gallium: fixup definitions of the rsq and sqrt
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x = 1
78
79 dst.y = max(src.x, 0)
80
81 dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
82
83 dst.w = 1
84
85
86 .. opcode:: RCP - Reciprocal
87
88 This instruction replicates its result.
89
90 .. math::
91
92 dst = \frac{1}{src.x}
93
94
95 .. opcode:: RSQ - Reciprocal Square Root
96
97 This instruction replicates its result. The results are undefined for src <= 0.
98
99 .. math::
100
101 dst = \frac{1}{\sqrt{src.x}}
102
103
104 .. opcode:: SQRT - Square Root
105
106 This instruction replicates its result. The results are undefined for src < 0.
107
108 .. math::
109
110 dst = {\sqrt{src.x}}
111
112
113 .. opcode:: EXP - Approximate Exponential Base 2
114
115 .. math::
116
117 dst.x = 2^{\lfloor src.x\rfloor}
118
119 dst.y = src.x - \lfloor src.x\rfloor
120
121 dst.z = 2^{src.x}
122
123 dst.w = 1
124
125
126 .. opcode:: LOG - Approximate Logarithm Base 2
127
128 .. math::
129
130 dst.x = \lfloor\log_2{|src.x|}\rfloor
131
132 dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
133
134 dst.z = \log_2{|src.x|}
135
136 dst.w = 1
137
138
139 .. opcode:: MUL - Multiply
140
141 .. math::
142
143 dst.x = src0.x \times src1.x
144
145 dst.y = src0.y \times src1.y
146
147 dst.z = src0.z \times src1.z
148
149 dst.w = src0.w \times src1.w
150
151
152 .. opcode:: ADD - Add
153
154 .. math::
155
156 dst.x = src0.x + src1.x
157
158 dst.y = src0.y + src1.y
159
160 dst.z = src0.z + src1.z
161
162 dst.w = src0.w + src1.w
163
164
165 .. opcode:: DP3 - 3-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
172
173
174 .. opcode:: DP4 - 4-component Dot Product
175
176 This instruction replicates its result.
177
178 .. math::
179
180 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
181
182
183 .. opcode:: DST - Distance Vector
184
185 .. math::
186
187 dst.x = 1
188
189 dst.y = src0.y \times src1.y
190
191 dst.z = src0.z
192
193 dst.w = src1.w
194
195
196 .. opcode:: MIN - Minimum
197
198 .. math::
199
200 dst.x = min(src0.x, src1.x)
201
202 dst.y = min(src0.y, src1.y)
203
204 dst.z = min(src0.z, src1.z)
205
206 dst.w = min(src0.w, src1.w)
207
208
209 .. opcode:: MAX - Maximum
210
211 .. math::
212
213 dst.x = max(src0.x, src1.x)
214
215 dst.y = max(src0.y, src1.y)
216
217 dst.z = max(src0.z, src1.z)
218
219 dst.w = max(src0.w, src1.w)
220
221
222 .. opcode:: SLT - Set On Less Than
223
224 .. math::
225
226 dst.x = (src0.x < src1.x) ? 1 : 0
227
228 dst.y = (src0.y < src1.y) ? 1 : 0
229
230 dst.z = (src0.z < src1.z) ? 1 : 0
231
232 dst.w = (src0.w < src1.w) ? 1 : 0
233
234
235 .. opcode:: SGE - Set On Greater Equal Than
236
237 .. math::
238
239 dst.x = (src0.x >= src1.x) ? 1 : 0
240
241 dst.y = (src0.y >= src1.y) ? 1 : 0
242
243 dst.z = (src0.z >= src1.z) ? 1 : 0
244
245 dst.w = (src0.w >= src1.w) ? 1 : 0
246
247
248 .. opcode:: MAD - Multiply And Add
249
250 .. math::
251
252 dst.x = src0.x \times src1.x + src2.x
253
254 dst.y = src0.y \times src1.y + src2.y
255
256 dst.z = src0.z \times src1.z + src2.z
257
258 dst.w = src0.w \times src1.w + src2.w
259
260
261 .. opcode:: SUB - Subtract
262
263 .. math::
264
265 dst.x = src0.x - src1.x
266
267 dst.y = src0.y - src1.y
268
269 dst.z = src0.z - src1.z
270
271 dst.w = src0.w - src1.w
272
273
274 .. opcode:: LRP - Linear Interpolate
275
276 .. math::
277
278 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
279
280 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
281
282 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
283
284 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
285
286
287 .. opcode:: CND - Condition
288
289 .. math::
290
291 dst.x = (src2.x > 0.5) ? src0.x : src1.x
292
293 dst.y = (src2.y > 0.5) ? src0.y : src1.y
294
295 dst.z = (src2.z > 0.5) ? src0.z : src1.z
296
297 dst.w = (src2.w > 0.5) ? src0.w : src1.w
298
299
300 .. opcode:: DP2A - 2-component Dot Product And Add
301
302 .. math::
303
304 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
305
306 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
307
308 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
309
310 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
311
312
313 .. opcode:: FRC - Fraction
314
315 .. math::
316
317 dst.x = src.x - \lfloor src.x\rfloor
318
319 dst.y = src.y - \lfloor src.y\rfloor
320
321 dst.z = src.z - \lfloor src.z\rfloor
322
323 dst.w = src.w - \lfloor src.w\rfloor
324
325
326 .. opcode:: CLAMP - Clamp
327
328 .. math::
329
330 dst.x = clamp(src0.x, src1.x, src2.x)
331
332 dst.y = clamp(src0.y, src1.y, src2.y)
333
334 dst.z = clamp(src0.z, src1.z, src2.z)
335
336 dst.w = clamp(src0.w, src1.w, src2.w)
337
338
339 .. opcode:: FLR - Floor
340
341 This is identical to :opcode:`ARL`.
342
343 .. math::
344
345 dst.x = \lfloor src.x\rfloor
346
347 dst.y = \lfloor src.y\rfloor
348
349 dst.z = \lfloor src.z\rfloor
350
351 dst.w = \lfloor src.w\rfloor
352
353
354 .. opcode:: ROUND - Round
355
356 .. math::
357
358 dst.x = round(src.x)
359
360 dst.y = round(src.y)
361
362 dst.z = round(src.z)
363
364 dst.w = round(src.w)
365
366
367 .. opcode:: EX2 - Exponential Base 2
368
369 This instruction replicates its result.
370
371 .. math::
372
373 dst = 2^{src.x}
374
375
376 .. opcode:: LG2 - Logarithm Base 2
377
378 This instruction replicates its result.
379
380 .. math::
381
382 dst = \log_2{src.x}
383
384
385 .. opcode:: POW - Power
386
387 This instruction replicates its result.
388
389 .. math::
390
391 dst = src0.x^{src1.x}
392
393 .. opcode:: XPD - Cross Product
394
395 .. math::
396
397 dst.x = src0.y \times src1.z - src1.y \times src0.z
398
399 dst.y = src0.z \times src1.x - src1.z \times src0.x
400
401 dst.z = src0.x \times src1.y - src1.x \times src0.y
402
403 dst.w = 1
404
405
406 .. opcode:: ABS - Absolute
407
408 .. math::
409
410 dst.x = |src.x|
411
412 dst.y = |src.y|
413
414 dst.z = |src.z|
415
416 dst.w = |src.w|
417
418
419 .. opcode:: RCC - Reciprocal Clamped
420
421 This instruction replicates its result.
422
423 XXX cleanup on aisle three
424
425 .. math::
426
427 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
428
429
430 .. opcode:: DPH - Homogeneous Dot Product
431
432 This instruction replicates its result.
433
434 .. math::
435
436 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
437
438
439 .. opcode:: COS - Cosine
440
441 This instruction replicates its result.
442
443 .. math::
444
445 dst = \cos{src.x}
446
447
448 .. opcode:: DDX - Derivative Relative To X
449
450 .. math::
451
452 dst.x = partialx(src.x)
453
454 dst.y = partialx(src.y)
455
456 dst.z = partialx(src.z)
457
458 dst.w = partialx(src.w)
459
460
461 .. opcode:: DDY - Derivative Relative To Y
462
463 .. math::
464
465 dst.x = partialy(src.x)
466
467 dst.y = partialy(src.y)
468
469 dst.z = partialy(src.z)
470
471 dst.w = partialy(src.w)
472
473
474 .. opcode:: PK2H - Pack Two 16-bit Floats
475
476 TBD
477
478
479 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
480
481 TBD
482
483
484 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
485
486 TBD
487
488
489 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
490
491 TBD
492
493
494 .. opcode:: RFL - Reflection Vector
495
496 .. math::
497
498 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
499
500 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
501
502 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
503
504 dst.w = 1
505
506 .. note::
507
508 Considered for removal.
509
510
511 .. opcode:: SEQ - Set On Equal
512
513 .. math::
514
515 dst.x = (src0.x == src1.x) ? 1 : 0
516
517 dst.y = (src0.y == src1.y) ? 1 : 0
518
519 dst.z = (src0.z == src1.z) ? 1 : 0
520
521 dst.w = (src0.w == src1.w) ? 1 : 0
522
523
524 .. opcode:: SFL - Set On False
525
526 This instruction replicates its result.
527
528 .. math::
529
530 dst = 0
531
532 .. note::
533
534 Considered for removal.
535
536
537 .. opcode:: SGT - Set On Greater Than
538
539 .. math::
540
541 dst.x = (src0.x > src1.x) ? 1 : 0
542
543 dst.y = (src0.y > src1.y) ? 1 : 0
544
545 dst.z = (src0.z > src1.z) ? 1 : 0
546
547 dst.w = (src0.w > src1.w) ? 1 : 0
548
549
550 .. opcode:: SIN - Sine
551
552 This instruction replicates its result.
553
554 .. math::
555
556 dst = \sin{src.x}
557
558
559 .. opcode:: SLE - Set On Less Equal Than
560
561 .. math::
562
563 dst.x = (src0.x <= src1.x) ? 1 : 0
564
565 dst.y = (src0.y <= src1.y) ? 1 : 0
566
567 dst.z = (src0.z <= src1.z) ? 1 : 0
568
569 dst.w = (src0.w <= src1.w) ? 1 : 0
570
571
572 .. opcode:: SNE - Set On Not Equal
573
574 .. math::
575
576 dst.x = (src0.x != src1.x) ? 1 : 0
577
578 dst.y = (src0.y != src1.y) ? 1 : 0
579
580 dst.z = (src0.z != src1.z) ? 1 : 0
581
582 dst.w = (src0.w != src1.w) ? 1 : 0
583
584
585 .. opcode:: STR - Set On True
586
587 This instruction replicates its result.
588
589 .. math::
590
591 dst = 1
592
593
594 .. opcode:: TEX - Texture Lookup
595
596 .. math::
597
598 coord = src0
599
600 bias = 0.0
601
602 dst = texture_sample(unit, coord, bias)
603
604 for array textures src0.y contains the slice for 1D,
605 and src0.z contain the slice for 2D.
606 for shadow textures with no arrays, src0.z contains
607 the reference value.
608 for shadow textures with arrays, src0.z contains
609 the reference value for 1D arrays, and src0.w contains
610 the reference value for 2D arrays.
611 There is no way to pass a bias in the .w value for
612 shadow arrays, and GLSL doesn't allow this.
613 GLSL does allow cube shadows maps to take a bias value,
614 and we have to determine how this will look in TGSI.
615
616 .. opcode:: TXD - Texture Lookup with Derivatives
617
618 .. math::
619
620 coord = src0
621
622 ddx = src1
623
624 ddy = src2
625
626 bias = 0.0
627
628 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
629
630
631 .. opcode:: TXP - Projective Texture Lookup
632
633 .. math::
634
635 coord.x = src0.x / src.w
636
637 coord.y = src0.y / src.w
638
639 coord.z = src0.z / src.w
640
641 coord.w = src0.w
642
643 bias = 0.0
644
645 dst = texture_sample(unit, coord, bias)
646
647
648 .. opcode:: UP2H - Unpack Two 16-Bit Floats
649
650 TBD
651
652 .. note::
653
654 Considered for removal.
655
656 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
657
658 TBD
659
660 .. note::
661
662 Considered for removal.
663
664 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
665
666 TBD
667
668 .. note::
669
670 Considered for removal.
671
672 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
673
674 TBD
675
676 .. note::
677
678 Considered for removal.
679
680 .. opcode:: X2D - 2D Coordinate Transformation
681
682 .. math::
683
684 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
685
686 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
687
688 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
689
690 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
691
692 .. note::
693
694 Considered for removal.
695
696
697 .. opcode:: ARA - Address Register Add
698
699 TBD
700
701 .. note::
702
703 Considered for removal.
704
705 .. opcode:: ARR - Address Register Load With Round
706
707 .. math::
708
709 dst.x = round(src.x)
710
711 dst.y = round(src.y)
712
713 dst.z = round(src.z)
714
715 dst.w = round(src.w)
716
717
718 .. opcode:: SSG - Set Sign
719
720 .. math::
721
722 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
723
724 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
725
726 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
727
728 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
729
730
731 .. opcode:: CMP - Compare
732
733 .. math::
734
735 dst.x = (src0.x < 0) ? src1.x : src2.x
736
737 dst.y = (src0.y < 0) ? src1.y : src2.y
738
739 dst.z = (src0.z < 0) ? src1.z : src2.z
740
741 dst.w = (src0.w < 0) ? src1.w : src2.w
742
743
744 .. opcode:: KILL_IF - Conditional Discard
745
746 Conditional discard. Allowed in fragment shaders only.
747
748 .. math::
749
750 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
751 discard
752 endif
753
754
755 .. opcode:: KILL - Discard
756
757 Unconditional discard. Allowed in fragment shaders only.
758
759
760 .. opcode:: SCS - Sine Cosine
761
762 .. math::
763
764 dst.x = \cos{src.x}
765
766 dst.y = \sin{src.x}
767
768 dst.z = 0
769
770 dst.w = 1
771
772
773 .. opcode:: TXB - Texture Lookup With Bias
774
775 .. math::
776
777 coord.x = src.x
778
779 coord.y = src.y
780
781 coord.z = src.z
782
783 coord.w = 1.0
784
785 bias = src.z
786
787 dst = texture_sample(unit, coord, bias)
788
789
790 .. opcode:: NRM - 3-component Vector Normalise
791
792 .. math::
793
794 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
795
796 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
797
798 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
799
800 dst.w = 1
801
802
803 .. opcode:: DIV - Divide
804
805 .. math::
806
807 dst.x = \frac{src0.x}{src1.x}
808
809 dst.y = \frac{src0.y}{src1.y}
810
811 dst.z = \frac{src0.z}{src1.z}
812
813 dst.w = \frac{src0.w}{src1.w}
814
815
816 .. opcode:: DP2 - 2-component Dot Product
817
818 This instruction replicates its result.
819
820 .. math::
821
822 dst = src0.x \times src1.x + src0.y \times src1.y
823
824
825 .. opcode:: TXL - Texture Lookup With explicit LOD
826
827 .. math::
828
829 coord.x = src0.x
830
831 coord.y = src0.y
832
833 coord.z = src0.z
834
835 coord.w = 1.0
836
837 lod = src0.w
838
839 dst = texture_sample(unit, coord, lod)
840
841
842 .. opcode:: PUSHA - Push Address Register On Stack
843
844 push(src.x)
845 push(src.y)
846 push(src.z)
847 push(src.w)
848
849 .. note::
850
851 Considered for cleanup.
852
853 .. note::
854
855 Considered for removal.
856
857 .. opcode:: POPA - Pop Address Register From Stack
858
859 dst.w = pop()
860 dst.z = pop()
861 dst.y = pop()
862 dst.x = pop()
863
864 .. note::
865
866 Considered for cleanup.
867
868 .. note::
869
870 Considered for removal.
871
872
873 .. opcode:: BRA - Branch
874
875 pc = target
876
877 .. note::
878
879 Considered for removal.
880
881
882 .. opcode:: CALLNZ - Subroutine Call If Not Zero
883
884 TBD
885
886 .. note::
887
888 Considered for cleanup.
889
890 .. note::
891
892 Considered for removal.
893
894
895 Compute ISA
896 ^^^^^^^^^^^^^^^^^^^^^^^^
897
898 These opcodes are primarily provided for special-use computational shaders.
899 Support for these opcodes indicated by a special pipe capability bit (TBD).
900
901 XXX doesn't look like most of the opcodes really belong here.
902
903 .. opcode:: CEIL - Ceiling
904
905 .. math::
906
907 dst.x = \lceil src.x\rceil
908
909 dst.y = \lceil src.y\rceil
910
911 dst.z = \lceil src.z\rceil
912
913 dst.w = \lceil src.w\rceil
914
915
916 .. opcode:: TRUNC - Truncate
917
918 .. math::
919
920 dst.x = trunc(src.x)
921
922 dst.y = trunc(src.y)
923
924 dst.z = trunc(src.z)
925
926 dst.w = trunc(src.w)
927
928
929 .. opcode:: MOD - Modulus
930
931 .. math::
932
933 dst.x = src0.x \bmod src1.x
934
935 dst.y = src0.y \bmod src1.y
936
937 dst.z = src0.z \bmod src1.z
938
939 dst.w = src0.w \bmod src1.w
940
941
942 .. opcode:: UARL - Integer Address Register Load
943
944 Moves the contents of the source register, assumed to be an integer, into the
945 destination register, which is assumed to be an address (ADDR) register.
946
947
948 .. opcode:: SAD - Sum Of Absolute Differences
949
950 .. math::
951
952 dst.x = |src0.x - src1.x| + src2.x
953
954 dst.y = |src0.y - src1.y| + src2.y
955
956 dst.z = |src0.z - src1.z| + src2.z
957
958 dst.w = |src0.w - src1.w| + src2.w
959
960
961 .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
962 from a specified texture image. The source sampler may
963 not be a CUBE or SHADOW.
964 src 0 is a four-component signed integer vector used to
965 identify the single texel accessed. 3 components + level.
966 src 1 is a 3 component constant signed integer vector,
967 with each component only have a range of
968 -8..+8 (hw only seems to deal with this range, interface
969 allows for up to unsigned int).
970 TXF(uint_vec coord, int_vec offset).
971
972
973 .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
974 retrieve the dimensions of the texture
975 depending on the target. For 1D (width), 2D/RECT/CUBE
976 (width, height), 3D (width, height, depth),
977 1D array (width, layers), 2D array (width, height, layers)
978
979 .. math::
980
981 lod = src0.x
982
983 dst.x = texture_width(unit, lod)
984
985 dst.y = texture_height(unit, lod)
986
987 dst.z = texture_depth(unit, lod)
988
989
990 Integer ISA
991 ^^^^^^^^^^^^^^^^^^^^^^^^
992 These opcodes are used for integer operations.
993 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
994
995
996 .. opcode:: I2F - Signed Integer To Float
997
998 Rounding is unspecified (round to nearest even suggested).
999
1000 .. math::
1001
1002 dst.x = (float) src.x
1003
1004 dst.y = (float) src.y
1005
1006 dst.z = (float) src.z
1007
1008 dst.w = (float) src.w
1009
1010
1011 .. opcode:: U2F - Unsigned Integer To Float
1012
1013 Rounding is unspecified (round to nearest even suggested).
1014
1015 .. math::
1016
1017 dst.x = (float) src.x
1018
1019 dst.y = (float) src.y
1020
1021 dst.z = (float) src.z
1022
1023 dst.w = (float) src.w
1024
1025
1026 .. opcode:: F2I - Float to Signed Integer
1027
1028 Rounding is towards zero (truncate).
1029 Values outside signed range (including NaNs) produce undefined results.
1030
1031 .. math::
1032
1033 dst.x = (int) src.x
1034
1035 dst.y = (int) src.y
1036
1037 dst.z = (int) src.z
1038
1039 dst.w = (int) src.w
1040
1041
1042 .. opcode:: F2U - Float to Unsigned Integer
1043
1044 Rounding is towards zero (truncate).
1045 Values outside unsigned range (including NaNs) produce undefined results.
1046
1047 .. math::
1048
1049 dst.x = (unsigned) src.x
1050
1051 dst.y = (unsigned) src.y
1052
1053 dst.z = (unsigned) src.z
1054
1055 dst.w = (unsigned) src.w
1056
1057
1058 .. opcode:: UADD - Integer Add
1059
1060 This instruction works the same for signed and unsigned integers.
1061 The low 32bit of the result is returned.
1062
1063 .. math::
1064
1065 dst.x = src0.x + src1.x
1066
1067 dst.y = src0.y + src1.y
1068
1069 dst.z = src0.z + src1.z
1070
1071 dst.w = src0.w + src1.w
1072
1073
1074 .. opcode:: UMAD - Integer Multiply And Add
1075
1076 This instruction works the same for signed and unsigned integers.
1077 The multiplication returns the low 32bit (as does the result itself).
1078
1079 .. math::
1080
1081 dst.x = src0.x \times src1.x + src2.x
1082
1083 dst.y = src0.y \times src1.y + src2.y
1084
1085 dst.z = src0.z \times src1.z + src2.z
1086
1087 dst.w = src0.w \times src1.w + src2.w
1088
1089
1090 .. opcode:: UMUL - Integer Multiply
1091
1092 This instruction works the same for signed and unsigned integers.
1093 The low 32bit of the result is returned.
1094
1095 .. math::
1096
1097 dst.x = src0.x \times src1.x
1098
1099 dst.y = src0.y \times src1.y
1100
1101 dst.z = src0.z \times src1.z
1102
1103 dst.w = src0.w \times src1.w
1104
1105
1106 .. opcode:: IDIV - Signed Integer Division
1107
1108 TBD: behavior for division by zero.
1109
1110 .. math::
1111
1112 dst.x = src0.x \ src1.x
1113
1114 dst.y = src0.y \ src1.y
1115
1116 dst.z = src0.z \ src1.z
1117
1118 dst.w = src0.w \ src1.w
1119
1120
1121 .. opcode:: UDIV - Unsigned Integer Division
1122
1123 For division by zero, 0xffffffff is returned.
1124
1125 .. math::
1126
1127 dst.x = src0.x \ src1.x
1128
1129 dst.y = src0.y \ src1.y
1130
1131 dst.z = src0.z \ src1.z
1132
1133 dst.w = src0.w \ src1.w
1134
1135
1136 .. opcode:: UMOD - Unsigned Integer Remainder
1137
1138 If second arg is zero, 0xffffffff is returned.
1139
1140 .. math::
1141
1142 dst.x = src0.x \ src1.x
1143
1144 dst.y = src0.y \ src1.y
1145
1146 dst.z = src0.z \ src1.z
1147
1148 dst.w = src0.w \ src1.w
1149
1150
1151 .. opcode:: NOT - Bitwise Not
1152
1153 .. math::
1154
1155 dst.x = ~src.x
1156
1157 dst.y = ~src.y
1158
1159 dst.z = ~src.z
1160
1161 dst.w = ~src.w
1162
1163
1164 .. opcode:: AND - Bitwise And
1165
1166 .. math::
1167
1168 dst.x = src0.x & src1.x
1169
1170 dst.y = src0.y & src1.y
1171
1172 dst.z = src0.z & src1.z
1173
1174 dst.w = src0.w & src1.w
1175
1176
1177 .. opcode:: OR - Bitwise Or
1178
1179 .. math::
1180
1181 dst.x = src0.x | src1.x
1182
1183 dst.y = src0.y | src1.y
1184
1185 dst.z = src0.z | src1.z
1186
1187 dst.w = src0.w | src1.w
1188
1189
1190 .. opcode:: XOR - Bitwise Xor
1191
1192 .. math::
1193
1194 dst.x = src0.x \oplus src1.x
1195
1196 dst.y = src0.y \oplus src1.y
1197
1198 dst.z = src0.z \oplus src1.z
1199
1200 dst.w = src0.w \oplus src1.w
1201
1202
1203 .. opcode:: IMAX - Maximum of Signed Integers
1204
1205 .. math::
1206
1207 dst.x = max(src0.x, src1.x)
1208
1209 dst.y = max(src0.y, src1.y)
1210
1211 dst.z = max(src0.z, src1.z)
1212
1213 dst.w = max(src0.w, src1.w)
1214
1215
1216 .. opcode:: UMAX - Maximum of Unsigned Integers
1217
1218 .. math::
1219
1220 dst.x = max(src0.x, src1.x)
1221
1222 dst.y = max(src0.y, src1.y)
1223
1224 dst.z = max(src0.z, src1.z)
1225
1226 dst.w = max(src0.w, src1.w)
1227
1228
1229 .. opcode:: IMIN - Minimum of Signed Integers
1230
1231 .. math::
1232
1233 dst.x = min(src0.x, src1.x)
1234
1235 dst.y = min(src0.y, src1.y)
1236
1237 dst.z = min(src0.z, src1.z)
1238
1239 dst.w = min(src0.w, src1.w)
1240
1241
1242 .. opcode:: UMIN - Minimum of Unsigned Integers
1243
1244 .. math::
1245
1246 dst.x = min(src0.x, src1.x)
1247
1248 dst.y = min(src0.y, src1.y)
1249
1250 dst.z = min(src0.z, src1.z)
1251
1252 dst.w = min(src0.w, src1.w)
1253
1254
1255 .. opcode:: SHL - Shift Left
1256
1257 .. math::
1258
1259 dst.x = src0.x << src1.x
1260
1261 dst.y = src0.y << src1.x
1262
1263 dst.z = src0.z << src1.x
1264
1265 dst.w = src0.w << src1.x
1266
1267
1268 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1269
1270 .. math::
1271
1272 dst.x = src0.x >> src1.x
1273
1274 dst.y = src0.y >> src1.x
1275
1276 dst.z = src0.z >> src1.x
1277
1278 dst.w = src0.w >> src1.x
1279
1280
1281 .. opcode:: USHR - Logical Shift Right
1282
1283 .. math::
1284
1285 dst.x = src0.x >> (unsigned) src1.x
1286
1287 dst.y = src0.y >> (unsigned) src1.x
1288
1289 dst.z = src0.z >> (unsigned) src1.x
1290
1291 dst.w = src0.w >> (unsigned) src1.x
1292
1293
1294 .. opcode:: UCMP - Integer Conditional Move
1295
1296 .. math::
1297
1298 dst.x = src0.x ? src1.x : src2.x
1299
1300 dst.y = src0.y ? src1.y : src2.y
1301
1302 dst.z = src0.z ? src1.z : src2.z
1303
1304 dst.w = src0.w ? src1.w : src2.w
1305
1306
1307
1308 .. opcode:: ISSG - Integer Set Sign
1309
1310 .. math::
1311
1312 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1313
1314 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1315
1316 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1317
1318 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1319
1320
1321
1322 .. opcode:: ISLT - Signed Integer Set On Less Than
1323
1324 .. math::
1325
1326 dst.x = (src0.x < src1.x) ? ~0 : 0
1327
1328 dst.y = (src0.y < src1.y) ? ~0 : 0
1329
1330 dst.z = (src0.z < src1.z) ? ~0 : 0
1331
1332 dst.w = (src0.w < src1.w) ? ~0 : 0
1333
1334
1335 .. opcode:: USLT - Unsigned Integer Set On Less Than
1336
1337 .. math::
1338
1339 dst.x = (src0.x < src1.x) ? ~0 : 0
1340
1341 dst.y = (src0.y < src1.y) ? ~0 : 0
1342
1343 dst.z = (src0.z < src1.z) ? ~0 : 0
1344
1345 dst.w = (src0.w < src1.w) ? ~0 : 0
1346
1347
1348 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1349
1350 .. math::
1351
1352 dst.x = (src0.x >= src1.x) ? ~0 : 0
1353
1354 dst.y = (src0.y >= src1.y) ? ~0 : 0
1355
1356 dst.z = (src0.z >= src1.z) ? ~0 : 0
1357
1358 dst.w = (src0.w >= src1.w) ? ~0 : 0
1359
1360
1361 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1362
1363 .. math::
1364
1365 dst.x = (src0.x >= src1.x) ? ~0 : 0
1366
1367 dst.y = (src0.y >= src1.y) ? ~0 : 0
1368
1369 dst.z = (src0.z >= src1.z) ? ~0 : 0
1370
1371 dst.w = (src0.w >= src1.w) ? ~0 : 0
1372
1373
1374 .. opcode:: USEQ - Integer Set On Equal
1375
1376 .. math::
1377
1378 dst.x = (src0.x == src1.x) ? ~0 : 0
1379
1380 dst.y = (src0.y == src1.y) ? ~0 : 0
1381
1382 dst.z = (src0.z == src1.z) ? ~0 : 0
1383
1384 dst.w = (src0.w == src1.w) ? ~0 : 0
1385
1386
1387 .. opcode:: USNE - Integer Set On Not Equal
1388
1389 .. math::
1390
1391 dst.x = (src0.x != src1.x) ? ~0 : 0
1392
1393 dst.y = (src0.y != src1.y) ? ~0 : 0
1394
1395 dst.z = (src0.z != src1.z) ? ~0 : 0
1396
1397 dst.w = (src0.w != src1.w) ? ~0 : 0
1398
1399
1400 .. opcode:: INEG - Integer Negate
1401
1402 Two's complement.
1403
1404 .. math::
1405
1406 dst.x = -src.x
1407
1408 dst.y = -src.y
1409
1410 dst.z = -src.z
1411
1412 dst.w = -src.w
1413
1414
1415 .. opcode:: IABS - Integer Absolute Value
1416
1417 .. math::
1418
1419 dst.x = |src.x|
1420
1421 dst.y = |src.y|
1422
1423 dst.z = |src.z|
1424
1425 dst.w = |src.w|
1426
1427
1428 Geometry ISA
1429 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1430
1431 These opcodes are only supported in geometry shaders; they have no meaning
1432 in any other type of shader.
1433
1434 .. opcode:: EMIT - Emit
1435
1436 Generate a new vertex for the current primitive using the values in the
1437 output registers.
1438
1439
1440 .. opcode:: ENDPRIM - End Primitive
1441
1442 Complete the current primitive (consisting of the emitted vertices),
1443 and start a new one.
1444
1445
1446 GLSL ISA
1447 ^^^^^^^^^^
1448
1449 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1450 opcodes is determined by a special capability bit, ``GLSL``.
1451 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1452
1453 .. opcode:: CAL - Subroutine Call
1454
1455 push(pc)
1456 pc = target
1457
1458
1459 .. opcode:: RET - Subroutine Call Return
1460
1461 pc = pop()
1462
1463
1464 .. opcode:: CONT - Continue
1465
1466 Unconditionally moves the point of execution to the instruction after the
1467 last bgnloop. The instruction must appear within a bgnloop/endloop.
1468
1469 .. note::
1470
1471 Support for CONT is determined by a special capability bit,
1472 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1473
1474
1475 .. opcode:: BGNLOOP - Begin a Loop
1476
1477 Start a loop. Must have a matching endloop.
1478
1479
1480 .. opcode:: BGNSUB - Begin Subroutine
1481
1482 Starts definition of a subroutine. Must have a matching endsub.
1483
1484
1485 .. opcode:: ENDLOOP - End a Loop
1486
1487 End a loop started with bgnloop.
1488
1489
1490 .. opcode:: ENDSUB - End Subroutine
1491
1492 Ends definition of a subroutine.
1493
1494
1495 .. opcode:: NOP - No Operation
1496
1497 Do nothing.
1498
1499
1500 .. opcode:: BRK - Break
1501
1502 Unconditionally moves the point of execution to the instruction after the
1503 next endloop or endswitch. The instruction must appear within a loop/endloop
1504 or switch/endswitch.
1505
1506
1507 .. opcode:: BREAKC - Break Conditional
1508
1509 Conditionally moves the point of execution to the instruction after the
1510 next endloop or endswitch. The instruction must appear within a loop/endloop
1511 or switch/endswitch.
1512 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1513 as an integer register.
1514
1515 .. note::
1516
1517 Considered for removal as it's quite inconsistent wrt other opcodes
1518 (could emulate with UIF/BRK/ENDIF).
1519
1520
1521 .. opcode:: IF - Float If
1522
1523 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1524
1525 src0.x != 0.0
1526
1527 where src0.x is interpreted as a floating point register.
1528
1529
1530 .. opcode:: UIF - Bitwise If
1531
1532 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1533
1534 src0.x != 0
1535
1536 where src0.x is interpreted as an integer register.
1537
1538
1539 .. opcode:: ELSE - Else
1540
1541 Starts an else block, after an IF or UIF statement.
1542
1543
1544 .. opcode:: ENDIF - End If
1545
1546 Ends an IF or UIF block.
1547
1548
1549 .. opcode:: SWITCH - Switch
1550
1551 Starts a C-style switch expression. The switch consists of one or multiple
1552 CASE statements, and at most one DEFAULT statement. Execution of a statement
1553 ends when a BRK is hit, but just like in C falling through to other cases
1554 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1555 just as last statement, and fallthrough is allowed into/from it.
1556 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1557
1558 Example:
1559 SWITCH src[0].x
1560 CASE src[0].x
1561 (some instructions here)
1562 (optional BRK here)
1563 DEFAULT
1564 (some instructions here)
1565 (optional BRK here)
1566 CASE src[0].x
1567 (some instructions here)
1568 (optional BRK here)
1569 ENDSWITCH
1570
1571
1572 .. opcode:: CASE - Switch case
1573
1574 This represents a switch case label. The src arg must be an integer immediate.
1575
1576
1577 .. opcode:: DEFAULT - Switch default
1578
1579 This represents the default case in the switch, which is taken if no other
1580 case matches.
1581
1582
1583 .. opcode:: ENDSWITCH - End of switch
1584
1585 Ends a switch expression.
1586
1587
1588 .. opcode:: NRM4 - 4-component Vector Normalise
1589
1590 This instruction replicates its result.
1591
1592 .. math::
1593
1594 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1595
1596
1597 .. _doubleopcodes:
1598
1599 Double ISA
1600 ^^^^^^^^^^^^^^^
1601
1602 The double-precision opcodes reinterpret four-component vectors into
1603 two-component vectors with doubled precision in each component.
1604
1605 Support for these opcodes is XXX undecided. :T
1606
1607 .. opcode:: DADD - Add
1608
1609 .. math::
1610
1611 dst.xy = src0.xy + src1.xy
1612
1613 dst.zw = src0.zw + src1.zw
1614
1615
1616 .. opcode:: DDIV - Divide
1617
1618 .. math::
1619
1620 dst.xy = src0.xy / src1.xy
1621
1622 dst.zw = src0.zw / src1.zw
1623
1624 .. opcode:: DSEQ - Set on Equal
1625
1626 .. math::
1627
1628 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1629
1630 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1631
1632 .. opcode:: DSLT - Set on Less than
1633
1634 .. math::
1635
1636 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1637
1638 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1639
1640 .. opcode:: DFRAC - Fraction
1641
1642 .. math::
1643
1644 dst.xy = src.xy - \lfloor src.xy\rfloor
1645
1646 dst.zw = src.zw - \lfloor src.zw\rfloor
1647
1648
1649 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1650
1651 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1652 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1653 :math:`dst1 \times 2^{dst0} = src` .
1654
1655 .. math::
1656
1657 dst0.xy = exp(src.xy)
1658
1659 dst1.xy = frac(src.xy)
1660
1661 dst0.zw = exp(src.zw)
1662
1663 dst1.zw = frac(src.zw)
1664
1665 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1666
1667 This opcode is the inverse of :opcode:`DFRACEXP`.
1668
1669 .. math::
1670
1671 dst.xy = src0.xy \times 2^{src1.xy}
1672
1673 dst.zw = src0.zw \times 2^{src1.zw}
1674
1675 .. opcode:: DMIN - Minimum
1676
1677 .. math::
1678
1679 dst.xy = min(src0.xy, src1.xy)
1680
1681 dst.zw = min(src0.zw, src1.zw)
1682
1683 .. opcode:: DMAX - Maximum
1684
1685 .. math::
1686
1687 dst.xy = max(src0.xy, src1.xy)
1688
1689 dst.zw = max(src0.zw, src1.zw)
1690
1691 .. opcode:: DMUL - Multiply
1692
1693 .. math::
1694
1695 dst.xy = src0.xy \times src1.xy
1696
1697 dst.zw = src0.zw \times src1.zw
1698
1699
1700 .. opcode:: DMAD - Multiply And Add
1701
1702 .. math::
1703
1704 dst.xy = src0.xy \times src1.xy + src2.xy
1705
1706 dst.zw = src0.zw \times src1.zw + src2.zw
1707
1708
1709 .. opcode:: DRCP - Reciprocal
1710
1711 .. math::
1712
1713 dst.xy = \frac{1}{src.xy}
1714
1715 dst.zw = \frac{1}{src.zw}
1716
1717 .. opcode:: DSQRT - Square Root
1718
1719 .. math::
1720
1721 dst.xy = \sqrt{src.xy}
1722
1723 dst.zw = \sqrt{src.zw}
1724
1725
1726 .. _samplingopcodes:
1727
1728 Resource Sampling Opcodes
1729 ^^^^^^^^^^^^^^^^^^^^^^^^^
1730
1731 Those opcodes follow very closely semantics of the respective Direct3D
1732 instructions. If in doubt double check Direct3D documentation.
1733
1734 .. opcode:: SAMPLE - Using provided address, sample data from the
1735 specified texture using the filtering mode identified
1736 by the gven sampler. The source data may come from
1737 any resource type other than buffers.
1738 SAMPLE dst, address, sampler_view, sampler
1739 e.g.
1740 SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1741
1742 .. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction.
1743 Using the provided integer address, SAMPLE_I fetches data
1744 from the specified sampler view without any filtering.
1745 The source data may come from any resource type other
1746 than CUBE.
1747 SAMPLE_I dst, address, sampler_view
1748 e.g.
1749 SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]
1750 The 'address' is specified as unsigned integers. If the
1751 'address' is out of range [0...(# texels - 1)] the
1752 result of the fetch is always 0 in all components.
1753 As such the instruction doesn't honor address wrap
1754 modes, in cases where that behavior is desirable
1755 'SAMPLE' instruction should be used.
1756 address.w always provides an unsigned integer mipmap
1757 level. If the value is out of the range then the
1758 instruction always returns 0 in all components.
1759 address.yz are ignored for buffers and 1d textures.
1760 address.z is ignored for 1d texture arrays and 2d
1761 textures.
1762 For 1D texture arrays address.y provides the array
1763 index (also as unsigned integer). If the value is
1764 out of the range of available array indices
1765 [0... (array size - 1)] then the opcode always returns
1766 0 in all components.
1767 For 2D texture arrays address.z provides the array
1768 index, otherwise it exhibits the same behavior as in
1769 the case for 1D texture arrays.
1770 The exact semantics of the source address are presented
1771 in the table below:
1772 resource type X Y Z W
1773 ------------- ------------------------
1774 PIPE_BUFFER x ignored
1775 PIPE_TEXTURE_1D x mpl
1776 PIPE_TEXTURE_2D x y mpl
1777 PIPE_TEXTURE_3D x y z mpl
1778 PIPE_TEXTURE_RECT x y mpl
1779 PIPE_TEXTURE_CUBE not allowed as source
1780 PIPE_TEXTURE_1D_ARRAY x idx mpl
1781 PIPE_TEXTURE_2D_ARRAY x y idx mpl
1782
1783 Where 'mpl' is a mipmap level and 'idx' is the
1784 array index.
1785
1786 .. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from
1787 multi-sampled surfaces.
1788 SAMPLE_I_MS dst, address, sampler_view, sample
1789
1790 .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1791 exception that an additional bias is applied to the
1792 level of detail computed as part of the instruction
1793 execution.
1794 SAMPLE_B dst, address, sampler_view, sampler, lod_bias
1795 e.g.
1796 SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1797
1798 .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1799 performs a comparison filter. The operands to SAMPLE_C
1800 are identical to SAMPLE, except that there is an additional
1801 float32 operand, reference value, which must be a register
1802 with single-component, or a scalar literal.
1803 SAMPLE_C makes the hardware use the current samplers
1804 compare_func (in pipe_sampler_state) to compare
1805 reference value against the red component value for the
1806 surce resource at each texel that the currently configured
1807 texture filter covers based on the provided coordinates.
1808 SAMPLE_C dst, address, sampler_view.r, sampler, ref_value
1809 e.g.
1810 SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1811
1812 .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1813 are ignored. The LZ stands for level-zero.
1814 SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value
1815 e.g.
1816 SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1817
1818
1819 .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1820 that the derivatives for the source address in the x
1821 direction and the y direction are provided by extra
1822 parameters.
1823 SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y
1824 e.g.
1825 SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]
1826
1827 .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1828 that the LOD is provided directly as a scalar value,
1829 representing no anisotropy.
1830 SAMPLE_L dst, address, sampler_view, sampler, explicit_lod
1831 e.g.
1832 SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1833
1834 .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1835 filtering operation and packs them into a single register.
1836 Only works with 2D, 2D array, cubemaps, and cubemaps arrays.
1837 For 2D textures, only the addressing modes of the sampler and
1838 the top level of any mip pyramid are used. Set W to zero.
1839 It behaves like the SAMPLE instruction, but a filtered
1840 sample is not generated. The four samples that contribute
1841 to filtering are placed into xyzw in counter-clockwise order,
1842 starting with the (u,v) texture coordinate delta at the
1843 following locations (-, +), (+, +), (+, -), (-, -), where
1844 the magnitude of the deltas are half a texel.
1845
1846
1847 .. opcode:: SVIEWINFO - query the dimensions of a given sampler view.
1848 dst receives width, height, depth or array size and
1849 number of mipmap levels as int4. The dst can have a writemask
1850 which will specify what info is the caller interested
1851 in.
1852 SVIEWINFO dst, src_mip_level, sampler_view
1853 e.g.
1854 SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]
1855 src_mip_level is an unsigned integer scalar. If it's
1856 out of range then returns 0 for width, height and
1857 depth/array size but the total number of mipmap is
1858 still returned correctly for the given sampler view.
1859 The returned width, height and depth values are for
1860 the mipmap level selected by the src_mip_level and
1861 are in the number of texels.
1862 For 1d texture array width is in dst.x, array size
1863 is in dst.y and dst.zw are always 0.
1864
1865 .. opcode:: SAMPLE_POS - query the position of a given sample.
1866 dst receives float4 (x, y, 0, 0) indicated where the
1867 sample is located. If the resource is not a multi-sample
1868 resource and not a render target, the result is 0.
1869
1870 .. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1871 If the resource is not a multi-sample resource and
1872 not a render target, the result is 0.
1873
1874
1875 .. _resourceopcodes:
1876
1877 Resource Access Opcodes
1878 ^^^^^^^^^^^^^^^^^^^^^^^
1879
1880 .. opcode:: LOAD - Fetch data from a shader resource
1881
1882 Syntax: ``LOAD dst, resource, address``
1883
1884 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
1885
1886 Using the provided integer address, LOAD fetches data
1887 from the specified buffer or texture without any
1888 filtering.
1889
1890 The 'address' is specified as a vector of unsigned
1891 integers. If the 'address' is out of range the result
1892 is unspecified.
1893
1894 Only the first mipmap level of a resource can be read
1895 from using this instruction.
1896
1897 For 1D or 2D texture arrays, the array index is
1898 provided as an unsigned integer in address.y or
1899 address.z, respectively. address.yz are ignored for
1900 buffers and 1D textures. address.z is ignored for 1D
1901 texture arrays and 2D textures. address.w is always
1902 ignored.
1903
1904 .. opcode:: STORE - Write data to a shader resource
1905
1906 Syntax: ``STORE resource, address, src``
1907
1908 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
1909
1910 Using the provided integer address, STORE writes data
1911 to the specified buffer or texture.
1912
1913 The 'address' is specified as a vector of unsigned
1914 integers. If the 'address' is out of range the result
1915 is unspecified.
1916
1917 Only the first mipmap level of a resource can be
1918 written to using this instruction.
1919
1920 For 1D or 2D texture arrays, the array index is
1921 provided as an unsigned integer in address.y or
1922 address.z, respectively. address.yz are ignored for
1923 buffers and 1D textures. address.z is ignored for 1D
1924 texture arrays and 2D textures. address.w is always
1925 ignored.
1926
1927
1928 .. _threadsyncopcodes:
1929
1930 Inter-thread synchronization opcodes
1931 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1932
1933 These opcodes are intended for communication between threads running
1934 within the same compute grid. For now they're only valid in compute
1935 programs.
1936
1937 .. opcode:: MFENCE - Memory fence
1938
1939 Syntax: ``MFENCE resource``
1940
1941 Example: ``MFENCE RES[0]``
1942
1943 This opcode forces strong ordering between any memory access
1944 operations that affect the specified resource. This means that
1945 previous loads and stores (and only those) will be performed and
1946 visible to other threads before the program execution continues.
1947
1948
1949 .. opcode:: LFENCE - Load memory fence
1950
1951 Syntax: ``LFENCE resource``
1952
1953 Example: ``LFENCE RES[0]``
1954
1955 Similar to MFENCE, but it only affects the ordering of memory loads.
1956
1957
1958 .. opcode:: SFENCE - Store memory fence
1959
1960 Syntax: ``SFENCE resource``
1961
1962 Example: ``SFENCE RES[0]``
1963
1964 Similar to MFENCE, but it only affects the ordering of memory stores.
1965
1966
1967 .. opcode:: BARRIER - Thread group barrier
1968
1969 ``BARRIER``
1970
1971 This opcode suspends the execution of the current thread until all
1972 the remaining threads in the working group reach the same point of
1973 the program. Results are unspecified if any of the remaining
1974 threads terminates or never reaches an executed BARRIER instruction.
1975
1976
1977 .. _atomopcodes:
1978
1979 Atomic opcodes
1980 ^^^^^^^^^^^^^^
1981
1982 These opcodes provide atomic variants of some common arithmetic and
1983 logical operations. In this context atomicity means that another
1984 concurrent memory access operation that affects the same memory
1985 location is guaranteed to be performed strictly before or after the
1986 entire execution of the atomic operation.
1987
1988 For the moment they're only valid in compute programs.
1989
1990 .. opcode:: ATOMUADD - Atomic integer addition
1991
1992 Syntax: ``ATOMUADD dst, resource, offset, src``
1993
1994 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
1995
1996 The following operation is performed atomically on each component:
1997
1998 .. math::
1999
2000 dst_i = resource[offset]_i
2001
2002 resource[offset]_i = dst_i + src_i
2003
2004
2005 .. opcode:: ATOMXCHG - Atomic exchange
2006
2007 Syntax: ``ATOMXCHG dst, resource, offset, src``
2008
2009 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2010
2011 The following operation is performed atomically on each component:
2012
2013 .. math::
2014
2015 dst_i = resource[offset]_i
2016
2017 resource[offset]_i = src_i
2018
2019
2020 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2021
2022 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2023
2024 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2025
2026 The following operation is performed atomically on each component:
2027
2028 .. math::
2029
2030 dst_i = resource[offset]_i
2031
2032 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2033
2034
2035 .. opcode:: ATOMAND - Atomic bitwise And
2036
2037 Syntax: ``ATOMAND dst, resource, offset, src``
2038
2039 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2040
2041 The following operation is performed atomically on each component:
2042
2043 .. math::
2044
2045 dst_i = resource[offset]_i
2046
2047 resource[offset]_i = dst_i \& src_i
2048
2049
2050 .. opcode:: ATOMOR - Atomic bitwise Or
2051
2052 Syntax: ``ATOMOR dst, resource, offset, src``
2053
2054 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2055
2056 The following operation is performed atomically on each component:
2057
2058 .. math::
2059
2060 dst_i = resource[offset]_i
2061
2062 resource[offset]_i = dst_i | src_i
2063
2064
2065 .. opcode:: ATOMXOR - Atomic bitwise Xor
2066
2067 Syntax: ``ATOMXOR dst, resource, offset, src``
2068
2069 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2070
2071 The following operation is performed atomically on each component:
2072
2073 .. math::
2074
2075 dst_i = resource[offset]_i
2076
2077 resource[offset]_i = dst_i \oplus src_i
2078
2079
2080 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2081
2082 Syntax: ``ATOMUMIN dst, resource, offset, src``
2083
2084 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2085
2086 The following operation is performed atomically on each component:
2087
2088 .. math::
2089
2090 dst_i = resource[offset]_i
2091
2092 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2093
2094
2095 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2096
2097 Syntax: ``ATOMUMAX dst, resource, offset, src``
2098
2099 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2100
2101 The following operation is performed atomically on each component:
2102
2103 .. math::
2104
2105 dst_i = resource[offset]_i
2106
2107 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2108
2109
2110 .. opcode:: ATOMIMIN - Atomic signed minimum
2111
2112 Syntax: ``ATOMIMIN dst, resource, offset, src``
2113
2114 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2115
2116 The following operation is performed atomically on each component:
2117
2118 .. math::
2119
2120 dst_i = resource[offset]_i
2121
2122 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2123
2124
2125 .. opcode:: ATOMIMAX - Atomic signed maximum
2126
2127 Syntax: ``ATOMIMAX dst, resource, offset, src``
2128
2129 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2130
2131 The following operation is performed atomically on each component:
2132
2133 .. math::
2134
2135 dst_i = resource[offset]_i
2136
2137 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2138
2139
2140
2141 Explanation of symbols used
2142 ------------------------------
2143
2144
2145 Functions
2146 ^^^^^^^^^^^^^^
2147
2148
2149 :math:`|x|` Absolute value of `x`.
2150
2151 :math:`\lceil x \rceil` Ceiling of `x`.
2152
2153 clamp(x,y,z) Clamp x between y and z.
2154 (x < y) ? y : (x > z) ? z : x
2155
2156 :math:`\lfloor x\rfloor` Floor of `x`.
2157
2158 :math:`\log_2{x}` Logarithm of `x`, base 2.
2159
2160 max(x,y) Maximum of x and y.
2161 (x > y) ? x : y
2162
2163 min(x,y) Minimum of x and y.
2164 (x < y) ? x : y
2165
2166 partialx(x) Derivative of x relative to fragment's X.
2167
2168 partialy(x) Derivative of x relative to fragment's Y.
2169
2170 pop() Pop from stack.
2171
2172 :math:`x^y` `x` to the power `y`.
2173
2174 push(x) Push x on stack.
2175
2176 round(x) Round x.
2177
2178 trunc(x) Truncate x, i.e. drop the fraction bits.
2179
2180
2181 Keywords
2182 ^^^^^^^^^^^^^
2183
2184
2185 discard Discard fragment.
2186
2187 pc Program counter.
2188
2189 target Label of target instruction.
2190
2191
2192 Other tokens
2193 ---------------
2194
2195
2196 Declaration
2197 ^^^^^^^^^^^
2198
2199
2200 Declares a register that is will be referenced as an operand in Instruction
2201 tokens.
2202
2203 File field contains register file that is being declared and is one
2204 of TGSI_FILE.
2205
2206 UsageMask field specifies which of the register components can be accessed
2207 and is one of TGSI_WRITEMASK.
2208
2209 The Local flag specifies that a given value isn't intended for
2210 subroutine parameter passing and, as a result, the implementation
2211 isn't required to give any guarantees of it being preserved across
2212 subroutine boundaries. As it's merely a compiler hint, the
2213 implementation is free to ignore it.
2214
2215 If Dimension flag is set to 1, a Declaration Dimension token follows.
2216
2217 If Semantic flag is set to 1, a Declaration Semantic token follows.
2218
2219 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2220
2221 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2222
2223 If Array flag is set to 1, a Declaration Array token follows.
2224
2225 Array Declaration
2226 ^^^^^^^^^^^^^^^^^^^^^^^^
2227
2228 Declarations can optional have an ArrayID attribute which can be referred by
2229 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2230 if no ArrayID is specified.
2231
2232 If an indirect addressing operand refers to a specific declaration by using
2233 an ArrayID only the registers in this declaration are guaranteed to be
2234 accessed, accessing any register outside this declaration results in undefined
2235 behavior. Note that for compatibility the effective index is zero-based and
2236 not relative to the specified declaration
2237
2238 If no ArrayID is specified with an indirect addressing operand the whole
2239 register file might be accessed by this operand. This is strongly discouraged
2240 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2241
2242 Declaration Semantic
2243 ^^^^^^^^^^^^^^^^^^^^^^^^
2244
2245 Vertex and fragment shader input and output registers may be labeled
2246 with semantic information consisting of a name and index.
2247
2248 Follows Declaration token if Semantic bit is set.
2249
2250 Since its purpose is to link a shader with other stages of the pipeline,
2251 it is valid to follow only those Declaration tokens that declare a register
2252 either in INPUT or OUTPUT file.
2253
2254 SemanticName field contains the semantic name of the register being declared.
2255 There is no default value.
2256
2257 SemanticIndex is an optional subscript that can be used to distinguish
2258 different register declarations with the same semantic name. The default value
2259 is 0.
2260
2261 The meanings of the individual semantic names are explained in the following
2262 sections.
2263
2264 TGSI_SEMANTIC_POSITION
2265 """"""""""""""""""""""
2266
2267 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2268 output register which contains the homogeneous vertex position in the clip
2269 space coordinate system. After clipping, the X, Y and Z components of the
2270 vertex will be divided by the W value to get normalized device coordinates.
2271
2272 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2273 fragment shader input contains the fragment's window position. The X
2274 component starts at zero and always increases from left to right.
2275 The Y component starts at zero and always increases but Y=0 may either
2276 indicate the top of the window or the bottom depending on the fragment
2277 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2278 The Z coordinate ranges from 0 to 1 to represent depth from the front
2279 to the back of the Z buffer. The W component contains the reciprocol
2280 of the interpolated vertex position W component.
2281
2282 Fragment shaders may also declare an output register with
2283 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2284 the fragment shader to change the fragment's Z position.
2285
2286
2287
2288 TGSI_SEMANTIC_COLOR
2289 """""""""""""""""""
2290
2291 For vertex shader outputs or fragment shader inputs/outputs, this
2292 label indicates that the resister contains an R,G,B,A color.
2293
2294 Several shader inputs/outputs may contain colors so the semantic index
2295 is used to distinguish them. For example, color[0] may be the diffuse
2296 color while color[1] may be the specular color.
2297
2298 This label is needed so that the flat/smooth shading can be applied
2299 to the right interpolants during rasterization.
2300
2301
2302
2303 TGSI_SEMANTIC_BCOLOR
2304 """"""""""""""""""""
2305
2306 Back-facing colors are only used for back-facing polygons, and are only valid
2307 in vertex shader outputs. After rasterization, all polygons are front-facing
2308 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2309 so all BCOLORs effectively become regular COLORs in the fragment shader.
2310
2311
2312 TGSI_SEMANTIC_FOG
2313 """""""""""""""""
2314
2315 Vertex shader inputs and outputs and fragment shader inputs may be
2316 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2317 a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
2318 shader will use the fog coordinate to compute a fog blend factor which
2319 is used to blend the normal fragment color with a constant fog color.
2320
2321 Only the first component matters when writing from the vertex shader;
2322 the driver will ensure that the coordinate is in this format when used
2323 as a fragment shader input.
2324
2325
2326 TGSI_SEMANTIC_PSIZE
2327 """""""""""""""""""
2328
2329 Vertex shader input and output registers may be labeled with
2330 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2331 in the form (S, 0, 0, 1). The point size controls the width or diameter
2332 of points for rasterization. This label cannot be used in fragment
2333 shaders.
2334
2335 When using this semantic, be sure to set the appropriate state in the
2336 :ref:`rasterizer` first.
2337
2338
2339 TGSI_SEMANTIC_TEXCOORD
2340 """"""""""""""""""""""
2341
2342 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2343
2344 Vertex shader outputs and fragment shader inputs may be labeled with
2345 this semantic to make them replaceable by sprite coordinates via the
2346 sprite_coord_enable state in the :ref:`rasterizer`.
2347 The semantic index permitted with this semantic is limited to <= 7.
2348
2349 If the driver does not support TEXCOORD, sprite coordinate replacement
2350 applies to inputs with the GENERIC semantic instead.
2351
2352 The intended use case for this semantic is gl_TexCoord.
2353
2354
2355 TGSI_SEMANTIC_PCOORD
2356 """"""""""""""""""""
2357
2358 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2359
2360 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2361 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2362 the current primitive is a point and point sprites are enabled. Otherwise,
2363 the contents of the register are undefined.
2364
2365 The intended use case for this semantic is gl_PointCoord.
2366
2367
2368 TGSI_SEMANTIC_GENERIC
2369 """""""""""""""""""""
2370
2371 All vertex/fragment shader inputs/outputs not labeled with any other
2372 semantic label can be considered to be generic attributes. Typical
2373 uses of generic inputs/outputs are texcoords and user-defined values.
2374
2375
2376 TGSI_SEMANTIC_NORMAL
2377 """"""""""""""""""""
2378
2379 Indicates that a vertex shader input is a normal vector. This is
2380 typically only used for legacy graphics APIs.
2381
2382
2383 TGSI_SEMANTIC_FACE
2384 """"""""""""""""""
2385
2386 This label applies to fragment shader inputs only and indicates that
2387 the register contains front/back-face information of the form (F, 0,
2388 0, 1). The first component will be positive when the fragment belongs
2389 to a front-facing polygon, and negative when the fragment belongs to a
2390 back-facing polygon.
2391
2392
2393 TGSI_SEMANTIC_EDGEFLAG
2394 """"""""""""""""""""""
2395
2396 For vertex shaders, this sematic label indicates that an input or
2397 output is a boolean edge flag. The register layout is [F, x, x, x]
2398 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2399 simply copies the edge flag input to the edgeflag output.
2400
2401 Edge flags are used to control which lines or points are actually
2402 drawn when the polygon mode converts triangles/quads/polygons into
2403 points or lines.
2404
2405
2406 TGSI_SEMANTIC_STENCIL
2407 """""""""""""""""""""
2408
2409 For fragment shaders, this semantic label indicates that an output
2410 is a writable stencil reference value. Only the Y component is writable.
2411 This allows the fragment shader to change the fragments stencilref value.
2412
2413
2414 TGSI_SEMANTIC_VIEWPORT_INDEX
2415 """"""""""""""""""""""""""""
2416
2417 For geometry shaders, this semantic label indicates that an output
2418 contains the index of the viewport (and scissor) to use.
2419 Only the X value is used.
2420
2421
2422 TGSI_SEMANTIC_LAYER
2423 """""""""""""""""""
2424
2425 For geometry shaders, this semantic label indicates that an output
2426 contains the layer value to use for the color and depth/stencil surfaces.
2427 Only the X value is used. (Also known as rendertarget array index.)
2428
2429
2430 TGSI_SEMANTIC_CULLDIST
2431 """"""""""""""""""""""
2432
2433 Used as distance to plane for performing application-defined culling
2434 of individual primitives against a plane. When components of vertex
2435 elements are given this label, these values are assumed to be a
2436 float32 signed distance to a plane. Primitives will be completely
2437 discarded if the plane distance for all of the vertices in the
2438 primitive are < 0. If a vertex has a cull distance of NaN, that
2439 vertex counts as "out" (as if its < 0);
2440 The limits on both clip and cull distances are bound
2441 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2442 the maximum number of components that can be used to hold the
2443 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2444 which specifies the maximum number of registers which can be
2445 annotated with those semantics.
2446
2447
2448 TGSI_SEMANTIC_CLIPDIST
2449 """"""""""""""""""""""
2450
2451 When components of vertex elements are identified this way, these
2452 values are each assumed to be a float32 signed distance to a plane.
2453 Primitive setup only invokes rasterization on pixels for which
2454 the interpolated plane distances are >= 0. Multiple clip planes
2455 can be implemented simultaneously, by annotating multiple
2456 components of one or more vertex elements with the above specified
2457 semantic. The limits on both clip and cull distances are bound
2458 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2459 the maximum number of components that can be used to hold the
2460 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2461 which specifies the maximum number of registers which can be
2462 annotated with those semantics.
2463
2464
2465 Declaration Interpolate
2466 ^^^^^^^^^^^^^^^^^^^^^^^
2467
2468 This token is only valid for fragment shader INPUT declarations.
2469
2470 The Interpolate field specifes the way input is being interpolated by
2471 the rasteriser and is one of TGSI_INTERPOLATE_*.
2472
2473 The CylindricalWrap bitfield specifies which register components
2474 should be subject to cylindrical wrapping when interpolating by the
2475 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2476 should be interpolated according to cylindrical wrapping rules.
2477
2478
2479 Declaration Sampler View
2480 ^^^^^^^^^^^^^^^^^^^^^^^^
2481
2482 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2483
2484 DCL SVIEW[#], resource, type(s)
2485
2486 Declares a shader input sampler view and assigns it to a SVIEW[#]
2487 register.
2488
2489 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2490
2491 type must be 1 or 4 entries (if specifying on a per-component
2492 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2493
2494
2495 Declaration Resource
2496 ^^^^^^^^^^^^^^^^^^^^
2497
2498 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2499
2500 DCL RES[#], resource [, WR] [, RAW]
2501
2502 Declares a shader input resource and assigns it to a RES[#]
2503 register.
2504
2505 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2506 2DArray.
2507
2508 If the RAW keyword is not specified, the texture data will be
2509 subject to conversion, swizzling and scaling as required to yield
2510 the specified data type from the physical data format of the bound
2511 resource.
2512
2513 If the RAW keyword is specified, no channel conversion will be
2514 performed: the values read for each of the channels (X,Y,Z,W) will
2515 correspond to consecutive words in the same order and format
2516 they're found in memory. No element-to-address conversion will be
2517 performed either: the value of the provided X coordinate will be
2518 interpreted in byte units instead of texel units. The result of
2519 accessing a misaligned address is undefined.
2520
2521 Usage of the STORE opcode is only allowed if the WR (writable) flag
2522 is set.
2523
2524
2525 Properties
2526 ^^^^^^^^^^^^^^^^^^^^^^^^
2527
2528
2529 Properties are general directives that apply to the whole TGSI program.
2530
2531 FS_COORD_ORIGIN
2532 """""""""""""""
2533
2534 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2535 The default value is UPPER_LEFT.
2536
2537 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2538 increase downward and rightward.
2539 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2540 increase upward and rightward.
2541
2542 OpenGL defaults to LOWER_LEFT, and is configurable with the
2543 GL_ARB_fragment_coord_conventions extension.
2544
2545 DirectX 9/10 use UPPER_LEFT.
2546
2547 FS_COORD_PIXEL_CENTER
2548 """""""""""""""""""""
2549
2550 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2551 The default value is HALF_INTEGER.
2552
2553 If HALF_INTEGER, the fractionary part of the position will be 0.5
2554 If INTEGER, the fractionary part of the position will be 0.0
2555
2556 Note that this does not affect the set of fragments generated by
2557 rasterization, which is instead controlled by half_pixel_center in the
2558 rasterizer.
2559
2560 OpenGL defaults to HALF_INTEGER, and is configurable with the
2561 GL_ARB_fragment_coord_conventions extension.
2562
2563 DirectX 9 uses INTEGER.
2564 DirectX 10 uses HALF_INTEGER.
2565
2566 FS_COLOR0_WRITES_ALL_CBUFS
2567 """"""""""""""""""""""""""
2568 Specifies that writes to the fragment shader color 0 are replicated to all
2569 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2570 fragData is directed to a single color buffer, but fragColor is broadcast.
2571
2572 VS_PROHIBIT_UCPS
2573 """"""""""""""""""""""""""
2574 If this property is set on the program bound to the shader stage before the
2575 fragment shader, user clip planes should have no effect (be disabled) even if
2576 that shader does not write to any clip distance outputs and the rasterizer's
2577 clip_plane_enable is non-zero.
2578 This property is only supported by drivers that also support shader clip
2579 distance outputs.
2580 This is useful for APIs that don't have UCPs and where clip distances written
2581 by a shader cannot be disabled.
2582
2583
2584 Texture Sampling and Texture Formats
2585 ------------------------------------
2586
2587 This table shows how texture image components are returned as (x,y,z,w) tuples
2588 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2589 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2590 well.
2591
2592 +--------------------+--------------+--------------------+--------------+
2593 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2594 +====================+==============+====================+==============+
2595 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2596 +--------------------+--------------+--------------------+--------------+
2597 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2598 +--------------------+--------------+--------------------+--------------+
2599 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2600 +--------------------+--------------+--------------------+--------------+
2601 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2602 +--------------------+--------------+--------------------+--------------+
2603 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2604 +--------------------+--------------+--------------------+--------------+
2605 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2606 +--------------------+--------------+--------------------+--------------+
2607 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2608 +--------------------+--------------+--------------------+--------------+
2609 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2610 +--------------------+--------------+--------------------+--------------+
2611 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2612 | | | [#envmap-bumpmap]_ | |
2613 +--------------------+--------------+--------------------+--------------+
2614 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2615 | | | [#depth-tex-mode]_ | |
2616 +--------------------+--------------+--------------------+--------------+
2617 | S | (s, s, s, s) | unknown | unknown |
2618 +--------------------+--------------+--------------------+--------------+
2619
2620 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2621 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2622 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.