BRK/ENDIF).
1703
1704
1705 .. opcode:: IF - Float If
1706
1707 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1708
1709 src0.x != 0.0
1710
1711 where src0.x is interpreted as a floating point register.
1712
1713
1714 .. opcode:: UIF - Bitwise If
1715
1716 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1717
1718 src0.x != 0
1719
1720 where src0.x is interpreted as an integer register.
1721
1722
1723 .. opcode:: ELSE - Else
1724
1725 Starts an else block, after an IF or UIF statement.
1726
1727
1728 .. opcode:: ENDIF - End If
1729
1730 Ends an IF or UIF block.
1731
1732
1733 .. opcode:: SWITCH - Switch
1734
1735 Starts a C-style switch expression. The switch consists of one or multiple
1736 CASE statements, and at most one DEFAULT statement. Execution of a statement
1737 ends when a BRK is hit, but just like in C falling through to other cases
1738 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1739 just as last statement, and fallthrough is allowed into/from it.
1740 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1741
1742 Example::
1743
1744 SWITCH src[0].x
1745 CASE src[0].x
1746 (some instructions here)
1747 (optional BRK here)
1748 DEFAULT
1749 (some instructions here)
1750 (optional BRK here)
1751 CASE src[0].x
1752 (some instructions here)
1753 (optional BRK here)
1754 ENDSWITCH
1755
1756
1757 .. opcode:: CASE - Switch case
1758
1759 This represents a switch case label. The src arg must be an integer immediate.
1760
1761
1762 .. opcode:: DEFAULT - Switch default
1763
1764 This represents the default case in the switch, which is taken if no other
1765 case matches.
1766
1767
1768 .. opcode:: ENDSWITCH - End of switch
1769
1770 Ends a switch expression.
1771
1772
1773 Interpolation ISA
1774 ^^^^^^^^^^^^^^^^^
1775
1776 The interpolation instructions allow an input to be interpolated in a
1777 different way than its declaration. This corresponds to the GLSL 4.00
1778 interpolateAt* functions. The first argument of each of these must come from
1779 ``TGSI_FILE_INPUT``.
1780
1781 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1782
1783 Interpolates the varying specified by src0 at the centroid
1784
1785 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1786
1787 Interpolates the varying specified by src0 at the sample id specified by
1788 src1.x (interpreted as an integer)
1789
1790 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1791
1792 Interpolates the varying specified by src0 at the offset src1.xy from the
1793 pixel center (interpreted as floats)
1794
1795
1796 .. _doubleopcodes:
1797
1798 Double ISA
1799 ^^^^^^^^^^^^^^^
1800
1801 The double-precision opcodes reinterpret four-component vectors into
1802 two-component vectors with doubled precision in each component.
1803
1804 .. opcode:: DABS - Absolute
1805
1806 .. math::
1807
1808 dst.xy = |src0.xy|
1809 dst.zw = |src0.zw|
1810
1811 .. opcode:: DADD - Add
1812
1813 .. math::
1814
1815 dst.xy = src0.xy + src1.xy
1816
1817 dst.zw = src0.zw + src1.zw
1818
1819 .. opcode:: DSEQ - Set on Equal
1820
1821 .. math::
1822
1823 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1824
1825 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1826
1827 .. opcode:: DSNE - Set on Equal
1828
1829 .. math::
1830
1831 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1832
1833 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1834
1835 .. opcode:: DSLT - Set on Less than
1836
1837 .. math::
1838
1839 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1840
1841 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1842
1843 .. opcode:: DSGE - Set on Greater equal
1844
1845 .. math::
1846
1847 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1848
1849 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1850
1851 .. opcode:: DFRAC - Fraction
1852
1853 .. math::
1854
1855 dst.xy = src.xy - \lfloor src.xy\rfloor
1856
1857 dst.zw = src.zw - \lfloor src.zw\rfloor
1858
1859 .. opcode:: DTRUNC - Truncate
1860
1861 .. math::
1862
1863 dst.xy = trunc(src.xy)
1864
1865 dst.zw = trunc(src.zw)
1866
1867 .. opcode:: DCEIL - Ceiling
1868
1869 .. math::
1870
1871 dst.xy = \lceil src.xy\rceil
1872
1873 dst.zw = \lceil src.zw\rceil
1874
1875 .. opcode:: DFLR - Floor
1876
1877 .. math::
1878
1879 dst.xy = \lfloor src.xy\rfloor
1880
1881 dst.zw = \lfloor src.zw\rfloor
1882
1883 .. opcode:: DROUND - Fraction
1884
1885 .. math::
1886
1887 dst.xy = round(src.xy)
1888
1889 dst.zw = round(src.zw)
1890
1891 .. opcode:: DSSG - Set Sign
1892
1893 .. math::
1894
1895 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1896
1897 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1898
1899 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1900
1901 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1902 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1903 :math:`dst1 \times 2^{dst0} = src` .
1904
1905 .. math::
1906
1907 dst0.xy = exp(src.xy)
1908
1909 dst1.xy = frac(src.xy)
1910
1911 dst0.zw = exp(src.zw)
1912
1913 dst1.zw = frac(src.zw)
1914
1915 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1916
1917 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1918 source is an integer.
1919
1920 .. math::
1921
1922 dst.xy = src0.xy \times 2^{src1.x}
1923
1924 dst.zw = src0.zw \times 2^{src1.y}
1925
1926 .. opcode:: DMIN - Minimum
1927
1928 .. math::
1929
1930 dst.xy = min(src0.xy, src1.xy)
1931
1932 dst.zw = min(src0.zw, src1.zw)
1933
1934 .. opcode:: DMAX - Maximum
1935
1936 .. math::
1937
1938 dst.xy = max(src0.xy, src1.xy)
1939
1940 dst.zw = max(src0.zw, src1.zw)
1941
1942 .. opcode:: DMUL - Multiply
1943
1944 .. math::
1945
1946 dst.xy = src0.xy \times src1.xy
1947
1948 dst.zw = src0.zw \times src1.zw
1949
1950
1951 .. opcode:: DMAD - Multiply And Add
1952
1953 .. math::
1954
1955 dst.xy = src0.xy \times src1.xy + src2.xy
1956
1957 dst.zw = src0.zw \times src1.zw + src2.zw
1958
1959
1960 .. opcode:: DFMA - Fused Multiply-Add
1961
1962 Perform a * b + c with no intermediate rounding step.
1963
1964 .. math::
1965
1966 dst.xy = src0.xy \times src1.xy + src2.xy
1967
1968 dst.zw = src0.zw \times src1.zw + src2.zw
1969
1970
1971 .. opcode:: DDIV - Divide
1972
1973 .. math::
1974
1975 dst.xy = \frac{src0.xy}{src1.xy}
1976
1977 dst.zw = \frac{src0.zw}{src1.zw}
1978
1979
1980 .. opcode:: DRCP - Reciprocal
1981
1982 .. math::
1983
1984 dst.xy = \frac{1}{src.xy}
1985
1986 dst.zw = \frac{1}{src.zw}
1987
1988 .. opcode:: DSQRT - Square Root
1989
1990 .. math::
1991
1992 dst.xy = \sqrt{src.xy}
1993
1994 dst.zw = \sqrt{src.zw}
1995
1996 .. opcode:: DRSQ - Reciprocal Square Root
1997
1998 .. math::
1999
2000 dst.xy = \frac{1}{\sqrt{src.xy}}
2001
2002 dst.zw = \frac{1}{\sqrt{src.zw}}
2003
2004 .. opcode:: F2D - Float to Double
2005
2006 .. math::
2007
2008 dst.xy = double(src0.x)
2009
2010 dst.zw = double(src0.y)
2011
2012 .. opcode:: D2F - Double to Float
2013
2014 .. math::
2015
2016 dst.x = float(src0.xy)
2017
2018 dst.y = float(src0.zw)
2019
2020 .. opcode:: I2D - Int to Double
2021
2022 .. math::
2023
2024 dst.xy = double(src0.x)
2025
2026 dst.zw = double(src0.y)
2027
2028 .. opcode:: D2I - Double to Int
2029
2030 .. math::
2031
2032 dst.x = int(src0.xy)
2033
2034 dst.y = int(src0.zw)
2035
2036 .. opcode:: U2D - Unsigned Int to Double
2037
2038 .. math::
2039
2040 dst.xy = double(src0.x)
2041
2042 dst.zw = double(src0.y)
2043
2044 .. opcode:: D2U - Double to Unsigned Int
2045
2046 .. math::
2047
2048 dst.x = unsigned(src0.xy)
2049
2050 dst.y = unsigned(src0.zw)
2051
2052 64-bit Integer ISA
2053 ^^^^^^^^^^^^^^^^^^
2054
2055 The 64-bit integer opcodes reinterpret four-component vectors into
2056 two-component vectors with 64-bits in each component.
2057
2058 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2059
2060 .. math::
2061
2062 dst.xy = |src0.xy|
2063 dst.zw = |src0.zw|
2064
2065 .. opcode:: I64NEG - 64-bit Integer Negate
2066
2067 Two's complement.
2068
2069 .. math::
2070
2071 dst.xy = -src.xy
2072 dst.zw = -src.zw
2073
2074 .. opcode:: I64SSG - 64-bit Integer Set Sign
2075
2076 .. math::
2077
2078 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2079 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2080
2081 .. opcode:: U64ADD - 64-bit Integer Add
2082
2083 .. math::
2084
2085 dst.xy = src0.xy + src1.xy
2086 dst.zw = src0.zw + src1.zw
2087
2088 .. opcode:: U64MUL - 64-bit Integer Multiply
2089
2090 .. math::
2091
2092 dst.xy = src0.xy * src1.xy
2093 dst.zw = src0.zw * src1.zw
2094
2095 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2096
2097 .. math::
2098
2099 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2100 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2101
2102 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2103
2104 .. math::
2105
2106 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2107 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2108
2109 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2110
2111 .. math::
2112
2113 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2114 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2115
2116 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2117
2118 .. math::
2119
2120 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2121 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2122
2123 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2124
2125 .. math::
2126
2127 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2128 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2129
2130 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2131
2132 .. math::
2133
2134 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2135 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2136
2137 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2138
2139 .. math::
2140
2141 dst.xy = min(src0.xy, src1.xy)
2142 dst.zw = min(src0.zw, src1.zw)
2143
2144 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2145
2146 .. math::
2147
2148 dst.xy = min(src0.xy, src1.xy)
2149 dst.zw = min(src0.zw, src1.zw)
2150
2151 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2152
2153 .. math::
2154
2155 dst.xy = max(src0.xy, src1.xy)
2156 dst.zw = max(src0.zw, src1.zw)
2157
2158 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2159
2160 .. math::
2161
2162 dst.xy = max(src0.xy, src1.xy)
2163 dst.zw = max(src0.zw, src1.zw)
2164
2165 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2166
2167 The shift count is masked with 0x3f before the shift is applied.
2168
2169 .. math::
2170
2171 dst.xy = src0.xy << (0x3f \& src1.x)
2172 dst.zw = src0.zw << (0x3f \& src1.y)
2173
2174 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2175
2176 The shift count is masked with 0x3f before the shift is applied.
2177
2178 .. math::
2179
2180 dst.xy = src0.xy >> (0x3f \& src1.x)
2181 dst.zw = src0.zw >> (0x3f \& src1.y)
2182
2183 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2184
2185 The shift count is masked with 0x3f before the shift is applied.
2186
2187 .. math::
2188
2189 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2190 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2191
2192 .. opcode:: I64DIV - 64-bit Signed Integer Division
2193
2194 .. math::
2195
2196 dst.xy = src0.xy \ src1.xy
2197 dst.zw = src0.zw \ src1.zw
2198
2199 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2200
2201 .. math::
2202
2203 dst.xy = src0.xy \ src1.xy
2204 dst.zw = src0.zw \ src1.zw
2205
2206 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2207
2208 .. math::
2209
2210 dst.xy = src0.xy \bmod src1.xy
2211 dst.zw = src0.zw \bmod src1.zw
2212
2213 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2214
2215 .. math::
2216
2217 dst.xy = src0.xy \bmod src1.xy
2218 dst.zw = src0.zw \bmod src1.zw
2219
2220 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2221
2222 .. math::
2223
2224 dst.xy = (uint64_t) src0.x
2225 dst.zw = (uint64_t) src0.y
2226
2227 .. opcode:: F2I64 - Float to 64-bit Int
2228
2229 .. math::
2230
2231 dst.xy = (int64_t) src0.x
2232 dst.zw = (int64_t) src0.y
2233
2234 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2235
2236 This is a zero extension.
2237
2238 .. math::
2239
2240 dst.xy = (uint64_t) src0.x
2241 dst.zw = (uint64_t) src0.y
2242
2243 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2244
2245 This is a sign extension.
2246
2247 .. math::
2248
2249 dst.xy = (int64_t) src0.x
2250 dst.zw = (int64_t) src0.y
2251
2252 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2253
2254 .. math::
2255
2256 dst.xy = (uint64_t) src0.xy
2257 dst.zw = (uint64_t) src0.zw
2258
2259 .. opcode:: D2I64 - Double to 64-bit Int
2260
2261 .. math::
2262
2263 dst.xy = (int64_t) src0.xy
2264 dst.zw = (int64_t) src0.zw
2265
2266 .. opcode:: U642F - 64-bit unsigned integer to float
2267
2268 .. math::
2269
2270 dst.x = (float) src0.xy
2271 dst.y = (float) src0.zw
2272
2273 .. opcode:: I642F - 64-bit Int to Float
2274
2275 .. math::
2276
2277 dst.x = (float) src0.xy
2278 dst.y = (float) src0.zw
2279
2280 .. opcode:: U642D - 64-bit unsigned integer to double
2281
2282 .. math::
2283
2284 dst.xy = (double) src0.xy
2285 dst.zw = (double) src0.zw
2286
2287 .. opcode:: I642D - 64-bit Int to double
2288
2289 .. math::
2290
2291 dst.xy = (double) src0.xy
2292 dst.zw = (double) src0.zw
2293
2294 .. _samplingopcodes:
2295
2296 Resource Sampling Opcodes
2297 ^^^^^^^^^^^^^^^^^^^^^^^^^
2298
2299 Those opcodes follow very closely semantics of the respective Direct3D
2300 instructions. If in doubt double check Direct3D documentation.
2301 Note that the swizzle on SVIEW (src1) determines texel swizzling
2302 after lookup.
2303
2304 .. opcode:: SAMPLE
2305
2306 Using provided address, sample data from the specified texture using the
2307 filtering mode identified by the given sampler. The source data may come from
2308 any resource type other than buffers.
2309
2310 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2311
2312 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2313
2314 .. opcode:: SAMPLE_I
2315
2316 Simplified alternative to the SAMPLE instruction. Using the provided
2317 integer address, SAMPLE_I fetches data from the specified sampler view
2318 without any filtering. The source data may come from any resource type
2319 other than CUBE.
2320
2321 Syntax: ``SAMPLE_I dst, address, sampler_view``
2322
2323 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2324
2325 The 'address' is specified as unsigned integers. If the 'address' is out of
2326 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2327 components. As such the instruction doesn't honor address wrap modes, in
2328 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2329 address.w always provides an unsigned integer mipmap level. If the value is
2330 out of the range then the instruction always returns 0 in all components.
2331 address.yz are ignored for buffers and 1d textures. address.z is ignored
2332 for 1d texture arrays and 2d textures.
2333
2334 For 1D texture arrays address.y provides the array index (also as unsigned
2335 integer). If the value is out of the range of available array indices
2336 [0... (array size - 1)] then the opcode always returns 0 in all components.
2337 For 2D texture arrays address.z provides the array index, otherwise it
2338 exhibits the same behavior as in the case for 1D texture arrays. The exact
2339 semantics of the source address are presented in the table below:
2340
2341 +---------------------------+----+-----+-----+---------+
2342 | resource type | X | Y | Z | W |
2343 +===========================+====+=====+=====+=========+
2344 | ``PIPE_BUFFER`` | x | | | ignored |
2345 +---------------------------+----+-----+-----+---------+
2346 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2347 +---------------------------+----+-----+-----+---------+
2348 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2349 +---------------------------+----+-----+-----+---------+
2350 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2351 +---------------------------+----+-----+-----+---------+
2352 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2353 +---------------------------+----+-----+-----+---------+
2354 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2355 +---------------------------+----+-----+-----+---------+
2356 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2357 +---------------------------+----+-----+-----+---------+
2358 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2359 +---------------------------+----+-----+-----+---------+
2360
2361 Where 'mpl' is a mipmap level and 'idx' is the array index.
2362
2363 .. opcode:: SAMPLE_I_MS
2364
2365 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2366
2367 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2368
2369 .. opcode:: SAMPLE_B
2370
2371 Just like the SAMPLE instruction with the exception that an additional bias
2372 is applied to the level of detail computed as part of the instruction
2373 execution.
2374
2375 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2376
2377 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2378
2379 .. opcode:: SAMPLE_C
2380
2381 Similar to the SAMPLE instruction but it performs a comparison filter. The
2382 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2383 additional float32 operand, reference value, which must be a register with
2384 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2385 current samplers compare_func (in pipe_sampler_state) to compare reference
2386 value against the red component value for the surce resource at each texel
2387 that the currently configured texture filter covers based on the provided
2388 coordinates.
2389
2390 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2391
2392 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2393
2394 .. opcode:: SAMPLE_C_LZ
2395
2396 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2397 for level-zero.
2398
2399 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2400
2401 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2402
2403
2404 .. opcode:: SAMPLE_D
2405
2406 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2407 the source address in the x direction and the y direction are provided by
2408 extra parameters.
2409
2410 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2411
2412 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2413
2414 .. opcode:: SAMPLE_L
2415
2416 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2417 directly as a scalar value, representing no anisotropy.
2418
2419 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2420
2421 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2422
2423 .. opcode:: GATHER4
2424
2425 Gathers the four texels to be used in a bi-linear filtering operation and
2426 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2427 and cubemaps arrays. For 2D textures, only the addressing modes of the
2428 sampler and the top level of any mip pyramid are used. Set W to zero. It
2429 behaves like the SAMPLE instruction, but a filtered sample is not
2430 generated. The four samples that contribute to filtering are placed into
2431 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2432 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2433 magnitude of the deltas are half a texel.
2434
2435
2436 .. opcode:: SVIEWINFO
2437
2438 Query the dimensions of a given sampler view. dst receives width, height,
2439 depth or array size and number of mipmap levels as int4. The dst can have a
2440 writemask which will specify what info is the caller interested in.
2441
2442 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2443
2444 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2445
2446 src_mip_level is an unsigned integer scalar. If it's out of range then
2447 returns 0 for width, height and depth/array size but the total number of
2448 mipmap is still returned correctly for the given sampler view. The returned
2449 width, height and depth values are for the mipmap level selected by the
2450 src_mip_level and are in the number of texels. For 1d texture array width
2451 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2452 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2453 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2454 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2455 resinfo allowing swizzling dst values is ignored (due to the interaction
2456 with rcpfloat modifier which requires some swizzle handling in the state
2457 tracker anyway).
2458
2459 .. opcode:: SAMPLE_POS
2460
2461 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2462 indicated where the sample is located. If the resource is not a multi-sample
2463 resource and not a render target, the result is 0.
2464
2465 .. opcode:: SAMPLE_INFO
2466
2467 dst receives number of samples in x. If the resource is not a multi-sample
2468 resource and not a render target, the result is 0.
2469
2470
2471 .. _resourceopcodes:
2472
2473 Resource Access Opcodes
2474 ^^^^^^^^^^^^^^^^^^^^^^^
2475
2476 .. opcode:: LOAD - Fetch data from a shader buffer or image
2477
2478 Syntax: ``LOAD dst, resource, address``
2479
2480 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2481
2482 Using the provided integer address, LOAD fetches data
2483 from the specified buffer or texture without any
2484 filtering.
2485
2486 The 'address' is specified as a vector of unsigned
2487 integers. If the 'address' is out of range the result
2488 is unspecified.
2489
2490 Only the first mipmap level of a resource can be read
2491 from using this instruction.
2492
2493 For 1D or 2D texture arrays, the array index is
2494 provided as an unsigned integer in address.y or
2495 address.z, respectively. address.yz are ignored for
2496 buffers and 1D textures. address.z is ignored for 1D
2497 texture arrays and 2D textures. address.w is always
2498 ignored.
2499
2500 A swizzle suffix may be added to the resource argument
2501 this will cause the resource data to be swizzled accordingly.
2502
2503 .. opcode:: STORE - Write data to a shader resource
2504
2505 Syntax: ``STORE resource, address, src``
2506
2507 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2508
2509 Using the provided integer address, STORE writes data
2510 to the specified buffer or texture.
2511
2512 The 'address' is specified as a vector of unsigned
2513 integers. If the 'address' is out of range the result
2514 is unspecified.
2515
2516 Only the first mipmap level of a resource can be
2517 written to using this instruction.
2518
2519 For 1D or 2D texture arrays, the array index is
2520 provided as an unsigned integer in address.y or
2521 address.z, respectively. address.yz are ignored for
2522 buffers and 1D textures. address.z is ignored for 1D
2523 texture arrays and 2D textures. address.w is always
2524 ignored.
2525
2526 .. opcode:: RESQ - Query information about a resource
2527
2528 Syntax: ``RESQ dst, resource``
2529
2530 Example: ``RESQ TEMP[0], BUFFER[0]``
2531
2532 Returns information about the buffer or image resource. For buffer
2533 resources, the size (in bytes) is returned in the x component. For
2534 image resources, .xyz will contain the width/height/layers of the
2535 image, while .w will contain the number of samples for multi-sampled
2536 images.
2537
2538 .. opcode:: FBFETCH - Load data from framebuffer
2539
2540 Syntax: ``FBFETCH dst, output``
2541
2542 Example: ``FBFETCH TEMP[0], OUT[0]``
2543
2544 This is only valid on ``COLOR`` semantic outputs. Returns the color
2545 of the current position in the framebuffer from before this fragment
2546 shader invocation. May return the same value from multiple calls for
2547 a particular output within a single invocation. Note that result may
2548 be undefined if a fragment is drawn multiple times without a blend
2549 barrier in between.
2550
2551
2552 .. _threadsyncopcodes:
2553
2554 Inter-thread synchronization opcodes
2555 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2556
2557 These opcodes are intended for communication between threads running
2558 within the same compute grid. For now they're only valid in compute
2559 programs.
2560
2561 .. opcode:: MFENCE - Memory fence
2562
2563 Syntax: ``MFENCE resource``
2564
2565 Example: ``MFENCE RES[0]``
2566
2567 This opcode forces strong ordering between any memory access
2568 operations that affect the specified resource. This means that
2569 previous loads and stores (and only those) will be performed and
2570 visible to other threads before the program execution continues.
2571
2572
2573 .. opcode:: LFENCE - Load memory fence
2574
2575 Syntax: ``LFENCE resource``
2576
2577 Example: ``LFENCE RES[0]``
2578
2579 Similar to MFENCE, but it only affects the ordering of memory loads.
2580
2581
2582 .. opcode:: SFENCE - Store memory fence
2583
2584 Syntax: ``SFENCE resource``
2585
2586 Example: ``SFENCE RES[0]``
2587
2588 Similar to MFENCE, but it only affects the ordering of memory stores.
2589
2590
2591 .. opcode:: BARRIER - Thread group barrier
2592
2593 ``BARRIER``
2594
2595 This opcode suspends the execution of the current thread until all
2596 the remaining threads in the working group reach the same point of
2597 the program. Results are unspecified if any of the remaining
2598 threads terminates or never reaches an executed BARRIER instruction.
2599
2600 .. opcode:: MEMBAR - Memory barrier
2601
2602 ``MEMBAR type``
2603
2604 This opcode waits for the completion of all memory accesses based on
2605 the type passed in. The type is an immediate bitfield with the following
2606 meaning:
2607
2608 Bit 0: Shader storage buffers
2609 Bit 1: Atomic buffers
2610 Bit 2: Images
2611 Bit 3: Shared memory
2612 Bit 4: Thread group
2613
2614 These may be passed in in any combination. An implementation is free to not
2615 distinguish between these as it sees fit. However these map to all the
2616 possibilities made available by GLSL.
2617
2618 .. _atomopcodes:
2619
2620 Atomic opcodes
2621 ^^^^^^^^^^^^^^
2622
2623 These opcodes provide atomic variants of some common arithmetic and
2624 logical operations. In this context atomicity means that another
2625 concurrent memory access operation that affects the same memory
2626 location is guaranteed to be performed strictly before or after the
2627 entire execution of the atomic operation. The resource may be a buffer
2628 or an image. In the case of an image, the offset works the same as for
2629 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2630 only be used with 32-bit integer image formats.
2631
2632 .. opcode:: ATOMUADD - Atomic integer addition
2633
2634 Syntax: ``ATOMUADD dst, resource, offset, src``
2635
2636 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2637
2638 The following operation is performed atomically:
2639
2640 .. math::
2641
2642 dst_x = resource[offset]
2643
2644 resource[offset] = dst_x + src_x
2645
2646
2647 .. opcode:: ATOMXCHG - Atomic exchange
2648
2649 Syntax: ``ATOMXCHG dst, resource, offset, src``
2650
2651 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2652
2653 The following operation is performed atomically:
2654
2655 .. math::
2656
2657 dst_x = resource[offset]
2658
2659 resource[offset] = src_x
2660
2661
2662 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2663
2664 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2665
2666 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2667
2668 The following operation is performed atomically:
2669
2670 .. math::
2671
2672 dst_x = resource[offset]
2673
2674 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2675
2676
2677 .. opcode:: ATOMAND - Atomic bitwise And
2678
2679 Syntax: ``ATOMAND dst, resource, offset, src``
2680
2681 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2682
2683 The following operation is performed atomically:
2684
2685 .. math::
2686
2687 dst_x = resource[offset]
2688
2689 resource[offset] = dst_x \& src_x
2690
2691
2692 .. opcode:: ATOMOR - Atomic bitwise Or
2693
2694 Syntax: ``ATOMOR dst, resource, offset, src``
2695
2696 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2697
2698 The following operation is performed atomically:
2699
2700 .. math::
2701
2702 dst_x = resource[offset]
2703
2704 resource[offset] = dst_x | src_x
2705
2706
2707 .. opcode:: ATOMXOR - Atomic bitwise Xor
2708
2709 Syntax: ``ATOMXOR dst, resource, offset, src``
2710
2711 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2712
2713 The following operation is performed atomically:
2714
2715 .. math::
2716
2717 dst_x = resource[offset]
2718
2719 resource[offset] = dst_x \oplus src_x
2720
2721
2722 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2723
2724 Syntax: ``ATOMUMIN dst, resource, offset, src``
2725
2726 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2727
2728 The following operation is performed atomically:
2729
2730 .. math::
2731
2732 dst_x = resource[offset]
2733
2734 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2735
2736
2737 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2738
2739 Syntax: ``ATOMUMAX dst, resource, offset, src``
2740
2741 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2742
2743 The following operation is performed atomically:
2744
2745 .. math::
2746
2747 dst_x = resource[offset]
2748
2749 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2750
2751
2752 .. opcode:: ATOMIMIN - Atomic signed minimum
2753
2754 Syntax: ``ATOMIMIN dst, resource, offset, src``
2755
2756 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2757
2758 The following operation is performed atomically:
2759
2760 .. math::
2761
2762 dst_x = resource[offset]
2763
2764 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2765
2766
2767 .. opcode:: ATOMIMAX - Atomic signed maximum
2768
2769 Syntax: ``ATOMIMAX dst, resource, offset, src``
2770
2771 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2772
2773 The following operation is performed atomically:
2774
2775 .. math::
2776
2777 dst_x = resource[offset]
2778
2779 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2780
2781
2782 .. _voteopcodes:
2783
2784 Vote opcodes
2785 ^^^^^^^^^^^^
2786
2787 These opcodes compare the given value across the shader invocations
2788 running in the current SIMD group. The details of exactly which
2789 invocations get compared are implementation-defined, and it would be a
2790 correct implementation to only ever consider the current thread's
2791 value. (i.e. SIMD group of 1). The argument is treated as a boolean.
2792
2793 .. opcode:: VOTE_ANY - Value is set in any of the current invocations
2794
2795 .. opcode:: VOTE_ALL - Value is set in all of the current invocations
2796
2797 .. opcode:: VOTE_EQ - Value is the same in all of the current invocations
2798
2799
2800 Explanation of symbols used
2801 ------------------------------
2802
2803
2804 Functions
2805 ^^^^^^^^^^^^^^
2806
2807
2808 :math:`|x|` Absolute value of `x`.
2809
2810 :math:`\lceil x \rceil` Ceiling of `x`.
2811
2812 clamp(x,y,z) Clamp x between y and z.
2813 (x < y) ? y : (x > z) ? z : x
2814
2815 :math:`\lfloor x\rfloor` Floor of `x`.
2816
2817 :math:`\log_2{x}` Logarithm of `x`, base 2.
2818
2819 max(x,y) Maximum of x and y.
2820 (x > y) ? x : y
2821
2822 min(x,y) Minimum of x and y.
2823 (x < y) ? x : y
2824
2825 partialx(x) Derivative of x relative to fragment's X.
2826
2827 partialy(x) Derivative of x relative to fragment's Y.
2828
2829 pop() Pop from stack.
2830
2831 :math:`x^y` `x` to the power `y`.
2832
2833 push(x) Push x on stack.
2834
2835 round(x) Round x.
2836
2837 trunc(x) Truncate x, i.e. drop the fraction bits.
2838
2839
2840 Keywords
2841 ^^^^^^^^^^^^^
2842
2843
2844 discard Discard fragment.
2845
2846 pc Program counter.
2847
2848 target Label of target instruction.
2849
2850
2851 Other tokens
2852 ---------------
2853
2854
2855 Declaration
2856 ^^^^^^^^^^^
2857
2858
2859 Declares a register that is will be referenced as an operand in Instruction
2860 tokens.
2861
2862 File field contains register file that is being declared and is one
2863 of TGSI_FILE.
2864
2865 UsageMask field specifies which of the register components can be accessed
2866 and is one of TGSI_WRITEMASK.
2867
2868 The Local flag specifies that a given value isn't intended for
2869 subroutine parameter passing and, as a result, the implementation
2870 isn't required to give any guarantees of it being preserved across
2871 subroutine boundaries. As it's merely a compiler hint, the
2872 implementation is free to ignore it.
2873
2874 If Dimension flag is set to 1, a Declaration Dimension token follows.
2875
2876 If Semantic flag is set to 1, a Declaration Semantic token follows.
2877
2878 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2879
2880 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2881
2882 If Array flag is set to 1, a Declaration Array token follows.
2883
2884 Array Declaration
2885 ^^^^^^^^^^^^^^^^^^^^^^^^
2886
2887 Declarations can optional have an ArrayID attribute which can be referred by
2888 indirect addressing operands. An ArrayID of zero is reserved and treated as
2889 if no ArrayID is specified.
2890
2891 If an indirect addressing operand refers to a specific declaration by using
2892 an ArrayID only the registers in this declaration are guaranteed to be
2893 accessed, accessing any register outside this declaration results in undefined
2894 behavior. Note that for compatibility the effective index is zero-based and
2895 not relative to the specified declaration
2896
2897 If no ArrayID is specified with an indirect addressing operand the whole
2898 register file might be accessed by this operand. This is strongly discouraged
2899 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2900 This is only legal for TEMP and CONST register files.
2901
2902 Declaration Semantic
2903 ^^^^^^^^^^^^^^^^^^^^^^^^
2904
2905 Vertex and fragment shader input and output registers may be labeled
2906 with semantic information consisting of a name and index.
2907
2908 Follows Declaration token if Semantic bit is set.
2909
2910 Since its purpose is to link a shader with other stages of the pipeline,
2911 it is valid to follow only those Declaration tokens that declare a register
2912 either in INPUT or OUTPUT file.
2913
2914 SemanticName field contains the semantic name of the register being declared.
2915 There is no default value.
2916
2917 SemanticIndex is an optional subscript that can be used to distinguish
2918 different register declarations with the same semantic name. The default value
2919 is 0.
2920
2921 The meanings of the individual semantic names are explained in the following
2922 sections.
2923
2924 TGSI_SEMANTIC_POSITION
2925 """"""""""""""""""""""
2926
2927 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2928 output register which contains the homogeneous vertex position in the clip
2929 space coordinate system. After clipping, the X, Y and Z components of the
2930 vertex will be divided by the W value to get normalized device coordinates.
2931
2932 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2933 fragment shader input (or system value, depending on which one is
2934 supported by the driver) contains the fragment's window position. The X
2935 component starts at zero and always increases from left to right.
2936 The Y component starts at zero and always increases but Y=0 may either
2937 indicate the top of the window or the bottom depending on the fragment
2938 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2939 The Z coordinate ranges from 0 to 1 to represent depth from the front
2940 to the back of the Z buffer. The W component contains the interpolated
2941 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2942 but unlike d3d10 which interpolates the same 1/w but then gives back
2943 the reciprocal of the interpolated value).
2944
2945 Fragment shaders may also declare an output register with
2946 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2947 the fragment shader to change the fragment's Z position.
2948
2949
2950
2951 TGSI_SEMANTIC_COLOR
2952 """""""""""""""""""
2953
2954 For vertex shader outputs or fragment shader inputs/outputs, this
2955 label indicates that the register contains an R,G,B,A color.
2956
2957 Several shader inputs/outputs may contain colors so the semantic index
2958 is used to distinguish them. For example, color[0] may be the diffuse
2959 color while color[1] may be the specular color.
2960
2961 This label is needed so that the flat/smooth shading can be applied
2962 to the right interpolants during rasterization.
2963
2964
2965
2966 TGSI_SEMANTIC_BCOLOR
2967 """"""""""""""""""""
2968
2969 Back-facing colors are only used for back-facing polygons, and are only valid
2970 in vertex shader outputs. After rasterization, all polygons are front-facing
2971 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2972 so all BCOLORs effectively become regular COLORs in the fragment shader.
2973
2974
2975 TGSI_SEMANTIC_FOG
2976 """""""""""""""""
2977
2978 Vertex shader inputs and outputs and fragment shader inputs may be
2979 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2980 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2981 to compute a fog blend factor which is used to blend the normal fragment color
2982 with a constant fog color. But fog coord really is just an ordinary vec4
2983 register like regular semantics.
2984
2985
2986 TGSI_SEMANTIC_PSIZE
2987 """""""""""""""""""
2988
2989 Vertex shader input and output registers may be labeled with
2990 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2991 in the form (S, 0, 0, 1). The point size controls the width or diameter
2992 of points for rasterization. This label cannot be used in fragment
2993 shaders.
2994
2995 When using this semantic, be sure to set the appropriate state in the
2996 :ref:`rasterizer` first.
2997
2998
2999 TGSI_SEMANTIC_TEXCOORD
3000 """"""""""""""""""""""
3001
3002 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3003
3004 Vertex shader outputs and fragment shader inputs may be labeled with
3005 this semantic to make them replaceable by sprite coordinates via the
3006 sprite_coord_enable state in the :ref:`rasterizer`.
3007 The semantic index permitted with this semantic is limited to <= 7.
3008
3009 If the driver does not support TEXCOORD, sprite coordinate replacement
3010 applies to inputs with the GENERIC semantic instead.
3011
3012 The intended use case for this semantic is gl_TexCoord.
3013
3014
3015 TGSI_SEMANTIC_PCOORD
3016 """"""""""""""""""""
3017
3018 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3019
3020 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3021 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3022 the current primitive is a point and point sprites are enabled. Otherwise,
3023 the contents of the register are undefined.
3024
3025 The intended use case for this semantic is gl_PointCoord.
3026
3027
3028 TGSI_SEMANTIC_GENERIC
3029 """""""""""""""""""""
3030
3031 All vertex/fragment shader inputs/outputs not labeled with any other
3032 semantic label can be considered to be generic attributes. Typical
3033 uses of generic inputs/outputs are texcoords and user-defined values.
3034
3035
3036 TGSI_SEMANTIC_NORMAL
3037 """"""""""""""""""""
3038
3039 Indicates that a vertex shader input is a normal vector. This is
3040 typically only used for legacy graphics APIs.
3041
3042
3043 TGSI_SEMANTIC_FACE
3044 """"""""""""""""""
3045
3046 This label applies to fragment shader inputs (or system values,
3047 depending on which one is supported by the driver) and indicates that
3048 the register contains front/back-face information.
3049
3050 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3051 where F will be positive when the fragment belongs to a front-facing polygon,
3052 and negative when the fragment belongs to a back-facing polygon.
3053
3054 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3055 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3056 0 when the fragment belongs to a back-facing polygon.
3057
3058
3059 TGSI_SEMANTIC_EDGEFLAG
3060 """"""""""""""""""""""
3061
3062 For vertex shaders, this sematic label indicates that an input or
3063 output is a boolean edge flag. The register layout is [F, x, x, x]
3064 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3065 simply copies the edge flag input to the edgeflag output.
3066
3067 Edge flags are used to control which lines or points are actually
3068 drawn when the polygon mode converts triangles/quads/polygons into
3069 points or lines.
3070
3071
3072 TGSI_SEMANTIC_STENCIL
3073 """""""""""""""""""""
3074
3075 For fragment shaders, this semantic label indicates that an output
3076 is a writable stencil reference value. Only the Y component is writable.
3077 This allows the fragment shader to change the fragments stencilref value.
3078
3079
3080 TGSI_SEMANTIC_VIEWPORT_INDEX
3081 """"""""""""""""""""""""""""
3082
3083 For geometry shaders, this semantic label indicates that an output
3084 contains the index of the viewport (and scissor) to use.
3085 This is an integer value, and only the X component is used.
3086
3087
3088 TGSI_SEMANTIC_LAYER
3089 """""""""""""""""""
3090
3091 For geometry shaders, this semantic label indicates that an output
3092 contains the layer value to use for the color and depth/stencil surfaces.
3093 This is an integer value, and only the X component is used.
3094 (Also known as rendertarget array index.)
3095
3096
3097 TGSI_SEMANTIC_CULLDIST
3098 """"""""""""""""""""""
3099
3100 Used as distance to plane for performing application-defined culling
3101 of individual primitives against a plane. When components of vertex
3102 elements are given this label, these values are assumed to be a
3103 float32 signed distance to a plane. Primitives will be completely
3104 discarded if the plane distance for all of the vertices in the
3105 primitive are < 0. If a vertex has a cull distance of NaN, that
3106 vertex counts as "out" (as if its < 0);
3107 The limits on both clip and cull distances are bound
3108 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3109 the maximum number of components that can be used to hold the
3110 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3111 which specifies the maximum number of registers which can be
3112 annotated with those semantics.
3113
3114
3115 TGSI_SEMANTIC_CLIPDIST
3116 """"""""""""""""""""""
3117
3118 Note this covers clipping and culling distances.
3119
3120 When components of vertex elements are identified this way, these
3121 values are each assumed to be a float32 signed distance to a plane.
3122
3123 For clip distances:
3124 Primitive setup only invokes rasterization on pixels for which
3125 the interpolated plane distances are >= 0.
3126
3127 For cull distances:
3128 Primitives will be completely discarded if the plane distance
3129 for all of the vertices in the primitive are < 0.
3130 If a vertex has a cull distance of NaN, that vertex counts as "out"
3131 (as if its < 0);
3132
3133 Multiple clip/cull planes can be implemented simultaneously, by
3134 annotating multiple components of one or more vertex elements with
3135 the above specified semantic.
3136 The limits on both clip and cull distances are bound
3137 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3138 the maximum number of components that can be used to hold the
3139 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3140 which specifies the maximum number of registers which can be
3141 annotated with those semantics.
3142 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3143 are used to divide up the 2 x vec4 space between clipping and culling.
3144
3145 TGSI_SEMANTIC_SAMPLEID
3146 """"""""""""""""""""""
3147
3148 For fragment shaders, this semantic label indicates that a system value
3149 contains the current sample id (i.e. gl_SampleID).
3150 This is an integer value, and only the X component is used.
3151
3152 TGSI_SEMANTIC_SAMPLEPOS
3153 """""""""""""""""""""""
3154
3155 For fragment shaders, this semantic label indicates that a system value
3156 contains the current sample's position (i.e. gl_SamplePosition). Only the X
3157 and Y values are used.
3158
3159 TGSI_SEMANTIC_SAMPLEMASK
3160 """"""""""""""""""""""""
3161
3162 For fragment shaders, this semantic label indicates that an output contains
3163 the sample mask used to disable further sample processing
3164 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
3165
3166 TGSI_SEMANTIC_INVOCATIONID
3167 """"""""""""""""""""""""""
3168
3169 For geometry shaders, this semantic label indicates that a system value
3170 contains the current invocation id (i.e. gl_InvocationID).
3171 This is an integer value, and only the X component is used.
3172
3173 TGSI_SEMANTIC_INSTANCEID
3174 """"""""""""""""""""""""
3175
3176 For vertex shaders, this semantic label indicates that a system value contains
3177 the current instance id (i.e. gl_InstanceID). It does not include the base
3178 instance. This is an integer value, and only the X component is used.
3179
3180 TGSI_SEMANTIC_VERTEXID
3181 """"""""""""""""""""""
3182
3183 For vertex shaders, this semantic label indicates that a system value contains
3184 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3185 base vertex. This is an integer value, and only the X component is used.
3186
3187 TGSI_SEMANTIC_VERTEXID_NOBASE
3188 """""""""""""""""""""""""""""""
3189
3190 For vertex shaders, this semantic label indicates that a system value contains
3191 the current vertex id without including the base vertex (this corresponds to
3192 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3193 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3194 is used.
3195
3196 TGSI_SEMANTIC_BASEVERTEX
3197 """"""""""""""""""""""""
3198
3199 For vertex shaders, this semantic label indicates that a system value contains
3200 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3201 this contains the first (or start) value instead.
3202 This is an integer value, and only the X component is used.
3203
3204 TGSI_SEMANTIC_PRIMID
3205 """"""""""""""""""""
3206
3207 For geometry and fragment shaders, this semantic label indicates the value
3208 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3209 and only the X component is used.
3210 FIXME: This right now can be either a ordinary input or a system value...
3211
3212
3213 TGSI_SEMANTIC_PATCH
3214 """""""""""""""""""
3215
3216 For tessellation evaluation/control shaders, this semantic label indicates a
3217 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3218 arrays.
3219
3220 TGSI_SEMANTIC_TESSCOORD
3221 """""""""""""""""""""""
3222
3223 For tessellation evaluation shaders, this semantic label indicates the
3224 coordinates of the vertex being processed. This is available in XYZ; W is
3225 undefined.
3226
3227 TGSI_SEMANTIC_TESSOUTER
3228 """""""""""""""""""""""
3229
3230 For tessellation evaluation/control shaders, this semantic label indicates the
3231 outer tessellation levels of the patch. Isoline tessellation will only have XY
3232 defined, triangle will have XYZ and quads will have XYZW defined. This
3233 corresponds to gl_TessLevelOuter.
3234
3235 TGSI_SEMANTIC_TESSINNER
3236 """""""""""""""""""""""
3237
3238 For tessellation evaluation/control shaders, this semantic label indicates the
3239 inner tessellation levels of the patch. The X value is only defined for
3240 triangle tessellation, while quads will have XY defined. This is entirely
3241 undefined for isoline tessellation.
3242
3243 TGSI_SEMANTIC_VERTICESIN
3244 """"""""""""""""""""""""
3245
3246 For tessellation evaluation/control shaders, this semantic label indicates the
3247 number of vertices provided in the input patch. Only the X value is defined.
3248
3249 TGSI_SEMANTIC_HELPER_INVOCATION
3250 """""""""""""""""""""""""""""""
3251
3252 For fragment shaders, this semantic indicates whether the current
3253 invocation is covered or not. Helper invocations are created in order
3254 to properly compute derivatives, however it may be desirable to skip
3255 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3256
3257 TGSI_SEMANTIC_BASEINSTANCE
3258 """"""""""""""""""""""""""
3259
3260 For vertex shaders, the base instance argument supplied for this
3261 draw. This is an integer value, and only the X component is used.
3262
3263 TGSI_SEMANTIC_DRAWID
3264 """"""""""""""""""""
3265
3266 For vertex shaders, the zero-based index of the current draw in a
3267 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3268 component is used.
3269
3270
3271 TGSI_SEMANTIC_WORK_DIM
3272 """"""""""""""""""""""
3273
3274 For compute shaders started via opencl this retrieves the work_dim
3275 parameter to the clEnqueueNDRangeKernel call with which the shader
3276 was started.
3277
3278
3279 TGSI_SEMANTIC_GRID_SIZE
3280 """""""""""""""""""""""
3281
3282 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3283 of a grid of thread blocks.
3284
3285
3286 TGSI_SEMANTIC_BLOCK_ID
3287 """"""""""""""""""""""
3288
3289 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3290 current block inside of the grid.
3291
3292
3293 TGSI_SEMANTIC_BLOCK_SIZE
3294 """"""""""""""""""""""""
3295
3296 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3297 of a block in threads.
3298
3299
3300 TGSI_SEMANTIC_THREAD_ID
3301 """""""""""""""""""""""
3302
3303 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3304 current thread inside of the block.
3305
3306
3307 Declaration Interpolate
3308 ^^^^^^^^^^^^^^^^^^^^^^^
3309
3310 This token is only valid for fragment shader INPUT declarations.
3311
3312 The Interpolate field specifes the way input is being interpolated by
3313 the rasteriser and is one of TGSI_INTERPOLATE_*.
3314
3315 The Location field specifies the location inside the pixel that the
3316 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3317 when per-sample shading is enabled, the implementation may choose to
3318 interpolate at the sample irrespective of the Location field.
3319
3320 The CylindricalWrap bitfield specifies which register components
3321 should be subject to cylindrical wrapping when interpolating by the
3322 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3323 should be interpolated according to cylindrical wrapping rules.
3324
3325
3326 Declaration Sampler View
3327 ^^^^^^^^^^^^^^^^^^^^^^^^
3328
3329 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3330
3331 DCL SVIEW[#], resource, type(s)
3332
3333 Declares a shader input sampler view and assigns it to a SVIEW[#]
3334 register.
3335
3336 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3337
3338 type must be 1 or 4 entries (if specifying on a per-component
3339 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3340
3341 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3342 which take an explicit SVIEW[#] source register), there may be optionally
3343 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3344 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3345 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3346 But note in particular that some drivers need to know the sampler type
3347 (float/int/unsigned) in order to generate the correct code, so cases
3348 where integer textures are sampled, SVIEW[#] declarations should be
3349 used.
3350
3351 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3352 in the same shader.
3353
3354 Declaration Resource
3355 ^^^^^^^^^^^^^^^^^^^^
3356
3357 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3358
3359 DCL RES[#], resource [, WR] [, RAW]
3360
3361 Declares a shader input resource and assigns it to a RES[#]
3362 register.
3363
3364 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3365 2DArray.
3366
3367 If the RAW keyword is not specified, the texture data will be
3368 subject to conversion, swizzling and scaling as required to yield
3369 the specified data type from the physical data format of the bound
3370 resource.
3371
3372 If the RAW keyword is specified, no channel conversion will be
3373 performed: the values read for each of the channels (X,Y,Z,W) will
3374 correspond to consecutive words in the same order and format
3375 they're found in memory. No element-to-address conversion will be
3376 performed either: the value of the provided X coordinate will be
3377 interpreted in byte units instead of texel units. The result of
3378 accessing a misaligned address is undefined.
3379
3380 Usage of the STORE opcode is only allowed if the WR (writable) flag
3381 is set.
3382
3383
3384 Properties
3385 ^^^^^^^^^^^^^^^^^^^^^^^^
3386
3387 Properties are general directives that apply to the whole TGSI program.
3388
3389 FS_COORD_ORIGIN
3390 """""""""""""""
3391
3392 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3393 The default value is UPPER_LEFT.
3394
3395 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3396 increase downward and rightward.
3397 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3398 increase upward and rightward.
3399
3400 OpenGL defaults to LOWER_LEFT, and is configurable with the
3401 GL_ARB_fragment_coord_conventions extension.
3402
3403 DirectX 9/10 use UPPER_LEFT.
3404
3405 FS_COORD_PIXEL_CENTER
3406 """""""""""""""""""""
3407
3408 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3409 The default value is HALF_INTEGER.
3410
3411 If HALF_INTEGER, the fractionary part of the position will be 0.5
3412 If INTEGER, the fractionary part of the position will be 0.0
3413
3414 Note that this does not affect the set of fragments generated by
3415 rasterization, which is instead controlled by half_pixel_center in the
3416 rasterizer.
3417
3418 OpenGL defaults to HALF_INTEGER, and is configurable with the
3419 GL_ARB_fragment_coord_conventions extension.
3420
3421 DirectX 9 uses INTEGER.
3422 DirectX 10 uses HALF_INTEGER.
3423
3424 FS_COLOR0_WRITES_ALL_CBUFS
3425 """"""""""""""""""""""""""
3426 Specifies that writes to the fragment shader color 0 are replicated to all
3427 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3428 fragData is directed to a single color buffer, but fragColor is broadcast.
3429
3430 VS_PROHIBIT_UCPS
3431 """"""""""""""""""""""""""
3432 If this property is set on the program bound to the shader stage before the
3433 fragment shader, user clip planes should have no effect (be disabled) even if
3434 that shader does not write to any clip distance outputs and the rasterizer's
3435 clip_plane_enable is non-zero.
3436 This property is only supported by drivers that also support shader clip
3437 distance outputs.
3438 This is useful for APIs that don't have UCPs and where clip distances written
3439 by a shader cannot be disabled.
3440
3441 GS_INVOCATIONS
3442 """"""""""""""
3443
3444 Specifies the number of times a geometry shader should be executed for each
3445 input primitive. Each invocation will have a different
3446 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3447 be 1.
3448
3449 VS_WINDOW_SPACE_POSITION
3450 """"""""""""""""""""""""""
3451 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3452 is assumed to contain window space coordinates.
3453 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3454 directly taken from the 4-th component of the shader output.
3455 Naturally, clipping is not performed on window coordinates either.
3456 The effect of this property is undefined if a geometry or tessellation shader
3457 are in use.
3458
3459 TCS_VERTICES_OUT
3460 """"""""""""""""
3461
3462 The number of vertices written by the tessellation control shader. This
3463 effectively defines the patch input size of the tessellation evaluation shader
3464 as well.
3465
3466 TES_PRIM_MODE
3467 """""""""""""
3468
3469 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3470 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3471 separate isolines settings, the regular lines is assumed to mean isolines.)
3472
3473 TES_SPACING
3474 """""""""""
3475
3476 This sets the spacing mode of the tessellation generator, one of
3477 ``PIPE_TESS_SPACING_*``.
3478
3479 TES_VERTEX_ORDER_CW
3480 """""""""""""""""""
3481
3482 This sets the vertex order to be clockwise if the value is 1, or
3483 counter-clockwise if set to 0.
3484
3485 TES_POINT_MODE
3486 """"""""""""""
3487
3488 If set to a non-zero value, this turns on point mode for the tessellator,
3489 which means that points will be generated instead of primitives.
3490
3491 NUM_CLIPDIST_ENABLED
3492 """"""""""""""""
3493
3494 How many clip distance scalar outputs are enabled.
3495
3496 NUM_CULLDIST_ENABLED
3497 """"""""""""""""
3498
3499 How many cull distance scalar outputs are enabled.
3500
3501 FS_EARLY_DEPTH_STENCIL
3502 """"""""""""""""""""""
3503
3504 Whether depth test, stencil test, and occlusion query should run before
3505 the fragment shader (regardless of fragment shader side effects). Corresponds
3506 to GLSL early_fragment_tests.
3507
3508 NEXT_SHADER
3509 """""""""""
3510
3511 Which shader stage will MOST LIKELY follow after this shader when the shader
3512 is bound. This is only a hint to the driver and doesn't have to be precise.
3513 Only set for VS and TES.
3514
3515 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3516 """""""""""""""""""""""""""""""""""""
3517
3518 Threads per block in each dimension, if known at compile time. If the block size
3519 is known all three should be at least 1. If it is unknown they should all be set
3520 to 0 or not set.
3521
3522 MUL_ZERO_WINS
3523 """""""""""""
3524
3525 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3526 of the operands are equal to 0. That means that 0 * Inf = 0. This
3527 should be set the same way for an entire pipeline. Note that this
3528 applies not only to the literal MUL TGSI opcode, but all FP32
3529 multiplications implied by other operations, such as MAD, FMA, DP2,
3530 DP3, DP4, DPH, DST, LOG, LRP, XPD, and possibly others. If there is a
3531 mismatch between shaders, then it is unspecified whether this behavior
3532 will be enabled.
3533
3534
3535 Texture Sampling and Texture Formats
3536 ------------------------------------
3537
3538 This table shows how texture image components are returned as (x,y,z,w) tuples
3539 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3540 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3541 well.
3542
3543 +--------------------+--------------+--------------------+--------------+
3544 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3545 +====================+==============+====================+==============+
3546 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3547 +--------------------+--------------+--------------------+--------------+
3548 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3549 +--------------------+--------------+--------------------+--------------+
3550 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3551 +--------------------+--------------+--------------------+--------------+
3552 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3553 +--------------------+--------------+--------------------+--------------+
3554 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3555 +--------------------+--------------+--------------------+--------------+
3556 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3557 +--------------------+--------------+--------------------+--------------+
3558 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3559 +--------------------+--------------+--------------------+--------------+
3560 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3561 +--------------------+--------------+--------------------+--------------+
3562 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3563 | | | [#envmap-bumpmap]_ | |
3564 +--------------------+--------------+--------------------+--------------+
3565 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3566 | | | [#depth-tex-mode]_ | |
3567 +--------------------+--------------+--------------------+--------------+
3568 | S | (s, s, s, s) | unknown | unknown |
3569 +--------------------+--------------+--------------------+--------------+
3570
3571 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3572 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3573 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.