gallium: switch dedicated centroid field to interpolation location
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: RCC - Reciprocal Clamped
408
409 This instruction replicates its result.
410
411 XXX cleanup on aisle three
412
413 .. math::
414
415 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.84467e+019) : clamp(1 / src.x, -1.84467e+019, -5.42101e-020)
416
417
418 .. opcode:: DPH - Homogeneous Dot Product
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
425
426
427 .. opcode:: COS - Cosine
428
429 This instruction replicates its result.
430
431 .. math::
432
433 dst = \cos{src.x}
434
435
436 .. opcode:: DDX - Derivative Relative To X
437
438 .. math::
439
440 dst.x = partialx(src.x)
441
442 dst.y = partialx(src.y)
443
444 dst.z = partialx(src.z)
445
446 dst.w = partialx(src.w)
447
448
449 .. opcode:: DDY - Derivative Relative To Y
450
451 .. math::
452
453 dst.x = partialy(src.x)
454
455 dst.y = partialy(src.y)
456
457 dst.z = partialy(src.z)
458
459 dst.w = partialy(src.w)
460
461
462 .. opcode:: PK2H - Pack Two 16-bit Floats
463
464 TBD
465
466
467 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
468
469 TBD
470
471
472 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
473
474 TBD
475
476
477 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
478
479 TBD
480
481
482 .. opcode:: RFL - Reflection Vector
483
484 .. math::
485
486 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
487
488 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
489
490 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
491
492 dst.w = 1
493
494 .. note::
495
496 Considered for removal.
497
498
499 .. opcode:: SEQ - Set On Equal
500
501 .. math::
502
503 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: SFL - Set On False
513
514 This instruction replicates its result.
515
516 .. math::
517
518 dst = 0.0F
519
520 .. note::
521
522 Considered for removal.
523
524
525 .. opcode:: SGT - Set On Greater Than
526
527 .. math::
528
529 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
530
531 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
532
533 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
534
535 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
536
537
538 .. opcode:: SIN - Sine
539
540 This instruction replicates its result.
541
542 .. math::
543
544 dst = \sin{src.x}
545
546
547 .. opcode:: SLE - Set On Less Equal Than
548
549 .. math::
550
551 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
552
553 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
554
555 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
556
557 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
558
559
560 .. opcode:: SNE - Set On Not Equal
561
562 .. math::
563
564 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
565
566 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
567
568 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
569
570 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
571
572
573 .. opcode:: STR - Set On True
574
575 This instruction replicates its result.
576
577 .. math::
578
579 dst = 1.0F
580
581
582 .. opcode:: TEX - Texture Lookup
583
584 for array textures src0.y contains the slice for 1D,
585 and src0.z contain the slice for 2D.
586
587 for shadow textures with no arrays, src0.z contains
588 the reference value.
589
590 for shadow textures with arrays, src0.z contains
591 the reference value for 1D arrays, and src0.w contains
592 the reference value for 2D arrays.
593
594 There is no way to pass a bias in the .w value for
595 shadow arrays, and GLSL doesn't allow this.
596 GLSL does allow cube shadows maps to take a bias value,
597 and we have to determine how this will look in TGSI.
598
599 .. math::
600
601 coord = src0
602
603 bias = 0.0
604
605 dst = texture\_sample(unit, coord, bias)
606
607 .. opcode:: TXD - Texture Lookup with Derivatives
608
609 .. math::
610
611 coord = src0
612
613 ddx = src1
614
615 ddy = src2
616
617 bias = 0.0
618
619 dst = texture\_sample\_deriv(unit, coord, bias, ddx, ddy)
620
621
622 .. opcode:: TXP - Projective Texture Lookup
623
624 .. math::
625
626 coord.x = src0.x / src.w
627
628 coord.y = src0.y / src.w
629
630 coord.z = src0.z / src.w
631
632 coord.w = src0.w
633
634 bias = 0.0
635
636 dst = texture\_sample(unit, coord, bias)
637
638
639 .. opcode:: UP2H - Unpack Two 16-Bit Floats
640
641 TBD
642
643 .. note::
644
645 Considered for removal.
646
647 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
648
649 TBD
650
651 .. note::
652
653 Considered for removal.
654
655 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
656
657 TBD
658
659 .. note::
660
661 Considered for removal.
662
663 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
664
665 TBD
666
667 .. note::
668
669 Considered for removal.
670
671 .. opcode:: X2D - 2D Coordinate Transformation
672
673 .. math::
674
675 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
676
677 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
678
679 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
680
681 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
682
683 .. note::
684
685 Considered for removal.
686
687
688 .. opcode:: ARA - Address Register Add
689
690 TBD
691
692 .. note::
693
694 Considered for removal.
695
696 .. opcode:: ARR - Address Register Load With Round
697
698 .. math::
699
700 dst.x = round(src.x)
701
702 dst.y = round(src.y)
703
704 dst.z = round(src.z)
705
706 dst.w = round(src.w)
707
708
709 .. opcode:: SSG - Set Sign
710
711 .. math::
712
713 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
714
715 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
716
717 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
718
719 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
720
721
722 .. opcode:: CMP - Compare
723
724 .. math::
725
726 dst.x = (src0.x < 0) ? src1.x : src2.x
727
728 dst.y = (src0.y < 0) ? src1.y : src2.y
729
730 dst.z = (src0.z < 0) ? src1.z : src2.z
731
732 dst.w = (src0.w < 0) ? src1.w : src2.w
733
734
735 .. opcode:: KILL_IF - Conditional Discard
736
737 Conditional discard. Allowed in fragment shaders only.
738
739 .. math::
740
741 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
742 discard
743 endif
744
745
746 .. opcode:: KILL - Discard
747
748 Unconditional discard. Allowed in fragment shaders only.
749
750
751 .. opcode:: SCS - Sine Cosine
752
753 .. math::
754
755 dst.x = \cos{src.x}
756
757 dst.y = \sin{src.x}
758
759 dst.z = 0
760
761 dst.w = 1
762
763
764 .. opcode:: TXB - Texture Lookup With Bias
765
766 .. math::
767
768 coord.x = src.x
769
770 coord.y = src.y
771
772 coord.z = src.z
773
774 coord.w = 1.0
775
776 bias = src.z
777
778 dst = texture\_sample(unit, coord, bias)
779
780
781 .. opcode:: NRM - 3-component Vector Normalise
782
783 .. math::
784
785 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
786
787 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
788
789 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
790
791 dst.w = 1
792
793
794 .. opcode:: DIV - Divide
795
796 .. math::
797
798 dst.x = \frac{src0.x}{src1.x}
799
800 dst.y = \frac{src0.y}{src1.y}
801
802 dst.z = \frac{src0.z}{src1.z}
803
804 dst.w = \frac{src0.w}{src1.w}
805
806
807 .. opcode:: DP2 - 2-component Dot Product
808
809 This instruction replicates its result.
810
811 .. math::
812
813 dst = src0.x \times src1.x + src0.y \times src1.y
814
815
816 .. opcode:: TXL - Texture Lookup With explicit LOD
817
818 .. math::
819
820 coord.x = src0.x
821
822 coord.y = src0.y
823
824 coord.z = src0.z
825
826 coord.w = 1.0
827
828 lod = src0.w
829
830 dst = texture\_sample(unit, coord, lod)
831
832
833 .. opcode:: PUSHA - Push Address Register On Stack
834
835 push(src.x)
836 push(src.y)
837 push(src.z)
838 push(src.w)
839
840 .. note::
841
842 Considered for cleanup.
843
844 .. note::
845
846 Considered for removal.
847
848 .. opcode:: POPA - Pop Address Register From Stack
849
850 dst.w = pop()
851 dst.z = pop()
852 dst.y = pop()
853 dst.x = pop()
854
855 .. note::
856
857 Considered for cleanup.
858
859 .. note::
860
861 Considered for removal.
862
863
864 .. opcode:: BRA - Branch
865
866 pc = target
867
868 .. note::
869
870 Considered for removal.
871
872
873 .. opcode:: CALLNZ - Subroutine Call If Not Zero
874
875 TBD
876
877 .. note::
878
879 Considered for cleanup.
880
881 .. note::
882
883 Considered for removal.
884
885
886 Compute ISA
887 ^^^^^^^^^^^^^^^^^^^^^^^^
888
889 These opcodes are primarily provided for special-use computational shaders.
890 Support for these opcodes indicated by a special pipe capability bit (TBD).
891
892 XXX doesn't look like most of the opcodes really belong here.
893
894 .. opcode:: CEIL - Ceiling
895
896 .. math::
897
898 dst.x = \lceil src.x\rceil
899
900 dst.y = \lceil src.y\rceil
901
902 dst.z = \lceil src.z\rceil
903
904 dst.w = \lceil src.w\rceil
905
906
907 .. opcode:: TRUNC - Truncate
908
909 .. math::
910
911 dst.x = trunc(src.x)
912
913 dst.y = trunc(src.y)
914
915 dst.z = trunc(src.z)
916
917 dst.w = trunc(src.w)
918
919
920 .. opcode:: MOD - Modulus
921
922 .. math::
923
924 dst.x = src0.x \bmod src1.x
925
926 dst.y = src0.y \bmod src1.y
927
928 dst.z = src0.z \bmod src1.z
929
930 dst.w = src0.w \bmod src1.w
931
932
933 .. opcode:: UARL - Integer Address Register Load
934
935 Moves the contents of the source register, assumed to be an integer, into the
936 destination register, which is assumed to be an address (ADDR) register.
937
938
939 .. opcode:: SAD - Sum Of Absolute Differences
940
941 .. math::
942
943 dst.x = |src0.x - src1.x| + src2.x
944
945 dst.y = |src0.y - src1.y| + src2.y
946
947 dst.z = |src0.z - src1.z| + src2.z
948
949 dst.w = |src0.w - src1.w| + src2.w
950
951
952 .. opcode:: TXF - Texel Fetch
953
954 As per NV_gpu_shader4, extract a single texel from a specified texture
955 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
956 four-component signed integer vector used to identify the single texel
957 accessed. 3 components + level. src 1 is a 3 component constant signed
958 integer vector, with each component only have a range of -8..+8 (hw only
959 seems to deal with this range, interface allows for up to unsigned int).
960 TXF(uint_vec coord, int_vec offset).
961
962
963 .. opcode:: TXQ - Texture Size Query
964
965 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
966 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
967 depth), 1D array (width, layers), 2D array (width, height, layers).
968 Also return the number of accessible levels (last_level - first_level + 1)
969 in W.
970
971 .. math::
972
973 lod = src0.x
974
975 dst.x = texture\_width(unit, lod)
976
977 dst.y = texture\_height(unit, lod)
978
979 dst.z = texture\_depth(unit, lod)
980
981 dst.w = texture\_levels(unit)
982
983 .. opcode:: TG4 - Texture Gather
984
985 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
986 filtering operation and packs them into a single register. Only works with
987 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
988 addressing modes of the sampler and the top level of any mip pyramid are
989 used. Set W to zero. It behaves like the TEX instruction, but a filtered
990 sample is not generated. The four samples that contribute to filtering are
991 placed into xyzw in clockwise order, starting with the (u,v) texture
992 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
993 where the magnitude of the deltas are half a texel.
994
995 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
996 depth compares, single component selection, and a non-constant offset. It
997 doesn't allow support for the GL independent offset to get i0,j0. This would
998 require another CAP is hw can do it natively. For now we lower that before
999 TGSI.
1000
1001 .. math::
1002
1003 coord = src0
1004
1005 component = src1
1006
1007 dst = texture\_gather4 (unit, coord, component)
1008
1009 (with SM5 - cube array shadow)
1010
1011 .. math::
1012
1013 coord = src0
1014
1015 compare = src1
1016
1017 dst = texture\_gather (uint, coord, compare)
1018
1019 .. opcode:: LODQ - level of detail query
1020
1021 Compute the LOD information that the texture pipe would use to access the
1022 texture. The Y component contains the computed LOD lambda_prime. The X
1023 component contains the LOD that will be accessed, based on min/max lod's
1024 and mipmap filters.
1025
1026 .. math::
1027
1028 coord = src0
1029
1030 dst.xy = lodq(uint, coord);
1031
1032 Integer ISA
1033 ^^^^^^^^^^^^^^^^^^^^^^^^
1034 These opcodes are used for integer operations.
1035 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1036
1037
1038 .. opcode:: I2F - Signed Integer To Float
1039
1040 Rounding is unspecified (round to nearest even suggested).
1041
1042 .. math::
1043
1044 dst.x = (float) src.x
1045
1046 dst.y = (float) src.y
1047
1048 dst.z = (float) src.z
1049
1050 dst.w = (float) src.w
1051
1052
1053 .. opcode:: U2F - Unsigned Integer To Float
1054
1055 Rounding is unspecified (round to nearest even suggested).
1056
1057 .. math::
1058
1059 dst.x = (float) src.x
1060
1061 dst.y = (float) src.y
1062
1063 dst.z = (float) src.z
1064
1065 dst.w = (float) src.w
1066
1067
1068 .. opcode:: F2I - Float to Signed Integer
1069
1070 Rounding is towards zero (truncate).
1071 Values outside signed range (including NaNs) produce undefined results.
1072
1073 .. math::
1074
1075 dst.x = (int) src.x
1076
1077 dst.y = (int) src.y
1078
1079 dst.z = (int) src.z
1080
1081 dst.w = (int) src.w
1082
1083
1084 .. opcode:: F2U - Float to Unsigned Integer
1085
1086 Rounding is towards zero (truncate).
1087 Values outside unsigned range (including NaNs) produce undefined results.
1088
1089 .. math::
1090
1091 dst.x = (unsigned) src.x
1092
1093 dst.y = (unsigned) src.y
1094
1095 dst.z = (unsigned) src.z
1096
1097 dst.w = (unsigned) src.w
1098
1099
1100 .. opcode:: UADD - Integer Add
1101
1102 This instruction works the same for signed and unsigned integers.
1103 The low 32bit of the result is returned.
1104
1105 .. math::
1106
1107 dst.x = src0.x + src1.x
1108
1109 dst.y = src0.y + src1.y
1110
1111 dst.z = src0.z + src1.z
1112
1113 dst.w = src0.w + src1.w
1114
1115
1116 .. opcode:: UMAD - Integer Multiply And Add
1117
1118 This instruction works the same for signed and unsigned integers.
1119 The multiplication returns the low 32bit (as does the result itself).
1120
1121 .. math::
1122
1123 dst.x = src0.x \times src1.x + src2.x
1124
1125 dst.y = src0.y \times src1.y + src2.y
1126
1127 dst.z = src0.z \times src1.z + src2.z
1128
1129 dst.w = src0.w \times src1.w + src2.w
1130
1131
1132 .. opcode:: UMUL - Integer Multiply
1133
1134 This instruction works the same for signed and unsigned integers.
1135 The low 32bit of the result is returned.
1136
1137 .. math::
1138
1139 dst.x = src0.x \times src1.x
1140
1141 dst.y = src0.y \times src1.y
1142
1143 dst.z = src0.z \times src1.z
1144
1145 dst.w = src0.w \times src1.w
1146
1147
1148 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1149
1150 The high 32bits of the multiplication of 2 signed integers are returned.
1151
1152 .. math::
1153
1154 dst.x = (src0.x \times src1.x) >> 32
1155
1156 dst.y = (src0.y \times src1.y) >> 32
1157
1158 dst.z = (src0.z \times src1.z) >> 32
1159
1160 dst.w = (src0.w \times src1.w) >> 32
1161
1162
1163 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1164
1165 The high 32bits of the multiplication of 2 unsigned integers are returned.
1166
1167 .. math::
1168
1169 dst.x = (src0.x \times src1.x) >> 32
1170
1171 dst.y = (src0.y \times src1.y) >> 32
1172
1173 dst.z = (src0.z \times src1.z) >> 32
1174
1175 dst.w = (src0.w \times src1.w) >> 32
1176
1177
1178 .. opcode:: IDIV - Signed Integer Division
1179
1180 TBD: behavior for division by zero.
1181
1182 .. math::
1183
1184 dst.x = src0.x \ src1.x
1185
1186 dst.y = src0.y \ src1.y
1187
1188 dst.z = src0.z \ src1.z
1189
1190 dst.w = src0.w \ src1.w
1191
1192
1193 .. opcode:: UDIV - Unsigned Integer Division
1194
1195 For division by zero, 0xffffffff is returned.
1196
1197 .. math::
1198
1199 dst.x = src0.x \ src1.x
1200
1201 dst.y = src0.y \ src1.y
1202
1203 dst.z = src0.z \ src1.z
1204
1205 dst.w = src0.w \ src1.w
1206
1207
1208 .. opcode:: UMOD - Unsigned Integer Remainder
1209
1210 If second arg is zero, 0xffffffff is returned.
1211
1212 .. math::
1213
1214 dst.x = src0.x \ src1.x
1215
1216 dst.y = src0.y \ src1.y
1217
1218 dst.z = src0.z \ src1.z
1219
1220 dst.w = src0.w \ src1.w
1221
1222
1223 .. opcode:: NOT - Bitwise Not
1224
1225 .. math::
1226
1227 dst.x = \sim src.x
1228
1229 dst.y = \sim src.y
1230
1231 dst.z = \sim src.z
1232
1233 dst.w = \sim src.w
1234
1235
1236 .. opcode:: AND - Bitwise And
1237
1238 .. math::
1239
1240 dst.x = src0.x \& src1.x
1241
1242 dst.y = src0.y \& src1.y
1243
1244 dst.z = src0.z \& src1.z
1245
1246 dst.w = src0.w \& src1.w
1247
1248
1249 .. opcode:: OR - Bitwise Or
1250
1251 .. math::
1252
1253 dst.x = src0.x | src1.x
1254
1255 dst.y = src0.y | src1.y
1256
1257 dst.z = src0.z | src1.z
1258
1259 dst.w = src0.w | src1.w
1260
1261
1262 .. opcode:: XOR - Bitwise Xor
1263
1264 .. math::
1265
1266 dst.x = src0.x \oplus src1.x
1267
1268 dst.y = src0.y \oplus src1.y
1269
1270 dst.z = src0.z \oplus src1.z
1271
1272 dst.w = src0.w \oplus src1.w
1273
1274
1275 .. opcode:: IMAX - Maximum of Signed Integers
1276
1277 .. math::
1278
1279 dst.x = max(src0.x, src1.x)
1280
1281 dst.y = max(src0.y, src1.y)
1282
1283 dst.z = max(src0.z, src1.z)
1284
1285 dst.w = max(src0.w, src1.w)
1286
1287
1288 .. opcode:: UMAX - Maximum of Unsigned Integers
1289
1290 .. math::
1291
1292 dst.x = max(src0.x, src1.x)
1293
1294 dst.y = max(src0.y, src1.y)
1295
1296 dst.z = max(src0.z, src1.z)
1297
1298 dst.w = max(src0.w, src1.w)
1299
1300
1301 .. opcode:: IMIN - Minimum of Signed Integers
1302
1303 .. math::
1304
1305 dst.x = min(src0.x, src1.x)
1306
1307 dst.y = min(src0.y, src1.y)
1308
1309 dst.z = min(src0.z, src1.z)
1310
1311 dst.w = min(src0.w, src1.w)
1312
1313
1314 .. opcode:: UMIN - Minimum of Unsigned Integers
1315
1316 .. math::
1317
1318 dst.x = min(src0.x, src1.x)
1319
1320 dst.y = min(src0.y, src1.y)
1321
1322 dst.z = min(src0.z, src1.z)
1323
1324 dst.w = min(src0.w, src1.w)
1325
1326
1327 .. opcode:: SHL - Shift Left
1328
1329 The shift count is masked with 0x1f before the shift is applied.
1330
1331 .. math::
1332
1333 dst.x = src0.x << (0x1f \& src1.x)
1334
1335 dst.y = src0.y << (0x1f \& src1.y)
1336
1337 dst.z = src0.z << (0x1f \& src1.z)
1338
1339 dst.w = src0.w << (0x1f \& src1.w)
1340
1341
1342 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1343
1344 The shift count is masked with 0x1f before the shift is applied.
1345
1346 .. math::
1347
1348 dst.x = src0.x >> (0x1f \& src1.x)
1349
1350 dst.y = src0.y >> (0x1f \& src1.y)
1351
1352 dst.z = src0.z >> (0x1f \& src1.z)
1353
1354 dst.w = src0.w >> (0x1f \& src1.w)
1355
1356
1357 .. opcode:: USHR - Logical Shift Right
1358
1359 The shift count is masked with 0x1f before the shift is applied.
1360
1361 .. math::
1362
1363 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1364
1365 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1366
1367 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1368
1369 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1370
1371
1372 .. opcode:: UCMP - Integer Conditional Move
1373
1374 .. math::
1375
1376 dst.x = src0.x ? src1.x : src2.x
1377
1378 dst.y = src0.y ? src1.y : src2.y
1379
1380 dst.z = src0.z ? src1.z : src2.z
1381
1382 dst.w = src0.w ? src1.w : src2.w
1383
1384
1385
1386 .. opcode:: ISSG - Integer Set Sign
1387
1388 .. math::
1389
1390 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1391
1392 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1393
1394 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1395
1396 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1397
1398
1399
1400 .. opcode:: FSLT - Float Set On Less Than (ordered)
1401
1402 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1403
1404 .. math::
1405
1406 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1407
1408 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1409
1410 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1411
1412 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1413
1414
1415 .. opcode:: ISLT - Signed Integer Set On Less Than
1416
1417 .. math::
1418
1419 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1420
1421 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1422
1423 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1424
1425 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1426
1427
1428 .. opcode:: USLT - Unsigned Integer Set On Less Than
1429
1430 .. math::
1431
1432 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1433
1434 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1435
1436 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1437
1438 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1439
1440
1441 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1442
1443 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1444
1445 .. math::
1446
1447 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1448
1449 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1450
1451 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1452
1453 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1454
1455
1456 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1457
1458 .. math::
1459
1460 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1461
1462 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1463
1464 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1465
1466 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1467
1468
1469 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1470
1471 .. math::
1472
1473 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1474
1475 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1476
1477 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1478
1479 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1480
1481
1482 .. opcode:: FSEQ - Float Set On Equal (ordered)
1483
1484 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1485
1486 .. math::
1487
1488 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1489
1490 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1491
1492 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1493
1494 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1495
1496
1497 .. opcode:: USEQ - Integer Set On Equal
1498
1499 .. math::
1500
1501 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1502
1503 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1504
1505 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1506
1507 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1508
1509
1510 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1511
1512 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1513
1514 .. math::
1515
1516 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1517
1518 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1519
1520 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1521
1522 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1523
1524
1525 .. opcode:: USNE - Integer Set On Not Equal
1526
1527 .. math::
1528
1529 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1530
1531 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1532
1533 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1534
1535 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1536
1537
1538 .. opcode:: INEG - Integer Negate
1539
1540 Two's complement.
1541
1542 .. math::
1543
1544 dst.x = -src.x
1545
1546 dst.y = -src.y
1547
1548 dst.z = -src.z
1549
1550 dst.w = -src.w
1551
1552
1553 .. opcode:: IABS - Integer Absolute Value
1554
1555 .. math::
1556
1557 dst.x = |src.x|
1558
1559 dst.y = |src.y|
1560
1561 dst.z = |src.z|
1562
1563 dst.w = |src.w|
1564
1565 Bitwise ISA
1566 ^^^^^^^^^^^
1567 These opcodes are used for bit-level manipulation of integers.
1568
1569 .. opcode:: IBFE - Signed Bitfield Extract
1570
1571 See SM5 instruction of the same name. Extracts a set of bits from the input,
1572 and sign-extends them if the high bit of the extracted window is set.
1573
1574 Pseudocode::
1575
1576 def ibfe(value, offset, bits):
1577 offset = offset & 0x1f
1578 bits = bits & 0x1f
1579 if bits == 0: return 0
1580 # Note: >> sign-extends
1581 if width + offset < 32:
1582 return (value << (32 - offset - bits)) >> (32 - bits)
1583 else:
1584 return value >> offset
1585
1586 .. opcode:: UBFE - Unsigned Bitfield Extract
1587
1588 See SM5 instruction of the same name. Extracts a set of bits from the input,
1589 without any sign-extension.
1590
1591 Pseudocode::
1592
1593 def ubfe(value, offset, bits):
1594 offset = offset & 0x1f
1595 bits = bits & 0x1f
1596 if bits == 0: return 0
1597 # Note: >> does not sign-extend
1598 if width + offset < 32:
1599 return (value << (32 - offset - bits)) >> (32 - bits)
1600 else:
1601 return value >> offset
1602
1603 .. opcode:: BFI - Bitfield Insert
1604
1605 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1606 the low bits of 'insert'.
1607
1608 Pseudocode::
1609
1610 def bfi(base, insert, offset, bits):
1611 offset = offset & 0x1f
1612 bits = bits & 0x1f
1613 mask = ((1 << bits) - 1) << offset
1614 return ((insert << offset) & mask) | (base & ~mask)
1615
1616 .. opcode:: BREV - Bitfield Reverse
1617
1618 See SM5 instruction BFREV. Reverses the bits of the argument.
1619
1620 .. opcode:: POPC - Population Count
1621
1622 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1623
1624 .. opcode:: LSB - Index of lowest set bit
1625
1626 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1627 bit of the argument. Returns -1 if none are set.
1628
1629 .. opcode:: IMSB - Index of highest non-sign bit
1630
1631 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1632 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1633 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1634 (i.e. for inputs 0 and -1).
1635
1636 .. opcode:: UMSB - Index of highest set bit
1637
1638 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1639 set bit of the argument. Returns -1 if none are set.
1640
1641 Geometry ISA
1642 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1643
1644 These opcodes are only supported in geometry shaders; they have no meaning
1645 in any other type of shader.
1646
1647 .. opcode:: EMIT - Emit
1648
1649 Generate a new vertex for the current primitive into the specified vertex
1650 stream using the values in the output registers.
1651
1652
1653 .. opcode:: ENDPRIM - End Primitive
1654
1655 Complete the current primitive in the specified vertex stream (consisting of
1656 the emitted vertices), and start a new one.
1657
1658
1659 GLSL ISA
1660 ^^^^^^^^^^
1661
1662 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1663 opcodes is determined by a special capability bit, ``GLSL``.
1664 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1665
1666 .. opcode:: CAL - Subroutine Call
1667
1668 push(pc)
1669 pc = target
1670
1671
1672 .. opcode:: RET - Subroutine Call Return
1673
1674 pc = pop()
1675
1676
1677 .. opcode:: CONT - Continue
1678
1679 Unconditionally moves the point of execution to the instruction after the
1680 last bgnloop. The instruction must appear within a bgnloop/endloop.
1681
1682 .. note::
1683
1684 Support for CONT is determined by a special capability bit,
1685 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1686
1687
1688 .. opcode:: BGNLOOP - Begin a Loop
1689
1690 Start a loop. Must have a matching endloop.
1691
1692
1693 .. opcode:: BGNSUB - Begin Subroutine
1694
1695 Starts definition of a subroutine. Must have a matching endsub.
1696
1697
1698 .. opcode:: ENDLOOP - End a Loop
1699
1700 End a loop started with bgnloop.
1701
1702
1703 .. opcode:: ENDSUB - End Subroutine
1704
1705 Ends definition of a subroutine.
1706
1707
1708 .. opcode:: NOP - No Operation
1709
1710 Do nothing.
1711
1712
1713 .. opcode:: BRK - Break
1714
1715 Unconditionally moves the point of execution to the instruction after the
1716 next endloop or endswitch. The instruction must appear within a loop/endloop
1717 or switch/endswitch.
1718
1719
1720 .. opcode:: BREAKC - Break Conditional
1721
1722 Conditionally moves the point of execution to the instruction after the
1723 next endloop or endswitch. The instruction must appear within a loop/endloop
1724 or switch/endswitch.
1725 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1726 as an integer register.
1727
1728 .. note::
1729
1730 Considered for removal as it's quite inconsistent wrt other opcodes
1731 (could emulate with UIF/BRK/ENDIF).
1732
1733
1734 .. opcode:: IF - Float If
1735
1736 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1737
1738 src0.x != 0.0
1739
1740 where src0.x is interpreted as a floating point register.
1741
1742
1743 .. opcode:: UIF - Bitwise If
1744
1745 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1746
1747 src0.x != 0
1748
1749 where src0.x is interpreted as an integer register.
1750
1751
1752 .. opcode:: ELSE - Else
1753
1754 Starts an else block, after an IF or UIF statement.
1755
1756
1757 .. opcode:: ENDIF - End If
1758
1759 Ends an IF or UIF block.
1760
1761
1762 .. opcode:: SWITCH - Switch
1763
1764 Starts a C-style switch expression. The switch consists of one or multiple
1765 CASE statements, and at most one DEFAULT statement. Execution of a statement
1766 ends when a BRK is hit, but just like in C falling through to other cases
1767 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1768 just as last statement, and fallthrough is allowed into/from it.
1769 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1770
1771 Example::
1772
1773 SWITCH src[0].x
1774 CASE src[0].x
1775 (some instructions here)
1776 (optional BRK here)
1777 DEFAULT
1778 (some instructions here)
1779 (optional BRK here)
1780 CASE src[0].x
1781 (some instructions here)
1782 (optional BRK here)
1783 ENDSWITCH
1784
1785
1786 .. opcode:: CASE - Switch case
1787
1788 This represents a switch case label. The src arg must be an integer immediate.
1789
1790
1791 .. opcode:: DEFAULT - Switch default
1792
1793 This represents the default case in the switch, which is taken if no other
1794 case matches.
1795
1796
1797 .. opcode:: ENDSWITCH - End of switch
1798
1799 Ends a switch expression.
1800
1801
1802 .. opcode:: NRM4 - 4-component Vector Normalise
1803
1804 This instruction replicates its result.
1805
1806 .. math::
1807
1808 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1809
1810
1811 .. _doubleopcodes:
1812
1813 Double ISA
1814 ^^^^^^^^^^^^^^^
1815
1816 The double-precision opcodes reinterpret four-component vectors into
1817 two-component vectors with doubled precision in each component.
1818
1819 Support for these opcodes is XXX undecided. :T
1820
1821 .. opcode:: DADD - Add
1822
1823 .. math::
1824
1825 dst.xy = src0.xy + src1.xy
1826
1827 dst.zw = src0.zw + src1.zw
1828
1829
1830 .. opcode:: DDIV - Divide
1831
1832 .. math::
1833
1834 dst.xy = src0.xy / src1.xy
1835
1836 dst.zw = src0.zw / src1.zw
1837
1838 .. opcode:: DSEQ - Set on Equal
1839
1840 .. math::
1841
1842 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1843
1844 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1845
1846 .. opcode:: DSLT - Set on Less than
1847
1848 .. math::
1849
1850 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1851
1852 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1853
1854 .. opcode:: DFRAC - Fraction
1855
1856 .. math::
1857
1858 dst.xy = src.xy - \lfloor src.xy\rfloor
1859
1860 dst.zw = src.zw - \lfloor src.zw\rfloor
1861
1862
1863 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1864
1865 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1866 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1867 :math:`dst1 \times 2^{dst0} = src` .
1868
1869 .. math::
1870
1871 dst0.xy = exp(src.xy)
1872
1873 dst1.xy = frac(src.xy)
1874
1875 dst0.zw = exp(src.zw)
1876
1877 dst1.zw = frac(src.zw)
1878
1879 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1880
1881 This opcode is the inverse of :opcode:`DFRACEXP`.
1882
1883 .. math::
1884
1885 dst.xy = src0.xy \times 2^{src1.xy}
1886
1887 dst.zw = src0.zw \times 2^{src1.zw}
1888
1889 .. opcode:: DMIN - Minimum
1890
1891 .. math::
1892
1893 dst.xy = min(src0.xy, src1.xy)
1894
1895 dst.zw = min(src0.zw, src1.zw)
1896
1897 .. opcode:: DMAX - Maximum
1898
1899 .. math::
1900
1901 dst.xy = max(src0.xy, src1.xy)
1902
1903 dst.zw = max(src0.zw, src1.zw)
1904
1905 .. opcode:: DMUL - Multiply
1906
1907 .. math::
1908
1909 dst.xy = src0.xy \times src1.xy
1910
1911 dst.zw = src0.zw \times src1.zw
1912
1913
1914 .. opcode:: DMAD - Multiply And Add
1915
1916 .. math::
1917
1918 dst.xy = src0.xy \times src1.xy + src2.xy
1919
1920 dst.zw = src0.zw \times src1.zw + src2.zw
1921
1922
1923 .. opcode:: DRCP - Reciprocal
1924
1925 .. math::
1926
1927 dst.xy = \frac{1}{src.xy}
1928
1929 dst.zw = \frac{1}{src.zw}
1930
1931 .. opcode:: DSQRT - Square Root
1932
1933 .. math::
1934
1935 dst.xy = \sqrt{src.xy}
1936
1937 dst.zw = \sqrt{src.zw}
1938
1939
1940 .. _samplingopcodes:
1941
1942 Resource Sampling Opcodes
1943 ^^^^^^^^^^^^^^^^^^^^^^^^^
1944
1945 Those opcodes follow very closely semantics of the respective Direct3D
1946 instructions. If in doubt double check Direct3D documentation.
1947 Note that the swizzle on SVIEW (src1) determines texel swizzling
1948 after lookup.
1949
1950 .. opcode:: SAMPLE
1951
1952 Using provided address, sample data from the specified texture using the
1953 filtering mode identified by the gven sampler. The source data may come from
1954 any resource type other than buffers.
1955
1956 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1957
1958 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1959
1960 .. opcode:: SAMPLE_I
1961
1962 Simplified alternative to the SAMPLE instruction. Using the provided
1963 integer address, SAMPLE_I fetches data from the specified sampler view
1964 without any filtering. The source data may come from any resource type
1965 other than CUBE.
1966
1967 Syntax: ``SAMPLE_I dst, address, sampler_view``
1968
1969 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1970
1971 The 'address' is specified as unsigned integers. If the 'address' is out of
1972 range [0...(# texels - 1)] the result of the fetch is always 0 in all
1973 components. As such the instruction doesn't honor address wrap modes, in
1974 cases where that behavior is desirable 'SAMPLE' instruction should be used.
1975 address.w always provides an unsigned integer mipmap level. If the value is
1976 out of the range then the instruction always returns 0 in all components.
1977 address.yz are ignored for buffers and 1d textures. address.z is ignored
1978 for 1d texture arrays and 2d textures.
1979
1980 For 1D texture arrays address.y provides the array index (also as unsigned
1981 integer). If the value is out of the range of available array indices
1982 [0... (array size - 1)] then the opcode always returns 0 in all components.
1983 For 2D texture arrays address.z provides the array index, otherwise it
1984 exhibits the same behavior as in the case for 1D texture arrays. The exact
1985 semantics of the source address are presented in the table below:
1986
1987 +---------------------------+----+-----+-----+---------+
1988 | resource type | X | Y | Z | W |
1989 +===========================+====+=====+=====+=========+
1990 | ``PIPE_BUFFER`` | x | | | ignored |
1991 +---------------------------+----+-----+-----+---------+
1992 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
1993 +---------------------------+----+-----+-----+---------+
1994 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
1995 +---------------------------+----+-----+-----+---------+
1996 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
1997 +---------------------------+----+-----+-----+---------+
1998 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
1999 +---------------------------+----+-----+-----+---------+
2000 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2001 +---------------------------+----+-----+-----+---------+
2002 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2003 +---------------------------+----+-----+-----+---------+
2004 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2005 +---------------------------+----+-----+-----+---------+
2006
2007 Where 'mpl' is a mipmap level and 'idx' is the array index.
2008
2009 .. opcode:: SAMPLE_I_MS
2010
2011 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2012
2013 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2014
2015 .. opcode:: SAMPLE_B
2016
2017 Just like the SAMPLE instruction with the exception that an additional bias
2018 is applied to the level of detail computed as part of the instruction
2019 execution.
2020
2021 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2022
2023 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2024
2025 .. opcode:: SAMPLE_C
2026
2027 Similar to the SAMPLE instruction but it performs a comparison filter. The
2028 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2029 additional float32 operand, reference value, which must be a register with
2030 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2031 current samplers compare_func (in pipe_sampler_state) to compare reference
2032 value against the red component value for the surce resource at each texel
2033 that the currently configured texture filter covers based on the provided
2034 coordinates.
2035
2036 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2037
2038 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2039
2040 .. opcode:: SAMPLE_C_LZ
2041
2042 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2043 for level-zero.
2044
2045 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2046
2047 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2048
2049
2050 .. opcode:: SAMPLE_D
2051
2052 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2053 the source address in the x direction and the y direction are provided by
2054 extra parameters.
2055
2056 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2057
2058 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2059
2060 .. opcode:: SAMPLE_L
2061
2062 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2063 directly as a scalar value, representing no anisotropy.
2064
2065 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2066
2067 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2068
2069 .. opcode:: GATHER4
2070
2071 Gathers the four texels to be used in a bi-linear filtering operation and
2072 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2073 and cubemaps arrays. For 2D textures, only the addressing modes of the
2074 sampler and the top level of any mip pyramid are used. Set W to zero. It
2075 behaves like the SAMPLE instruction, but a filtered sample is not
2076 generated. The four samples that contribute to filtering are placed into
2077 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2078 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2079 magnitude of the deltas are half a texel.
2080
2081
2082 .. opcode:: SVIEWINFO
2083
2084 Query the dimensions of a given sampler view. dst receives width, height,
2085 depth or array size and number of mipmap levels as int4. The dst can have a
2086 writemask which will specify what info is the caller interested in.
2087
2088 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2089
2090 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2091
2092 src_mip_level is an unsigned integer scalar. If it's out of range then
2093 returns 0 for width, height and depth/array size but the total number of
2094 mipmap is still returned correctly for the given sampler view. The returned
2095 width, height and depth values are for the mipmap level selected by the
2096 src_mip_level and are in the number of texels. For 1d texture array width
2097 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2098 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2099 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2100 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2101 resinfo allowing swizzling dst values is ignored (due to the interaction
2102 with rcpfloat modifier which requires some swizzle handling in the state
2103 tracker anyway).
2104
2105 .. opcode:: SAMPLE_POS
2106
2107 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2108 indicated where the sample is located. If the resource is not a multi-sample
2109 resource and not a render target, the result is 0.
2110
2111 .. opcode:: SAMPLE_INFO
2112
2113 dst receives number of samples in x. If the resource is not a multi-sample
2114 resource and not a render target, the result is 0.
2115
2116
2117 .. _resourceopcodes:
2118
2119 Resource Access Opcodes
2120 ^^^^^^^^^^^^^^^^^^^^^^^
2121
2122 .. opcode:: LOAD - Fetch data from a shader resource
2123
2124 Syntax: ``LOAD dst, resource, address``
2125
2126 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2127
2128 Using the provided integer address, LOAD fetches data
2129 from the specified buffer or texture without any
2130 filtering.
2131
2132 The 'address' is specified as a vector of unsigned
2133 integers. If the 'address' is out of range the result
2134 is unspecified.
2135
2136 Only the first mipmap level of a resource can be read
2137 from using this instruction.
2138
2139 For 1D or 2D texture arrays, the array index is
2140 provided as an unsigned integer in address.y or
2141 address.z, respectively. address.yz are ignored for
2142 buffers and 1D textures. address.z is ignored for 1D
2143 texture arrays and 2D textures. address.w is always
2144 ignored.
2145
2146 .. opcode:: STORE - Write data to a shader resource
2147
2148 Syntax: ``STORE resource, address, src``
2149
2150 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2151
2152 Using the provided integer address, STORE writes data
2153 to the specified buffer or texture.
2154
2155 The 'address' is specified as a vector of unsigned
2156 integers. If the 'address' is out of range the result
2157 is unspecified.
2158
2159 Only the first mipmap level of a resource can be
2160 written to using this instruction.
2161
2162 For 1D or 2D texture arrays, the array index is
2163 provided as an unsigned integer in address.y or
2164 address.z, respectively. address.yz are ignored for
2165 buffers and 1D textures. address.z is ignored for 1D
2166 texture arrays and 2D textures. address.w is always
2167 ignored.
2168
2169
2170 .. _threadsyncopcodes:
2171
2172 Inter-thread synchronization opcodes
2173 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2174
2175 These opcodes are intended for communication between threads running
2176 within the same compute grid. For now they're only valid in compute
2177 programs.
2178
2179 .. opcode:: MFENCE - Memory fence
2180
2181 Syntax: ``MFENCE resource``
2182
2183 Example: ``MFENCE RES[0]``
2184
2185 This opcode forces strong ordering between any memory access
2186 operations that affect the specified resource. This means that
2187 previous loads and stores (and only those) will be performed and
2188 visible to other threads before the program execution continues.
2189
2190
2191 .. opcode:: LFENCE - Load memory fence
2192
2193 Syntax: ``LFENCE resource``
2194
2195 Example: ``LFENCE RES[0]``
2196
2197 Similar to MFENCE, but it only affects the ordering of memory loads.
2198
2199
2200 .. opcode:: SFENCE - Store memory fence
2201
2202 Syntax: ``SFENCE resource``
2203
2204 Example: ``SFENCE RES[0]``
2205
2206 Similar to MFENCE, but it only affects the ordering of memory stores.
2207
2208
2209 .. opcode:: BARRIER - Thread group barrier
2210
2211 ``BARRIER``
2212
2213 This opcode suspends the execution of the current thread until all
2214 the remaining threads in the working group reach the same point of
2215 the program. Results are unspecified if any of the remaining
2216 threads terminates or never reaches an executed BARRIER instruction.
2217
2218
2219 .. _atomopcodes:
2220
2221 Atomic opcodes
2222 ^^^^^^^^^^^^^^
2223
2224 These opcodes provide atomic variants of some common arithmetic and
2225 logical operations. In this context atomicity means that another
2226 concurrent memory access operation that affects the same memory
2227 location is guaranteed to be performed strictly before or after the
2228 entire execution of the atomic operation.
2229
2230 For the moment they're only valid in compute programs.
2231
2232 .. opcode:: ATOMUADD - Atomic integer addition
2233
2234 Syntax: ``ATOMUADD dst, resource, offset, src``
2235
2236 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2237
2238 The following operation is performed atomically on each component:
2239
2240 .. math::
2241
2242 dst_i = resource[offset]_i
2243
2244 resource[offset]_i = dst_i + src_i
2245
2246
2247 .. opcode:: ATOMXCHG - Atomic exchange
2248
2249 Syntax: ``ATOMXCHG dst, resource, offset, src``
2250
2251 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2252
2253 The following operation is performed atomically on each component:
2254
2255 .. math::
2256
2257 dst_i = resource[offset]_i
2258
2259 resource[offset]_i = src_i
2260
2261
2262 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2263
2264 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2265
2266 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2267
2268 The following operation is performed atomically on each component:
2269
2270 .. math::
2271
2272 dst_i = resource[offset]_i
2273
2274 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2275
2276
2277 .. opcode:: ATOMAND - Atomic bitwise And
2278
2279 Syntax: ``ATOMAND dst, resource, offset, src``
2280
2281 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2282
2283 The following operation is performed atomically on each component:
2284
2285 .. math::
2286
2287 dst_i = resource[offset]_i
2288
2289 resource[offset]_i = dst_i \& src_i
2290
2291
2292 .. opcode:: ATOMOR - Atomic bitwise Or
2293
2294 Syntax: ``ATOMOR dst, resource, offset, src``
2295
2296 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2297
2298 The following operation is performed atomically on each component:
2299
2300 .. math::
2301
2302 dst_i = resource[offset]_i
2303
2304 resource[offset]_i = dst_i | src_i
2305
2306
2307 .. opcode:: ATOMXOR - Atomic bitwise Xor
2308
2309 Syntax: ``ATOMXOR dst, resource, offset, src``
2310
2311 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2312
2313 The following operation is performed atomically on each component:
2314
2315 .. math::
2316
2317 dst_i = resource[offset]_i
2318
2319 resource[offset]_i = dst_i \oplus src_i
2320
2321
2322 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2323
2324 Syntax: ``ATOMUMIN dst, resource, offset, src``
2325
2326 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2327
2328 The following operation is performed atomically on each component:
2329
2330 .. math::
2331
2332 dst_i = resource[offset]_i
2333
2334 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2335
2336
2337 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2338
2339 Syntax: ``ATOMUMAX dst, resource, offset, src``
2340
2341 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2342
2343 The following operation is performed atomically on each component:
2344
2345 .. math::
2346
2347 dst_i = resource[offset]_i
2348
2349 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2350
2351
2352 .. opcode:: ATOMIMIN - Atomic signed minimum
2353
2354 Syntax: ``ATOMIMIN dst, resource, offset, src``
2355
2356 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2357
2358 The following operation is performed atomically on each component:
2359
2360 .. math::
2361
2362 dst_i = resource[offset]_i
2363
2364 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2365
2366
2367 .. opcode:: ATOMIMAX - Atomic signed maximum
2368
2369 Syntax: ``ATOMIMAX dst, resource, offset, src``
2370
2371 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2372
2373 The following operation is performed atomically on each component:
2374
2375 .. math::
2376
2377 dst_i = resource[offset]_i
2378
2379 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2380
2381
2382
2383 Explanation of symbols used
2384 ------------------------------
2385
2386
2387 Functions
2388 ^^^^^^^^^^^^^^
2389
2390
2391 :math:`|x|` Absolute value of `x`.
2392
2393 :math:`\lceil x \rceil` Ceiling of `x`.
2394
2395 clamp(x,y,z) Clamp x between y and z.
2396 (x < y) ? y : (x > z) ? z : x
2397
2398 :math:`\lfloor x\rfloor` Floor of `x`.
2399
2400 :math:`\log_2{x}` Logarithm of `x`, base 2.
2401
2402 max(x,y) Maximum of x and y.
2403 (x > y) ? x : y
2404
2405 min(x,y) Minimum of x and y.
2406 (x < y) ? x : y
2407
2408 partialx(x) Derivative of x relative to fragment's X.
2409
2410 partialy(x) Derivative of x relative to fragment's Y.
2411
2412 pop() Pop from stack.
2413
2414 :math:`x^y` `x` to the power `y`.
2415
2416 push(x) Push x on stack.
2417
2418 round(x) Round x.
2419
2420 trunc(x) Truncate x, i.e. drop the fraction bits.
2421
2422
2423 Keywords
2424 ^^^^^^^^^^^^^
2425
2426
2427 discard Discard fragment.
2428
2429 pc Program counter.
2430
2431 target Label of target instruction.
2432
2433
2434 Other tokens
2435 ---------------
2436
2437
2438 Declaration
2439 ^^^^^^^^^^^
2440
2441
2442 Declares a register that is will be referenced as an operand in Instruction
2443 tokens.
2444
2445 File field contains register file that is being declared and is one
2446 of TGSI_FILE.
2447
2448 UsageMask field specifies which of the register components can be accessed
2449 and is one of TGSI_WRITEMASK.
2450
2451 The Local flag specifies that a given value isn't intended for
2452 subroutine parameter passing and, as a result, the implementation
2453 isn't required to give any guarantees of it being preserved across
2454 subroutine boundaries. As it's merely a compiler hint, the
2455 implementation is free to ignore it.
2456
2457 If Dimension flag is set to 1, a Declaration Dimension token follows.
2458
2459 If Semantic flag is set to 1, a Declaration Semantic token follows.
2460
2461 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2462
2463 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2464
2465 If Array flag is set to 1, a Declaration Array token follows.
2466
2467 Array Declaration
2468 ^^^^^^^^^^^^^^^^^^^^^^^^
2469
2470 Declarations can optional have an ArrayID attribute which can be referred by
2471 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2472 if no ArrayID is specified.
2473
2474 If an indirect addressing operand refers to a specific declaration by using
2475 an ArrayID only the registers in this declaration are guaranteed to be
2476 accessed, accessing any register outside this declaration results in undefined
2477 behavior. Note that for compatibility the effective index is zero-based and
2478 not relative to the specified declaration
2479
2480 If no ArrayID is specified with an indirect addressing operand the whole
2481 register file might be accessed by this operand. This is strongly discouraged
2482 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2483
2484 Declaration Semantic
2485 ^^^^^^^^^^^^^^^^^^^^^^^^
2486
2487 Vertex and fragment shader input and output registers may be labeled
2488 with semantic information consisting of a name and index.
2489
2490 Follows Declaration token if Semantic bit is set.
2491
2492 Since its purpose is to link a shader with other stages of the pipeline,
2493 it is valid to follow only those Declaration tokens that declare a register
2494 either in INPUT or OUTPUT file.
2495
2496 SemanticName field contains the semantic name of the register being declared.
2497 There is no default value.
2498
2499 SemanticIndex is an optional subscript that can be used to distinguish
2500 different register declarations with the same semantic name. The default value
2501 is 0.
2502
2503 The meanings of the individual semantic names are explained in the following
2504 sections.
2505
2506 TGSI_SEMANTIC_POSITION
2507 """"""""""""""""""""""
2508
2509 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2510 output register which contains the homogeneous vertex position in the clip
2511 space coordinate system. After clipping, the X, Y and Z components of the
2512 vertex will be divided by the W value to get normalized device coordinates.
2513
2514 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2515 fragment shader input contains the fragment's window position. The X
2516 component starts at zero and always increases from left to right.
2517 The Y component starts at zero and always increases but Y=0 may either
2518 indicate the top of the window or the bottom depending on the fragment
2519 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2520 The Z coordinate ranges from 0 to 1 to represent depth from the front
2521 to the back of the Z buffer. The W component contains the reciprocol
2522 of the interpolated vertex position W component.
2523
2524 Fragment shaders may also declare an output register with
2525 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2526 the fragment shader to change the fragment's Z position.
2527
2528
2529
2530 TGSI_SEMANTIC_COLOR
2531 """""""""""""""""""
2532
2533 For vertex shader outputs or fragment shader inputs/outputs, this
2534 label indicates that the resister contains an R,G,B,A color.
2535
2536 Several shader inputs/outputs may contain colors so the semantic index
2537 is used to distinguish them. For example, color[0] may be the diffuse
2538 color while color[1] may be the specular color.
2539
2540 This label is needed so that the flat/smooth shading can be applied
2541 to the right interpolants during rasterization.
2542
2543
2544
2545 TGSI_SEMANTIC_BCOLOR
2546 """"""""""""""""""""
2547
2548 Back-facing colors are only used for back-facing polygons, and are only valid
2549 in vertex shader outputs. After rasterization, all polygons are front-facing
2550 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2551 so all BCOLORs effectively become regular COLORs in the fragment shader.
2552
2553
2554 TGSI_SEMANTIC_FOG
2555 """""""""""""""""
2556
2557 Vertex shader inputs and outputs and fragment shader inputs may be
2558 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2559 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2560 to compute a fog blend factor which is used to blend the normal fragment color
2561 with a constant fog color. But fog coord really is just an ordinary vec4
2562 register like regular semantics.
2563
2564
2565 TGSI_SEMANTIC_PSIZE
2566 """""""""""""""""""
2567
2568 Vertex shader input and output registers may be labeled with
2569 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2570 in the form (S, 0, 0, 1). The point size controls the width or diameter
2571 of points for rasterization. This label cannot be used in fragment
2572 shaders.
2573
2574 When using this semantic, be sure to set the appropriate state in the
2575 :ref:`rasterizer` first.
2576
2577
2578 TGSI_SEMANTIC_TEXCOORD
2579 """"""""""""""""""""""
2580
2581 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2582
2583 Vertex shader outputs and fragment shader inputs may be labeled with
2584 this semantic to make them replaceable by sprite coordinates via the
2585 sprite_coord_enable state in the :ref:`rasterizer`.
2586 The semantic index permitted with this semantic is limited to <= 7.
2587
2588 If the driver does not support TEXCOORD, sprite coordinate replacement
2589 applies to inputs with the GENERIC semantic instead.
2590
2591 The intended use case for this semantic is gl_TexCoord.
2592
2593
2594 TGSI_SEMANTIC_PCOORD
2595 """"""""""""""""""""
2596
2597 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2598
2599 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2600 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2601 the current primitive is a point and point sprites are enabled. Otherwise,
2602 the contents of the register are undefined.
2603
2604 The intended use case for this semantic is gl_PointCoord.
2605
2606
2607 TGSI_SEMANTIC_GENERIC
2608 """""""""""""""""""""
2609
2610 All vertex/fragment shader inputs/outputs not labeled with any other
2611 semantic label can be considered to be generic attributes. Typical
2612 uses of generic inputs/outputs are texcoords and user-defined values.
2613
2614
2615 TGSI_SEMANTIC_NORMAL
2616 """"""""""""""""""""
2617
2618 Indicates that a vertex shader input is a normal vector. This is
2619 typically only used for legacy graphics APIs.
2620
2621
2622 TGSI_SEMANTIC_FACE
2623 """"""""""""""""""
2624
2625 This label applies to fragment shader inputs only and indicates that
2626 the register contains front/back-face information of the form (F, 0,
2627 0, 1). The first component will be positive when the fragment belongs
2628 to a front-facing polygon, and negative when the fragment belongs to a
2629 back-facing polygon.
2630
2631
2632 TGSI_SEMANTIC_EDGEFLAG
2633 """"""""""""""""""""""
2634
2635 For vertex shaders, this sematic label indicates that an input or
2636 output is a boolean edge flag. The register layout is [F, x, x, x]
2637 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2638 simply copies the edge flag input to the edgeflag output.
2639
2640 Edge flags are used to control which lines or points are actually
2641 drawn when the polygon mode converts triangles/quads/polygons into
2642 points or lines.
2643
2644
2645 TGSI_SEMANTIC_STENCIL
2646 """""""""""""""""""""
2647
2648 For fragment shaders, this semantic label indicates that an output
2649 is a writable stencil reference value. Only the Y component is writable.
2650 This allows the fragment shader to change the fragments stencilref value.
2651
2652
2653 TGSI_SEMANTIC_VIEWPORT_INDEX
2654 """"""""""""""""""""""""""""
2655
2656 For geometry shaders, this semantic label indicates that an output
2657 contains the index of the viewport (and scissor) to use.
2658 Only the X value is used.
2659
2660
2661 TGSI_SEMANTIC_LAYER
2662 """""""""""""""""""
2663
2664 For geometry shaders, this semantic label indicates that an output
2665 contains the layer value to use for the color and depth/stencil surfaces.
2666 Only the X value is used. (Also known as rendertarget array index.)
2667
2668
2669 TGSI_SEMANTIC_CULLDIST
2670 """"""""""""""""""""""
2671
2672 Used as distance to plane for performing application-defined culling
2673 of individual primitives against a plane. When components of vertex
2674 elements are given this label, these values are assumed to be a
2675 float32 signed distance to a plane. Primitives will be completely
2676 discarded if the plane distance for all of the vertices in the
2677 primitive are < 0. If a vertex has a cull distance of NaN, that
2678 vertex counts as "out" (as if its < 0);
2679 The limits on both clip and cull distances are bound
2680 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2681 the maximum number of components that can be used to hold the
2682 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2683 which specifies the maximum number of registers which can be
2684 annotated with those semantics.
2685
2686
2687 TGSI_SEMANTIC_CLIPDIST
2688 """"""""""""""""""""""
2689
2690 When components of vertex elements are identified this way, these
2691 values are each assumed to be a float32 signed distance to a plane.
2692 Primitive setup only invokes rasterization on pixels for which
2693 the interpolated plane distances are >= 0. Multiple clip planes
2694 can be implemented simultaneously, by annotating multiple
2695 components of one or more vertex elements with the above specified
2696 semantic. The limits on both clip and cull distances are bound
2697 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2698 the maximum number of components that can be used to hold the
2699 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2700 which specifies the maximum number of registers which can be
2701 annotated with those semantics.
2702
2703 TGSI_SEMANTIC_SAMPLEID
2704 """"""""""""""""""""""
2705
2706 For fragment shaders, this semantic label indicates that a system value
2707 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2708
2709 TGSI_SEMANTIC_SAMPLEPOS
2710 """""""""""""""""""""""
2711
2712 For fragment shaders, this semantic label indicates that a system value
2713 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2714 and Y values are used.
2715
2716 TGSI_SEMANTIC_SAMPLEMASK
2717 """"""""""""""""""""""""
2718
2719 For fragment shaders, this semantic label indicates that an output contains
2720 the sample mask used to disable further sample processing
2721 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2722
2723 TGSI_SEMANTIC_INVOCATIONID
2724 """"""""""""""""""""""""""
2725
2726 For geometry shaders, this semantic label indicates that a system value
2727 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2728 used.
2729
2730 Declaration Interpolate
2731 ^^^^^^^^^^^^^^^^^^^^^^^
2732
2733 This token is only valid for fragment shader INPUT declarations.
2734
2735 The Interpolate field specifes the way input is being interpolated by
2736 the rasteriser and is one of TGSI_INTERPOLATE_*.
2737
2738 The Location field specifies the location inside the pixel that the
2739 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2740 when per-sample shading is enabled, the implementation may choose to
2741 interpolate at the sample irrespective of the Location field.
2742
2743 The CylindricalWrap bitfield specifies which register components
2744 should be subject to cylindrical wrapping when interpolating by the
2745 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2746 should be interpolated according to cylindrical wrapping rules.
2747
2748
2749 Declaration Sampler View
2750 ^^^^^^^^^^^^^^^^^^^^^^^^
2751
2752 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2753
2754 DCL SVIEW[#], resource, type(s)
2755
2756 Declares a shader input sampler view and assigns it to a SVIEW[#]
2757 register.
2758
2759 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2760
2761 type must be 1 or 4 entries (if specifying on a per-component
2762 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2763
2764
2765 Declaration Resource
2766 ^^^^^^^^^^^^^^^^^^^^
2767
2768 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2769
2770 DCL RES[#], resource [, WR] [, RAW]
2771
2772 Declares a shader input resource and assigns it to a RES[#]
2773 register.
2774
2775 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2776 2DArray.
2777
2778 If the RAW keyword is not specified, the texture data will be
2779 subject to conversion, swizzling and scaling as required to yield
2780 the specified data type from the physical data format of the bound
2781 resource.
2782
2783 If the RAW keyword is specified, no channel conversion will be
2784 performed: the values read for each of the channels (X,Y,Z,W) will
2785 correspond to consecutive words in the same order and format
2786 they're found in memory. No element-to-address conversion will be
2787 performed either: the value of the provided X coordinate will be
2788 interpreted in byte units instead of texel units. The result of
2789 accessing a misaligned address is undefined.
2790
2791 Usage of the STORE opcode is only allowed if the WR (writable) flag
2792 is set.
2793
2794
2795 Properties
2796 ^^^^^^^^^^^^^^^^^^^^^^^^
2797
2798 Properties are general directives that apply to the whole TGSI program.
2799
2800 FS_COORD_ORIGIN
2801 """""""""""""""
2802
2803 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2804 The default value is UPPER_LEFT.
2805
2806 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2807 increase downward and rightward.
2808 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2809 increase upward and rightward.
2810
2811 OpenGL defaults to LOWER_LEFT, and is configurable with the
2812 GL_ARB_fragment_coord_conventions extension.
2813
2814 DirectX 9/10 use UPPER_LEFT.
2815
2816 FS_COORD_PIXEL_CENTER
2817 """""""""""""""""""""
2818
2819 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2820 The default value is HALF_INTEGER.
2821
2822 If HALF_INTEGER, the fractionary part of the position will be 0.5
2823 If INTEGER, the fractionary part of the position will be 0.0
2824
2825 Note that this does not affect the set of fragments generated by
2826 rasterization, which is instead controlled by half_pixel_center in the
2827 rasterizer.
2828
2829 OpenGL defaults to HALF_INTEGER, and is configurable with the
2830 GL_ARB_fragment_coord_conventions extension.
2831
2832 DirectX 9 uses INTEGER.
2833 DirectX 10 uses HALF_INTEGER.
2834
2835 FS_COLOR0_WRITES_ALL_CBUFS
2836 """"""""""""""""""""""""""
2837 Specifies that writes to the fragment shader color 0 are replicated to all
2838 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2839 fragData is directed to a single color buffer, but fragColor is broadcast.
2840
2841 VS_PROHIBIT_UCPS
2842 """"""""""""""""""""""""""
2843 If this property is set on the program bound to the shader stage before the
2844 fragment shader, user clip planes should have no effect (be disabled) even if
2845 that shader does not write to any clip distance outputs and the rasterizer's
2846 clip_plane_enable is non-zero.
2847 This property is only supported by drivers that also support shader clip
2848 distance outputs.
2849 This is useful for APIs that don't have UCPs and where clip distances written
2850 by a shader cannot be disabled.
2851
2852 GS_INVOCATIONS
2853 """"""""""""""
2854
2855 Specifies the number of times a geometry shader should be executed for each
2856 input primitive. Each invocation will have a different
2857 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2858 be 1.
2859
2860 VS_WINDOW_SPACE_POSITION
2861 """"""""""""""""""""""""""
2862 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2863 is assumed to contain window space coordinates.
2864 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2865 directly taken from the 4-th component of the shader output.
2866 Naturally, clipping is not performed on window coordinates either.
2867 The effect of this property is undefined if a geometry or tessellation shader
2868 are in use.
2869
2870 Texture Sampling and Texture Formats
2871 ------------------------------------
2872
2873 This table shows how texture image components are returned as (x,y,z,w) tuples
2874 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2875 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2876 well.
2877
2878 +--------------------+--------------+--------------------+--------------+
2879 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2880 +====================+==============+====================+==============+
2881 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2882 +--------------------+--------------+--------------------+--------------+
2883 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2884 +--------------------+--------------+--------------------+--------------+
2885 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2886 +--------------------+--------------+--------------------+--------------+
2887 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2888 +--------------------+--------------+--------------------+--------------+
2889 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2890 +--------------------+--------------+--------------------+--------------+
2891 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2892 +--------------------+--------------+--------------------+--------------+
2893 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2894 +--------------------+--------------+--------------------+--------------+
2895 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2896 +--------------------+--------------+--------------------+--------------+
2897 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2898 | | | [#envmap-bumpmap]_ | |
2899 +--------------------+--------------+--------------------+--------------+
2900 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2901 | | | [#depth-tex-mode]_ | |
2902 +--------------------+--------------+--------------------+--------------+
2903 | S | (s, s, s, s) | unknown | unknown |
2904 +--------------------+--------------+--------------------+--------------+
2905
2906 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2907 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2908 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.