gallium: Drop the unused CND opcode.
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: DP2A - 2-component Dot Product And Add
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
280
281 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287
288 .. opcode:: FRC - Fraction
289
290 .. math::
291
292 dst.x = src.x - \lfloor src.x\rfloor
293
294 dst.y = src.y - \lfloor src.y\rfloor
295
296 dst.z = src.z - \lfloor src.z\rfloor
297
298 dst.w = src.w - \lfloor src.w\rfloor
299
300
301 .. opcode:: CLAMP - Clamp
302
303 .. math::
304
305 dst.x = clamp(src0.x, src1.x, src2.x)
306
307 dst.y = clamp(src0.y, src1.y, src2.y)
308
309 dst.z = clamp(src0.z, src1.z, src2.z)
310
311 dst.w = clamp(src0.w, src1.w, src2.w)
312
313
314 .. opcode:: FLR - Floor
315
316 This is identical to :opcode:`ARL`.
317
318 .. math::
319
320 dst.x = \lfloor src.x\rfloor
321
322 dst.y = \lfloor src.y\rfloor
323
324 dst.z = \lfloor src.z\rfloor
325
326 dst.w = \lfloor src.w\rfloor
327
328
329 .. opcode:: ROUND - Round
330
331 .. math::
332
333 dst.x = round(src.x)
334
335 dst.y = round(src.y)
336
337 dst.z = round(src.z)
338
339 dst.w = round(src.w)
340
341
342 .. opcode:: EX2 - Exponential Base 2
343
344 This instruction replicates its result.
345
346 .. math::
347
348 dst = 2^{src.x}
349
350
351 .. opcode:: LG2 - Logarithm Base 2
352
353 This instruction replicates its result.
354
355 .. math::
356
357 dst = \log_2{src.x}
358
359
360 .. opcode:: POW - Power
361
362 This instruction replicates its result.
363
364 .. math::
365
366 dst = src0.x^{src1.x}
367
368 .. opcode:: XPD - Cross Product
369
370 .. math::
371
372 dst.x = src0.y \times src1.z - src1.y \times src0.z
373
374 dst.y = src0.z \times src1.x - src1.z \times src0.x
375
376 dst.z = src0.x \times src1.y - src1.x \times src0.y
377
378 dst.w = 1
379
380
381 .. opcode:: ABS - Absolute
382
383 .. math::
384
385 dst.x = |src.x|
386
387 dst.y = |src.y|
388
389 dst.z = |src.z|
390
391 dst.w = |src.w|
392
393
394 .. opcode:: DPH - Homogeneous Dot Product
395
396 This instruction replicates its result.
397
398 .. math::
399
400 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
401
402
403 .. opcode:: COS - Cosine
404
405 This instruction replicates its result.
406
407 .. math::
408
409 dst = \cos{src.x}
410
411
412 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
413
414 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
415 advertised. When it is, the fine version guarantees one derivative per row
416 while DDX is allowed to be the same for the entire 2x2 quad.
417
418 .. math::
419
420 dst.x = partialx(src.x)
421
422 dst.y = partialx(src.y)
423
424 dst.z = partialx(src.z)
425
426 dst.w = partialx(src.w)
427
428
429 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
430
431 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
432 advertised. When it is, the fine version guarantees one derivative per column
433 while DDY is allowed to be the same for the entire 2x2 quad.
434
435 .. math::
436
437 dst.x = partialy(src.x)
438
439 dst.y = partialy(src.y)
440
441 dst.z = partialy(src.z)
442
443 dst.w = partialy(src.w)
444
445
446 .. opcode:: PK2H - Pack Two 16-bit Floats
447
448 TBD
449
450
451 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
452
453 TBD
454
455
456 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
457
458 TBD
459
460
461 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
462
463 TBD
464
465
466 .. opcode:: SEQ - Set On Equal
467
468 .. math::
469
470 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
471
472 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
473
474 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
475
476 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
477
478
479 .. opcode:: SGT - Set On Greater Than
480
481 .. math::
482
483 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SIN - Sine
493
494 This instruction replicates its result.
495
496 .. math::
497
498 dst = \sin{src.x}
499
500
501 .. opcode:: SLE - Set On Less Equal Than
502
503 .. math::
504
505 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
506
507 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
508
509 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
510
511 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
512
513
514 .. opcode:: SNE - Set On Not Equal
515
516 .. math::
517
518 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
519
520 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
521
522 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
523
524 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
525
526
527 .. opcode:: STR - Set On True
528
529 This instruction replicates its result.
530
531 .. math::
532
533 dst = 1.0F
534
535
536 .. opcode:: TEX - Texture Lookup
537
538 for array textures src0.y contains the slice for 1D,
539 and src0.z contain the slice for 2D.
540
541 for shadow textures with no arrays (and not cube map),
542 src0.z contains the reference value.
543
544 for shadow textures with arrays, src0.z contains
545 the reference value for 1D arrays, and src0.w contains
546 the reference value for 2D arrays and cube maps.
547
548 for cube map array shadow textures, the reference value
549 cannot be passed in src0.w, and TEX2 must be used instead.
550
551 .. math::
552
553 coord = src0
554
555 shadow_ref = src0.z or src0.w (optional)
556
557 unit = src1
558
559 dst = texture\_sample(unit, coord, shadow_ref)
560
561
562 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
563
564 this is the same as TEX, but uses another reg to encode the
565 reference value.
566
567 .. math::
568
569 coord = src0
570
571 shadow_ref = src1.x
572
573 unit = src2
574
575 dst = texture\_sample(unit, coord, shadow_ref)
576
577
578
579
580 .. opcode:: TXD - Texture Lookup with Derivatives
581
582 .. math::
583
584 coord = src0
585
586 ddx = src1
587
588 ddy = src2
589
590 unit = src3
591
592 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
593
594
595 .. opcode:: TXP - Projective Texture Lookup
596
597 .. math::
598
599 coord.x = src0.x / src0.w
600
601 coord.y = src0.y / src0.w
602
603 coord.z = src0.z / src0.w
604
605 coord.w = src0.w
606
607 unit = src1
608
609 dst = texture\_sample(unit, coord)
610
611
612 .. opcode:: UP2H - Unpack Two 16-Bit Floats
613
614 TBD
615
616 .. note::
617
618 Considered for removal.
619
620 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
621
622 TBD
623
624 .. note::
625
626 Considered for removal.
627
628 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
629
630 TBD
631
632 .. note::
633
634 Considered for removal.
635
636 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
637
638 TBD
639
640 .. note::
641
642 Considered for removal.
643
644
645 .. opcode:: ARR - Address Register Load With Round
646
647 .. math::
648
649 dst.x = round(src.x)
650
651 dst.y = round(src.y)
652
653 dst.z = round(src.z)
654
655 dst.w = round(src.w)
656
657
658 .. opcode:: SSG - Set Sign
659
660 .. math::
661
662 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
663
664 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
665
666 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
667
668 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
669
670
671 .. opcode:: CMP - Compare
672
673 .. math::
674
675 dst.x = (src0.x < 0) ? src1.x : src2.x
676
677 dst.y = (src0.y < 0) ? src1.y : src2.y
678
679 dst.z = (src0.z < 0) ? src1.z : src2.z
680
681 dst.w = (src0.w < 0) ? src1.w : src2.w
682
683
684 .. opcode:: KILL_IF - Conditional Discard
685
686 Conditional discard. Allowed in fragment shaders only.
687
688 .. math::
689
690 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
691 discard
692 endif
693
694
695 .. opcode:: KILL - Discard
696
697 Unconditional discard. Allowed in fragment shaders only.
698
699
700 .. opcode:: SCS - Sine Cosine
701
702 .. math::
703
704 dst.x = \cos{src.x}
705
706 dst.y = \sin{src.x}
707
708 dst.z = 0
709
710 dst.w = 1
711
712
713 .. opcode:: TXB - Texture Lookup With Bias
714
715 for cube map array textures and shadow cube maps, the bias value
716 cannot be passed in src0.w, and TXB2 must be used instead.
717
718 if the target is a shadow texture, the reference value is always
719 in src.z (this prevents shadow 3d and shadow 2d arrays from
720 using this instruction, but this is not needed).
721
722 .. math::
723
724 coord.x = src0.x
725
726 coord.y = src0.y
727
728 coord.z = src0.z
729
730 coord.w = none
731
732 bias = src0.w
733
734 unit = src1
735
736 dst = texture\_sample(unit, coord, bias)
737
738
739 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
740
741 this is the same as TXB, but uses another reg to encode the
742 lod bias value for cube map arrays and shadow cube maps.
743 Presumably shadow 2d arrays and shadow 3d targets could use
744 this encoding too, but this is not legal.
745
746 shadow cube map arrays are neither possible nor required.
747
748 .. math::
749
750 coord = src0
751
752 bias = src1.x
753
754 unit = src2
755
756 dst = texture\_sample(unit, coord, bias)
757
758
759 .. opcode:: DIV - Divide
760
761 .. math::
762
763 dst.x = \frac{src0.x}{src1.x}
764
765 dst.y = \frac{src0.y}{src1.y}
766
767 dst.z = \frac{src0.z}{src1.z}
768
769 dst.w = \frac{src0.w}{src1.w}
770
771
772 .. opcode:: DP2 - 2-component Dot Product
773
774 This instruction replicates its result.
775
776 .. math::
777
778 dst = src0.x \times src1.x + src0.y \times src1.y
779
780
781 .. opcode:: TXL - Texture Lookup With explicit LOD
782
783 for cube map array textures, the explicit lod value
784 cannot be passed in src0.w, and TXL2 must be used instead.
785
786 if the target is a shadow texture, the reference value is always
787 in src.z (this prevents shadow 3d / 2d array / cube targets from
788 using this instruction, but this is not needed).
789
790 .. math::
791
792 coord.x = src0.x
793
794 coord.y = src0.y
795
796 coord.z = src0.z
797
798 coord.w = none
799
800 lod = src0.w
801
802 unit = src1
803
804 dst = texture\_sample(unit, coord, lod)
805
806
807 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
808
809 this is the same as TXL, but uses another reg to encode the
810 explicit lod value.
811 Presumably shadow 3d / 2d array / cube targets could use
812 this encoding too, but this is not legal.
813
814 shadow cube map arrays are neither possible nor required.
815
816 .. math::
817
818 coord = src0
819
820 lod = src1.x
821
822 unit = src2
823
824 dst = texture\_sample(unit, coord, lod)
825
826
827 .. opcode:: PUSHA - Push Address Register On Stack
828
829 push(src.x)
830 push(src.y)
831 push(src.z)
832 push(src.w)
833
834 .. note::
835
836 Considered for cleanup.
837
838 .. note::
839
840 Considered for removal.
841
842 .. opcode:: POPA - Pop Address Register From Stack
843
844 dst.w = pop()
845 dst.z = pop()
846 dst.y = pop()
847 dst.x = pop()
848
849 .. note::
850
851 Considered for cleanup.
852
853 .. note::
854
855 Considered for removal.
856
857
858 .. opcode:: CALLNZ - Subroutine Call If Not Zero
859
860 TBD
861
862 .. note::
863
864 Considered for cleanup.
865
866 .. note::
867
868 Considered for removal.
869
870
871 Compute ISA
872 ^^^^^^^^^^^^^^^^^^^^^^^^
873
874 These opcodes are primarily provided for special-use computational shaders.
875 Support for these opcodes indicated by a special pipe capability bit (TBD).
876
877 XXX doesn't look like most of the opcodes really belong here.
878
879 .. opcode:: CEIL - Ceiling
880
881 .. math::
882
883 dst.x = \lceil src.x\rceil
884
885 dst.y = \lceil src.y\rceil
886
887 dst.z = \lceil src.z\rceil
888
889 dst.w = \lceil src.w\rceil
890
891
892 .. opcode:: TRUNC - Truncate
893
894 .. math::
895
896 dst.x = trunc(src.x)
897
898 dst.y = trunc(src.y)
899
900 dst.z = trunc(src.z)
901
902 dst.w = trunc(src.w)
903
904
905 .. opcode:: MOD - Modulus
906
907 .. math::
908
909 dst.x = src0.x \bmod src1.x
910
911 dst.y = src0.y \bmod src1.y
912
913 dst.z = src0.z \bmod src1.z
914
915 dst.w = src0.w \bmod src1.w
916
917
918 .. opcode:: UARL - Integer Address Register Load
919
920 Moves the contents of the source register, assumed to be an integer, into the
921 destination register, which is assumed to be an address (ADDR) register.
922
923
924 .. opcode:: SAD - Sum Of Absolute Differences
925
926 .. math::
927
928 dst.x = |src0.x - src1.x| + src2.x
929
930 dst.y = |src0.y - src1.y| + src2.y
931
932 dst.z = |src0.z - src1.z| + src2.z
933
934 dst.w = |src0.w - src1.w| + src2.w
935
936
937 .. opcode:: TXF - Texel Fetch
938
939 As per NV_gpu_shader4, extract a single texel from a specified texture
940 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
941 four-component signed integer vector used to identify the single texel
942 accessed. 3 components + level. Just like texture instructions, an optional
943 offset vector is provided, which is subject to various driver restrictions
944 (regarding range, source of offsets).
945 TXF(uint_vec coord, int_vec offset).
946
947
948 .. opcode:: TXQ - Texture Size Query
949
950 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
951 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
952 depth), 1D array (width, layers), 2D array (width, height, layers).
953 Also return the number of accessible levels (last_level - first_level + 1)
954 in W.
955
956 For components which don't return a resource dimension, their value
957 is undefined.
958
959
960 .. math::
961
962 lod = src0.x
963
964 dst.x = texture\_width(unit, lod)
965
966 dst.y = texture\_height(unit, lod)
967
968 dst.z = texture\_depth(unit, lod)
969
970 dst.w = texture\_levels(unit)
971
972 .. opcode:: TG4 - Texture Gather
973
974 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
975 filtering operation and packs them into a single register. Only works with
976 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
977 addressing modes of the sampler and the top level of any mip pyramid are
978 used. Set W to zero. It behaves like the TEX instruction, but a filtered
979 sample is not generated. The four samples that contribute to filtering are
980 placed into xyzw in clockwise order, starting with the (u,v) texture
981 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
982 where the magnitude of the deltas are half a texel.
983
984 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
985 depth compares, single component selection, and a non-constant offset. It
986 doesn't allow support for the GL independent offset to get i0,j0. This would
987 require another CAP is hw can do it natively. For now we lower that before
988 TGSI.
989
990 .. math::
991
992 coord = src0
993
994 component = src1
995
996 dst = texture\_gather4 (unit, coord, component)
997
998 (with SM5 - cube array shadow)
999
1000 .. math::
1001
1002 coord = src0
1003
1004 compare = src1
1005
1006 dst = texture\_gather (uint, coord, compare)
1007
1008 .. opcode:: LODQ - level of detail query
1009
1010 Compute the LOD information that the texture pipe would use to access the
1011 texture. The Y component contains the computed LOD lambda_prime. The X
1012 component contains the LOD that will be accessed, based on min/max lod's
1013 and mipmap filters.
1014
1015 .. math::
1016
1017 coord = src0
1018
1019 dst.xy = lodq(uint, coord);
1020
1021 Integer ISA
1022 ^^^^^^^^^^^^^^^^^^^^^^^^
1023 These opcodes are used for integer operations.
1024 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1025
1026
1027 .. opcode:: I2F - Signed Integer To Float
1028
1029 Rounding is unspecified (round to nearest even suggested).
1030
1031 .. math::
1032
1033 dst.x = (float) src.x
1034
1035 dst.y = (float) src.y
1036
1037 dst.z = (float) src.z
1038
1039 dst.w = (float) src.w
1040
1041
1042 .. opcode:: U2F - Unsigned Integer To Float
1043
1044 Rounding is unspecified (round to nearest even suggested).
1045
1046 .. math::
1047
1048 dst.x = (float) src.x
1049
1050 dst.y = (float) src.y
1051
1052 dst.z = (float) src.z
1053
1054 dst.w = (float) src.w
1055
1056
1057 .. opcode:: F2I - Float to Signed Integer
1058
1059 Rounding is towards zero (truncate).
1060 Values outside signed range (including NaNs) produce undefined results.
1061
1062 .. math::
1063
1064 dst.x = (int) src.x
1065
1066 dst.y = (int) src.y
1067
1068 dst.z = (int) src.z
1069
1070 dst.w = (int) src.w
1071
1072
1073 .. opcode:: F2U - Float to Unsigned Integer
1074
1075 Rounding is towards zero (truncate).
1076 Values outside unsigned range (including NaNs) produce undefined results.
1077
1078 .. math::
1079
1080 dst.x = (unsigned) src.x
1081
1082 dst.y = (unsigned) src.y
1083
1084 dst.z = (unsigned) src.z
1085
1086 dst.w = (unsigned) src.w
1087
1088
1089 .. opcode:: UADD - Integer Add
1090
1091 This instruction works the same for signed and unsigned integers.
1092 The low 32bit of the result is returned.
1093
1094 .. math::
1095
1096 dst.x = src0.x + src1.x
1097
1098 dst.y = src0.y + src1.y
1099
1100 dst.z = src0.z + src1.z
1101
1102 dst.w = src0.w + src1.w
1103
1104
1105 .. opcode:: UMAD - Integer Multiply And Add
1106
1107 This instruction works the same for signed and unsigned integers.
1108 The multiplication returns the low 32bit (as does the result itself).
1109
1110 .. math::
1111
1112 dst.x = src0.x \times src1.x + src2.x
1113
1114 dst.y = src0.y \times src1.y + src2.y
1115
1116 dst.z = src0.z \times src1.z + src2.z
1117
1118 dst.w = src0.w \times src1.w + src2.w
1119
1120
1121 .. opcode:: UMUL - Integer Multiply
1122
1123 This instruction works the same for signed and unsigned integers.
1124 The low 32bit of the result is returned.
1125
1126 .. math::
1127
1128 dst.x = src0.x \times src1.x
1129
1130 dst.y = src0.y \times src1.y
1131
1132 dst.z = src0.z \times src1.z
1133
1134 dst.w = src0.w \times src1.w
1135
1136
1137 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1138
1139 The high 32bits of the multiplication of 2 signed integers are returned.
1140
1141 .. math::
1142
1143 dst.x = (src0.x \times src1.x) >> 32
1144
1145 dst.y = (src0.y \times src1.y) >> 32
1146
1147 dst.z = (src0.z \times src1.z) >> 32
1148
1149 dst.w = (src0.w \times src1.w) >> 32
1150
1151
1152 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1153
1154 The high 32bits of the multiplication of 2 unsigned integers are returned.
1155
1156 .. math::
1157
1158 dst.x = (src0.x \times src1.x) >> 32
1159
1160 dst.y = (src0.y \times src1.y) >> 32
1161
1162 dst.z = (src0.z \times src1.z) >> 32
1163
1164 dst.w = (src0.w \times src1.w) >> 32
1165
1166
1167 .. opcode:: IDIV - Signed Integer Division
1168
1169 TBD: behavior for division by zero.
1170
1171 .. math::
1172
1173 dst.x = src0.x \ src1.x
1174
1175 dst.y = src0.y \ src1.y
1176
1177 dst.z = src0.z \ src1.z
1178
1179 dst.w = src0.w \ src1.w
1180
1181
1182 .. opcode:: UDIV - Unsigned Integer Division
1183
1184 For division by zero, 0xffffffff is returned.
1185
1186 .. math::
1187
1188 dst.x = src0.x \ src1.x
1189
1190 dst.y = src0.y \ src1.y
1191
1192 dst.z = src0.z \ src1.z
1193
1194 dst.w = src0.w \ src1.w
1195
1196
1197 .. opcode:: UMOD - Unsigned Integer Remainder
1198
1199 If second arg is zero, 0xffffffff is returned.
1200
1201 .. math::
1202
1203 dst.x = src0.x \ src1.x
1204
1205 dst.y = src0.y \ src1.y
1206
1207 dst.z = src0.z \ src1.z
1208
1209 dst.w = src0.w \ src1.w
1210
1211
1212 .. opcode:: NOT - Bitwise Not
1213
1214 .. math::
1215
1216 dst.x = \sim src.x
1217
1218 dst.y = \sim src.y
1219
1220 dst.z = \sim src.z
1221
1222 dst.w = \sim src.w
1223
1224
1225 .. opcode:: AND - Bitwise And
1226
1227 .. math::
1228
1229 dst.x = src0.x \& src1.x
1230
1231 dst.y = src0.y \& src1.y
1232
1233 dst.z = src0.z \& src1.z
1234
1235 dst.w = src0.w \& src1.w
1236
1237
1238 .. opcode:: OR - Bitwise Or
1239
1240 .. math::
1241
1242 dst.x = src0.x | src1.x
1243
1244 dst.y = src0.y | src1.y
1245
1246 dst.z = src0.z | src1.z
1247
1248 dst.w = src0.w | src1.w
1249
1250
1251 .. opcode:: XOR - Bitwise Xor
1252
1253 .. math::
1254
1255 dst.x = src0.x \oplus src1.x
1256
1257 dst.y = src0.y \oplus src1.y
1258
1259 dst.z = src0.z \oplus src1.z
1260
1261 dst.w = src0.w \oplus src1.w
1262
1263
1264 .. opcode:: IMAX - Maximum of Signed Integers
1265
1266 .. math::
1267
1268 dst.x = max(src0.x, src1.x)
1269
1270 dst.y = max(src0.y, src1.y)
1271
1272 dst.z = max(src0.z, src1.z)
1273
1274 dst.w = max(src0.w, src1.w)
1275
1276
1277 .. opcode:: UMAX - Maximum of Unsigned Integers
1278
1279 .. math::
1280
1281 dst.x = max(src0.x, src1.x)
1282
1283 dst.y = max(src0.y, src1.y)
1284
1285 dst.z = max(src0.z, src1.z)
1286
1287 dst.w = max(src0.w, src1.w)
1288
1289
1290 .. opcode:: IMIN - Minimum of Signed Integers
1291
1292 .. math::
1293
1294 dst.x = min(src0.x, src1.x)
1295
1296 dst.y = min(src0.y, src1.y)
1297
1298 dst.z = min(src0.z, src1.z)
1299
1300 dst.w = min(src0.w, src1.w)
1301
1302
1303 .. opcode:: UMIN - Minimum of Unsigned Integers
1304
1305 .. math::
1306
1307 dst.x = min(src0.x, src1.x)
1308
1309 dst.y = min(src0.y, src1.y)
1310
1311 dst.z = min(src0.z, src1.z)
1312
1313 dst.w = min(src0.w, src1.w)
1314
1315
1316 .. opcode:: SHL - Shift Left
1317
1318 The shift count is masked with 0x1f before the shift is applied.
1319
1320 .. math::
1321
1322 dst.x = src0.x << (0x1f \& src1.x)
1323
1324 dst.y = src0.y << (0x1f \& src1.y)
1325
1326 dst.z = src0.z << (0x1f \& src1.z)
1327
1328 dst.w = src0.w << (0x1f \& src1.w)
1329
1330
1331 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1332
1333 The shift count is masked with 0x1f before the shift is applied.
1334
1335 .. math::
1336
1337 dst.x = src0.x >> (0x1f \& src1.x)
1338
1339 dst.y = src0.y >> (0x1f \& src1.y)
1340
1341 dst.z = src0.z >> (0x1f \& src1.z)
1342
1343 dst.w = src0.w >> (0x1f \& src1.w)
1344
1345
1346 .. opcode:: USHR - Logical Shift Right
1347
1348 The shift count is masked with 0x1f before the shift is applied.
1349
1350 .. math::
1351
1352 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1353
1354 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1355
1356 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1357
1358 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1359
1360
1361 .. opcode:: UCMP - Integer Conditional Move
1362
1363 .. math::
1364
1365 dst.x = src0.x ? src1.x : src2.x
1366
1367 dst.y = src0.y ? src1.y : src2.y
1368
1369 dst.z = src0.z ? src1.z : src2.z
1370
1371 dst.w = src0.w ? src1.w : src2.w
1372
1373
1374
1375 .. opcode:: ISSG - Integer Set Sign
1376
1377 .. math::
1378
1379 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1380
1381 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1382
1383 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1384
1385 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1386
1387
1388
1389 .. opcode:: FSLT - Float Set On Less Than (ordered)
1390
1391 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1392
1393 .. math::
1394
1395 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1396
1397 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1398
1399 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1400
1401 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1402
1403
1404 .. opcode:: ISLT - Signed Integer Set On Less Than
1405
1406 .. math::
1407
1408 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1409
1410 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1411
1412 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1413
1414 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1415
1416
1417 .. opcode:: USLT - Unsigned Integer Set On Less Than
1418
1419 .. math::
1420
1421 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1422
1423 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1424
1425 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1426
1427 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1428
1429
1430 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1431
1432 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1433
1434 .. math::
1435
1436 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1437
1438 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1439
1440 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1441
1442 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1443
1444
1445 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1446
1447 .. math::
1448
1449 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1450
1451 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1452
1453 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1454
1455 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1456
1457
1458 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1459
1460 .. math::
1461
1462 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1463
1464 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1465
1466 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1467
1468 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1469
1470
1471 .. opcode:: FSEQ - Float Set On Equal (ordered)
1472
1473 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1474
1475 .. math::
1476
1477 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1478
1479 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1480
1481 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1482
1483 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1484
1485
1486 .. opcode:: USEQ - Integer Set On Equal
1487
1488 .. math::
1489
1490 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1491
1492 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1493
1494 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1495
1496 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1497
1498
1499 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1500
1501 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1502
1503 .. math::
1504
1505 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1506
1507 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1508
1509 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1510
1511 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1512
1513
1514 .. opcode:: USNE - Integer Set On Not Equal
1515
1516 .. math::
1517
1518 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1519
1520 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1521
1522 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1523
1524 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1525
1526
1527 .. opcode:: INEG - Integer Negate
1528
1529 Two's complement.
1530
1531 .. math::
1532
1533 dst.x = -src.x
1534
1535 dst.y = -src.y
1536
1537 dst.z = -src.z
1538
1539 dst.w = -src.w
1540
1541
1542 .. opcode:: IABS - Integer Absolute Value
1543
1544 .. math::
1545
1546 dst.x = |src.x|
1547
1548 dst.y = |src.y|
1549
1550 dst.z = |src.z|
1551
1552 dst.w = |src.w|
1553
1554 Bitwise ISA
1555 ^^^^^^^^^^^
1556 These opcodes are used for bit-level manipulation of integers.
1557
1558 .. opcode:: IBFE - Signed Bitfield Extract
1559
1560 See SM5 instruction of the same name. Extracts a set of bits from the input,
1561 and sign-extends them if the high bit of the extracted window is set.
1562
1563 Pseudocode::
1564
1565 def ibfe(value, offset, bits):
1566 offset = offset & 0x1f
1567 bits = bits & 0x1f
1568 if bits == 0: return 0
1569 # Note: >> sign-extends
1570 if width + offset < 32:
1571 return (value << (32 - offset - bits)) >> (32 - bits)
1572 else:
1573 return value >> offset
1574
1575 .. opcode:: UBFE - Unsigned Bitfield Extract
1576
1577 See SM5 instruction of the same name. Extracts a set of bits from the input,
1578 without any sign-extension.
1579
1580 Pseudocode::
1581
1582 def ubfe(value, offset, bits):
1583 offset = offset & 0x1f
1584 bits = bits & 0x1f
1585 if bits == 0: return 0
1586 # Note: >> does not sign-extend
1587 if width + offset < 32:
1588 return (value << (32 - offset - bits)) >> (32 - bits)
1589 else:
1590 return value >> offset
1591
1592 .. opcode:: BFI - Bitfield Insert
1593
1594 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1595 the low bits of 'insert'.
1596
1597 Pseudocode::
1598
1599 def bfi(base, insert, offset, bits):
1600 offset = offset & 0x1f
1601 bits = bits & 0x1f
1602 mask = ((1 << bits) - 1) << offset
1603 return ((insert << offset) & mask) | (base & ~mask)
1604
1605 .. opcode:: BREV - Bitfield Reverse
1606
1607 See SM5 instruction BFREV. Reverses the bits of the argument.
1608
1609 .. opcode:: POPC - Population Count
1610
1611 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1612
1613 .. opcode:: LSB - Index of lowest set bit
1614
1615 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1616 bit of the argument. Returns -1 if none are set.
1617
1618 .. opcode:: IMSB - Index of highest non-sign bit
1619
1620 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1621 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1622 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1623 (i.e. for inputs 0 and -1).
1624
1625 .. opcode:: UMSB - Index of highest set bit
1626
1627 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1628 set bit of the argument. Returns -1 if none are set.
1629
1630 Geometry ISA
1631 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1632
1633 These opcodes are only supported in geometry shaders; they have no meaning
1634 in any other type of shader.
1635
1636 .. opcode:: EMIT - Emit
1637
1638 Generate a new vertex for the current primitive into the specified vertex
1639 stream using the values in the output registers.
1640
1641
1642 .. opcode:: ENDPRIM - End Primitive
1643
1644 Complete the current primitive in the specified vertex stream (consisting of
1645 the emitted vertices), and start a new one.
1646
1647
1648 GLSL ISA
1649 ^^^^^^^^^^
1650
1651 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1652 opcodes is determined by a special capability bit, ``GLSL``.
1653 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1654
1655 .. opcode:: CAL - Subroutine Call
1656
1657 push(pc)
1658 pc = target
1659
1660
1661 .. opcode:: RET - Subroutine Call Return
1662
1663 pc = pop()
1664
1665
1666 .. opcode:: CONT - Continue
1667
1668 Unconditionally moves the point of execution to the instruction after the
1669 last bgnloop. The instruction must appear within a bgnloop/endloop.
1670
1671 .. note::
1672
1673 Support for CONT is determined by a special capability bit,
1674 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1675
1676
1677 .. opcode:: BGNLOOP - Begin a Loop
1678
1679 Start a loop. Must have a matching endloop.
1680
1681
1682 .. opcode:: BGNSUB - Begin Subroutine
1683
1684 Starts definition of a subroutine. Must have a matching endsub.
1685
1686
1687 .. opcode:: ENDLOOP - End a Loop
1688
1689 End a loop started with bgnloop.
1690
1691
1692 .. opcode:: ENDSUB - End Subroutine
1693
1694 Ends definition of a subroutine.
1695
1696
1697 .. opcode:: NOP - No Operation
1698
1699 Do nothing.
1700
1701
1702 .. opcode:: BRK - Break
1703
1704 Unconditionally moves the point of execution to the instruction after the
1705 next endloop or endswitch. The instruction must appear within a loop/endloop
1706 or switch/endswitch.
1707
1708
1709 .. opcode:: BREAKC - Break Conditional
1710
1711 Conditionally moves the point of execution to the instruction after the
1712 next endloop or endswitch. The instruction must appear within a loop/endloop
1713 or switch/endswitch.
1714 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1715 as an integer register.
1716
1717 .. note::
1718
1719 Considered for removal as it's quite inconsistent wrt other opcodes
1720 (could emulate with UIF/BRK/ENDIF).
1721
1722
1723 .. opcode:: IF - Float If
1724
1725 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1726
1727 src0.x != 0.0
1728
1729 where src0.x is interpreted as a floating point register.
1730
1731
1732 .. opcode:: UIF - Bitwise If
1733
1734 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1735
1736 src0.x != 0
1737
1738 where src0.x is interpreted as an integer register.
1739
1740
1741 .. opcode:: ELSE - Else
1742
1743 Starts an else block, after an IF or UIF statement.
1744
1745
1746 .. opcode:: ENDIF - End If
1747
1748 Ends an IF or UIF block.
1749
1750
1751 .. opcode:: SWITCH - Switch
1752
1753 Starts a C-style switch expression. The switch consists of one or multiple
1754 CASE statements, and at most one DEFAULT statement. Execution of a statement
1755 ends when a BRK is hit, but just like in C falling through to other cases
1756 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1757 just as last statement, and fallthrough is allowed into/from it.
1758 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1759
1760 Example::
1761
1762 SWITCH src[0].x
1763 CASE src[0].x
1764 (some instructions here)
1765 (optional BRK here)
1766 DEFAULT
1767 (some instructions here)
1768 (optional BRK here)
1769 CASE src[0].x
1770 (some instructions here)
1771 (optional BRK here)
1772 ENDSWITCH
1773
1774
1775 .. opcode:: CASE - Switch case
1776
1777 This represents a switch case label. The src arg must be an integer immediate.
1778
1779
1780 .. opcode:: DEFAULT - Switch default
1781
1782 This represents the default case in the switch, which is taken if no other
1783 case matches.
1784
1785
1786 .. opcode:: ENDSWITCH - End of switch
1787
1788 Ends a switch expression.
1789
1790
1791 Interpolation ISA
1792 ^^^^^^^^^^^^^^^^^
1793
1794 The interpolation instructions allow an input to be interpolated in a
1795 different way than its declaration. This corresponds to the GLSL 4.00
1796 interpolateAt* functions. The first argument of each of these must come from
1797 ``TGSI_FILE_INPUT``.
1798
1799 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1800
1801 Interpolates the varying specified by src0 at the centroid
1802
1803 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1804
1805 Interpolates the varying specified by src0 at the sample id specified by
1806 src1.x (interpreted as an integer)
1807
1808 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1809
1810 Interpolates the varying specified by src0 at the offset src1.xy from the
1811 pixel center (interpreted as floats)
1812
1813
1814 .. _doubleopcodes:
1815
1816 Double ISA
1817 ^^^^^^^^^^^^^^^
1818
1819 The double-precision opcodes reinterpret four-component vectors into
1820 two-component vectors with doubled precision in each component.
1821
1822 Support for these opcodes is XXX undecided. :T
1823
1824 .. opcode:: DADD - Add
1825
1826 .. math::
1827
1828 dst.xy = src0.xy + src1.xy
1829
1830 dst.zw = src0.zw + src1.zw
1831
1832
1833 .. opcode:: DDIV - Divide
1834
1835 .. math::
1836
1837 dst.xy = src0.xy / src1.xy
1838
1839 dst.zw = src0.zw / src1.zw
1840
1841 .. opcode:: DSEQ - Set on Equal
1842
1843 .. math::
1844
1845 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1846
1847 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1848
1849 .. opcode:: DSLT - Set on Less than
1850
1851 .. math::
1852
1853 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1854
1855 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1856
1857 .. opcode:: DFRAC - Fraction
1858
1859 .. math::
1860
1861 dst.xy = src.xy - \lfloor src.xy\rfloor
1862
1863 dst.zw = src.zw - \lfloor src.zw\rfloor
1864
1865
1866 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1867
1868 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1869 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1870 :math:`dst1 \times 2^{dst0} = src` .
1871
1872 .. math::
1873
1874 dst0.xy = exp(src.xy)
1875
1876 dst1.xy = frac(src.xy)
1877
1878 dst0.zw = exp(src.zw)
1879
1880 dst1.zw = frac(src.zw)
1881
1882 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1883
1884 This opcode is the inverse of :opcode:`DFRACEXP`.
1885
1886 .. math::
1887
1888 dst.xy = src0.xy \times 2^{src1.xy}
1889
1890 dst.zw = src0.zw \times 2^{src1.zw}
1891
1892 .. opcode:: DMIN - Minimum
1893
1894 .. math::
1895
1896 dst.xy = min(src0.xy, src1.xy)
1897
1898 dst.zw = min(src0.zw, src1.zw)
1899
1900 .. opcode:: DMAX - Maximum
1901
1902 .. math::
1903
1904 dst.xy = max(src0.xy, src1.xy)
1905
1906 dst.zw = max(src0.zw, src1.zw)
1907
1908 .. opcode:: DMUL - Multiply
1909
1910 .. math::
1911
1912 dst.xy = src0.xy \times src1.xy
1913
1914 dst.zw = src0.zw \times src1.zw
1915
1916
1917 .. opcode:: DMAD - Multiply And Add
1918
1919 .. math::
1920
1921 dst.xy = src0.xy \times src1.xy + src2.xy
1922
1923 dst.zw = src0.zw \times src1.zw + src2.zw
1924
1925
1926 .. opcode:: DRCP - Reciprocal
1927
1928 .. math::
1929
1930 dst.xy = \frac{1}{src.xy}
1931
1932 dst.zw = \frac{1}{src.zw}
1933
1934 .. opcode:: DSQRT - Square Root
1935
1936 .. math::
1937
1938 dst.xy = \sqrt{src.xy}
1939
1940 dst.zw = \sqrt{src.zw}
1941
1942
1943 .. _samplingopcodes:
1944
1945 Resource Sampling Opcodes
1946 ^^^^^^^^^^^^^^^^^^^^^^^^^
1947
1948 Those opcodes follow very closely semantics of the respective Direct3D
1949 instructions. If in doubt double check Direct3D documentation.
1950 Note that the swizzle on SVIEW (src1) determines texel swizzling
1951 after lookup.
1952
1953 .. opcode:: SAMPLE
1954
1955 Using provided address, sample data from the specified texture using the
1956 filtering mode identified by the gven sampler. The source data may come from
1957 any resource type other than buffers.
1958
1959 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1960
1961 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1962
1963 .. opcode:: SAMPLE_I
1964
1965 Simplified alternative to the SAMPLE instruction. Using the provided
1966 integer address, SAMPLE_I fetches data from the specified sampler view
1967 without any filtering. The source data may come from any resource type
1968 other than CUBE.
1969
1970 Syntax: ``SAMPLE_I dst, address, sampler_view``
1971
1972 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1973
1974 The 'address' is specified as unsigned integers. If the 'address' is out of
1975 range [0...(# texels - 1)] the result of the fetch is always 0 in all
1976 components. As such the instruction doesn't honor address wrap modes, in
1977 cases where that behavior is desirable 'SAMPLE' instruction should be used.
1978 address.w always provides an unsigned integer mipmap level. If the value is
1979 out of the range then the instruction always returns 0 in all components.
1980 address.yz are ignored for buffers and 1d textures. address.z is ignored
1981 for 1d texture arrays and 2d textures.
1982
1983 For 1D texture arrays address.y provides the array index (also as unsigned
1984 integer). If the value is out of the range of available array indices
1985 [0... (array size - 1)] then the opcode always returns 0 in all components.
1986 For 2D texture arrays address.z provides the array index, otherwise it
1987 exhibits the same behavior as in the case for 1D texture arrays. The exact
1988 semantics of the source address are presented in the table below:
1989
1990 +---------------------------+----+-----+-----+---------+
1991 | resource type | X | Y | Z | W |
1992 +===========================+====+=====+=====+=========+
1993 | ``PIPE_BUFFER`` | x | | | ignored |
1994 +---------------------------+----+-----+-----+---------+
1995 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
1996 +---------------------------+----+-----+-----+---------+
1997 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
1998 +---------------------------+----+-----+-----+---------+
1999 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2000 +---------------------------+----+-----+-----+---------+
2001 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2002 +---------------------------+----+-----+-----+---------+
2003 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2004 +---------------------------+----+-----+-----+---------+
2005 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2006 +---------------------------+----+-----+-----+---------+
2007 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2008 +---------------------------+----+-----+-----+---------+
2009
2010 Where 'mpl' is a mipmap level and 'idx' is the array index.
2011
2012 .. opcode:: SAMPLE_I_MS
2013
2014 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2015
2016 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2017
2018 .. opcode:: SAMPLE_B
2019
2020 Just like the SAMPLE instruction with the exception that an additional bias
2021 is applied to the level of detail computed as part of the instruction
2022 execution.
2023
2024 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2025
2026 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2027
2028 .. opcode:: SAMPLE_C
2029
2030 Similar to the SAMPLE instruction but it performs a comparison filter. The
2031 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2032 additional float32 operand, reference value, which must be a register with
2033 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2034 current samplers compare_func (in pipe_sampler_state) to compare reference
2035 value against the red component value for the surce resource at each texel
2036 that the currently configured texture filter covers based on the provided
2037 coordinates.
2038
2039 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2040
2041 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2042
2043 .. opcode:: SAMPLE_C_LZ
2044
2045 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2046 for level-zero.
2047
2048 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2049
2050 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2051
2052
2053 .. opcode:: SAMPLE_D
2054
2055 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2056 the source address in the x direction and the y direction are provided by
2057 extra parameters.
2058
2059 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2060
2061 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2062
2063 .. opcode:: SAMPLE_L
2064
2065 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2066 directly as a scalar value, representing no anisotropy.
2067
2068 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2069
2070 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2071
2072 .. opcode:: GATHER4
2073
2074 Gathers the four texels to be used in a bi-linear filtering operation and
2075 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2076 and cubemaps arrays. For 2D textures, only the addressing modes of the
2077 sampler and the top level of any mip pyramid are used. Set W to zero. It
2078 behaves like the SAMPLE instruction, but a filtered sample is not
2079 generated. The four samples that contribute to filtering are placed into
2080 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2081 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2082 magnitude of the deltas are half a texel.
2083
2084
2085 .. opcode:: SVIEWINFO
2086
2087 Query the dimensions of a given sampler view. dst receives width, height,
2088 depth or array size and number of mipmap levels as int4. The dst can have a
2089 writemask which will specify what info is the caller interested in.
2090
2091 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2092
2093 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2094
2095 src_mip_level is an unsigned integer scalar. If it's out of range then
2096 returns 0 for width, height and depth/array size but the total number of
2097 mipmap is still returned correctly for the given sampler view. The returned
2098 width, height and depth values are for the mipmap level selected by the
2099 src_mip_level and are in the number of texels. For 1d texture array width
2100 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2101 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2102 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2103 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2104 resinfo allowing swizzling dst values is ignored (due to the interaction
2105 with rcpfloat modifier which requires some swizzle handling in the state
2106 tracker anyway).
2107
2108 .. opcode:: SAMPLE_POS
2109
2110 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2111 indicated where the sample is located. If the resource is not a multi-sample
2112 resource and not a render target, the result is 0.
2113
2114 .. opcode:: SAMPLE_INFO
2115
2116 dst receives number of samples in x. If the resource is not a multi-sample
2117 resource and not a render target, the result is 0.
2118
2119
2120 .. _resourceopcodes:
2121
2122 Resource Access Opcodes
2123 ^^^^^^^^^^^^^^^^^^^^^^^
2124
2125 .. opcode:: LOAD - Fetch data from a shader resource
2126
2127 Syntax: ``LOAD dst, resource, address``
2128
2129 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2130
2131 Using the provided integer address, LOAD fetches data
2132 from the specified buffer or texture without any
2133 filtering.
2134
2135 The 'address' is specified as a vector of unsigned
2136 integers. If the 'address' is out of range the result
2137 is unspecified.
2138
2139 Only the first mipmap level of a resource can be read
2140 from using this instruction.
2141
2142 For 1D or 2D texture arrays, the array index is
2143 provided as an unsigned integer in address.y or
2144 address.z, respectively. address.yz are ignored for
2145 buffers and 1D textures. address.z is ignored for 1D
2146 texture arrays and 2D textures. address.w is always
2147 ignored.
2148
2149 .. opcode:: STORE - Write data to a shader resource
2150
2151 Syntax: ``STORE resource, address, src``
2152
2153 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2154
2155 Using the provided integer address, STORE writes data
2156 to the specified buffer or texture.
2157
2158 The 'address' is specified as a vector of unsigned
2159 integers. If the 'address' is out of range the result
2160 is unspecified.
2161
2162 Only the first mipmap level of a resource can be
2163 written to using this instruction.
2164
2165 For 1D or 2D texture arrays, the array index is
2166 provided as an unsigned integer in address.y or
2167 address.z, respectively. address.yz are ignored for
2168 buffers and 1D textures. address.z is ignored for 1D
2169 texture arrays and 2D textures. address.w is always
2170 ignored.
2171
2172
2173 .. _threadsyncopcodes:
2174
2175 Inter-thread synchronization opcodes
2176 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2177
2178 These opcodes are intended for communication between threads running
2179 within the same compute grid. For now they're only valid in compute
2180 programs.
2181
2182 .. opcode:: MFENCE - Memory fence
2183
2184 Syntax: ``MFENCE resource``
2185
2186 Example: ``MFENCE RES[0]``
2187
2188 This opcode forces strong ordering between any memory access
2189 operations that affect the specified resource. This means that
2190 previous loads and stores (and only those) will be performed and
2191 visible to other threads before the program execution continues.
2192
2193
2194 .. opcode:: LFENCE - Load memory fence
2195
2196 Syntax: ``LFENCE resource``
2197
2198 Example: ``LFENCE RES[0]``
2199
2200 Similar to MFENCE, but it only affects the ordering of memory loads.
2201
2202
2203 .. opcode:: SFENCE - Store memory fence
2204
2205 Syntax: ``SFENCE resource``
2206
2207 Example: ``SFENCE RES[0]``
2208
2209 Similar to MFENCE, but it only affects the ordering of memory stores.
2210
2211
2212 .. opcode:: BARRIER - Thread group barrier
2213
2214 ``BARRIER``
2215
2216 This opcode suspends the execution of the current thread until all
2217 the remaining threads in the working group reach the same point of
2218 the program. Results are unspecified if any of the remaining
2219 threads terminates or never reaches an executed BARRIER instruction.
2220
2221
2222 .. _atomopcodes:
2223
2224 Atomic opcodes
2225 ^^^^^^^^^^^^^^
2226
2227 These opcodes provide atomic variants of some common arithmetic and
2228 logical operations. In this context atomicity means that another
2229 concurrent memory access operation that affects the same memory
2230 location is guaranteed to be performed strictly before or after the
2231 entire execution of the atomic operation.
2232
2233 For the moment they're only valid in compute programs.
2234
2235 .. opcode:: ATOMUADD - Atomic integer addition
2236
2237 Syntax: ``ATOMUADD dst, resource, offset, src``
2238
2239 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2240
2241 The following operation is performed atomically on each component:
2242
2243 .. math::
2244
2245 dst_i = resource[offset]_i
2246
2247 resource[offset]_i = dst_i + src_i
2248
2249
2250 .. opcode:: ATOMXCHG - Atomic exchange
2251
2252 Syntax: ``ATOMXCHG dst, resource, offset, src``
2253
2254 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2255
2256 The following operation is performed atomically on each component:
2257
2258 .. math::
2259
2260 dst_i = resource[offset]_i
2261
2262 resource[offset]_i = src_i
2263
2264
2265 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2266
2267 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2268
2269 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2270
2271 The following operation is performed atomically on each component:
2272
2273 .. math::
2274
2275 dst_i = resource[offset]_i
2276
2277 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2278
2279
2280 .. opcode:: ATOMAND - Atomic bitwise And
2281
2282 Syntax: ``ATOMAND dst, resource, offset, src``
2283
2284 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2285
2286 The following operation is performed atomically on each component:
2287
2288 .. math::
2289
2290 dst_i = resource[offset]_i
2291
2292 resource[offset]_i = dst_i \& src_i
2293
2294
2295 .. opcode:: ATOMOR - Atomic bitwise Or
2296
2297 Syntax: ``ATOMOR dst, resource, offset, src``
2298
2299 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2300
2301 The following operation is performed atomically on each component:
2302
2303 .. math::
2304
2305 dst_i = resource[offset]_i
2306
2307 resource[offset]_i = dst_i | src_i
2308
2309
2310 .. opcode:: ATOMXOR - Atomic bitwise Xor
2311
2312 Syntax: ``ATOMXOR dst, resource, offset, src``
2313
2314 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2315
2316 The following operation is performed atomically on each component:
2317
2318 .. math::
2319
2320 dst_i = resource[offset]_i
2321
2322 resource[offset]_i = dst_i \oplus src_i
2323
2324
2325 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2326
2327 Syntax: ``ATOMUMIN dst, resource, offset, src``
2328
2329 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2330
2331 The following operation is performed atomically on each component:
2332
2333 .. math::
2334
2335 dst_i = resource[offset]_i
2336
2337 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2338
2339
2340 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2341
2342 Syntax: ``ATOMUMAX dst, resource, offset, src``
2343
2344 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2345
2346 The following operation is performed atomically on each component:
2347
2348 .. math::
2349
2350 dst_i = resource[offset]_i
2351
2352 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2353
2354
2355 .. opcode:: ATOMIMIN - Atomic signed minimum
2356
2357 Syntax: ``ATOMIMIN dst, resource, offset, src``
2358
2359 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2360
2361 The following operation is performed atomically on each component:
2362
2363 .. math::
2364
2365 dst_i = resource[offset]_i
2366
2367 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2368
2369
2370 .. opcode:: ATOMIMAX - Atomic signed maximum
2371
2372 Syntax: ``ATOMIMAX dst, resource, offset, src``
2373
2374 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2375
2376 The following operation is performed atomically on each component:
2377
2378 .. math::
2379
2380 dst_i = resource[offset]_i
2381
2382 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2383
2384
2385
2386 Explanation of symbols used
2387 ------------------------------
2388
2389
2390 Functions
2391 ^^^^^^^^^^^^^^
2392
2393
2394 :math:`|x|` Absolute value of `x`.
2395
2396 :math:`\lceil x \rceil` Ceiling of `x`.
2397
2398 clamp(x,y,z) Clamp x between y and z.
2399 (x < y) ? y : (x > z) ? z : x
2400
2401 :math:`\lfloor x\rfloor` Floor of `x`.
2402
2403 :math:`\log_2{x}` Logarithm of `x`, base 2.
2404
2405 max(x,y) Maximum of x and y.
2406 (x > y) ? x : y
2407
2408 min(x,y) Minimum of x and y.
2409 (x < y) ? x : y
2410
2411 partialx(x) Derivative of x relative to fragment's X.
2412
2413 partialy(x) Derivative of x relative to fragment's Y.
2414
2415 pop() Pop from stack.
2416
2417 :math:`x^y` `x` to the power `y`.
2418
2419 push(x) Push x on stack.
2420
2421 round(x) Round x.
2422
2423 trunc(x) Truncate x, i.e. drop the fraction bits.
2424
2425
2426 Keywords
2427 ^^^^^^^^^^^^^
2428
2429
2430 discard Discard fragment.
2431
2432 pc Program counter.
2433
2434 target Label of target instruction.
2435
2436
2437 Other tokens
2438 ---------------
2439
2440
2441 Declaration
2442 ^^^^^^^^^^^
2443
2444
2445 Declares a register that is will be referenced as an operand in Instruction
2446 tokens.
2447
2448 File field contains register file that is being declared and is one
2449 of TGSI_FILE.
2450
2451 UsageMask field specifies which of the register components can be accessed
2452 and is one of TGSI_WRITEMASK.
2453
2454 The Local flag specifies that a given value isn't intended for
2455 subroutine parameter passing and, as a result, the implementation
2456 isn't required to give any guarantees of it being preserved across
2457 subroutine boundaries. As it's merely a compiler hint, the
2458 implementation is free to ignore it.
2459
2460 If Dimension flag is set to 1, a Declaration Dimension token follows.
2461
2462 If Semantic flag is set to 1, a Declaration Semantic token follows.
2463
2464 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2465
2466 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2467
2468 If Array flag is set to 1, a Declaration Array token follows.
2469
2470 Array Declaration
2471 ^^^^^^^^^^^^^^^^^^^^^^^^
2472
2473 Declarations can optional have an ArrayID attribute which can be referred by
2474 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2475 if no ArrayID is specified.
2476
2477 If an indirect addressing operand refers to a specific declaration by using
2478 an ArrayID only the registers in this declaration are guaranteed to be
2479 accessed, accessing any register outside this declaration results in undefined
2480 behavior. Note that for compatibility the effective index is zero-based and
2481 not relative to the specified declaration
2482
2483 If no ArrayID is specified with an indirect addressing operand the whole
2484 register file might be accessed by this operand. This is strongly discouraged
2485 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2486
2487 Declaration Semantic
2488 ^^^^^^^^^^^^^^^^^^^^^^^^
2489
2490 Vertex and fragment shader input and output registers may be labeled
2491 with semantic information consisting of a name and index.
2492
2493 Follows Declaration token if Semantic bit is set.
2494
2495 Since its purpose is to link a shader with other stages of the pipeline,
2496 it is valid to follow only those Declaration tokens that declare a register
2497 either in INPUT or OUTPUT file.
2498
2499 SemanticName field contains the semantic name of the register being declared.
2500 There is no default value.
2501
2502 SemanticIndex is an optional subscript that can be used to distinguish
2503 different register declarations with the same semantic name. The default value
2504 is 0.
2505
2506 The meanings of the individual semantic names are explained in the following
2507 sections.
2508
2509 TGSI_SEMANTIC_POSITION
2510 """"""""""""""""""""""
2511
2512 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2513 output register which contains the homogeneous vertex position in the clip
2514 space coordinate system. After clipping, the X, Y and Z components of the
2515 vertex will be divided by the W value to get normalized device coordinates.
2516
2517 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2518 fragment shader input contains the fragment's window position. The X
2519 component starts at zero and always increases from left to right.
2520 The Y component starts at zero and always increases but Y=0 may either
2521 indicate the top of the window or the bottom depending on the fragment
2522 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2523 The Z coordinate ranges from 0 to 1 to represent depth from the front
2524 to the back of the Z buffer. The W component contains the reciprocol
2525 of the interpolated vertex position W component.
2526
2527 Fragment shaders may also declare an output register with
2528 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2529 the fragment shader to change the fragment's Z position.
2530
2531
2532
2533 TGSI_SEMANTIC_COLOR
2534 """""""""""""""""""
2535
2536 For vertex shader outputs or fragment shader inputs/outputs, this
2537 label indicates that the resister contains an R,G,B,A color.
2538
2539 Several shader inputs/outputs may contain colors so the semantic index
2540 is used to distinguish them. For example, color[0] may be the diffuse
2541 color while color[1] may be the specular color.
2542
2543 This label is needed so that the flat/smooth shading can be applied
2544 to the right interpolants during rasterization.
2545
2546
2547
2548 TGSI_SEMANTIC_BCOLOR
2549 """"""""""""""""""""
2550
2551 Back-facing colors are only used for back-facing polygons, and are only valid
2552 in vertex shader outputs. After rasterization, all polygons are front-facing
2553 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2554 so all BCOLORs effectively become regular COLORs in the fragment shader.
2555
2556
2557 TGSI_SEMANTIC_FOG
2558 """""""""""""""""
2559
2560 Vertex shader inputs and outputs and fragment shader inputs may be
2561 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2562 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2563 to compute a fog blend factor which is used to blend the normal fragment color
2564 with a constant fog color. But fog coord really is just an ordinary vec4
2565 register like regular semantics.
2566
2567
2568 TGSI_SEMANTIC_PSIZE
2569 """""""""""""""""""
2570
2571 Vertex shader input and output registers may be labeled with
2572 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2573 in the form (S, 0, 0, 1). The point size controls the width or diameter
2574 of points for rasterization. This label cannot be used in fragment
2575 shaders.
2576
2577 When using this semantic, be sure to set the appropriate state in the
2578 :ref:`rasterizer` first.
2579
2580
2581 TGSI_SEMANTIC_TEXCOORD
2582 """"""""""""""""""""""
2583
2584 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2585
2586 Vertex shader outputs and fragment shader inputs may be labeled with
2587 this semantic to make them replaceable by sprite coordinates via the
2588 sprite_coord_enable state in the :ref:`rasterizer`.
2589 The semantic index permitted with this semantic is limited to <= 7.
2590
2591 If the driver does not support TEXCOORD, sprite coordinate replacement
2592 applies to inputs with the GENERIC semantic instead.
2593
2594 The intended use case for this semantic is gl_TexCoord.
2595
2596
2597 TGSI_SEMANTIC_PCOORD
2598 """"""""""""""""""""
2599
2600 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2601
2602 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2603 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2604 the current primitive is a point and point sprites are enabled. Otherwise,
2605 the contents of the register are undefined.
2606
2607 The intended use case for this semantic is gl_PointCoord.
2608
2609
2610 TGSI_SEMANTIC_GENERIC
2611 """""""""""""""""""""
2612
2613 All vertex/fragment shader inputs/outputs not labeled with any other
2614 semantic label can be considered to be generic attributes. Typical
2615 uses of generic inputs/outputs are texcoords and user-defined values.
2616
2617
2618 TGSI_SEMANTIC_NORMAL
2619 """"""""""""""""""""
2620
2621 Indicates that a vertex shader input is a normal vector. This is
2622 typically only used for legacy graphics APIs.
2623
2624
2625 TGSI_SEMANTIC_FACE
2626 """"""""""""""""""
2627
2628 This label applies to fragment shader inputs only and indicates that
2629 the register contains front/back-face information of the form (F, 0,
2630 0, 1). The first component will be positive when the fragment belongs
2631 to a front-facing polygon, and negative when the fragment belongs to a
2632 back-facing polygon.
2633
2634
2635 TGSI_SEMANTIC_EDGEFLAG
2636 """"""""""""""""""""""
2637
2638 For vertex shaders, this sematic label indicates that an input or
2639 output is a boolean edge flag. The register layout is [F, x, x, x]
2640 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2641 simply copies the edge flag input to the edgeflag output.
2642
2643 Edge flags are used to control which lines or points are actually
2644 drawn when the polygon mode converts triangles/quads/polygons into
2645 points or lines.
2646
2647
2648 TGSI_SEMANTIC_STENCIL
2649 """""""""""""""""""""
2650
2651 For fragment shaders, this semantic label indicates that an output
2652 is a writable stencil reference value. Only the Y component is writable.
2653 This allows the fragment shader to change the fragments stencilref value.
2654
2655
2656 TGSI_SEMANTIC_VIEWPORT_INDEX
2657 """"""""""""""""""""""""""""
2658
2659 For geometry shaders, this semantic label indicates that an output
2660 contains the index of the viewport (and scissor) to use.
2661 Only the X value is used.
2662
2663
2664 TGSI_SEMANTIC_LAYER
2665 """""""""""""""""""
2666
2667 For geometry shaders, this semantic label indicates that an output
2668 contains the layer value to use for the color and depth/stencil surfaces.
2669 Only the X value is used. (Also known as rendertarget array index.)
2670
2671
2672 TGSI_SEMANTIC_CULLDIST
2673 """"""""""""""""""""""
2674
2675 Used as distance to plane for performing application-defined culling
2676 of individual primitives against a plane. When components of vertex
2677 elements are given this label, these values are assumed to be a
2678 float32 signed distance to a plane. Primitives will be completely
2679 discarded if the plane distance for all of the vertices in the
2680 primitive are < 0. If a vertex has a cull distance of NaN, that
2681 vertex counts as "out" (as if its < 0);
2682 The limits on both clip and cull distances are bound
2683 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2684 the maximum number of components that can be used to hold the
2685 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2686 which specifies the maximum number of registers which can be
2687 annotated with those semantics.
2688
2689
2690 TGSI_SEMANTIC_CLIPDIST
2691 """"""""""""""""""""""
2692
2693 When components of vertex elements are identified this way, these
2694 values are each assumed to be a float32 signed distance to a plane.
2695 Primitive setup only invokes rasterization on pixels for which
2696 the interpolated plane distances are >= 0. Multiple clip planes
2697 can be implemented simultaneously, by annotating multiple
2698 components of one or more vertex elements with the above specified
2699 semantic. The limits on both clip and cull distances are bound
2700 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2701 the maximum number of components that can be used to hold the
2702 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2703 which specifies the maximum number of registers which can be
2704 annotated with those semantics.
2705
2706 TGSI_SEMANTIC_SAMPLEID
2707 """"""""""""""""""""""
2708
2709 For fragment shaders, this semantic label indicates that a system value
2710 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2711
2712 TGSI_SEMANTIC_SAMPLEPOS
2713 """""""""""""""""""""""
2714
2715 For fragment shaders, this semantic label indicates that a system value
2716 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2717 and Y values are used.
2718
2719 TGSI_SEMANTIC_SAMPLEMASK
2720 """"""""""""""""""""""""
2721
2722 For fragment shaders, this semantic label indicates that an output contains
2723 the sample mask used to disable further sample processing
2724 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2725
2726 TGSI_SEMANTIC_INVOCATIONID
2727 """"""""""""""""""""""""""
2728
2729 For geometry shaders, this semantic label indicates that a system value
2730 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2731 used.
2732
2733 Declaration Interpolate
2734 ^^^^^^^^^^^^^^^^^^^^^^^
2735
2736 This token is only valid for fragment shader INPUT declarations.
2737
2738 The Interpolate field specifes the way input is being interpolated by
2739 the rasteriser and is one of TGSI_INTERPOLATE_*.
2740
2741 The Location field specifies the location inside the pixel that the
2742 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2743 when per-sample shading is enabled, the implementation may choose to
2744 interpolate at the sample irrespective of the Location field.
2745
2746 The CylindricalWrap bitfield specifies which register components
2747 should be subject to cylindrical wrapping when interpolating by the
2748 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2749 should be interpolated according to cylindrical wrapping rules.
2750
2751
2752 Declaration Sampler View
2753 ^^^^^^^^^^^^^^^^^^^^^^^^
2754
2755 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2756
2757 DCL SVIEW[#], resource, type(s)
2758
2759 Declares a shader input sampler view and assigns it to a SVIEW[#]
2760 register.
2761
2762 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2763
2764 type must be 1 or 4 entries (if specifying on a per-component
2765 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2766
2767
2768 Declaration Resource
2769 ^^^^^^^^^^^^^^^^^^^^
2770
2771 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2772
2773 DCL RES[#], resource [, WR] [, RAW]
2774
2775 Declares a shader input resource and assigns it to a RES[#]
2776 register.
2777
2778 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2779 2DArray.
2780
2781 If the RAW keyword is not specified, the texture data will be
2782 subject to conversion, swizzling and scaling as required to yield
2783 the specified data type from the physical data format of the bound
2784 resource.
2785
2786 If the RAW keyword is specified, no channel conversion will be
2787 performed: the values read for each of the channels (X,Y,Z,W) will
2788 correspond to consecutive words in the same order and format
2789 they're found in memory. No element-to-address conversion will be
2790 performed either: the value of the provided X coordinate will be
2791 interpreted in byte units instead of texel units. The result of
2792 accessing a misaligned address is undefined.
2793
2794 Usage of the STORE opcode is only allowed if the WR (writable) flag
2795 is set.
2796
2797
2798 Properties
2799 ^^^^^^^^^^^^^^^^^^^^^^^^
2800
2801 Properties are general directives that apply to the whole TGSI program.
2802
2803 FS_COORD_ORIGIN
2804 """""""""""""""
2805
2806 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2807 The default value is UPPER_LEFT.
2808
2809 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2810 increase downward and rightward.
2811 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2812 increase upward and rightward.
2813
2814 OpenGL defaults to LOWER_LEFT, and is configurable with the
2815 GL_ARB_fragment_coord_conventions extension.
2816
2817 DirectX 9/10 use UPPER_LEFT.
2818
2819 FS_COORD_PIXEL_CENTER
2820 """""""""""""""""""""
2821
2822 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2823 The default value is HALF_INTEGER.
2824
2825 If HALF_INTEGER, the fractionary part of the position will be 0.5
2826 If INTEGER, the fractionary part of the position will be 0.0
2827
2828 Note that this does not affect the set of fragments generated by
2829 rasterization, which is instead controlled by half_pixel_center in the
2830 rasterizer.
2831
2832 OpenGL defaults to HALF_INTEGER, and is configurable with the
2833 GL_ARB_fragment_coord_conventions extension.
2834
2835 DirectX 9 uses INTEGER.
2836 DirectX 10 uses HALF_INTEGER.
2837
2838 FS_COLOR0_WRITES_ALL_CBUFS
2839 """"""""""""""""""""""""""
2840 Specifies that writes to the fragment shader color 0 are replicated to all
2841 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2842 fragData is directed to a single color buffer, but fragColor is broadcast.
2843
2844 VS_PROHIBIT_UCPS
2845 """"""""""""""""""""""""""
2846 If this property is set on the program bound to the shader stage before the
2847 fragment shader, user clip planes should have no effect (be disabled) even if
2848 that shader does not write to any clip distance outputs and the rasterizer's
2849 clip_plane_enable is non-zero.
2850 This property is only supported by drivers that also support shader clip
2851 distance outputs.
2852 This is useful for APIs that don't have UCPs and where clip distances written
2853 by a shader cannot be disabled.
2854
2855 GS_INVOCATIONS
2856 """"""""""""""
2857
2858 Specifies the number of times a geometry shader should be executed for each
2859 input primitive. Each invocation will have a different
2860 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2861 be 1.
2862
2863 VS_WINDOW_SPACE_POSITION
2864 """"""""""""""""""""""""""
2865 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2866 is assumed to contain window space coordinates.
2867 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2868 directly taken from the 4-th component of the shader output.
2869 Naturally, clipping is not performed on window coordinates either.
2870 The effect of this property is undefined if a geometry or tessellation shader
2871 are in use.
2872
2873 Texture Sampling and Texture Formats
2874 ------------------------------------
2875
2876 This table shows how texture image components are returned as (x,y,z,w) tuples
2877 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2878 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2879 well.
2880
2881 +--------------------+--------------+--------------------+--------------+
2882 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2883 +====================+==============+====================+==============+
2884 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2885 +--------------------+--------------+--------------------+--------------+
2886 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2887 +--------------------+--------------+--------------------+--------------+
2888 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2889 +--------------------+--------------+--------------------+--------------+
2890 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2891 +--------------------+--------------+--------------------+--------------+
2892 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2893 +--------------------+--------------+--------------------+--------------+
2894 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2895 +--------------------+--------------+--------------------+--------------+
2896 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2897 +--------------------+--------------+--------------------+--------------+
2898 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2899 +--------------------+--------------+--------------------+--------------+
2900 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2901 | | | [#envmap-bumpmap]_ | |
2902 +--------------------+--------------+--------------------+--------------+
2903 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2904 | | | [#depth-tex-mode]_ | |
2905 +--------------------+--------------+--------------------+--------------+
2906 | S | (s, s, s, s) | unknown | unknown |
2907 +--------------------+--------------+--------------------+--------------+
2908
2909 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2910 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2911 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.