c296447b5c50294b082df5387e3cc7d87d22e4cb
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: LRP - Linear Interpolate
250
251 .. math::
252
253 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
254
255 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
256
257 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
258
259 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
260
261
262 .. opcode:: FMA - Fused Multiply-Add
263
264 Perform a * b + c with no intermediate rounding step.
265
266 .. math::
267
268 dst.x = src0.x \times src1.x + src2.x
269
270 dst.y = src0.y \times src1.y + src2.y
271
272 dst.z = src0.z \times src1.z + src2.z
273
274 dst.w = src0.w \times src1.w + src2.w
275
276
277 .. opcode:: DP2A - 2-component Dot Product And Add
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289
290 .. opcode:: FRC - Fraction
291
292 .. math::
293
294 dst.x = src.x - \lfloor src.x\rfloor
295
296 dst.y = src.y - \lfloor src.y\rfloor
297
298 dst.z = src.z - \lfloor src.z\rfloor
299
300 dst.w = src.w - \lfloor src.w\rfloor
301
302
303 .. opcode:: FLR - Floor
304
305 .. math::
306
307 dst.x = \lfloor src.x\rfloor
308
309 dst.y = \lfloor src.y\rfloor
310
311 dst.z = \lfloor src.z\rfloor
312
313 dst.w = \lfloor src.w\rfloor
314
315
316 .. opcode:: ROUND - Round
317
318 .. math::
319
320 dst.x = round(src.x)
321
322 dst.y = round(src.y)
323
324 dst.z = round(src.z)
325
326 dst.w = round(src.w)
327
328
329 .. opcode:: EX2 - Exponential Base 2
330
331 This instruction replicates its result.
332
333 .. math::
334
335 dst = 2^{src.x}
336
337
338 .. opcode:: LG2 - Logarithm Base 2
339
340 This instruction replicates its result.
341
342 .. math::
343
344 dst = \log_2{src.x}
345
346
347 .. opcode:: POW - Power
348
349 This instruction replicates its result.
350
351 .. math::
352
353 dst = src0.x^{src1.x}
354
355 .. opcode:: XPD - Cross Product
356
357 .. math::
358
359 dst.x = src0.y \times src1.z - src1.y \times src0.z
360
361 dst.y = src0.z \times src1.x - src1.z \times src0.x
362
363 dst.z = src0.x \times src1.y - src1.x \times src0.y
364
365 dst.w = 1
366
367
368 .. opcode:: DPH - Homogeneous Dot Product
369
370 This instruction replicates its result.
371
372 .. math::
373
374 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
375
376
377 .. opcode:: COS - Cosine
378
379 This instruction replicates its result.
380
381 .. math::
382
383 dst = \cos{src.x}
384
385
386 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
387
388 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
389 advertised. When it is, the fine version guarantees one derivative per row
390 while DDX is allowed to be the same for the entire 2x2 quad.
391
392 .. math::
393
394 dst.x = partialx(src.x)
395
396 dst.y = partialx(src.y)
397
398 dst.z = partialx(src.z)
399
400 dst.w = partialx(src.w)
401
402
403 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
404
405 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
406 advertised. When it is, the fine version guarantees one derivative per column
407 while DDY is allowed to be the same for the entire 2x2 quad.
408
409 .. math::
410
411 dst.x = partialy(src.x)
412
413 dst.y = partialy(src.y)
414
415 dst.z = partialy(src.z)
416
417 dst.w = partialy(src.w)
418
419
420 .. opcode:: PK2H - Pack Two 16-bit Floats
421
422 This instruction replicates its result.
423
424 .. math::
425
426 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
427
428
429 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
430
431 TBD
432
433
434 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
435
436 TBD
437
438
439 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
440
441 TBD
442
443
444 .. opcode:: SEQ - Set On Equal
445
446 .. math::
447
448 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
449
450 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
451
452 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
453
454 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
455
456
457 .. opcode:: SGT - Set On Greater Than
458
459 .. math::
460
461 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
462
463 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
464
465 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
466
467 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
468
469
470 .. opcode:: SIN - Sine
471
472 This instruction replicates its result.
473
474 .. math::
475
476 dst = \sin{src.x}
477
478
479 .. opcode:: SLE - Set On Less Equal Than
480
481 .. math::
482
483 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SNE - Set On Not Equal
493
494 .. math::
495
496 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
497
498 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
499
500 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
501
502 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
503
504
505 .. opcode:: TEX - Texture Lookup
506
507 for array textures src0.y contains the slice for 1D,
508 and src0.z contain the slice for 2D.
509
510 for shadow textures with no arrays (and not cube map),
511 src0.z contains the reference value.
512
513 for shadow textures with arrays, src0.z contains
514 the reference value for 1D arrays, and src0.w contains
515 the reference value for 2D arrays and cube maps.
516
517 for cube map array shadow textures, the reference value
518 cannot be passed in src0.w, and TEX2 must be used instead.
519
520 .. math::
521
522 coord = src0
523
524 shadow_ref = src0.z or src0.w (optional)
525
526 unit = src1
527
528 dst = texture\_sample(unit, coord, shadow_ref)
529
530
531 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
532
533 this is the same as TEX, but uses another reg to encode the
534 reference value.
535
536 .. math::
537
538 coord = src0
539
540 shadow_ref = src1.x
541
542 unit = src2
543
544 dst = texture\_sample(unit, coord, shadow_ref)
545
546
547
548
549 .. opcode:: TXD - Texture Lookup with Derivatives
550
551 .. math::
552
553 coord = src0
554
555 ddx = src1
556
557 ddy = src2
558
559 unit = src3
560
561 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
562
563
564 .. opcode:: TXP - Projective Texture Lookup
565
566 .. math::
567
568 coord.x = src0.x / src0.w
569
570 coord.y = src0.y / src0.w
571
572 coord.z = src0.z / src0.w
573
574 coord.w = src0.w
575
576 unit = src1
577
578 dst = texture\_sample(unit, coord)
579
580
581 .. opcode:: UP2H - Unpack Two 16-Bit Floats
582
583 .. math::
584
585 dst.x = f16\_to\_f32(src0.x \& 0xffff)
586
587 dst.y = f16\_to\_f32(src0.x >> 16)
588
589 dst.z = f16\_to\_f32(src0.x \& 0xffff)
590
591 dst.w = f16\_to\_f32(src0.x >> 16)
592
593 .. note::
594
595 Considered for removal.
596
597 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
598
599 TBD
600
601 .. note::
602
603 Considered for removal.
604
605 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
606
607 TBD
608
609 .. note::
610
611 Considered for removal.
612
613 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
614
615 TBD
616
617 .. note::
618
619 Considered for removal.
620
621
622 .. opcode:: ARR - Address Register Load With Round
623
624 .. math::
625
626 dst.x = (int) round(src.x)
627
628 dst.y = (int) round(src.y)
629
630 dst.z = (int) round(src.z)
631
632 dst.w = (int) round(src.w)
633
634
635 .. opcode:: SSG - Set Sign
636
637 .. math::
638
639 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
640
641 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
642
643 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
644
645 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
646
647
648 .. opcode:: CMP - Compare
649
650 .. math::
651
652 dst.x = (src0.x < 0) ? src1.x : src2.x
653
654 dst.y = (src0.y < 0) ? src1.y : src2.y
655
656 dst.z = (src0.z < 0) ? src1.z : src2.z
657
658 dst.w = (src0.w < 0) ? src1.w : src2.w
659
660
661 .. opcode:: KILL_IF - Conditional Discard
662
663 Conditional discard. Allowed in fragment shaders only.
664
665 .. math::
666
667 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
668 discard
669 endif
670
671
672 .. opcode:: KILL - Discard
673
674 Unconditional discard. Allowed in fragment shaders only.
675
676
677 .. opcode:: SCS - Sine Cosine
678
679 .. math::
680
681 dst.x = \cos{src.x}
682
683 dst.y = \sin{src.x}
684
685 dst.z = 0
686
687 dst.w = 1
688
689
690 .. opcode:: TXB - Texture Lookup With Bias
691
692 for cube map array textures and shadow cube maps, the bias value
693 cannot be passed in src0.w, and TXB2 must be used instead.
694
695 if the target is a shadow texture, the reference value is always
696 in src.z (this prevents shadow 3d and shadow 2d arrays from
697 using this instruction, but this is not needed).
698
699 .. math::
700
701 coord.x = src0.x
702
703 coord.y = src0.y
704
705 coord.z = src0.z
706
707 coord.w = none
708
709 bias = src0.w
710
711 unit = src1
712
713 dst = texture\_sample(unit, coord, bias)
714
715
716 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
717
718 this is the same as TXB, but uses another reg to encode the
719 lod bias value for cube map arrays and shadow cube maps.
720 Presumably shadow 2d arrays and shadow 3d targets could use
721 this encoding too, but this is not legal.
722
723 shadow cube map arrays are neither possible nor required.
724
725 .. math::
726
727 coord = src0
728
729 bias = src1.x
730
731 unit = src2
732
733 dst = texture\_sample(unit, coord, bias)
734
735
736 .. opcode:: DIV - Divide
737
738 .. math::
739
740 dst.x = \frac{src0.x}{src1.x}
741
742 dst.y = \frac{src0.y}{src1.y}
743
744 dst.z = \frac{src0.z}{src1.z}
745
746 dst.w = \frac{src0.w}{src1.w}
747
748
749 .. opcode:: DP2 - 2-component Dot Product
750
751 This instruction replicates its result.
752
753 .. math::
754
755 dst = src0.x \times src1.x + src0.y \times src1.y
756
757
758 .. opcode:: TXL - Texture Lookup With explicit LOD
759
760 for cube map array textures, the explicit lod value
761 cannot be passed in src0.w, and TXL2 must be used instead.
762
763 if the target is a shadow texture, the reference value is always
764 in src.z (this prevents shadow 3d / 2d array / cube targets from
765 using this instruction, but this is not needed).
766
767 .. math::
768
769 coord.x = src0.x
770
771 coord.y = src0.y
772
773 coord.z = src0.z
774
775 coord.w = none
776
777 lod = src0.w
778
779 unit = src1
780
781 dst = texture\_sample(unit, coord, lod)
782
783
784 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
785
786 this is the same as TXL, but uses another reg to encode the
787 explicit lod value.
788 Presumably shadow 3d / 2d array / cube targets could use
789 this encoding too, but this is not legal.
790
791 shadow cube map arrays are neither possible nor required.
792
793 .. math::
794
795 coord = src0
796
797 lod = src1.x
798
799 unit = src2
800
801 dst = texture\_sample(unit, coord, lod)
802
803
804 .. opcode:: PUSHA - Push Address Register On Stack
805
806 push(src.x)
807 push(src.y)
808 push(src.z)
809 push(src.w)
810
811 .. note::
812
813 Considered for cleanup.
814
815 .. note::
816
817 Considered for removal.
818
819 .. opcode:: POPA - Pop Address Register From Stack
820
821 dst.w = pop()
822 dst.z = pop()
823 dst.y = pop()
824 dst.x = pop()
825
826 .. note::
827
828 Considered for cleanup.
829
830 .. note::
831
832 Considered for removal.
833
834
835 .. opcode:: CALLNZ - Subroutine Call If Not Zero
836
837 TBD
838
839 .. note::
840
841 Considered for cleanup.
842
843 .. note::
844
845 Considered for removal.
846
847
848 Compute ISA
849 ^^^^^^^^^^^^^^^^^^^^^^^^
850
851 These opcodes are primarily provided for special-use computational shaders.
852 Support for these opcodes indicated by a special pipe capability bit (TBD).
853
854 XXX doesn't look like most of the opcodes really belong here.
855
856 .. opcode:: CEIL - Ceiling
857
858 .. math::
859
860 dst.x = \lceil src.x\rceil
861
862 dst.y = \lceil src.y\rceil
863
864 dst.z = \lceil src.z\rceil
865
866 dst.w = \lceil src.w\rceil
867
868
869 .. opcode:: TRUNC - Truncate
870
871 .. math::
872
873 dst.x = trunc(src.x)
874
875 dst.y = trunc(src.y)
876
877 dst.z = trunc(src.z)
878
879 dst.w = trunc(src.w)
880
881
882 .. opcode:: MOD - Modulus
883
884 .. math::
885
886 dst.x = src0.x \bmod src1.x
887
888 dst.y = src0.y \bmod src1.y
889
890 dst.z = src0.z \bmod src1.z
891
892 dst.w = src0.w \bmod src1.w
893
894
895 .. opcode:: UARL - Integer Address Register Load
896
897 Moves the contents of the source register, assumed to be an integer, into the
898 destination register, which is assumed to be an address (ADDR) register.
899
900
901 .. opcode:: SAD - Sum Of Absolute Differences
902
903 .. math::
904
905 dst.x = |src0.x - src1.x| + src2.x
906
907 dst.y = |src0.y - src1.y| + src2.y
908
909 dst.z = |src0.z - src1.z| + src2.z
910
911 dst.w = |src0.w - src1.w| + src2.w
912
913
914 .. opcode:: TXF - Texel Fetch
915
916 As per NV_gpu_shader4, extract a single texel from a specified texture
917 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
918 four-component signed integer vector used to identify the single texel
919 accessed. 3 components + level. Just like texture instructions, an optional
920 offset vector is provided, which is subject to various driver restrictions
921 (regarding range, source of offsets).
922 TXF(uint_vec coord, int_vec offset).
923
924
925 .. opcode:: TXQ - Texture Size Query
926
927 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
928 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
929 depth), 1D array (width, layers), 2D array (width, height, layers).
930 Also return the number of accessible levels (last_level - first_level + 1)
931 in W.
932
933 For components which don't return a resource dimension, their value
934 is undefined.
935
936 .. math::
937
938 lod = src0.x
939
940 dst.x = texture\_width(unit, lod)
941
942 dst.y = texture\_height(unit, lod)
943
944 dst.z = texture\_depth(unit, lod)
945
946 dst.w = texture\_levels(unit)
947
948
949 .. opcode:: TXQS - Texture Samples Query
950
951 This retrieves the number of samples in the texture, and stores it
952 into the x component. The other components are undefined.
953
954 .. math::
955
956 dst.x = texture\_samples(unit)
957
958
959 .. opcode:: TG4 - Texture Gather
960
961 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
962 filtering operation and packs them into a single register. Only works with
963 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
964 addressing modes of the sampler and the top level of any mip pyramid are
965 used. Set W to zero. It behaves like the TEX instruction, but a filtered
966 sample is not generated. The four samples that contribute to filtering are
967 placed into xyzw in clockwise order, starting with the (u,v) texture
968 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
969 where the magnitude of the deltas are half a texel.
970
971 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
972 depth compares, single component selection, and a non-constant offset. It
973 doesn't allow support for the GL independent offset to get i0,j0. This would
974 require another CAP is hw can do it natively. For now we lower that before
975 TGSI.
976
977 .. math::
978
979 coord = src0
980
981 component = src1
982
983 dst = texture\_gather4 (unit, coord, component)
984
985 (with SM5 - cube array shadow)
986
987 .. math::
988
989 coord = src0
990
991 compare = src1
992
993 dst = texture\_gather (uint, coord, compare)
994
995 .. opcode:: LODQ - level of detail query
996
997 Compute the LOD information that the texture pipe would use to access the
998 texture. The Y component contains the computed LOD lambda_prime. The X
999 component contains the LOD that will be accessed, based on min/max lod's
1000 and mipmap filters.
1001
1002 .. math::
1003
1004 coord = src0
1005
1006 dst.xy = lodq(uint, coord);
1007
1008 Integer ISA
1009 ^^^^^^^^^^^^^^^^^^^^^^^^
1010 These opcodes are used for integer operations.
1011 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1012
1013
1014 .. opcode:: I2F - Signed Integer To Float
1015
1016 Rounding is unspecified (round to nearest even suggested).
1017
1018 .. math::
1019
1020 dst.x = (float) src.x
1021
1022 dst.y = (float) src.y
1023
1024 dst.z = (float) src.z
1025
1026 dst.w = (float) src.w
1027
1028
1029 .. opcode:: U2F - Unsigned Integer To Float
1030
1031 Rounding is unspecified (round to nearest even suggested).
1032
1033 .. math::
1034
1035 dst.x = (float) src.x
1036
1037 dst.y = (float) src.y
1038
1039 dst.z = (float) src.z
1040
1041 dst.w = (float) src.w
1042
1043
1044 .. opcode:: F2I - Float to Signed Integer
1045
1046 Rounding is towards zero (truncate).
1047 Values outside signed range (including NaNs) produce undefined results.
1048
1049 .. math::
1050
1051 dst.x = (int) src.x
1052
1053 dst.y = (int) src.y
1054
1055 dst.z = (int) src.z
1056
1057 dst.w = (int) src.w
1058
1059
1060 .. opcode:: F2U - Float to Unsigned Integer
1061
1062 Rounding is towards zero (truncate).
1063 Values outside unsigned range (including NaNs) produce undefined results.
1064
1065 .. math::
1066
1067 dst.x = (unsigned) src.x
1068
1069 dst.y = (unsigned) src.y
1070
1071 dst.z = (unsigned) src.z
1072
1073 dst.w = (unsigned) src.w
1074
1075
1076 .. opcode:: UADD - Integer Add
1077
1078 This instruction works the same for signed and unsigned integers.
1079 The low 32bit of the result is returned.
1080
1081 .. math::
1082
1083 dst.x = src0.x + src1.x
1084
1085 dst.y = src0.y + src1.y
1086
1087 dst.z = src0.z + src1.z
1088
1089 dst.w = src0.w + src1.w
1090
1091
1092 .. opcode:: UMAD - Integer Multiply And Add
1093
1094 This instruction works the same for signed and unsigned integers.
1095 The multiplication returns the low 32bit (as does the result itself).
1096
1097 .. math::
1098
1099 dst.x = src0.x \times src1.x + src2.x
1100
1101 dst.y = src0.y \times src1.y + src2.y
1102
1103 dst.z = src0.z \times src1.z + src2.z
1104
1105 dst.w = src0.w \times src1.w + src2.w
1106
1107
1108 .. opcode:: UMUL - Integer Multiply
1109
1110 This instruction works the same for signed and unsigned integers.
1111 The low 32bit of the result is returned.
1112
1113 .. math::
1114
1115 dst.x = src0.x \times src1.x
1116
1117 dst.y = src0.y \times src1.y
1118
1119 dst.z = src0.z \times src1.z
1120
1121 dst.w = src0.w \times src1.w
1122
1123
1124 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1125
1126 The high 32bits of the multiplication of 2 signed integers are returned.
1127
1128 .. math::
1129
1130 dst.x = (src0.x \times src1.x) >> 32
1131
1132 dst.y = (src0.y \times src1.y) >> 32
1133
1134 dst.z = (src0.z \times src1.z) >> 32
1135
1136 dst.w = (src0.w \times src1.w) >> 32
1137
1138
1139 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1140
1141 The high 32bits of the multiplication of 2 unsigned integers are returned.
1142
1143 .. math::
1144
1145 dst.x = (src0.x \times src1.x) >> 32
1146
1147 dst.y = (src0.y \times src1.y) >> 32
1148
1149 dst.z = (src0.z \times src1.z) >> 32
1150
1151 dst.w = (src0.w \times src1.w) >> 32
1152
1153
1154 .. opcode:: IDIV - Signed Integer Division
1155
1156 TBD: behavior for division by zero.
1157
1158 .. math::
1159
1160 dst.x = src0.x \ src1.x
1161
1162 dst.y = src0.y \ src1.y
1163
1164 dst.z = src0.z \ src1.z
1165
1166 dst.w = src0.w \ src1.w
1167
1168
1169 .. opcode:: UDIV - Unsigned Integer Division
1170
1171 For division by zero, 0xffffffff is returned.
1172
1173 .. math::
1174
1175 dst.x = src0.x \ src1.x
1176
1177 dst.y = src0.y \ src1.y
1178
1179 dst.z = src0.z \ src1.z
1180
1181 dst.w = src0.w \ src1.w
1182
1183
1184 .. opcode:: UMOD - Unsigned Integer Remainder
1185
1186 If second arg is zero, 0xffffffff is returned.
1187
1188 .. math::
1189
1190 dst.x = src0.x \ src1.x
1191
1192 dst.y = src0.y \ src1.y
1193
1194 dst.z = src0.z \ src1.z
1195
1196 dst.w = src0.w \ src1.w
1197
1198
1199 .. opcode:: NOT - Bitwise Not
1200
1201 .. math::
1202
1203 dst.x = \sim src.x
1204
1205 dst.y = \sim src.y
1206
1207 dst.z = \sim src.z
1208
1209 dst.w = \sim src.w
1210
1211
1212 .. opcode:: AND - Bitwise And
1213
1214 .. math::
1215
1216 dst.x = src0.x \& src1.x
1217
1218 dst.y = src0.y \& src1.y
1219
1220 dst.z = src0.z \& src1.z
1221
1222 dst.w = src0.w \& src1.w
1223
1224
1225 .. opcode:: OR - Bitwise Or
1226
1227 .. math::
1228
1229 dst.x = src0.x | src1.x
1230
1231 dst.y = src0.y | src1.y
1232
1233 dst.z = src0.z | src1.z
1234
1235 dst.w = src0.w | src1.w
1236
1237
1238 .. opcode:: XOR - Bitwise Xor
1239
1240 .. math::
1241
1242 dst.x = src0.x \oplus src1.x
1243
1244 dst.y = src0.y \oplus src1.y
1245
1246 dst.z = src0.z \oplus src1.z
1247
1248 dst.w = src0.w \oplus src1.w
1249
1250
1251 .. opcode:: IMAX - Maximum of Signed Integers
1252
1253 .. math::
1254
1255 dst.x = max(src0.x, src1.x)
1256
1257 dst.y = max(src0.y, src1.y)
1258
1259 dst.z = max(src0.z, src1.z)
1260
1261 dst.w = max(src0.w, src1.w)
1262
1263
1264 .. opcode:: UMAX - Maximum of Unsigned Integers
1265
1266 .. math::
1267
1268 dst.x = max(src0.x, src1.x)
1269
1270 dst.y = max(src0.y, src1.y)
1271
1272 dst.z = max(src0.z, src1.z)
1273
1274 dst.w = max(src0.w, src1.w)
1275
1276
1277 .. opcode:: IMIN - Minimum of Signed Integers
1278
1279 .. math::
1280
1281 dst.x = min(src0.x, src1.x)
1282
1283 dst.y = min(src0.y, src1.y)
1284
1285 dst.z = min(src0.z, src1.z)
1286
1287 dst.w = min(src0.w, src1.w)
1288
1289
1290 .. opcode:: UMIN - Minimum of Unsigned Integers
1291
1292 .. math::
1293
1294 dst.x = min(src0.x, src1.x)
1295
1296 dst.y = min(src0.y, src1.y)
1297
1298 dst.z = min(src0.z, src1.z)
1299
1300 dst.w = min(src0.w, src1.w)
1301
1302
1303 .. opcode:: SHL - Shift Left
1304
1305 The shift count is masked with 0x1f before the shift is applied.
1306
1307 .. math::
1308
1309 dst.x = src0.x << (0x1f \& src1.x)
1310
1311 dst.y = src0.y << (0x1f \& src1.y)
1312
1313 dst.z = src0.z << (0x1f \& src1.z)
1314
1315 dst.w = src0.w << (0x1f \& src1.w)
1316
1317
1318 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1319
1320 The shift count is masked with 0x1f before the shift is applied.
1321
1322 .. math::
1323
1324 dst.x = src0.x >> (0x1f \& src1.x)
1325
1326 dst.y = src0.y >> (0x1f \& src1.y)
1327
1328 dst.z = src0.z >> (0x1f \& src1.z)
1329
1330 dst.w = src0.w >> (0x1f \& src1.w)
1331
1332
1333 .. opcode:: USHR - Logical Shift Right
1334
1335 The shift count is masked with 0x1f before the shift is applied.
1336
1337 .. math::
1338
1339 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1340
1341 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1342
1343 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1344
1345 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1346
1347
1348 .. opcode:: UCMP - Integer Conditional Move
1349
1350 .. math::
1351
1352 dst.x = src0.x ? src1.x : src2.x
1353
1354 dst.y = src0.y ? src1.y : src2.y
1355
1356 dst.z = src0.z ? src1.z : src2.z
1357
1358 dst.w = src0.w ? src1.w : src2.w
1359
1360
1361
1362 .. opcode:: ISSG - Integer Set Sign
1363
1364 .. math::
1365
1366 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1367
1368 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1369
1370 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1371
1372 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1373
1374
1375
1376 .. opcode:: FSLT - Float Set On Less Than (ordered)
1377
1378 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1379
1380 .. math::
1381
1382 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1383
1384 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1385
1386 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1387
1388 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1389
1390
1391 .. opcode:: ISLT - Signed Integer Set On Less Than
1392
1393 .. math::
1394
1395 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1396
1397 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1398
1399 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1400
1401 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1402
1403
1404 .. opcode:: USLT - Unsigned Integer Set On Less Than
1405
1406 .. math::
1407
1408 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1409
1410 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1411
1412 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1413
1414 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1415
1416
1417 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1418
1419 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1420
1421 .. math::
1422
1423 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1424
1425 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1426
1427 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1428
1429 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1430
1431
1432 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1433
1434 .. math::
1435
1436 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1437
1438 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1439
1440 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1441
1442 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1443
1444
1445 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1446
1447 .. math::
1448
1449 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1450
1451 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1452
1453 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1454
1455 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1456
1457
1458 .. opcode:: FSEQ - Float Set On Equal (ordered)
1459
1460 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1461
1462 .. math::
1463
1464 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1465
1466 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1467
1468 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1469
1470 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1471
1472
1473 .. opcode:: USEQ - Integer Set On Equal
1474
1475 .. math::
1476
1477 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1478
1479 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1480
1481 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1482
1483 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1484
1485
1486 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1487
1488 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1489
1490 .. math::
1491
1492 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1493
1494 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1495
1496 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1497
1498 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1499
1500
1501 .. opcode:: USNE - Integer Set On Not Equal
1502
1503 .. math::
1504
1505 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1506
1507 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1508
1509 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1510
1511 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1512
1513
1514 .. opcode:: INEG - Integer Negate
1515
1516 Two's complement.
1517
1518 .. math::
1519
1520 dst.x = -src.x
1521
1522 dst.y = -src.y
1523
1524 dst.z = -src.z
1525
1526 dst.w = -src.w
1527
1528
1529 .. opcode:: IABS - Integer Absolute Value
1530
1531 .. math::
1532
1533 dst.x = |src.x|
1534
1535 dst.y = |src.y|
1536
1537 dst.z = |src.z|
1538
1539 dst.w = |src.w|
1540
1541 Bitwise ISA
1542 ^^^^^^^^^^^
1543 These opcodes are used for bit-level manipulation of integers.
1544
1545 .. opcode:: IBFE - Signed Bitfield Extract
1546
1547 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1548 sign-extends them if the high bit of the extracted window is set.
1549
1550 Pseudocode::
1551
1552 def ibfe(value, offset, bits):
1553 if offset < 0 or bits < 0 or offset + bits > 32:
1554 return undefined
1555 if bits == 0: return 0
1556 # Note: >> sign-extends
1557 return (value << (32 - offset - bits)) >> (32 - bits)
1558
1559 .. opcode:: UBFE - Unsigned Bitfield Extract
1560
1561 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1562 any sign-extension.
1563
1564 Pseudocode::
1565
1566 def ubfe(value, offset, bits):
1567 if offset < 0 or bits < 0 or offset + bits > 32:
1568 return undefined
1569 if bits == 0: return 0
1570 # Note: >> does not sign-extend
1571 return (value << (32 - offset - bits)) >> (32 - bits)
1572
1573 .. opcode:: BFI - Bitfield Insert
1574
1575 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1576 of 'insert'.
1577
1578 Pseudocode::
1579
1580 def bfi(base, insert, offset, bits):
1581 if offset < 0 or bits < 0 or offset + bits > 32:
1582 return undefined
1583 # << defined such that mask == ~0 when bits == 32, offset == 0
1584 mask = ((1 << bits) - 1) << offset
1585 return ((insert << offset) & mask) | (base & ~mask)
1586
1587 .. opcode:: BREV - Bitfield Reverse
1588
1589 See SM5 instruction BFREV. Reverses the bits of the argument.
1590
1591 .. opcode:: POPC - Population Count
1592
1593 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1594
1595 .. opcode:: LSB - Index of lowest set bit
1596
1597 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1598 bit of the argument. Returns -1 if none are set.
1599
1600 .. opcode:: IMSB - Index of highest non-sign bit
1601
1602 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1603 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1604 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1605 (i.e. for inputs 0 and -1).
1606
1607 .. opcode:: UMSB - Index of highest set bit
1608
1609 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1610 set bit of the argument. Returns -1 if none are set.
1611
1612 Geometry ISA
1613 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1614
1615 These opcodes are only supported in geometry shaders; they have no meaning
1616 in any other type of shader.
1617
1618 .. opcode:: EMIT - Emit
1619
1620 Generate a new vertex for the current primitive into the specified vertex
1621 stream using the values in the output registers.
1622
1623
1624 .. opcode:: ENDPRIM - End Primitive
1625
1626 Complete the current primitive in the specified vertex stream (consisting of
1627 the emitted vertices), and start a new one.
1628
1629
1630 GLSL ISA
1631 ^^^^^^^^^^
1632
1633 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1634 opcodes is determined by a special capability bit, ``GLSL``.
1635 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1636
1637 .. opcode:: CAL - Subroutine Call
1638
1639 push(pc)
1640 pc = target
1641
1642
1643 .. opcode:: RET - Subroutine Call Return
1644
1645 pc = pop()
1646
1647
1648 .. opcode:: CONT - Continue
1649
1650 Unconditionally moves the point of execution to the instruction after the
1651 last bgnloop. The instruction must appear within a bgnloop/endloop.
1652
1653 .. note::
1654
1655 Support for CONT is determined by a special capability bit,
1656 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1657
1658
1659 .. opcode:: BGNLOOP - Begin a Loop
1660
1661 Start a loop. Must have a matching endloop.
1662
1663
1664 .. opcode:: BGNSUB - Begin Subroutine
1665
1666 Starts definition of a subroutine. Must have a matching endsub.
1667
1668
1669 .. opcode:: ENDLOOP - End a Loop
1670
1671 End a loop started with bgnloop.
1672
1673
1674 .. opcode:: ENDSUB - End Subroutine
1675
1676 Ends definition of a subroutine.
1677
1678
1679 .. opcode:: NOP - No Operation
1680
1681 Do nothing.
1682
1683
1684 .. opcode:: BRK - Break
1685
1686 Unconditionally moves the point of execution to the instruction after the
1687 next endloop or endswitch. The instruction must appear within a loop/endloop
1688 or switch/endswitch.
1689
1690
1691 .. opcode:: BREAKC - Break Conditional
1692
1693 Conditionally moves the point of execution to the instruction after the
1694 next endloop or endswitch. The instruction must appear within a loop/endloop
1695 or switch/endswitch.
1696 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1697 as an integer register.
1698
1699 .. note::
1700
1701 Considered for removal as it's quite inconsistent wrt other opcodes
1702 (could emulate with UIF/BRK/ENDIF).
1703
1704
1705 .. opcode:: IF - Float If
1706
1707 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1708
1709 src0.x != 0.0
1710
1711 where src0.x is interpreted as a floating point register.
1712
1713
1714 .. opcode:: UIF - Bitwise If
1715
1716 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1717
1718 src0.x != 0
1719
1720 where src0.x is interpreted as an integer register.
1721
1722
1723 .. opcode:: ELSE - Else
1724
1725 Starts an else block, after an IF or UIF statement.
1726
1727
1728 .. opcode:: ENDIF - End If
1729
1730 Ends an IF or UIF block.
1731
1732
1733 .. opcode:: SWITCH - Switch
1734
1735 Starts a C-style switch expression. The switch consists of one or multiple
1736 CASE statements, and at most one DEFAULT statement. Execution of a statement
1737 ends when a BRK is hit, but just like in C falling through to other cases
1738 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1739 just as last statement, and fallthrough is allowed into/from it.
1740 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1741
1742 Example::
1743
1744 SWITCH src[0].x
1745 CASE src[0].x
1746 (some instructions here)
1747 (optional BRK here)
1748 DEFAULT
1749 (some instructions here)
1750 (optional BRK here)
1751 CASE src[0].x
1752 (some instructions here)
1753 (optional BRK here)
1754 ENDSWITCH
1755
1756
1757 .. opcode:: CASE - Switch case
1758
1759 This represents a switch case label. The src arg must be an integer immediate.
1760
1761
1762 .. opcode:: DEFAULT - Switch default
1763
1764 This represents the default case in the switch, which is taken if no other
1765 case matches.
1766
1767
1768 .. opcode:: ENDSWITCH - End of switch
1769
1770 Ends a switch expression.
1771
1772
1773 Interpolation ISA
1774 ^^^^^^^^^^^^^^^^^
1775
1776 The interpolation instructions allow an input to be interpolated in a
1777 different way than its declaration. This corresponds to the GLSL 4.00
1778 interpolateAt* functions. The first argument of each of these must come from
1779 ``TGSI_FILE_INPUT``.
1780
1781 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1782
1783 Interpolates the varying specified by src0 at the centroid
1784
1785 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1786
1787 Interpolates the varying specified by src0 at the sample id specified by
1788 src1.x (interpreted as an integer)
1789
1790 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1791
1792 Interpolates the varying specified by src0 at the offset src1.xy from the
1793 pixel center (interpreted as floats)
1794
1795
1796 .. _doubleopcodes:
1797
1798 Double ISA
1799 ^^^^^^^^^^^^^^^
1800
1801 The double-precision opcodes reinterpret four-component vectors into
1802 two-component vectors with doubled precision in each component.
1803
1804 .. opcode:: DABS - Absolute
1805
1806 dst.xy = |src0.xy|
1807 dst.zw = |src0.zw|
1808
1809 .. opcode:: DADD - Add
1810
1811 .. math::
1812
1813 dst.xy = src0.xy + src1.xy
1814
1815 dst.zw = src0.zw + src1.zw
1816
1817 .. opcode:: DSEQ - Set on Equal
1818
1819 .. math::
1820
1821 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1822
1823 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1824
1825 .. opcode:: DSNE - Set on Equal
1826
1827 .. math::
1828
1829 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1830
1831 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1832
1833 .. opcode:: DSLT - Set on Less than
1834
1835 .. math::
1836
1837 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1838
1839 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1840
1841 .. opcode:: DSGE - Set on Greater equal
1842
1843 .. math::
1844
1845 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1846
1847 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1848
1849 .. opcode:: DFRAC - Fraction
1850
1851 .. math::
1852
1853 dst.xy = src.xy - \lfloor src.xy\rfloor
1854
1855 dst.zw = src.zw - \lfloor src.zw\rfloor
1856
1857 .. opcode:: DTRUNC - Truncate
1858
1859 .. math::
1860
1861 dst.xy = trunc(src.xy)
1862
1863 dst.zw = trunc(src.zw)
1864
1865 .. opcode:: DCEIL - Ceiling
1866
1867 .. math::
1868
1869 dst.xy = \lceil src.xy\rceil
1870
1871 dst.zw = \lceil src.zw\rceil
1872
1873 .. opcode:: DFLR - Floor
1874
1875 .. math::
1876
1877 dst.xy = \lfloor src.xy\rfloor
1878
1879 dst.zw = \lfloor src.zw\rfloor
1880
1881 .. opcode:: DROUND - Fraction
1882
1883 .. math::
1884
1885 dst.xy = round(src.xy)
1886
1887 dst.zw = round(src.zw)
1888
1889 .. opcode:: DSSG - Set Sign
1890
1891 .. math::
1892
1893 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1894
1895 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1896
1897 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1898
1899 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1900 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1901 :math:`dst1 \times 2^{dst0} = src` .
1902
1903 .. math::
1904
1905 dst0.xy = exp(src.xy)
1906
1907 dst1.xy = frac(src.xy)
1908
1909 dst0.zw = exp(src.zw)
1910
1911 dst1.zw = frac(src.zw)
1912
1913 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1914
1915 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1916 source is an integer.
1917
1918 .. math::
1919
1920 dst.xy = src0.xy \times 2^{src1.x}
1921
1922 dst.zw = src0.zw \times 2^{src1.y}
1923
1924 .. opcode:: DMIN - Minimum
1925
1926 .. math::
1927
1928 dst.xy = min(src0.xy, src1.xy)
1929
1930 dst.zw = min(src0.zw, src1.zw)
1931
1932 .. opcode:: DMAX - Maximum
1933
1934 .. math::
1935
1936 dst.xy = max(src0.xy, src1.xy)
1937
1938 dst.zw = max(src0.zw, src1.zw)
1939
1940 .. opcode:: DMUL - Multiply
1941
1942 .. math::
1943
1944 dst.xy = src0.xy \times src1.xy
1945
1946 dst.zw = src0.zw \times src1.zw
1947
1948
1949 .. opcode:: DMAD - Multiply And Add
1950
1951 .. math::
1952
1953 dst.xy = src0.xy \times src1.xy + src2.xy
1954
1955 dst.zw = src0.zw \times src1.zw + src2.zw
1956
1957
1958 .. opcode:: DFMA - Fused Multiply-Add
1959
1960 Perform a * b + c with no intermediate rounding step.
1961
1962 .. math::
1963
1964 dst.xy = src0.xy \times src1.xy + src2.xy
1965
1966 dst.zw = src0.zw \times src1.zw + src2.zw
1967
1968
1969 .. opcode:: DDIV - Divide
1970
1971 .. math::
1972
1973 dst.xy = \frac{src0.xy}{src1.xy}
1974
1975 dst.zw = \frac{src0.zw}{src1.zw}
1976
1977
1978 .. opcode:: DRCP - Reciprocal
1979
1980 .. math::
1981
1982 dst.xy = \frac{1}{src.xy}
1983
1984 dst.zw = \frac{1}{src.zw}
1985
1986 .. opcode:: DSQRT - Square Root
1987
1988 .. math::
1989
1990 dst.xy = \sqrt{src.xy}
1991
1992 dst.zw = \sqrt{src.zw}
1993
1994 .. opcode:: DRSQ - Reciprocal Square Root
1995
1996 .. math::
1997
1998 dst.xy = \frac{1}{\sqrt{src.xy}}
1999
2000 dst.zw = \frac{1}{\sqrt{src.zw}}
2001
2002 .. opcode:: F2D - Float to Double
2003
2004 .. math::
2005
2006 dst.xy = double(src0.x)
2007
2008 dst.zw = double(src0.y)
2009
2010 .. opcode:: D2F - Double to Float
2011
2012 .. math::
2013
2014 dst.x = float(src0.xy)
2015
2016 dst.y = float(src0.zw)
2017
2018 .. opcode:: I2D - Int to Double
2019
2020 .. math::
2021
2022 dst.xy = double(src0.x)
2023
2024 dst.zw = double(src0.y)
2025
2026 .. opcode:: D2I - Double to Int
2027
2028 .. math::
2029
2030 dst.x = int(src0.xy)
2031
2032 dst.y = int(src0.zw)
2033
2034 .. opcode:: U2D - Unsigned Int to Double
2035
2036 .. math::
2037
2038 dst.xy = double(src0.x)
2039
2040 dst.zw = double(src0.y)
2041
2042 .. opcode:: D2U - Double to Unsigned Int
2043
2044 .. math::
2045
2046 dst.x = unsigned(src0.xy)
2047
2048 dst.y = unsigned(src0.zw)
2049
2050 64-bit Integer ISA
2051 ^^^^^^^^^^^^^^^^^^
2052
2053 The 64-bit integer opcodes reinterpret four-component vectors into
2054 two-component vectors with 64-bits in each component.
2055
2056 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2057
2058 dst.xy = |src0.xy|
2059 dst.zw = |src0.zw|
2060
2061 .. opcode:: I64NEG - 64-bit Integer Negate
2062
2063 Two's complement.
2064
2065 .. math::
2066
2067 dst.xy = -src.xy
2068 dst.zw = -src.zw
2069
2070 .. opcode:: I64SSG - 64-bit Integer Set Sign
2071
2072 .. math::
2073
2074 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2075 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2076
2077 .. opcode:: U64ADD - 64-bit Integer Add
2078
2079 .. math::
2080
2081 dst.xy = src0.xy + src1.xy
2082 dst.zw = src0.zw + src1.zw
2083
2084 .. opcode:: U64MUL - 64-bit Integer Multiply
2085
2086 .. math::
2087
2088 dst.xy = src0.xy * src1.xy
2089 dst.zw = src0.zw * src1.zw
2090
2091 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2092
2093 .. math::
2094
2095 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2096 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2097
2098 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2099
2100 .. math::
2101
2102 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2103 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2104
2105 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2106
2107 .. math::
2108
2109 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2110 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2111
2112 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2113
2114 .. math::
2115
2116 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2117 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2118
2119 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2120
2121 .. math::
2122
2123 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2124 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2125
2126 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2127
2128 .. math::
2129
2130 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2131 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2132
2133 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2134
2135 .. math::
2136
2137 dst.xy = min(src0.xy, src1.xy)
2138 dst.zw = min(src0.zw, src1.zw)
2139
2140 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2141
2142 .. math::
2143
2144 dst.xy = min(src0.xy, src1.xy)
2145 dst.zw = min(src0.zw, src1.zw)
2146
2147 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2148
2149 .. math::
2150
2151 dst.xy = max(src0.xy, src1.xy)
2152 dst.zw = max(src0.zw, src1.zw)
2153
2154 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2155
2156 .. math::
2157
2158 dst.xy = max(src0.xy, src1.xy)
2159 dst.zw = max(src0.zw, src1.zw)
2160
2161 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2162
2163 The shift count is masked with 0x3f before the shift is applied.
2164
2165 .. math::
2166
2167 dst.xy = src0.xy << (0x3f \& src1.x)
2168 dst.zw = src0.zw << (0x3f \& src1.y)
2169
2170 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2171
2172 The shift count is masked with 0x3f before the shift is applied.
2173
2174 .. math::
2175
2176 dst.xy = src0.xy >> (0x3f \& src1.x)
2177 dst.zw = src0.zw >> (0x3f \& src1.y)
2178
2179 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2180
2181 The shift count is masked with 0x3f before the shift is applied.
2182
2183 .. math::
2184
2185 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2186 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2187
2188 .. opcode:: I64DIV - 64-bit Signed Integer Division
2189
2190 .. math::
2191
2192 dst.xy = src0.xy \ src1.xy
2193 dst.zw = src0.zw \ src1.zw
2194
2195 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2196
2197 .. math::
2198
2199 dst.xy = src0.xy \ src1.xy
2200 dst.zw = src0.zw \ src1.zw
2201
2202 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2203
2204 .. math::
2205
2206 dst.xy = src0.xy \bmod src1.xy
2207 dst.zw = src0.zw \bmod src1.zw
2208
2209 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2210
2211 .. math::
2212
2213 dst.xy = src0.xy \bmod src1.xy
2214 dst.zw = src0.zw \bmod src1.zw
2215
2216 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2217
2218 .. math::
2219
2220 dst.xy = (uint64_t) src0.x
2221 dst.zw = (uint64_t) src0.y
2222
2223 .. opcode:: F2I64 - Float to 64-bit Int
2224
2225 .. math::
2226
2227 dst.xy = (int64_t) src0.x
2228 dst.zw = (int64_t) src0.y
2229
2230 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2231
2232 This is a zero extension.
2233
2234 .. math::
2235
2236 dst.xy = (uint64_t) src0.x
2237 dst.zw = (uint64_t) src0.y
2238
2239 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2240
2241 This is a sign extension.
2242
2243 .. math::
2244
2245 dst.xy = (int64_t) src0.x
2246 dst.zw = (int64_t) src0.y
2247
2248 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2249
2250 .. math::
2251
2252 dst.xy = (uint64_t) src0.xy
2253 dst.zw = (uint64_t) src0.zw
2254
2255 .. opcode:: D2I64 - Double to 64-bit Int
2256
2257 .. math::
2258
2259 dst.xy = (int64_t) src0.xy
2260 dst.zw = (int64_t) src0.zw
2261
2262 .. opcode:: U642F - 64-bit unsigned integer to float
2263
2264 .. math::
2265
2266 dst.x = (float) src0.xy
2267 dst.y = (float) src0.zw
2268
2269 .. opcode:: I642F - 64-bit Int to Float
2270
2271 .. math::
2272
2273 dst.x = (float) src0.xy
2274 dst.y = (float) src0.zw
2275
2276 .. opcode:: U642D - 64-bit unsigned integer to double
2277
2278 .. math::
2279
2280 dst.xy = (double) src0.xy
2281 dst.zw = (double) src0.zw
2282
2283 .. opcode:: I642D - 64-bit Int to double
2284
2285 .. math::
2286
2287 dst.xy = (double) src0.xy
2288 dst.zw = (double) src0.zw
2289
2290 .. _samplingopcodes:
2291
2292 Resource Sampling Opcodes
2293 ^^^^^^^^^^^^^^^^^^^^^^^^^
2294
2295 Those opcodes follow very closely semantics of the respective Direct3D
2296 instructions. If in doubt double check Direct3D documentation.
2297 Note that the swizzle on SVIEW (src1) determines texel swizzling
2298 after lookup.
2299
2300 .. opcode:: SAMPLE
2301
2302 Using provided address, sample data from the specified texture using the
2303 filtering mode identified by the given sampler. The source data may come from
2304 any resource type other than buffers.
2305
2306 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2307
2308 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2309
2310 .. opcode:: SAMPLE_I
2311
2312 Simplified alternative to the SAMPLE instruction. Using the provided
2313 integer address, SAMPLE_I fetches data from the specified sampler view
2314 without any filtering. The source data may come from any resource type
2315 other than CUBE.
2316
2317 Syntax: ``SAMPLE_I dst, address, sampler_view``
2318
2319 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2320
2321 The 'address' is specified as unsigned integers. If the 'address' is out of
2322 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2323 components. As such the instruction doesn't honor address wrap modes, in
2324 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2325 address.w always provides an unsigned integer mipmap level. If the value is
2326 out of the range then the instruction always returns 0 in all components.
2327 address.yz are ignored for buffers and 1d textures. address.z is ignored
2328 for 1d texture arrays and 2d textures.
2329
2330 For 1D texture arrays address.y provides the array index (also as unsigned
2331 integer). If the value is out of the range of available array indices
2332 [0... (array size - 1)] then the opcode always returns 0 in all components.
2333 For 2D texture arrays address.z provides the array index, otherwise it
2334 exhibits the same behavior as in the case for 1D texture arrays. The exact
2335 semantics of the source address are presented in the table below:
2336
2337 +---------------------------+----+-----+-----+---------+
2338 | resource type | X | Y | Z | W |
2339 +===========================+====+=====+=====+=========+
2340 | ``PIPE_BUFFER`` | x | | | ignored |
2341 +---------------------------+----+-----+-----+---------+
2342 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2343 +---------------------------+----+-----+-----+---------+
2344 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2345 +---------------------------+----+-----+-----+---------+
2346 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2347 +---------------------------+----+-----+-----+---------+
2348 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2349 +---------------------------+----+-----+-----+---------+
2350 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2351 +---------------------------+----+-----+-----+---------+
2352 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2353 +---------------------------+----+-----+-----+---------+
2354 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2355 +---------------------------+----+-----+-----+---------+
2356
2357 Where 'mpl' is a mipmap level and 'idx' is the array index.
2358
2359 .. opcode:: SAMPLE_I_MS
2360
2361 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2362
2363 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2364
2365 .. opcode:: SAMPLE_B
2366
2367 Just like the SAMPLE instruction with the exception that an additional bias
2368 is applied to the level of detail computed as part of the instruction
2369 execution.
2370
2371 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2372
2373 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2374
2375 .. opcode:: SAMPLE_C
2376
2377 Similar to the SAMPLE instruction but it performs a comparison filter. The
2378 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2379 additional float32 operand, reference value, which must be a register with
2380 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2381 current samplers compare_func (in pipe_sampler_state) to compare reference
2382 value against the red component value for the surce resource at each texel
2383 that the currently configured texture filter covers based on the provided
2384 coordinates.
2385
2386 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2387
2388 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2389
2390 .. opcode:: SAMPLE_C_LZ
2391
2392 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2393 for level-zero.
2394
2395 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2396
2397 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2398
2399
2400 .. opcode:: SAMPLE_D
2401
2402 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2403 the source address in the x direction and the y direction are provided by
2404 extra parameters.
2405
2406 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2407
2408 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2409
2410 .. opcode:: SAMPLE_L
2411
2412 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2413 directly as a scalar value, representing no anisotropy.
2414
2415 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2416
2417 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2418
2419 .. opcode:: GATHER4
2420
2421 Gathers the four texels to be used in a bi-linear filtering operation and
2422 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2423 and cubemaps arrays. For 2D textures, only the addressing modes of the
2424 sampler and the top level of any mip pyramid are used. Set W to zero. It
2425 behaves like the SAMPLE instruction, but a filtered sample is not
2426 generated. The four samples that contribute to filtering are placed into
2427 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2428 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2429 magnitude of the deltas are half a texel.
2430
2431
2432 .. opcode:: SVIEWINFO
2433
2434 Query the dimensions of a given sampler view. dst receives width, height,
2435 depth or array size and number of mipmap levels as int4. The dst can have a
2436 writemask which will specify what info is the caller interested in.
2437
2438 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2439
2440 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2441
2442 src_mip_level is an unsigned integer scalar. If it's out of range then
2443 returns 0 for width, height and depth/array size but the total number of
2444 mipmap is still returned correctly for the given sampler view. The returned
2445 width, height and depth values are for the mipmap level selected by the
2446 src_mip_level and are in the number of texels. For 1d texture array width
2447 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2448 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2449 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2450 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2451 resinfo allowing swizzling dst values is ignored (due to the interaction
2452 with rcpfloat modifier which requires some swizzle handling in the state
2453 tracker anyway).
2454
2455 .. opcode:: SAMPLE_POS
2456
2457 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2458 indicated where the sample is located. If the resource is not a multi-sample
2459 resource and not a render target, the result is 0.
2460
2461 .. opcode:: SAMPLE_INFO
2462
2463 dst receives number of samples in x. If the resource is not a multi-sample
2464 resource and not a render target, the result is 0.
2465
2466
2467 .. _resourceopcodes:
2468
2469 Resource Access Opcodes
2470 ^^^^^^^^^^^^^^^^^^^^^^^
2471
2472 .. opcode:: LOAD - Fetch data from a shader buffer or image
2473
2474 Syntax: ``LOAD dst, resource, address``
2475
2476 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2477
2478 Using the provided integer address, LOAD fetches data
2479 from the specified buffer or texture without any
2480 filtering.
2481
2482 The 'address' is specified as a vector of unsigned
2483 integers. If the 'address' is out of range the result
2484 is unspecified.
2485
2486 Only the first mipmap level of a resource can be read
2487 from using this instruction.
2488
2489 For 1D or 2D texture arrays, the array index is
2490 provided as an unsigned integer in address.y or
2491 address.z, respectively. address.yz are ignored for
2492 buffers and 1D textures. address.z is ignored for 1D
2493 texture arrays and 2D textures. address.w is always
2494 ignored.
2495
2496 A swizzle suffix may be added to the resource argument
2497 this will cause the resource data to be swizzled accordingly.
2498
2499 .. opcode:: STORE - Write data to a shader resource
2500
2501 Syntax: ``STORE resource, address, src``
2502
2503 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2504
2505 Using the provided integer address, STORE writes data
2506 to the specified buffer or texture.
2507
2508 The 'address' is specified as a vector of unsigned
2509 integers. If the 'address' is out of range the result
2510 is unspecified.
2511
2512 Only the first mipmap level of a resource can be
2513 written to using this instruction.
2514
2515 For 1D or 2D texture arrays, the array index is
2516 provided as an unsigned integer in address.y or
2517 address.z, respectively. address.yz are ignored for
2518 buffers and 1D textures. address.z is ignored for 1D
2519 texture arrays and 2D textures. address.w is always
2520 ignored.
2521
2522 .. opcode:: RESQ - Query information about a resource
2523
2524 Syntax: ``RESQ dst, resource``
2525
2526 Example: ``RESQ TEMP[0], BUFFER[0]``
2527
2528 Returns information about the buffer or image resource. For buffer
2529 resources, the size (in bytes) is returned in the x component. For
2530 image resources, .xyz will contain the width/height/layers of the
2531 image, while .w will contain the number of samples for multi-sampled
2532 images.
2533
2534 .. opcode:: FBFETCH - Load data from framebuffer
2535
2536 Syntax: ``FBFETCH dst, output``
2537
2538 Example: ``FBFETCH TEMP[0], OUT[0]``
2539
2540 This is only valid on ``COLOR`` semantic outputs. Returns the color
2541 of the current position in the framebuffer from before this fragment
2542 shader invocation. May return the same value from multiple calls for
2543 a particular output within a single invocation. Note that result may
2544 be undefined if a fragment is drawn multiple times without a blend
2545 barrier in between.
2546
2547
2548 .. _threadsyncopcodes:
2549
2550 Inter-thread synchronization opcodes
2551 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2552
2553 These opcodes are intended for communication between threads running
2554 within the same compute grid. For now they're only valid in compute
2555 programs.
2556
2557 .. opcode:: MFENCE - Memory fence
2558
2559 Syntax: ``MFENCE resource``
2560
2561 Example: ``MFENCE RES[0]``
2562
2563 This opcode forces strong ordering between any memory access
2564 operations that affect the specified resource. This means that
2565 previous loads and stores (and only those) will be performed and
2566 visible to other threads before the program execution continues.
2567
2568
2569 .. opcode:: LFENCE - Load memory fence
2570
2571 Syntax: ``LFENCE resource``
2572
2573 Example: ``LFENCE RES[0]``
2574
2575 Similar to MFENCE, but it only affects the ordering of memory loads.
2576
2577
2578 .. opcode:: SFENCE - Store memory fence
2579
2580 Syntax: ``SFENCE resource``
2581
2582 Example: ``SFENCE RES[0]``
2583
2584 Similar to MFENCE, but it only affects the ordering of memory stores.
2585
2586
2587 .. opcode:: BARRIER - Thread group barrier
2588
2589 ``BARRIER``
2590
2591 This opcode suspends the execution of the current thread until all
2592 the remaining threads in the working group reach the same point of
2593 the program. Results are unspecified if any of the remaining
2594 threads terminates or never reaches an executed BARRIER instruction.
2595
2596 .. opcode:: MEMBAR - Memory barrier
2597
2598 ``MEMBAR type``
2599
2600 This opcode waits for the completion of all memory accesses based on
2601 the type passed in. The type is an immediate bitfield with the following
2602 meaning:
2603
2604 Bit 0: Shader storage buffers
2605 Bit 1: Atomic buffers
2606 Bit 2: Images
2607 Bit 3: Shared memory
2608 Bit 4: Thread group
2609
2610 These may be passed in in any combination. An implementation is free to not
2611 distinguish between these as it sees fit. However these map to all the
2612 possibilities made available by GLSL.
2613
2614 .. _atomopcodes:
2615
2616 Atomic opcodes
2617 ^^^^^^^^^^^^^^
2618
2619 These opcodes provide atomic variants of some common arithmetic and
2620 logical operations. In this context atomicity means that another
2621 concurrent memory access operation that affects the same memory
2622 location is guaranteed to be performed strictly before or after the
2623 entire execution of the atomic operation. The resource may be a buffer
2624 or an image. In the case of an image, the offset works the same as for
2625 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2626 only be used with 32-bit integer image formats.
2627
2628 .. opcode:: ATOMUADD - Atomic integer addition
2629
2630 Syntax: ``ATOMUADD dst, resource, offset, src``
2631
2632 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2633
2634 The following operation is performed atomically:
2635
2636 .. math::
2637
2638 dst_x = resource[offset]
2639
2640 resource[offset] = dst_x + src_x
2641
2642
2643 .. opcode:: ATOMXCHG - Atomic exchange
2644
2645 Syntax: ``ATOMXCHG dst, resource, offset, src``
2646
2647 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2648
2649 The following operation is performed atomically:
2650
2651 .. math::
2652
2653 dst_x = resource[offset]
2654
2655 resource[offset] = src_x
2656
2657
2658 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2659
2660 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2661
2662 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2663
2664 The following operation is performed atomically:
2665
2666 .. math::
2667
2668 dst_x = resource[offset]
2669
2670 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2671
2672
2673 .. opcode:: ATOMAND - Atomic bitwise And
2674
2675 Syntax: ``ATOMAND dst, resource, offset, src``
2676
2677 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2678
2679 The following operation is performed atomically:
2680
2681 .. math::
2682
2683 dst_x = resource[offset]
2684
2685 resource[offset] = dst_x \& src_x
2686
2687
2688 .. opcode:: ATOMOR - Atomic bitwise Or
2689
2690 Syntax: ``ATOMOR dst, resource, offset, src``
2691
2692 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2693
2694 The following operation is performed atomically:
2695
2696 .. math::
2697
2698 dst_x = resource[offset]
2699
2700 resource[offset] = dst_x | src_x
2701
2702
2703 .. opcode:: ATOMXOR - Atomic bitwise Xor
2704
2705 Syntax: ``ATOMXOR dst, resource, offset, src``
2706
2707 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2708
2709 The following operation is performed atomically:
2710
2711 .. math::
2712
2713 dst_x = resource[offset]
2714
2715 resource[offset] = dst_x \oplus src_x
2716
2717
2718 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2719
2720 Syntax: ``ATOMUMIN dst, resource, offset, src``
2721
2722 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2723
2724 The following operation is performed atomically:
2725
2726 .. math::
2727
2728 dst_x = resource[offset]
2729
2730 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2731
2732
2733 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2734
2735 Syntax: ``ATOMUMAX dst, resource, offset, src``
2736
2737 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2738
2739 The following operation is performed atomically:
2740
2741 .. math::
2742
2743 dst_x = resource[offset]
2744
2745 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2746
2747
2748 .. opcode:: ATOMIMIN - Atomic signed minimum
2749
2750 Syntax: ``ATOMIMIN dst, resource, offset, src``
2751
2752 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2753
2754 The following operation is performed atomically:
2755
2756 .. math::
2757
2758 dst_x = resource[offset]
2759
2760 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2761
2762
2763 .. opcode:: ATOMIMAX - Atomic signed maximum
2764
2765 Syntax: ``ATOMIMAX dst, resource, offset, src``
2766
2767 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2768
2769 The following operation is performed atomically:
2770
2771 .. math::
2772
2773 dst_x = resource[offset]
2774
2775 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2776
2777
2778 .. _voteopcodes:
2779
2780 Vote opcodes
2781 ^^^^^^^^^^^^
2782
2783 These opcodes compare the given value across the shader invocations
2784 running in the current SIMD group. The details of exactly which
2785 invocations get compared are implementation-defined, and it would be a
2786 correct implementation to only ever consider the current thread's
2787 value. (i.e. SIMD group of 1). The argument is treated as a boolean.
2788
2789 .. opcode:: VOTE_ANY - Value is set in any of the current invocations
2790
2791 .. opcode:: VOTE_ALL - Value is set in all of the current invocations
2792
2793 .. opcode:: VOTE_EQ - Value is the same in all of the current invocations
2794
2795
2796 Explanation of symbols used
2797 ------------------------------
2798
2799
2800 Functions
2801 ^^^^^^^^^^^^^^
2802
2803
2804 :math:`|x|` Absolute value of `x`.
2805
2806 :math:`\lceil x \rceil` Ceiling of `x`.
2807
2808 clamp(x,y,z) Clamp x between y and z.
2809 (x < y) ? y : (x > z) ? z : x
2810
2811 :math:`\lfloor x\rfloor` Floor of `x`.
2812
2813 :math:`\log_2{x}` Logarithm of `x`, base 2.
2814
2815 max(x,y) Maximum of x and y.
2816 (x > y) ? x : y
2817
2818 min(x,y) Minimum of x and y.
2819 (x < y) ? x : y
2820
2821 partialx(x) Derivative of x relative to fragment's X.
2822
2823 partialy(x) Derivative of x relative to fragment's Y.
2824
2825 pop() Pop from stack.
2826
2827 :math:`x^y` `x` to the power `y`.
2828
2829 push(x) Push x on stack.
2830
2831 round(x) Round x.
2832
2833 trunc(x) Truncate x, i.e. drop the fraction bits.
2834
2835
2836 Keywords
2837 ^^^^^^^^^^^^^
2838
2839
2840 discard Discard fragment.
2841
2842 pc Program counter.
2843
2844 target Label of target instruction.
2845
2846
2847 Other tokens
2848 ---------------
2849
2850
2851 Declaration
2852 ^^^^^^^^^^^
2853
2854
2855 Declares a register that is will be referenced as an operand in Instruction
2856 tokens.
2857
2858 File field contains register file that is being declared and is one
2859 of TGSI_FILE.
2860
2861 UsageMask field specifies which of the register components can be accessed
2862 and is one of TGSI_WRITEMASK.
2863
2864 The Local flag specifies that a given value isn't intended for
2865 subroutine parameter passing and, as a result, the implementation
2866 isn't required to give any guarantees of it being preserved across
2867 subroutine boundaries. As it's merely a compiler hint, the
2868 implementation is free to ignore it.
2869
2870 If Dimension flag is set to 1, a Declaration Dimension token follows.
2871
2872 If Semantic flag is set to 1, a Declaration Semantic token follows.
2873
2874 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2875
2876 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2877
2878 If Array flag is set to 1, a Declaration Array token follows.
2879
2880 Array Declaration
2881 ^^^^^^^^^^^^^^^^^^^^^^^^
2882
2883 Declarations can optional have an ArrayID attribute which can be referred by
2884 indirect addressing operands. An ArrayID of zero is reserved and treated as
2885 if no ArrayID is specified.
2886
2887 If an indirect addressing operand refers to a specific declaration by using
2888 an ArrayID only the registers in this declaration are guaranteed to be
2889 accessed, accessing any register outside this declaration results in undefined
2890 behavior. Note that for compatibility the effective index is zero-based and
2891 not relative to the specified declaration
2892
2893 If no ArrayID is specified with an indirect addressing operand the whole
2894 register file might be accessed by this operand. This is strongly discouraged
2895 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2896 This is only legal for TEMP and CONST register files.
2897
2898 Declaration Semantic
2899 ^^^^^^^^^^^^^^^^^^^^^^^^
2900
2901 Vertex and fragment shader input and output registers may be labeled
2902 with semantic information consisting of a name and index.
2903
2904 Follows Declaration token if Semantic bit is set.
2905
2906 Since its purpose is to link a shader with other stages of the pipeline,
2907 it is valid to follow only those Declaration tokens that declare a register
2908 either in INPUT or OUTPUT file.
2909
2910 SemanticName field contains the semantic name of the register being declared.
2911 There is no default value.
2912
2913 SemanticIndex is an optional subscript that can be used to distinguish
2914 different register declarations with the same semantic name. The default value
2915 is 0.
2916
2917 The meanings of the individual semantic names are explained in the following
2918 sections.
2919
2920 TGSI_SEMANTIC_POSITION
2921 """"""""""""""""""""""
2922
2923 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2924 output register which contains the homogeneous vertex position in the clip
2925 space coordinate system. After clipping, the X, Y and Z components of the
2926 vertex will be divided by the W value to get normalized device coordinates.
2927
2928 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2929 fragment shader input (or system value, depending on which one is
2930 supported by the driver) contains the fragment's window position. The X
2931 component starts at zero and always increases from left to right.
2932 The Y component starts at zero and always increases but Y=0 may either
2933 indicate the top of the window or the bottom depending on the fragment
2934 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2935 The Z coordinate ranges from 0 to 1 to represent depth from the front
2936 to the back of the Z buffer. The W component contains the interpolated
2937 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2938 but unlike d3d10 which interpolates the same 1/w but then gives back
2939 the reciprocal of the interpolated value).
2940
2941 Fragment shaders may also declare an output register with
2942 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2943 the fragment shader to change the fragment's Z position.
2944
2945
2946
2947 TGSI_SEMANTIC_COLOR
2948 """""""""""""""""""
2949
2950 For vertex shader outputs or fragment shader inputs/outputs, this
2951 label indicates that the register contains an R,G,B,A color.
2952
2953 Several shader inputs/outputs may contain colors so the semantic index
2954 is used to distinguish them. For example, color[0] may be the diffuse
2955 color while color[1] may be the specular color.
2956
2957 This label is needed so that the flat/smooth shading can be applied
2958 to the right interpolants during rasterization.
2959
2960
2961
2962 TGSI_SEMANTIC_BCOLOR
2963 """"""""""""""""""""
2964
2965 Back-facing colors are only used for back-facing polygons, and are only valid
2966 in vertex shader outputs. After rasterization, all polygons are front-facing
2967 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2968 so all BCOLORs effectively become regular COLORs in the fragment shader.
2969
2970
2971 TGSI_SEMANTIC_FOG
2972 """""""""""""""""
2973
2974 Vertex shader inputs and outputs and fragment shader inputs may be
2975 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2976 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2977 to compute a fog blend factor which is used to blend the normal fragment color
2978 with a constant fog color. But fog coord really is just an ordinary vec4
2979 register like regular semantics.
2980
2981
2982 TGSI_SEMANTIC_PSIZE
2983 """""""""""""""""""
2984
2985 Vertex shader input and output registers may be labeled with
2986 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2987 in the form (S, 0, 0, 1). The point size controls the width or diameter
2988 of points for rasterization. This label cannot be used in fragment
2989 shaders.
2990
2991 When using this semantic, be sure to set the appropriate state in the
2992 :ref:`rasterizer` first.
2993
2994
2995 TGSI_SEMANTIC_TEXCOORD
2996 """"""""""""""""""""""
2997
2998 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2999
3000 Vertex shader outputs and fragment shader inputs may be labeled with
3001 this semantic to make them replaceable by sprite coordinates via the
3002 sprite_coord_enable state in the :ref:`rasterizer`.
3003 The semantic index permitted with this semantic is limited to <= 7.
3004
3005 If the driver does not support TEXCOORD, sprite coordinate replacement
3006 applies to inputs with the GENERIC semantic instead.
3007
3008 The intended use case for this semantic is gl_TexCoord.
3009
3010
3011 TGSI_SEMANTIC_PCOORD
3012 """"""""""""""""""""
3013
3014 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3015
3016 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3017 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3018 the current primitive is a point and point sprites are enabled. Otherwise,
3019 the contents of the register are undefined.
3020
3021 The intended use case for this semantic is gl_PointCoord.
3022
3023
3024 TGSI_SEMANTIC_GENERIC
3025 """""""""""""""""""""
3026
3027 All vertex/fragment shader inputs/outputs not labeled with any other
3028 semantic label can be considered to be generic attributes. Typical
3029 uses of generic inputs/outputs are texcoords and user-defined values.
3030
3031
3032 TGSI_SEMANTIC_NORMAL
3033 """"""""""""""""""""
3034
3035 Indicates that a vertex shader input is a normal vector. This is
3036 typically only used for legacy graphics APIs.
3037
3038
3039 TGSI_SEMANTIC_FACE
3040 """"""""""""""""""
3041
3042 This label applies to fragment shader inputs (or system values,
3043 depending on which one is supported by the driver) and indicates that
3044 the register contains front/back-face information.
3045
3046 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3047 where F will be positive when the fragment belongs to a front-facing polygon,
3048 and negative when the fragment belongs to a back-facing polygon.
3049
3050 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3051 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3052 0 when the fragment belongs to a back-facing polygon.
3053
3054
3055 TGSI_SEMANTIC_EDGEFLAG
3056 """"""""""""""""""""""
3057
3058 For vertex shaders, this sematic label indicates that an input or
3059 output is a boolean edge flag. The register layout is [F, x, x, x]
3060 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3061 simply copies the edge flag input to the edgeflag output.
3062
3063 Edge flags are used to control which lines or points are actually
3064 drawn when the polygon mode converts triangles/quads/polygons into
3065 points or lines.
3066
3067
3068 TGSI_SEMANTIC_STENCIL
3069 """""""""""""""""""""
3070
3071 For fragment shaders, this semantic label indicates that an output
3072 is a writable stencil reference value. Only the Y component is writable.
3073 This allows the fragment shader to change the fragments stencilref value.
3074
3075
3076 TGSI_SEMANTIC_VIEWPORT_INDEX
3077 """"""""""""""""""""""""""""
3078
3079 For geometry shaders, this semantic label indicates that an output
3080 contains the index of the viewport (and scissor) to use.
3081 This is an integer value, and only the X component is used.
3082
3083
3084 TGSI_SEMANTIC_LAYER
3085 """""""""""""""""""
3086
3087 For geometry shaders, this semantic label indicates that an output
3088 contains the layer value to use for the color and depth/stencil surfaces.
3089 This is an integer value, and only the X component is used.
3090 (Also known as rendertarget array index.)
3091
3092
3093 TGSI_SEMANTIC_CULLDIST
3094 """"""""""""""""""""""
3095
3096 Used as distance to plane for performing application-defined culling
3097 of individual primitives against a plane. When components of vertex
3098 elements are given this label, these values are assumed to be a
3099 float32 signed distance to a plane. Primitives will be completely
3100 discarded if the plane distance for all of the vertices in the
3101 primitive are < 0. If a vertex has a cull distance of NaN, that
3102 vertex counts as "out" (as if its < 0);
3103 The limits on both clip and cull distances are bound
3104 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3105 the maximum number of components that can be used to hold the
3106 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3107 which specifies the maximum number of registers which can be
3108 annotated with those semantics.
3109
3110
3111 TGSI_SEMANTIC_CLIPDIST
3112 """"""""""""""""""""""
3113
3114 Note this covers clipping and culling distances.
3115
3116 When components of vertex elements are identified this way, these
3117 values are each assumed to be a float32 signed distance to a plane.
3118
3119 For clip distances:
3120 Primitive setup only invokes rasterization on pixels for which
3121 the interpolated plane distances are >= 0.
3122
3123 For cull distances:
3124 Primitives will be completely discarded if the plane distance
3125 for all of the vertices in the primitive are < 0.
3126 If a vertex has a cull distance of NaN, that vertex counts as "out"
3127 (as if its < 0);
3128
3129 Multiple clip/cull planes can be implemented simultaneously, by
3130 annotating multiple components of one or more vertex elements with
3131 the above specified semantic.
3132 The limits on both clip and cull distances are bound
3133 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3134 the maximum number of components that can be used to hold the
3135 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3136 which specifies the maximum number of registers which can be
3137 annotated with those semantics.
3138 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3139 are used to divide up the 2 x vec4 space between clipping and culling.
3140
3141 TGSI_SEMANTIC_SAMPLEID
3142 """"""""""""""""""""""
3143
3144 For fragment shaders, this semantic label indicates that a system value
3145 contains the current sample id (i.e. gl_SampleID).
3146 This is an integer value, and only the X component is used.
3147
3148 TGSI_SEMANTIC_SAMPLEPOS
3149 """""""""""""""""""""""
3150
3151 For fragment shaders, this semantic label indicates that a system value
3152 contains the current sample's position (i.e. gl_SamplePosition). Only the X
3153 and Y values are used.
3154
3155 TGSI_SEMANTIC_SAMPLEMASK
3156 """"""""""""""""""""""""
3157
3158 For fragment shaders, this semantic label indicates that an output contains
3159 the sample mask used to disable further sample processing
3160 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
3161
3162 TGSI_SEMANTIC_INVOCATIONID
3163 """"""""""""""""""""""""""
3164
3165 For geometry shaders, this semantic label indicates that a system value
3166 contains the current invocation id (i.e. gl_InvocationID).
3167 This is an integer value, and only the X component is used.
3168
3169 TGSI_SEMANTIC_INSTANCEID
3170 """"""""""""""""""""""""
3171
3172 For vertex shaders, this semantic label indicates that a system value contains
3173 the current instance id (i.e. gl_InstanceID). It does not include the base
3174 instance. This is an integer value, and only the X component is used.
3175
3176 TGSI_SEMANTIC_VERTEXID
3177 """"""""""""""""""""""
3178
3179 For vertex shaders, this semantic label indicates that a system value contains
3180 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3181 base vertex. This is an integer value, and only the X component is used.
3182
3183 TGSI_SEMANTIC_VERTEXID_NOBASE
3184 """""""""""""""""""""""""""""""
3185
3186 For vertex shaders, this semantic label indicates that a system value contains
3187 the current vertex id without including the base vertex (this corresponds to
3188 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3189 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3190 is used.
3191
3192 TGSI_SEMANTIC_BASEVERTEX
3193 """"""""""""""""""""""""
3194
3195 For vertex shaders, this semantic label indicates that a system value contains
3196 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3197 this contains the first (or start) value instead.
3198 This is an integer value, and only the X component is used.
3199
3200 TGSI_SEMANTIC_PRIMID
3201 """"""""""""""""""""
3202
3203 For geometry and fragment shaders, this semantic label indicates the value
3204 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3205 and only the X component is used.
3206 FIXME: This right now can be either a ordinary input or a system value...
3207
3208
3209 TGSI_SEMANTIC_PATCH
3210 """""""""""""""""""
3211
3212 For tessellation evaluation/control shaders, this semantic label indicates a
3213 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3214 arrays.
3215
3216 TGSI_SEMANTIC_TESSCOORD
3217 """""""""""""""""""""""
3218
3219 For tessellation evaluation shaders, this semantic label indicates the
3220 coordinates of the vertex being processed. This is available in XYZ; W is
3221 undefined.
3222
3223 TGSI_SEMANTIC_TESSOUTER
3224 """""""""""""""""""""""
3225
3226 For tessellation evaluation/control shaders, this semantic label indicates the
3227 outer tessellation levels of the patch. Isoline tessellation will only have XY
3228 defined, triangle will have XYZ and quads will have XYZW defined. This
3229 corresponds to gl_TessLevelOuter.
3230
3231 TGSI_SEMANTIC_TESSINNER
3232 """""""""""""""""""""""
3233
3234 For tessellation evaluation/control shaders, this semantic label indicates the
3235 inner tessellation levels of the patch. The X value is only defined for
3236 triangle tessellation, while quads will have XY defined. This is entirely
3237 undefined for isoline tessellation.
3238
3239 TGSI_SEMANTIC_VERTICESIN
3240 """"""""""""""""""""""""
3241
3242 For tessellation evaluation/control shaders, this semantic label indicates the
3243 number of vertices provided in the input patch. Only the X value is defined.
3244
3245 TGSI_SEMANTIC_HELPER_INVOCATION
3246 """""""""""""""""""""""""""""""
3247
3248 For fragment shaders, this semantic indicates whether the current
3249 invocation is covered or not. Helper invocations are created in order
3250 to properly compute derivatives, however it may be desirable to skip
3251 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3252
3253 TGSI_SEMANTIC_BASEINSTANCE
3254 """"""""""""""""""""""""""
3255
3256 For vertex shaders, the base instance argument supplied for this
3257 draw. This is an integer value, and only the X component is used.
3258
3259 TGSI_SEMANTIC_DRAWID
3260 """"""""""""""""""""
3261
3262 For vertex shaders, the zero-based index of the current draw in a
3263 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3264 component is used.
3265
3266
3267 TGSI_SEMANTIC_WORK_DIM
3268 """"""""""""""""""""""
3269
3270 For compute shaders started via opencl this retrieves the work_dim
3271 parameter to the clEnqueueNDRangeKernel call with which the shader
3272 was started.
3273
3274
3275 TGSI_SEMANTIC_GRID_SIZE
3276 """""""""""""""""""""""
3277
3278 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3279 of a grid of thread blocks.
3280
3281
3282 TGSI_SEMANTIC_BLOCK_ID
3283 """"""""""""""""""""""
3284
3285 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3286 current block inside of the grid.
3287
3288
3289 TGSI_SEMANTIC_BLOCK_SIZE
3290 """"""""""""""""""""""""
3291
3292 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3293 of a block in threads.
3294
3295
3296 TGSI_SEMANTIC_THREAD_ID
3297 """""""""""""""""""""""
3298
3299 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3300 current thread inside of the block.
3301
3302
3303 Declaration Interpolate
3304 ^^^^^^^^^^^^^^^^^^^^^^^
3305
3306 This token is only valid for fragment shader INPUT declarations.
3307
3308 The Interpolate field specifes the way input is being interpolated by
3309 the rasteriser and is one of TGSI_INTERPOLATE_*.
3310
3311 The Location field specifies the location inside the pixel that the
3312 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3313 when per-sample shading is enabled, the implementation may choose to
3314 interpolate at the sample irrespective of the Location field.
3315
3316 The CylindricalWrap bitfield specifies which register components
3317 should be subject to cylindrical wrapping when interpolating by the
3318 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3319 should be interpolated according to cylindrical wrapping rules.
3320
3321
3322 Declaration Sampler View
3323 ^^^^^^^^^^^^^^^^^^^^^^^^
3324
3325 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3326
3327 DCL SVIEW[#], resource, type(s)
3328
3329 Declares a shader input sampler view and assigns it to a SVIEW[#]
3330 register.
3331
3332 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3333
3334 type must be 1 or 4 entries (if specifying on a per-component
3335 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3336
3337 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3338 which take an explicit SVIEW[#] source register), there may be optionally
3339 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3340 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3341 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3342 But note in particular that some drivers need to know the sampler type
3343 (float/int/unsigned) in order to generate the correct code, so cases
3344 where integer textures are sampled, SVIEW[#] declarations should be
3345 used.
3346
3347 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3348 in the same shader.
3349
3350 Declaration Resource
3351 ^^^^^^^^^^^^^^^^^^^^
3352
3353 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3354
3355 DCL RES[#], resource [, WR] [, RAW]
3356
3357 Declares a shader input resource and assigns it to a RES[#]
3358 register.
3359
3360 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3361 2DArray.
3362
3363 If the RAW keyword is not specified, the texture data will be
3364 subject to conversion, swizzling and scaling as required to yield
3365 the specified data type from the physical data format of the bound
3366 resource.
3367
3368 If the RAW keyword is specified, no channel conversion will be
3369 performed: the values read for each of the channels (X,Y,Z,W) will
3370 correspond to consecutive words in the same order and format
3371 they're found in memory. No element-to-address conversion will be
3372 performed either: the value of the provided X coordinate will be
3373 interpreted in byte units instead of texel units. The result of
3374 accessing a misaligned address is undefined.
3375
3376 Usage of the STORE opcode is only allowed if the WR (writable) flag
3377 is set.
3378
3379
3380 Properties
3381 ^^^^^^^^^^^^^^^^^^^^^^^^
3382
3383 Properties are general directives that apply to the whole TGSI program.
3384
3385 FS_COORD_ORIGIN
3386 """""""""""""""
3387
3388 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3389 The default value is UPPER_LEFT.
3390
3391 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3392 increase downward and rightward.
3393 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3394 increase upward and rightward.
3395
3396 OpenGL defaults to LOWER_LEFT, and is configurable with the
3397 GL_ARB_fragment_coord_conventions extension.
3398
3399 DirectX 9/10 use UPPER_LEFT.
3400
3401 FS_COORD_PIXEL_CENTER
3402 """""""""""""""""""""
3403
3404 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3405 The default value is HALF_INTEGER.
3406
3407 If HALF_INTEGER, the fractionary part of the position will be 0.5
3408 If INTEGER, the fractionary part of the position will be 0.0
3409
3410 Note that this does not affect the set of fragments generated by
3411 rasterization, which is instead controlled by half_pixel_center in the
3412 rasterizer.
3413
3414 OpenGL defaults to HALF_INTEGER, and is configurable with the
3415 GL_ARB_fragment_coord_conventions extension.
3416
3417 DirectX 9 uses INTEGER.
3418 DirectX 10 uses HALF_INTEGER.
3419
3420 FS_COLOR0_WRITES_ALL_CBUFS
3421 """"""""""""""""""""""""""
3422 Specifies that writes to the fragment shader color 0 are replicated to all
3423 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3424 fragData is directed to a single color buffer, but fragColor is broadcast.
3425
3426 VS_PROHIBIT_UCPS
3427 """"""""""""""""""""""""""
3428 If this property is set on the program bound to the shader stage before the
3429 fragment shader, user clip planes should have no effect (be disabled) even if
3430 that shader does not write to any clip distance outputs and the rasterizer's
3431 clip_plane_enable is non-zero.
3432 This property is only supported by drivers that also support shader clip
3433 distance outputs.
3434 This is useful for APIs that don't have UCPs and where clip distances written
3435 by a shader cannot be disabled.
3436
3437 GS_INVOCATIONS
3438 """"""""""""""
3439
3440 Specifies the number of times a geometry shader should be executed for each
3441 input primitive. Each invocation will have a different
3442 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3443 be 1.
3444
3445 VS_WINDOW_SPACE_POSITION
3446 """"""""""""""""""""""""""
3447 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3448 is assumed to contain window space coordinates.
3449 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3450 directly taken from the 4-th component of the shader output.
3451 Naturally, clipping is not performed on window coordinates either.
3452 The effect of this property is undefined if a geometry or tessellation shader
3453 are in use.
3454
3455 TCS_VERTICES_OUT
3456 """"""""""""""""
3457
3458 The number of vertices written by the tessellation control shader. This
3459 effectively defines the patch input size of the tessellation evaluation shader
3460 as well.
3461
3462 TES_PRIM_MODE
3463 """""""""""""
3464
3465 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3466 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3467 separate isolines settings, the regular lines is assumed to mean isolines.)
3468
3469 TES_SPACING
3470 """""""""""
3471
3472 This sets the spacing mode of the tessellation generator, one of
3473 ``PIPE_TESS_SPACING_*``.
3474
3475 TES_VERTEX_ORDER_CW
3476 """""""""""""""""""
3477
3478 This sets the vertex order to be clockwise if the value is 1, or
3479 counter-clockwise if set to 0.
3480
3481 TES_POINT_MODE
3482 """"""""""""""
3483
3484 If set to a non-zero value, this turns on point mode for the tessellator,
3485 which means that points will be generated instead of primitives.
3486
3487 NUM_CLIPDIST_ENABLED
3488 """"""""""""""""
3489
3490 How many clip distance scalar outputs are enabled.
3491
3492 NUM_CULLDIST_ENABLED
3493 """"""""""""""""
3494
3495 How many cull distance scalar outputs are enabled.
3496
3497 FS_EARLY_DEPTH_STENCIL
3498 """"""""""""""""""""""
3499
3500 Whether depth test, stencil test, and occlusion query should run before
3501 the fragment shader (regardless of fragment shader side effects). Corresponds
3502 to GLSL early_fragment_tests.
3503
3504 NEXT_SHADER
3505 """""""""""
3506
3507 Which shader stage will MOST LIKELY follow after this shader when the shader
3508 is bound. This is only a hint to the driver and doesn't have to be precise.
3509 Only set for VS and TES.
3510
3511 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3512 """""""""""""""""""""""""""""""""""""
3513
3514 Threads per block in each dimension, if known at compile time. If the block size
3515 is known all three should be at least 1. If it is unknown they should all be set
3516 to 0 or not set.
3517
3518 MUL_ZERO_WINS
3519 """""""""""""
3520
3521 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3522 of the operands are equal to 0. That means that 0 * Inf = 0. This
3523 should be set the same way for an entire pipeline. Note that this
3524 applies not only to the literal MUL TGSI opcode, but all FP32
3525 multiplications implied by other operations, such as MAD, FMA, DP2,
3526 DP3, DP4, DPH, DST, LOG, LRP, XPD, and possibly others. If there is a
3527 mismatch between shaders, then it is unspecified whether this behavior
3528 will be enabled.
3529
3530
3531 Texture Sampling and Texture Formats
3532 ------------------------------------
3533
3534 This table shows how texture image components are returned as (x,y,z,w) tuples
3535 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3536 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3537 well.
3538
3539 +--------------------+--------------+--------------------+--------------+
3540 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3541 +====================+==============+====================+==============+
3542 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3543 +--------------------+--------------+--------------------+--------------+
3544 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3545 +--------------------+--------------+--------------------+--------------+
3546 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3547 +--------------------+--------------+--------------------+--------------+
3548 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3549 +--------------------+--------------+--------------------+--------------+
3550 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3551 +--------------------+--------------+--------------------+--------------+
3552 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3553 +--------------------+--------------+--------------------+--------------+
3554 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3555 +--------------------+--------------+--------------------+--------------+
3556 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3557 +--------------------+--------------+--------------------+--------------+
3558 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3559 | | | [#envmap-bumpmap]_ | |
3560 +--------------------+--------------+--------------------+--------------+
3561 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3562 | | | [#depth-tex-mode]_ | |
3563 +--------------------+--------------+--------------------+--------------+
3564 | S | (s, s, s, s) | unknown | unknown |
3565 +--------------------+--------------+--------------------+--------------+
3566
3567 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3568 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3569 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.