gallium: clarify shift behavior with shift count >= 32
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x = 1
78
79 dst.y = max(src.x, 0)
80
81 dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
82
83 dst.w = 1
84
85
86 .. opcode:: RCP - Reciprocal
87
88 This instruction replicates its result.
89
90 .. math::
91
92 dst = \frac{1}{src.x}
93
94
95 .. opcode:: RSQ - Reciprocal Square Root
96
97 This instruction replicates its result. The results are undefined for src <= 0.
98
99 .. math::
100
101 dst = \frac{1}{\sqrt{src.x}}
102
103
104 .. opcode:: SQRT - Square Root
105
106 This instruction replicates its result. The results are undefined for src < 0.
107
108 .. math::
109
110 dst = {\sqrt{src.x}}
111
112
113 .. opcode:: EXP - Approximate Exponential Base 2
114
115 .. math::
116
117 dst.x = 2^{\lfloor src.x\rfloor}
118
119 dst.y = src.x - \lfloor src.x\rfloor
120
121 dst.z = 2^{src.x}
122
123 dst.w = 1
124
125
126 .. opcode:: LOG - Approximate Logarithm Base 2
127
128 .. math::
129
130 dst.x = \lfloor\log_2{|src.x|}\rfloor
131
132 dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
133
134 dst.z = \log_2{|src.x|}
135
136 dst.w = 1
137
138
139 .. opcode:: MUL - Multiply
140
141 .. math::
142
143 dst.x = src0.x \times src1.x
144
145 dst.y = src0.y \times src1.y
146
147 dst.z = src0.z \times src1.z
148
149 dst.w = src0.w \times src1.w
150
151
152 .. opcode:: ADD - Add
153
154 .. math::
155
156 dst.x = src0.x + src1.x
157
158 dst.y = src0.y + src1.y
159
160 dst.z = src0.z + src1.z
161
162 dst.w = src0.w + src1.w
163
164
165 .. opcode:: DP3 - 3-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
172
173
174 .. opcode:: DP4 - 4-component Dot Product
175
176 This instruction replicates its result.
177
178 .. math::
179
180 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
181
182
183 .. opcode:: DST - Distance Vector
184
185 .. math::
186
187 dst.x = 1
188
189 dst.y = src0.y \times src1.y
190
191 dst.z = src0.z
192
193 dst.w = src1.w
194
195
196 .. opcode:: MIN - Minimum
197
198 .. math::
199
200 dst.x = min(src0.x, src1.x)
201
202 dst.y = min(src0.y, src1.y)
203
204 dst.z = min(src0.z, src1.z)
205
206 dst.w = min(src0.w, src1.w)
207
208
209 .. opcode:: MAX - Maximum
210
211 .. math::
212
213 dst.x = max(src0.x, src1.x)
214
215 dst.y = max(src0.y, src1.y)
216
217 dst.z = max(src0.z, src1.z)
218
219 dst.w = max(src0.w, src1.w)
220
221
222 .. opcode:: SLT - Set On Less Than
223
224 .. math::
225
226 dst.x = (src0.x < src1.x) ? 1 : 0
227
228 dst.y = (src0.y < src1.y) ? 1 : 0
229
230 dst.z = (src0.z < src1.z) ? 1 : 0
231
232 dst.w = (src0.w < src1.w) ? 1 : 0
233
234
235 .. opcode:: SGE - Set On Greater Equal Than
236
237 .. math::
238
239 dst.x = (src0.x >= src1.x) ? 1 : 0
240
241 dst.y = (src0.y >= src1.y) ? 1 : 0
242
243 dst.z = (src0.z >= src1.z) ? 1 : 0
244
245 dst.w = (src0.w >= src1.w) ? 1 : 0
246
247
248 .. opcode:: MAD - Multiply And Add
249
250 .. math::
251
252 dst.x = src0.x \times src1.x + src2.x
253
254 dst.y = src0.y \times src1.y + src2.y
255
256 dst.z = src0.z \times src1.z + src2.z
257
258 dst.w = src0.w \times src1.w + src2.w
259
260
261 .. opcode:: SUB - Subtract
262
263 .. math::
264
265 dst.x = src0.x - src1.x
266
267 dst.y = src0.y - src1.y
268
269 dst.z = src0.z - src1.z
270
271 dst.w = src0.w - src1.w
272
273
274 .. opcode:: LRP - Linear Interpolate
275
276 .. math::
277
278 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
279
280 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
281
282 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
283
284 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
285
286
287 .. opcode:: CND - Condition
288
289 .. math::
290
291 dst.x = (src2.x > 0.5) ? src0.x : src1.x
292
293 dst.y = (src2.y > 0.5) ? src0.y : src1.y
294
295 dst.z = (src2.z > 0.5) ? src0.z : src1.z
296
297 dst.w = (src2.w > 0.5) ? src0.w : src1.w
298
299
300 .. opcode:: DP2A - 2-component Dot Product And Add
301
302 .. math::
303
304 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
305
306 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
307
308 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
309
310 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
311
312
313 .. opcode:: FRC - Fraction
314
315 .. math::
316
317 dst.x = src.x - \lfloor src.x\rfloor
318
319 dst.y = src.y - \lfloor src.y\rfloor
320
321 dst.z = src.z - \lfloor src.z\rfloor
322
323 dst.w = src.w - \lfloor src.w\rfloor
324
325
326 .. opcode:: CLAMP - Clamp
327
328 .. math::
329
330 dst.x = clamp(src0.x, src1.x, src2.x)
331
332 dst.y = clamp(src0.y, src1.y, src2.y)
333
334 dst.z = clamp(src0.z, src1.z, src2.z)
335
336 dst.w = clamp(src0.w, src1.w, src2.w)
337
338
339 .. opcode:: FLR - Floor
340
341 This is identical to :opcode:`ARL`.
342
343 .. math::
344
345 dst.x = \lfloor src.x\rfloor
346
347 dst.y = \lfloor src.y\rfloor
348
349 dst.z = \lfloor src.z\rfloor
350
351 dst.w = \lfloor src.w\rfloor
352
353
354 .. opcode:: ROUND - Round
355
356 .. math::
357
358 dst.x = round(src.x)
359
360 dst.y = round(src.y)
361
362 dst.z = round(src.z)
363
364 dst.w = round(src.w)
365
366
367 .. opcode:: EX2 - Exponential Base 2
368
369 This instruction replicates its result.
370
371 .. math::
372
373 dst = 2^{src.x}
374
375
376 .. opcode:: LG2 - Logarithm Base 2
377
378 This instruction replicates its result.
379
380 .. math::
381
382 dst = \log_2{src.x}
383
384
385 .. opcode:: POW - Power
386
387 This instruction replicates its result.
388
389 .. math::
390
391 dst = src0.x^{src1.x}
392
393 .. opcode:: XPD - Cross Product
394
395 .. math::
396
397 dst.x = src0.y \times src1.z - src1.y \times src0.z
398
399 dst.y = src0.z \times src1.x - src1.z \times src0.x
400
401 dst.z = src0.x \times src1.y - src1.x \times src0.y
402
403 dst.w = 1
404
405
406 .. opcode:: ABS - Absolute
407
408 .. math::
409
410 dst.x = |src.x|
411
412 dst.y = |src.y|
413
414 dst.z = |src.z|
415
416 dst.w = |src.w|
417
418
419 .. opcode:: RCC - Reciprocal Clamped
420
421 This instruction replicates its result.
422
423 XXX cleanup on aisle three
424
425 .. math::
426
427 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
428
429
430 .. opcode:: DPH - Homogeneous Dot Product
431
432 This instruction replicates its result.
433
434 .. math::
435
436 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
437
438
439 .. opcode:: COS - Cosine
440
441 This instruction replicates its result.
442
443 .. math::
444
445 dst = \cos{src.x}
446
447
448 .. opcode:: DDX - Derivative Relative To X
449
450 .. math::
451
452 dst.x = partialx(src.x)
453
454 dst.y = partialx(src.y)
455
456 dst.z = partialx(src.z)
457
458 dst.w = partialx(src.w)
459
460
461 .. opcode:: DDY - Derivative Relative To Y
462
463 .. math::
464
465 dst.x = partialy(src.x)
466
467 dst.y = partialy(src.y)
468
469 dst.z = partialy(src.z)
470
471 dst.w = partialy(src.w)
472
473
474 .. opcode:: PK2H - Pack Two 16-bit Floats
475
476 TBD
477
478
479 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
480
481 TBD
482
483
484 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
485
486 TBD
487
488
489 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
490
491 TBD
492
493
494 .. opcode:: RFL - Reflection Vector
495
496 .. math::
497
498 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
499
500 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
501
502 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
503
504 dst.w = 1
505
506 .. note::
507
508 Considered for removal.
509
510
511 .. opcode:: SEQ - Set On Equal
512
513 .. math::
514
515 dst.x = (src0.x == src1.x) ? 1 : 0
516
517 dst.y = (src0.y == src1.y) ? 1 : 0
518
519 dst.z = (src0.z == src1.z) ? 1 : 0
520
521 dst.w = (src0.w == src1.w) ? 1 : 0
522
523
524 .. opcode:: SFL - Set On False
525
526 This instruction replicates its result.
527
528 .. math::
529
530 dst = 0
531
532 .. note::
533
534 Considered for removal.
535
536
537 .. opcode:: SGT - Set On Greater Than
538
539 .. math::
540
541 dst.x = (src0.x > src1.x) ? 1 : 0
542
543 dst.y = (src0.y > src1.y) ? 1 : 0
544
545 dst.z = (src0.z > src1.z) ? 1 : 0
546
547 dst.w = (src0.w > src1.w) ? 1 : 0
548
549
550 .. opcode:: SIN - Sine
551
552 This instruction replicates its result.
553
554 .. math::
555
556 dst = \sin{src.x}
557
558
559 .. opcode:: SLE - Set On Less Equal Than
560
561 .. math::
562
563 dst.x = (src0.x <= src1.x) ? 1 : 0
564
565 dst.y = (src0.y <= src1.y) ? 1 : 0
566
567 dst.z = (src0.z <= src1.z) ? 1 : 0
568
569 dst.w = (src0.w <= src1.w) ? 1 : 0
570
571
572 .. opcode:: SNE - Set On Not Equal
573
574 .. math::
575
576 dst.x = (src0.x != src1.x) ? 1 : 0
577
578 dst.y = (src0.y != src1.y) ? 1 : 0
579
580 dst.z = (src0.z != src1.z) ? 1 : 0
581
582 dst.w = (src0.w != src1.w) ? 1 : 0
583
584
585 .. opcode:: STR - Set On True
586
587 This instruction replicates its result.
588
589 .. math::
590
591 dst = 1
592
593
594 .. opcode:: TEX - Texture Lookup
595
596 .. math::
597
598 coord = src0
599
600 bias = 0.0
601
602 dst = texture_sample(unit, coord, bias)
603
604 for array textures src0.y contains the slice for 1D,
605 and src0.z contain the slice for 2D.
606 for shadow textures with no arrays, src0.z contains
607 the reference value.
608 for shadow textures with arrays, src0.z contains
609 the reference value for 1D arrays, and src0.w contains
610 the reference value for 2D arrays.
611 There is no way to pass a bias in the .w value for
612 shadow arrays, and GLSL doesn't allow this.
613 GLSL does allow cube shadows maps to take a bias value,
614 and we have to determine how this will look in TGSI.
615
616 .. opcode:: TXD - Texture Lookup with Derivatives
617
618 .. math::
619
620 coord = src0
621
622 ddx = src1
623
624 ddy = src2
625
626 bias = 0.0
627
628 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
629
630
631 .. opcode:: TXP - Projective Texture Lookup
632
633 .. math::
634
635 coord.x = src0.x / src.w
636
637 coord.y = src0.y / src.w
638
639 coord.z = src0.z / src.w
640
641 coord.w = src0.w
642
643 bias = 0.0
644
645 dst = texture_sample(unit, coord, bias)
646
647
648 .. opcode:: UP2H - Unpack Two 16-Bit Floats
649
650 TBD
651
652 .. note::
653
654 Considered for removal.
655
656 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
657
658 TBD
659
660 .. note::
661
662 Considered for removal.
663
664 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
665
666 TBD
667
668 .. note::
669
670 Considered for removal.
671
672 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
673
674 TBD
675
676 .. note::
677
678 Considered for removal.
679
680 .. opcode:: X2D - 2D Coordinate Transformation
681
682 .. math::
683
684 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
685
686 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
687
688 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
689
690 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
691
692 .. note::
693
694 Considered for removal.
695
696
697 .. opcode:: ARA - Address Register Add
698
699 TBD
700
701 .. note::
702
703 Considered for removal.
704
705 .. opcode:: ARR - Address Register Load With Round
706
707 .. math::
708
709 dst.x = round(src.x)
710
711 dst.y = round(src.y)
712
713 dst.z = round(src.z)
714
715 dst.w = round(src.w)
716
717
718 .. opcode:: SSG - Set Sign
719
720 .. math::
721
722 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
723
724 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
725
726 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
727
728 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
729
730
731 .. opcode:: CMP - Compare
732
733 .. math::
734
735 dst.x = (src0.x < 0) ? src1.x : src2.x
736
737 dst.y = (src0.y < 0) ? src1.y : src2.y
738
739 dst.z = (src0.z < 0) ? src1.z : src2.z
740
741 dst.w = (src0.w < 0) ? src1.w : src2.w
742
743
744 .. opcode:: KILL_IF - Conditional Discard
745
746 Conditional discard. Allowed in fragment shaders only.
747
748 .. math::
749
750 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
751 discard
752 endif
753
754
755 .. opcode:: KILL - Discard
756
757 Unconditional discard. Allowed in fragment shaders only.
758
759
760 .. opcode:: SCS - Sine Cosine
761
762 .. math::
763
764 dst.x = \cos{src.x}
765
766 dst.y = \sin{src.x}
767
768 dst.z = 0
769
770 dst.w = 1
771
772
773 .. opcode:: TXB - Texture Lookup With Bias
774
775 .. math::
776
777 coord.x = src.x
778
779 coord.y = src.y
780
781 coord.z = src.z
782
783 coord.w = 1.0
784
785 bias = src.z
786
787 dst = texture_sample(unit, coord, bias)
788
789
790 .. opcode:: NRM - 3-component Vector Normalise
791
792 .. math::
793
794 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
795
796 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
797
798 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
799
800 dst.w = 1
801
802
803 .. opcode:: DIV - Divide
804
805 .. math::
806
807 dst.x = \frac{src0.x}{src1.x}
808
809 dst.y = \frac{src0.y}{src1.y}
810
811 dst.z = \frac{src0.z}{src1.z}
812
813 dst.w = \frac{src0.w}{src1.w}
814
815
816 .. opcode:: DP2 - 2-component Dot Product
817
818 This instruction replicates its result.
819
820 .. math::
821
822 dst = src0.x \times src1.x + src0.y \times src1.y
823
824
825 .. opcode:: TXL - Texture Lookup With explicit LOD
826
827 .. math::
828
829 coord.x = src0.x
830
831 coord.y = src0.y
832
833 coord.z = src0.z
834
835 coord.w = 1.0
836
837 lod = src0.w
838
839 dst = texture_sample(unit, coord, lod)
840
841
842 .. opcode:: PUSHA - Push Address Register On Stack
843
844 push(src.x)
845 push(src.y)
846 push(src.z)
847 push(src.w)
848
849 .. note::
850
851 Considered for cleanup.
852
853 .. note::
854
855 Considered for removal.
856
857 .. opcode:: POPA - Pop Address Register From Stack
858
859 dst.w = pop()
860 dst.z = pop()
861 dst.y = pop()
862 dst.x = pop()
863
864 .. note::
865
866 Considered for cleanup.
867
868 .. note::
869
870 Considered for removal.
871
872
873 .. opcode:: BRA - Branch
874
875 pc = target
876
877 .. note::
878
879 Considered for removal.
880
881
882 .. opcode:: CALLNZ - Subroutine Call If Not Zero
883
884 TBD
885
886 .. note::
887
888 Considered for cleanup.
889
890 .. note::
891
892 Considered for removal.
893
894
895 Compute ISA
896 ^^^^^^^^^^^^^^^^^^^^^^^^
897
898 These opcodes are primarily provided for special-use computational shaders.
899 Support for these opcodes indicated by a special pipe capability bit (TBD).
900
901 XXX doesn't look like most of the opcodes really belong here.
902
903 .. opcode:: CEIL - Ceiling
904
905 .. math::
906
907 dst.x = \lceil src.x\rceil
908
909 dst.y = \lceil src.y\rceil
910
911 dst.z = \lceil src.z\rceil
912
913 dst.w = \lceil src.w\rceil
914
915
916 .. opcode:: TRUNC - Truncate
917
918 .. math::
919
920 dst.x = trunc(src.x)
921
922 dst.y = trunc(src.y)
923
924 dst.z = trunc(src.z)
925
926 dst.w = trunc(src.w)
927
928
929 .. opcode:: MOD - Modulus
930
931 .. math::
932
933 dst.x = src0.x \bmod src1.x
934
935 dst.y = src0.y \bmod src1.y
936
937 dst.z = src0.z \bmod src1.z
938
939 dst.w = src0.w \bmod src1.w
940
941
942 .. opcode:: UARL - Integer Address Register Load
943
944 Moves the contents of the source register, assumed to be an integer, into the
945 destination register, which is assumed to be an address (ADDR) register.
946
947
948 .. opcode:: SAD - Sum Of Absolute Differences
949
950 .. math::
951
952 dst.x = |src0.x - src1.x| + src2.x
953
954 dst.y = |src0.y - src1.y| + src2.y
955
956 dst.z = |src0.z - src1.z| + src2.z
957
958 dst.w = |src0.w - src1.w| + src2.w
959
960
961 .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
962 from a specified texture image. The source sampler may
963 not be a CUBE or SHADOW.
964 src 0 is a four-component signed integer vector used to
965 identify the single texel accessed. 3 components + level.
966 src 1 is a 3 component constant signed integer vector,
967 with each component only have a range of
968 -8..+8 (hw only seems to deal with this range, interface
969 allows for up to unsigned int).
970 TXF(uint_vec coord, int_vec offset).
971
972
973 .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
974 retrieve the dimensions of the texture
975 depending on the target. For 1D (width), 2D/RECT/CUBE
976 (width, height), 3D (width, height, depth),
977 1D array (width, layers), 2D array (width, height, layers)
978
979 .. math::
980
981 lod = src0.x
982
983 dst.x = texture_width(unit, lod)
984
985 dst.y = texture_height(unit, lod)
986
987 dst.z = texture_depth(unit, lod)
988
989
990 Integer ISA
991 ^^^^^^^^^^^^^^^^^^^^^^^^
992 These opcodes are used for integer operations.
993 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
994
995
996 .. opcode:: I2F - Signed Integer To Float
997
998 Rounding is unspecified (round to nearest even suggested).
999
1000 .. math::
1001
1002 dst.x = (float) src.x
1003
1004 dst.y = (float) src.y
1005
1006 dst.z = (float) src.z
1007
1008 dst.w = (float) src.w
1009
1010
1011 .. opcode:: U2F - Unsigned Integer To Float
1012
1013 Rounding is unspecified (round to nearest even suggested).
1014
1015 .. math::
1016
1017 dst.x = (float) src.x
1018
1019 dst.y = (float) src.y
1020
1021 dst.z = (float) src.z
1022
1023 dst.w = (float) src.w
1024
1025
1026 .. opcode:: F2I - Float to Signed Integer
1027
1028 Rounding is towards zero (truncate).
1029 Values outside signed range (including NaNs) produce undefined results.
1030
1031 .. math::
1032
1033 dst.x = (int) src.x
1034
1035 dst.y = (int) src.y
1036
1037 dst.z = (int) src.z
1038
1039 dst.w = (int) src.w
1040
1041
1042 .. opcode:: F2U - Float to Unsigned Integer
1043
1044 Rounding is towards zero (truncate).
1045 Values outside unsigned range (including NaNs) produce undefined results.
1046
1047 .. math::
1048
1049 dst.x = (unsigned) src.x
1050
1051 dst.y = (unsigned) src.y
1052
1053 dst.z = (unsigned) src.z
1054
1055 dst.w = (unsigned) src.w
1056
1057
1058 .. opcode:: UADD - Integer Add
1059
1060 This instruction works the same for signed and unsigned integers.
1061 The low 32bit of the result is returned.
1062
1063 .. math::
1064
1065 dst.x = src0.x + src1.x
1066
1067 dst.y = src0.y + src1.y
1068
1069 dst.z = src0.z + src1.z
1070
1071 dst.w = src0.w + src1.w
1072
1073
1074 .. opcode:: UMAD - Integer Multiply And Add
1075
1076 This instruction works the same for signed and unsigned integers.
1077 The multiplication returns the low 32bit (as does the result itself).
1078
1079 .. math::
1080
1081 dst.x = src0.x \times src1.x + src2.x
1082
1083 dst.y = src0.y \times src1.y + src2.y
1084
1085 dst.z = src0.z \times src1.z + src2.z
1086
1087 dst.w = src0.w \times src1.w + src2.w
1088
1089
1090 .. opcode:: UMUL - Integer Multiply
1091
1092 This instruction works the same for signed and unsigned integers.
1093 The low 32bit of the result is returned.
1094
1095 .. math::
1096
1097 dst.x = src0.x \times src1.x
1098
1099 dst.y = src0.y \times src1.y
1100
1101 dst.z = src0.z \times src1.z
1102
1103 dst.w = src0.w \times src1.w
1104
1105
1106 .. opcode:: IDIV - Signed Integer Division
1107
1108 TBD: behavior for division by zero.
1109
1110 .. math::
1111
1112 dst.x = src0.x \ src1.x
1113
1114 dst.y = src0.y \ src1.y
1115
1116 dst.z = src0.z \ src1.z
1117
1118 dst.w = src0.w \ src1.w
1119
1120
1121 .. opcode:: UDIV - Unsigned Integer Division
1122
1123 For division by zero, 0xffffffff is returned.
1124
1125 .. math::
1126
1127 dst.x = src0.x \ src1.x
1128
1129 dst.y = src0.y \ src1.y
1130
1131 dst.z = src0.z \ src1.z
1132
1133 dst.w = src0.w \ src1.w
1134
1135
1136 .. opcode:: UMOD - Unsigned Integer Remainder
1137
1138 If second arg is zero, 0xffffffff is returned.
1139
1140 .. math::
1141
1142 dst.x = src0.x \ src1.x
1143
1144 dst.y = src0.y \ src1.y
1145
1146 dst.z = src0.z \ src1.z
1147
1148 dst.w = src0.w \ src1.w
1149
1150
1151 .. opcode:: NOT - Bitwise Not
1152
1153 .. math::
1154
1155 dst.x = ~src.x
1156
1157 dst.y = ~src.y
1158
1159 dst.z = ~src.z
1160
1161 dst.w = ~src.w
1162
1163
1164 .. opcode:: AND - Bitwise And
1165
1166 .. math::
1167
1168 dst.x = src0.x & src1.x
1169
1170 dst.y = src0.y & src1.y
1171
1172 dst.z = src0.z & src1.z
1173
1174 dst.w = src0.w & src1.w
1175
1176
1177 .. opcode:: OR - Bitwise Or
1178
1179 .. math::
1180
1181 dst.x = src0.x | src1.x
1182
1183 dst.y = src0.y | src1.y
1184
1185 dst.z = src0.z | src1.z
1186
1187 dst.w = src0.w | src1.w
1188
1189
1190 .. opcode:: XOR - Bitwise Xor
1191
1192 .. math::
1193
1194 dst.x = src0.x \oplus src1.x
1195
1196 dst.y = src0.y \oplus src1.y
1197
1198 dst.z = src0.z \oplus src1.z
1199
1200 dst.w = src0.w \oplus src1.w
1201
1202
1203 .. opcode:: IMAX - Maximum of Signed Integers
1204
1205 .. math::
1206
1207 dst.x = max(src0.x, src1.x)
1208
1209 dst.y = max(src0.y, src1.y)
1210
1211 dst.z = max(src0.z, src1.z)
1212
1213 dst.w = max(src0.w, src1.w)
1214
1215
1216 .. opcode:: UMAX - Maximum of Unsigned Integers
1217
1218 .. math::
1219
1220 dst.x = max(src0.x, src1.x)
1221
1222 dst.y = max(src0.y, src1.y)
1223
1224 dst.z = max(src0.z, src1.z)
1225
1226 dst.w = max(src0.w, src1.w)
1227
1228
1229 .. opcode:: IMIN - Minimum of Signed Integers
1230
1231 .. math::
1232
1233 dst.x = min(src0.x, src1.x)
1234
1235 dst.y = min(src0.y, src1.y)
1236
1237 dst.z = min(src0.z, src1.z)
1238
1239 dst.w = min(src0.w, src1.w)
1240
1241
1242 .. opcode:: UMIN - Minimum of Unsigned Integers
1243
1244 .. math::
1245
1246 dst.x = min(src0.x, src1.x)
1247
1248 dst.y = min(src0.y, src1.y)
1249
1250 dst.z = min(src0.z, src1.z)
1251
1252 dst.w = min(src0.w, src1.w)
1253
1254
1255 .. opcode:: SHL - Shift Left
1256
1257 The shift count is masked with 0x1f before the shift is applied.
1258
1259 .. math::
1260
1261 dst.x = src0.x << (0x1f & src1.x)
1262
1263 dst.y = src0.y << (0x1f & src1.y)
1264
1265 dst.z = src0.z << (0x1f & src1.z)
1266
1267 dst.w = src0.w << (0x1f & src1.w)
1268
1269
1270 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1271
1272 The shift count is masked with 0x1f before the shift is applied.
1273
1274 .. math::
1275
1276 dst.x = src0.x >> (0x1f & src1.x)
1277
1278 dst.y = src0.y >> (0x1f & src1.y)
1279
1280 dst.z = src0.z >> (0x1f & src1.z)
1281
1282 dst.w = src0.w >> (0x1f & src1.w)
1283
1284
1285 .. opcode:: USHR - Logical Shift Right
1286
1287 The shift count is masked with 0x1f before the shift is applied.
1288
1289 .. math::
1290
1291 dst.x = src0.x >> (unsigned) (0x1f & src1.x)
1292
1293 dst.y = src0.y >> (unsigned) (0x1f & src1.y)
1294
1295 dst.z = src0.z >> (unsigned) (0x1f & src1.z)
1296
1297 dst.w = src0.w >> (unsigned) (0x1f & src1.w)
1298
1299
1300 .. opcode:: UCMP - Integer Conditional Move
1301
1302 .. math::
1303
1304 dst.x = src0.x ? src1.x : src2.x
1305
1306 dst.y = src0.y ? src1.y : src2.y
1307
1308 dst.z = src0.z ? src1.z : src2.z
1309
1310 dst.w = src0.w ? src1.w : src2.w
1311
1312
1313
1314 .. opcode:: ISSG - Integer Set Sign
1315
1316 .. math::
1317
1318 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1319
1320 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1321
1322 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1323
1324 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1325
1326
1327
1328 .. opcode:: ISLT - Signed Integer Set On Less Than
1329
1330 .. math::
1331
1332 dst.x = (src0.x < src1.x) ? ~0 : 0
1333
1334 dst.y = (src0.y < src1.y) ? ~0 : 0
1335
1336 dst.z = (src0.z < src1.z) ? ~0 : 0
1337
1338 dst.w = (src0.w < src1.w) ? ~0 : 0
1339
1340
1341 .. opcode:: USLT - Unsigned Integer Set On Less Than
1342
1343 .. math::
1344
1345 dst.x = (src0.x < src1.x) ? ~0 : 0
1346
1347 dst.y = (src0.y < src1.y) ? ~0 : 0
1348
1349 dst.z = (src0.z < src1.z) ? ~0 : 0
1350
1351 dst.w = (src0.w < src1.w) ? ~0 : 0
1352
1353
1354 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1355
1356 .. math::
1357
1358 dst.x = (src0.x >= src1.x) ? ~0 : 0
1359
1360 dst.y = (src0.y >= src1.y) ? ~0 : 0
1361
1362 dst.z = (src0.z >= src1.z) ? ~0 : 0
1363
1364 dst.w = (src0.w >= src1.w) ? ~0 : 0
1365
1366
1367 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1368
1369 .. math::
1370
1371 dst.x = (src0.x >= src1.x) ? ~0 : 0
1372
1373 dst.y = (src0.y >= src1.y) ? ~0 : 0
1374
1375 dst.z = (src0.z >= src1.z) ? ~0 : 0
1376
1377 dst.w = (src0.w >= src1.w) ? ~0 : 0
1378
1379
1380 .. opcode:: USEQ - Integer Set On Equal
1381
1382 .. math::
1383
1384 dst.x = (src0.x == src1.x) ? ~0 : 0
1385
1386 dst.y = (src0.y == src1.y) ? ~0 : 0
1387
1388 dst.z = (src0.z == src1.z) ? ~0 : 0
1389
1390 dst.w = (src0.w == src1.w) ? ~0 : 0
1391
1392
1393 .. opcode:: USNE - Integer Set On Not Equal
1394
1395 .. math::
1396
1397 dst.x = (src0.x != src1.x) ? ~0 : 0
1398
1399 dst.y = (src0.y != src1.y) ? ~0 : 0
1400
1401 dst.z = (src0.z != src1.z) ? ~0 : 0
1402
1403 dst.w = (src0.w != src1.w) ? ~0 : 0
1404
1405
1406 .. opcode:: INEG - Integer Negate
1407
1408 Two's complement.
1409
1410 .. math::
1411
1412 dst.x = -src.x
1413
1414 dst.y = -src.y
1415
1416 dst.z = -src.z
1417
1418 dst.w = -src.w
1419
1420
1421 .. opcode:: IABS - Integer Absolute Value
1422
1423 .. math::
1424
1425 dst.x = |src.x|
1426
1427 dst.y = |src.y|
1428
1429 dst.z = |src.z|
1430
1431 dst.w = |src.w|
1432
1433
1434 Geometry ISA
1435 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1436
1437 These opcodes are only supported in geometry shaders; they have no meaning
1438 in any other type of shader.
1439
1440 .. opcode:: EMIT - Emit
1441
1442 Generate a new vertex for the current primitive using the values in the
1443 output registers.
1444
1445
1446 .. opcode:: ENDPRIM - End Primitive
1447
1448 Complete the current primitive (consisting of the emitted vertices),
1449 and start a new one.
1450
1451
1452 GLSL ISA
1453 ^^^^^^^^^^
1454
1455 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1456 opcodes is determined by a special capability bit, ``GLSL``.
1457 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1458
1459 .. opcode:: CAL - Subroutine Call
1460
1461 push(pc)
1462 pc = target
1463
1464
1465 .. opcode:: RET - Subroutine Call Return
1466
1467 pc = pop()
1468
1469
1470 .. opcode:: CONT - Continue
1471
1472 Unconditionally moves the point of execution to the instruction after the
1473 last bgnloop. The instruction must appear within a bgnloop/endloop.
1474
1475 .. note::
1476
1477 Support for CONT is determined by a special capability bit,
1478 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1479
1480
1481 .. opcode:: BGNLOOP - Begin a Loop
1482
1483 Start a loop. Must have a matching endloop.
1484
1485
1486 .. opcode:: BGNSUB - Begin Subroutine
1487
1488 Starts definition of a subroutine. Must have a matching endsub.
1489
1490
1491 .. opcode:: ENDLOOP - End a Loop
1492
1493 End a loop started with bgnloop.
1494
1495
1496 .. opcode:: ENDSUB - End Subroutine
1497
1498 Ends definition of a subroutine.
1499
1500
1501 .. opcode:: NOP - No Operation
1502
1503 Do nothing.
1504
1505
1506 .. opcode:: BRK - Break
1507
1508 Unconditionally moves the point of execution to the instruction after the
1509 next endloop or endswitch. The instruction must appear within a loop/endloop
1510 or switch/endswitch.
1511
1512
1513 .. opcode:: BREAKC - Break Conditional
1514
1515 Conditionally moves the point of execution to the instruction after the
1516 next endloop or endswitch. The instruction must appear within a loop/endloop
1517 or switch/endswitch.
1518 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1519 as an integer register.
1520
1521 .. note::
1522
1523 Considered for removal as it's quite inconsistent wrt other opcodes
1524 (could emulate with UIF/BRK/ENDIF).
1525
1526
1527 .. opcode:: IF - Float If
1528
1529 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1530
1531 src0.x != 0.0
1532
1533 where src0.x is interpreted as a floating point register.
1534
1535
1536 .. opcode:: UIF - Bitwise If
1537
1538 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1539
1540 src0.x != 0
1541
1542 where src0.x is interpreted as an integer register.
1543
1544
1545 .. opcode:: ELSE - Else
1546
1547 Starts an else block, after an IF or UIF statement.
1548
1549
1550 .. opcode:: ENDIF - End If
1551
1552 Ends an IF or UIF block.
1553
1554
1555 .. opcode:: SWITCH - Switch
1556
1557 Starts a C-style switch expression. The switch consists of one or multiple
1558 CASE statements, and at most one DEFAULT statement. Execution of a statement
1559 ends when a BRK is hit, but just like in C falling through to other cases
1560 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1561 just as last statement, and fallthrough is allowed into/from it.
1562 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1563
1564 Example:
1565 SWITCH src[0].x
1566 CASE src[0].x
1567 (some instructions here)
1568 (optional BRK here)
1569 DEFAULT
1570 (some instructions here)
1571 (optional BRK here)
1572 CASE src[0].x
1573 (some instructions here)
1574 (optional BRK here)
1575 ENDSWITCH
1576
1577
1578 .. opcode:: CASE - Switch case
1579
1580 This represents a switch case label. The src arg must be an integer immediate.
1581
1582
1583 .. opcode:: DEFAULT - Switch default
1584
1585 This represents the default case in the switch, which is taken if no other
1586 case matches.
1587
1588
1589 .. opcode:: ENDSWITCH - End of switch
1590
1591 Ends a switch expression.
1592
1593
1594 .. opcode:: NRM4 - 4-component Vector Normalise
1595
1596 This instruction replicates its result.
1597
1598 .. math::
1599
1600 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1601
1602
1603 .. _doubleopcodes:
1604
1605 Double ISA
1606 ^^^^^^^^^^^^^^^
1607
1608 The double-precision opcodes reinterpret four-component vectors into
1609 two-component vectors with doubled precision in each component.
1610
1611 Support for these opcodes is XXX undecided. :T
1612
1613 .. opcode:: DADD - Add
1614
1615 .. math::
1616
1617 dst.xy = src0.xy + src1.xy
1618
1619 dst.zw = src0.zw + src1.zw
1620
1621
1622 .. opcode:: DDIV - Divide
1623
1624 .. math::
1625
1626 dst.xy = src0.xy / src1.xy
1627
1628 dst.zw = src0.zw / src1.zw
1629
1630 .. opcode:: DSEQ - Set on Equal
1631
1632 .. math::
1633
1634 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1635
1636 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1637
1638 .. opcode:: DSLT - Set on Less than
1639
1640 .. math::
1641
1642 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1643
1644 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1645
1646 .. opcode:: DFRAC - Fraction
1647
1648 .. math::
1649
1650 dst.xy = src.xy - \lfloor src.xy\rfloor
1651
1652 dst.zw = src.zw - \lfloor src.zw\rfloor
1653
1654
1655 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1656
1657 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1658 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1659 :math:`dst1 \times 2^{dst0} = src` .
1660
1661 .. math::
1662
1663 dst0.xy = exp(src.xy)
1664
1665 dst1.xy = frac(src.xy)
1666
1667 dst0.zw = exp(src.zw)
1668
1669 dst1.zw = frac(src.zw)
1670
1671 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1672
1673 This opcode is the inverse of :opcode:`DFRACEXP`.
1674
1675 .. math::
1676
1677 dst.xy = src0.xy \times 2^{src1.xy}
1678
1679 dst.zw = src0.zw \times 2^{src1.zw}
1680
1681 .. opcode:: DMIN - Minimum
1682
1683 .. math::
1684
1685 dst.xy = min(src0.xy, src1.xy)
1686
1687 dst.zw = min(src0.zw, src1.zw)
1688
1689 .. opcode:: DMAX - Maximum
1690
1691 .. math::
1692
1693 dst.xy = max(src0.xy, src1.xy)
1694
1695 dst.zw = max(src0.zw, src1.zw)
1696
1697 .. opcode:: DMUL - Multiply
1698
1699 .. math::
1700
1701 dst.xy = src0.xy \times src1.xy
1702
1703 dst.zw = src0.zw \times src1.zw
1704
1705
1706 .. opcode:: DMAD - Multiply And Add
1707
1708 .. math::
1709
1710 dst.xy = src0.xy \times src1.xy + src2.xy
1711
1712 dst.zw = src0.zw \times src1.zw + src2.zw
1713
1714
1715 .. opcode:: DRCP - Reciprocal
1716
1717 .. math::
1718
1719 dst.xy = \frac{1}{src.xy}
1720
1721 dst.zw = \frac{1}{src.zw}
1722
1723 .. opcode:: DSQRT - Square Root
1724
1725 .. math::
1726
1727 dst.xy = \sqrt{src.xy}
1728
1729 dst.zw = \sqrt{src.zw}
1730
1731
1732 .. _samplingopcodes:
1733
1734 Resource Sampling Opcodes
1735 ^^^^^^^^^^^^^^^^^^^^^^^^^
1736
1737 Those opcodes follow very closely semantics of the respective Direct3D
1738 instructions. If in doubt double check Direct3D documentation.
1739 Note that the swizzle on SVIEW (src1) determines texel swizzling
1740 after lookup.
1741
1742 .. opcode:: SAMPLE - Using provided address, sample data from the
1743 specified texture using the filtering mode identified
1744 by the gven sampler. The source data may come from
1745 any resource type other than buffers.
1746 SAMPLE dst, address, sampler_view, sampler
1747 e.g.
1748 SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1749
1750 .. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction.
1751 Using the provided integer address, SAMPLE_I fetches data
1752 from the specified sampler view without any filtering.
1753 The source data may come from any resource type other
1754 than CUBE.
1755 SAMPLE_I dst, address, sampler_view
1756 e.g.
1757 SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]
1758 The 'address' is specified as unsigned integers. If the
1759 'address' is out of range [0...(# texels - 1)] the
1760 result of the fetch is always 0 in all components.
1761 As such the instruction doesn't honor address wrap
1762 modes, in cases where that behavior is desirable
1763 'SAMPLE' instruction should be used.
1764 address.w always provides an unsigned integer mipmap
1765 level. If the value is out of the range then the
1766 instruction always returns 0 in all components.
1767 address.yz are ignored for buffers and 1d textures.
1768 address.z is ignored for 1d texture arrays and 2d
1769 textures.
1770 For 1D texture arrays address.y provides the array
1771 index (also as unsigned integer). If the value is
1772 out of the range of available array indices
1773 [0... (array size - 1)] then the opcode always returns
1774 0 in all components.
1775 For 2D texture arrays address.z provides the array
1776 index, otherwise it exhibits the same behavior as in
1777 the case for 1D texture arrays.
1778 The exact semantics of the source address are presented
1779 in the table below:
1780 resource type X Y Z W
1781 ------------- ------------------------
1782 PIPE_BUFFER x ignored
1783 PIPE_TEXTURE_1D x mpl
1784 PIPE_TEXTURE_2D x y mpl
1785 PIPE_TEXTURE_3D x y z mpl
1786 PIPE_TEXTURE_RECT x y mpl
1787 PIPE_TEXTURE_CUBE not allowed as source
1788 PIPE_TEXTURE_1D_ARRAY x idx mpl
1789 PIPE_TEXTURE_2D_ARRAY x y idx mpl
1790
1791 Where 'mpl' is a mipmap level and 'idx' is the
1792 array index.
1793
1794 .. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from
1795 multi-sampled surfaces.
1796 SAMPLE_I_MS dst, address, sampler_view, sample
1797
1798 .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1799 exception that an additional bias is applied to the
1800 level of detail computed as part of the instruction
1801 execution.
1802 SAMPLE_B dst, address, sampler_view, sampler, lod_bias
1803 e.g.
1804 SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1805
1806 .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1807 performs a comparison filter. The operands to SAMPLE_C
1808 are identical to SAMPLE, except that there is an additional
1809 float32 operand, reference value, which must be a register
1810 with single-component, or a scalar literal.
1811 SAMPLE_C makes the hardware use the current samplers
1812 compare_func (in pipe_sampler_state) to compare
1813 reference value against the red component value for the
1814 surce resource at each texel that the currently configured
1815 texture filter covers based on the provided coordinates.
1816 SAMPLE_C dst, address, sampler_view.r, sampler, ref_value
1817 e.g.
1818 SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1819
1820 .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1821 are ignored. The LZ stands for level-zero.
1822 SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value
1823 e.g.
1824 SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1825
1826
1827 .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1828 that the derivatives for the source address in the x
1829 direction and the y direction are provided by extra
1830 parameters.
1831 SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y
1832 e.g.
1833 SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]
1834
1835 .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1836 that the LOD is provided directly as a scalar value,
1837 representing no anisotropy.
1838 SAMPLE_L dst, address, sampler_view, sampler, explicit_lod
1839 e.g.
1840 SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1841
1842 .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1843 filtering operation and packs them into a single register.
1844 Only works with 2D, 2D array, cubemaps, and cubemaps arrays.
1845 For 2D textures, only the addressing modes of the sampler and
1846 the top level of any mip pyramid are used. Set W to zero.
1847 It behaves like the SAMPLE instruction, but a filtered
1848 sample is not generated. The four samples that contribute
1849 to filtering are placed into xyzw in counter-clockwise order,
1850 starting with the (u,v) texture coordinate delta at the
1851 following locations (-, +), (+, +), (+, -), (-, -), where
1852 the magnitude of the deltas are half a texel.
1853
1854
1855 .. opcode:: SVIEWINFO - query the dimensions of a given sampler view.
1856 dst receives width, height, depth or array size and
1857 number of mipmap levels as int4. The dst can have a writemask
1858 which will specify what info is the caller interested
1859 in.
1860 SVIEWINFO dst, src_mip_level, sampler_view
1861 e.g.
1862 SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]
1863 src_mip_level is an unsigned integer scalar. If it's
1864 out of range then returns 0 for width, height and
1865 depth/array size but the total number of mipmap is
1866 still returned correctly for the given sampler view.
1867 The returned width, height and depth values are for
1868 the mipmap level selected by the src_mip_level and
1869 are in the number of texels.
1870 For 1d texture array width is in dst.x, array size
1871 is in dst.y and dst.zw are always 0.
1872
1873 .. opcode:: SAMPLE_POS - query the position of a given sample.
1874 dst receives float4 (x, y, 0, 0) indicated where the
1875 sample is located. If the resource is not a multi-sample
1876 resource and not a render target, the result is 0.
1877
1878 .. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1879 If the resource is not a multi-sample resource and
1880 not a render target, the result is 0.
1881
1882
1883 .. _resourceopcodes:
1884
1885 Resource Access Opcodes
1886 ^^^^^^^^^^^^^^^^^^^^^^^
1887
1888 .. opcode:: LOAD - Fetch data from a shader resource
1889
1890 Syntax: ``LOAD dst, resource, address``
1891
1892 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
1893
1894 Using the provided integer address, LOAD fetches data
1895 from the specified buffer or texture without any
1896 filtering.
1897
1898 The 'address' is specified as a vector of unsigned
1899 integers. If the 'address' is out of range the result
1900 is unspecified.
1901
1902 Only the first mipmap level of a resource can be read
1903 from using this instruction.
1904
1905 For 1D or 2D texture arrays, the array index is
1906 provided as an unsigned integer in address.y or
1907 address.z, respectively. address.yz are ignored for
1908 buffers and 1D textures. address.z is ignored for 1D
1909 texture arrays and 2D textures. address.w is always
1910 ignored.
1911
1912 .. opcode:: STORE - Write data to a shader resource
1913
1914 Syntax: ``STORE resource, address, src``
1915
1916 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
1917
1918 Using the provided integer address, STORE writes data
1919 to the specified buffer or texture.
1920
1921 The 'address' is specified as a vector of unsigned
1922 integers. If the 'address' is out of range the result
1923 is unspecified.
1924
1925 Only the first mipmap level of a resource can be
1926 written to using this instruction.
1927
1928 For 1D or 2D texture arrays, the array index is
1929 provided as an unsigned integer in address.y or
1930 address.z, respectively. address.yz are ignored for
1931 buffers and 1D textures. address.z is ignored for 1D
1932 texture arrays and 2D textures. address.w is always
1933 ignored.
1934
1935
1936 .. _threadsyncopcodes:
1937
1938 Inter-thread synchronization opcodes
1939 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1940
1941 These opcodes are intended for communication between threads running
1942 within the same compute grid. For now they're only valid in compute
1943 programs.
1944
1945 .. opcode:: MFENCE - Memory fence
1946
1947 Syntax: ``MFENCE resource``
1948
1949 Example: ``MFENCE RES[0]``
1950
1951 This opcode forces strong ordering between any memory access
1952 operations that affect the specified resource. This means that
1953 previous loads and stores (and only those) will be performed and
1954 visible to other threads before the program execution continues.
1955
1956
1957 .. opcode:: LFENCE - Load memory fence
1958
1959 Syntax: ``LFENCE resource``
1960
1961 Example: ``LFENCE RES[0]``
1962
1963 Similar to MFENCE, but it only affects the ordering of memory loads.
1964
1965
1966 .. opcode:: SFENCE - Store memory fence
1967
1968 Syntax: ``SFENCE resource``
1969
1970 Example: ``SFENCE RES[0]``
1971
1972 Similar to MFENCE, but it only affects the ordering of memory stores.
1973
1974
1975 .. opcode:: BARRIER - Thread group barrier
1976
1977 ``BARRIER``
1978
1979 This opcode suspends the execution of the current thread until all
1980 the remaining threads in the working group reach the same point of
1981 the program. Results are unspecified if any of the remaining
1982 threads terminates or never reaches an executed BARRIER instruction.
1983
1984
1985 .. _atomopcodes:
1986
1987 Atomic opcodes
1988 ^^^^^^^^^^^^^^
1989
1990 These opcodes provide atomic variants of some common arithmetic and
1991 logical operations. In this context atomicity means that another
1992 concurrent memory access operation that affects the same memory
1993 location is guaranteed to be performed strictly before or after the
1994 entire execution of the atomic operation.
1995
1996 For the moment they're only valid in compute programs.
1997
1998 .. opcode:: ATOMUADD - Atomic integer addition
1999
2000 Syntax: ``ATOMUADD dst, resource, offset, src``
2001
2002 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2003
2004 The following operation is performed atomically on each component:
2005
2006 .. math::
2007
2008 dst_i = resource[offset]_i
2009
2010 resource[offset]_i = dst_i + src_i
2011
2012
2013 .. opcode:: ATOMXCHG - Atomic exchange
2014
2015 Syntax: ``ATOMXCHG dst, resource, offset, src``
2016
2017 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2018
2019 The following operation is performed atomically on each component:
2020
2021 .. math::
2022
2023 dst_i = resource[offset]_i
2024
2025 resource[offset]_i = src_i
2026
2027
2028 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2029
2030 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2031
2032 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2033
2034 The following operation is performed atomically on each component:
2035
2036 .. math::
2037
2038 dst_i = resource[offset]_i
2039
2040 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2041
2042
2043 .. opcode:: ATOMAND - Atomic bitwise And
2044
2045 Syntax: ``ATOMAND dst, resource, offset, src``
2046
2047 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2048
2049 The following operation is performed atomically on each component:
2050
2051 .. math::
2052
2053 dst_i = resource[offset]_i
2054
2055 resource[offset]_i = dst_i \& src_i
2056
2057
2058 .. opcode:: ATOMOR - Atomic bitwise Or
2059
2060 Syntax: ``ATOMOR dst, resource, offset, src``
2061
2062 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2063
2064 The following operation is performed atomically on each component:
2065
2066 .. math::
2067
2068 dst_i = resource[offset]_i
2069
2070 resource[offset]_i = dst_i | src_i
2071
2072
2073 .. opcode:: ATOMXOR - Atomic bitwise Xor
2074
2075 Syntax: ``ATOMXOR dst, resource, offset, src``
2076
2077 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2078
2079 The following operation is performed atomically on each component:
2080
2081 .. math::
2082
2083 dst_i = resource[offset]_i
2084
2085 resource[offset]_i = dst_i \oplus src_i
2086
2087
2088 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2089
2090 Syntax: ``ATOMUMIN dst, resource, offset, src``
2091
2092 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2093
2094 The following operation is performed atomically on each component:
2095
2096 .. math::
2097
2098 dst_i = resource[offset]_i
2099
2100 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2101
2102
2103 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2104
2105 Syntax: ``ATOMUMAX dst, resource, offset, src``
2106
2107 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2108
2109 The following operation is performed atomically on each component:
2110
2111 .. math::
2112
2113 dst_i = resource[offset]_i
2114
2115 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2116
2117
2118 .. opcode:: ATOMIMIN - Atomic signed minimum
2119
2120 Syntax: ``ATOMIMIN dst, resource, offset, src``
2121
2122 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2123
2124 The following operation is performed atomically on each component:
2125
2126 .. math::
2127
2128 dst_i = resource[offset]_i
2129
2130 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2131
2132
2133 .. opcode:: ATOMIMAX - Atomic signed maximum
2134
2135 Syntax: ``ATOMIMAX dst, resource, offset, src``
2136
2137 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2138
2139 The following operation is performed atomically on each component:
2140
2141 .. math::
2142
2143 dst_i = resource[offset]_i
2144
2145 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2146
2147
2148
2149 Explanation of symbols used
2150 ------------------------------
2151
2152
2153 Functions
2154 ^^^^^^^^^^^^^^
2155
2156
2157 :math:`|x|` Absolute value of `x`.
2158
2159 :math:`\lceil x \rceil` Ceiling of `x`.
2160
2161 clamp(x,y,z) Clamp x between y and z.
2162 (x < y) ? y : (x > z) ? z : x
2163
2164 :math:`\lfloor x\rfloor` Floor of `x`.
2165
2166 :math:`\log_2{x}` Logarithm of `x`, base 2.
2167
2168 max(x,y) Maximum of x and y.
2169 (x > y) ? x : y
2170
2171 min(x,y) Minimum of x and y.
2172 (x < y) ? x : y
2173
2174 partialx(x) Derivative of x relative to fragment's X.
2175
2176 partialy(x) Derivative of x relative to fragment's Y.
2177
2178 pop() Pop from stack.
2179
2180 :math:`x^y` `x` to the power `y`.
2181
2182 push(x) Push x on stack.
2183
2184 round(x) Round x.
2185
2186 trunc(x) Truncate x, i.e. drop the fraction bits.
2187
2188
2189 Keywords
2190 ^^^^^^^^^^^^^
2191
2192
2193 discard Discard fragment.
2194
2195 pc Program counter.
2196
2197 target Label of target instruction.
2198
2199
2200 Other tokens
2201 ---------------
2202
2203
2204 Declaration
2205 ^^^^^^^^^^^
2206
2207
2208 Declares a register that is will be referenced as an operand in Instruction
2209 tokens.
2210
2211 File field contains register file that is being declared and is one
2212 of TGSI_FILE.
2213
2214 UsageMask field specifies which of the register components can be accessed
2215 and is one of TGSI_WRITEMASK.
2216
2217 The Local flag specifies that a given value isn't intended for
2218 subroutine parameter passing and, as a result, the implementation
2219 isn't required to give any guarantees of it being preserved across
2220 subroutine boundaries. As it's merely a compiler hint, the
2221 implementation is free to ignore it.
2222
2223 If Dimension flag is set to 1, a Declaration Dimension token follows.
2224
2225 If Semantic flag is set to 1, a Declaration Semantic token follows.
2226
2227 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2228
2229 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2230
2231 If Array flag is set to 1, a Declaration Array token follows.
2232
2233 Array Declaration
2234 ^^^^^^^^^^^^^^^^^^^^^^^^
2235
2236 Declarations can optional have an ArrayID attribute which can be referred by
2237 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2238 if no ArrayID is specified.
2239
2240 If an indirect addressing operand refers to a specific declaration by using
2241 an ArrayID only the registers in this declaration are guaranteed to be
2242 accessed, accessing any register outside this declaration results in undefined
2243 behavior. Note that for compatibility the effective index is zero-based and
2244 not relative to the specified declaration
2245
2246 If no ArrayID is specified with an indirect addressing operand the whole
2247 register file might be accessed by this operand. This is strongly discouraged
2248 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2249
2250 Declaration Semantic
2251 ^^^^^^^^^^^^^^^^^^^^^^^^
2252
2253 Vertex and fragment shader input and output registers may be labeled
2254 with semantic information consisting of a name and index.
2255
2256 Follows Declaration token if Semantic bit is set.
2257
2258 Since its purpose is to link a shader with other stages of the pipeline,
2259 it is valid to follow only those Declaration tokens that declare a register
2260 either in INPUT or OUTPUT file.
2261
2262 SemanticName field contains the semantic name of the register being declared.
2263 There is no default value.
2264
2265 SemanticIndex is an optional subscript that can be used to distinguish
2266 different register declarations with the same semantic name. The default value
2267 is 0.
2268
2269 The meanings of the individual semantic names are explained in the following
2270 sections.
2271
2272 TGSI_SEMANTIC_POSITION
2273 """"""""""""""""""""""
2274
2275 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2276 output register which contains the homogeneous vertex position in the clip
2277 space coordinate system. After clipping, the X, Y and Z components of the
2278 vertex will be divided by the W value to get normalized device coordinates.
2279
2280 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2281 fragment shader input contains the fragment's window position. The X
2282 component starts at zero and always increases from left to right.
2283 The Y component starts at zero and always increases but Y=0 may either
2284 indicate the top of the window or the bottom depending on the fragment
2285 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2286 The Z coordinate ranges from 0 to 1 to represent depth from the front
2287 to the back of the Z buffer. The W component contains the reciprocol
2288 of the interpolated vertex position W component.
2289
2290 Fragment shaders may also declare an output register with
2291 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2292 the fragment shader to change the fragment's Z position.
2293
2294
2295
2296 TGSI_SEMANTIC_COLOR
2297 """""""""""""""""""
2298
2299 For vertex shader outputs or fragment shader inputs/outputs, this
2300 label indicates that the resister contains an R,G,B,A color.
2301
2302 Several shader inputs/outputs may contain colors so the semantic index
2303 is used to distinguish them. For example, color[0] may be the diffuse
2304 color while color[1] may be the specular color.
2305
2306 This label is needed so that the flat/smooth shading can be applied
2307 to the right interpolants during rasterization.
2308
2309
2310
2311 TGSI_SEMANTIC_BCOLOR
2312 """"""""""""""""""""
2313
2314 Back-facing colors are only used for back-facing polygons, and are only valid
2315 in vertex shader outputs. After rasterization, all polygons are front-facing
2316 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2317 so all BCOLORs effectively become regular COLORs in the fragment shader.
2318
2319
2320 TGSI_SEMANTIC_FOG
2321 """""""""""""""""
2322
2323 Vertex shader inputs and outputs and fragment shader inputs may be
2324 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2325 a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
2326 shader will use the fog coordinate to compute a fog blend factor which
2327 is used to blend the normal fragment color with a constant fog color.
2328
2329 Only the first component matters when writing from the vertex shader;
2330 the driver will ensure that the coordinate is in this format when used
2331 as a fragment shader input.
2332
2333
2334 TGSI_SEMANTIC_PSIZE
2335 """""""""""""""""""
2336
2337 Vertex shader input and output registers may be labeled with
2338 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2339 in the form (S, 0, 0, 1). The point size controls the width or diameter
2340 of points for rasterization. This label cannot be used in fragment
2341 shaders.
2342
2343 When using this semantic, be sure to set the appropriate state in the
2344 :ref:`rasterizer` first.
2345
2346
2347 TGSI_SEMANTIC_TEXCOORD
2348 """"""""""""""""""""""
2349
2350 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2351
2352 Vertex shader outputs and fragment shader inputs may be labeled with
2353 this semantic to make them replaceable by sprite coordinates via the
2354 sprite_coord_enable state in the :ref:`rasterizer`.
2355 The semantic index permitted with this semantic is limited to <= 7.
2356
2357 If the driver does not support TEXCOORD, sprite coordinate replacement
2358 applies to inputs with the GENERIC semantic instead.
2359
2360 The intended use case for this semantic is gl_TexCoord.
2361
2362
2363 TGSI_SEMANTIC_PCOORD
2364 """"""""""""""""""""
2365
2366 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2367
2368 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2369 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2370 the current primitive is a point and point sprites are enabled. Otherwise,
2371 the contents of the register are undefined.
2372
2373 The intended use case for this semantic is gl_PointCoord.
2374
2375
2376 TGSI_SEMANTIC_GENERIC
2377 """""""""""""""""""""
2378
2379 All vertex/fragment shader inputs/outputs not labeled with any other
2380 semantic label can be considered to be generic attributes. Typical
2381 uses of generic inputs/outputs are texcoords and user-defined values.
2382
2383
2384 TGSI_SEMANTIC_NORMAL
2385 """"""""""""""""""""
2386
2387 Indicates that a vertex shader input is a normal vector. This is
2388 typically only used for legacy graphics APIs.
2389
2390
2391 TGSI_SEMANTIC_FACE
2392 """"""""""""""""""
2393
2394 This label applies to fragment shader inputs only and indicates that
2395 the register contains front/back-face information of the form (F, 0,
2396 0, 1). The first component will be positive when the fragment belongs
2397 to a front-facing polygon, and negative when the fragment belongs to a
2398 back-facing polygon.
2399
2400
2401 TGSI_SEMANTIC_EDGEFLAG
2402 """"""""""""""""""""""
2403
2404 For vertex shaders, this sematic label indicates that an input or
2405 output is a boolean edge flag. The register layout is [F, x, x, x]
2406 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2407 simply copies the edge flag input to the edgeflag output.
2408
2409 Edge flags are used to control which lines or points are actually
2410 drawn when the polygon mode converts triangles/quads/polygons into
2411 points or lines.
2412
2413
2414 TGSI_SEMANTIC_STENCIL
2415 """""""""""""""""""""
2416
2417 For fragment shaders, this semantic label indicates that an output
2418 is a writable stencil reference value. Only the Y component is writable.
2419 This allows the fragment shader to change the fragments stencilref value.
2420
2421
2422 TGSI_SEMANTIC_VIEWPORT_INDEX
2423 """"""""""""""""""""""""""""
2424
2425 For geometry shaders, this semantic label indicates that an output
2426 contains the index of the viewport (and scissor) to use.
2427 Only the X value is used.
2428
2429
2430 TGSI_SEMANTIC_LAYER
2431 """""""""""""""""""
2432
2433 For geometry shaders, this semantic label indicates that an output
2434 contains the layer value to use for the color and depth/stencil surfaces.
2435 Only the X value is used. (Also known as rendertarget array index.)
2436
2437
2438 TGSI_SEMANTIC_CULLDIST
2439 """"""""""""""""""""""
2440
2441 Used as distance to plane for performing application-defined culling
2442 of individual primitives against a plane. When components of vertex
2443 elements are given this label, these values are assumed to be a
2444 float32 signed distance to a plane. Primitives will be completely
2445 discarded if the plane distance for all of the vertices in the
2446 primitive are < 0. If a vertex has a cull distance of NaN, that
2447 vertex counts as "out" (as if its < 0);
2448 The limits on both clip and cull distances are bound
2449 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2450 the maximum number of components that can be used to hold the
2451 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2452 which specifies the maximum number of registers which can be
2453 annotated with those semantics.
2454
2455
2456 TGSI_SEMANTIC_CLIPDIST
2457 """"""""""""""""""""""
2458
2459 When components of vertex elements are identified this way, these
2460 values are each assumed to be a float32 signed distance to a plane.
2461 Primitive setup only invokes rasterization on pixels for which
2462 the interpolated plane distances are >= 0. Multiple clip planes
2463 can be implemented simultaneously, by annotating multiple
2464 components of one or more vertex elements with the above specified
2465 semantic. The limits on both clip and cull distances are bound
2466 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2467 the maximum number of components that can be used to hold the
2468 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2469 which specifies the maximum number of registers which can be
2470 annotated with those semantics.
2471
2472
2473 Declaration Interpolate
2474 ^^^^^^^^^^^^^^^^^^^^^^^
2475
2476 This token is only valid for fragment shader INPUT declarations.
2477
2478 The Interpolate field specifes the way input is being interpolated by
2479 the rasteriser and is one of TGSI_INTERPOLATE_*.
2480
2481 The CylindricalWrap bitfield specifies which register components
2482 should be subject to cylindrical wrapping when interpolating by the
2483 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2484 should be interpolated according to cylindrical wrapping rules.
2485
2486
2487 Declaration Sampler View
2488 ^^^^^^^^^^^^^^^^^^^^^^^^
2489
2490 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2491
2492 DCL SVIEW[#], resource, type(s)
2493
2494 Declares a shader input sampler view and assigns it to a SVIEW[#]
2495 register.
2496
2497 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2498
2499 type must be 1 or 4 entries (if specifying on a per-component
2500 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2501
2502
2503 Declaration Resource
2504 ^^^^^^^^^^^^^^^^^^^^
2505
2506 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2507
2508 DCL RES[#], resource [, WR] [, RAW]
2509
2510 Declares a shader input resource and assigns it to a RES[#]
2511 register.
2512
2513 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2514 2DArray.
2515
2516 If the RAW keyword is not specified, the texture data will be
2517 subject to conversion, swizzling and scaling as required to yield
2518 the specified data type from the physical data format of the bound
2519 resource.
2520
2521 If the RAW keyword is specified, no channel conversion will be
2522 performed: the values read for each of the channels (X,Y,Z,W) will
2523 correspond to consecutive words in the same order and format
2524 they're found in memory. No element-to-address conversion will be
2525 performed either: the value of the provided X coordinate will be
2526 interpreted in byte units instead of texel units. The result of
2527 accessing a misaligned address is undefined.
2528
2529 Usage of the STORE opcode is only allowed if the WR (writable) flag
2530 is set.
2531
2532
2533 Properties
2534 ^^^^^^^^^^^^^^^^^^^^^^^^
2535
2536
2537 Properties are general directives that apply to the whole TGSI program.
2538
2539 FS_COORD_ORIGIN
2540 """""""""""""""
2541
2542 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2543 The default value is UPPER_LEFT.
2544
2545 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2546 increase downward and rightward.
2547 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2548 increase upward and rightward.
2549
2550 OpenGL defaults to LOWER_LEFT, and is configurable with the
2551 GL_ARB_fragment_coord_conventions extension.
2552
2553 DirectX 9/10 use UPPER_LEFT.
2554
2555 FS_COORD_PIXEL_CENTER
2556 """""""""""""""""""""
2557
2558 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2559 The default value is HALF_INTEGER.
2560
2561 If HALF_INTEGER, the fractionary part of the position will be 0.5
2562 If INTEGER, the fractionary part of the position will be 0.0
2563
2564 Note that this does not affect the set of fragments generated by
2565 rasterization, which is instead controlled by half_pixel_center in the
2566 rasterizer.
2567
2568 OpenGL defaults to HALF_INTEGER, and is configurable with the
2569 GL_ARB_fragment_coord_conventions extension.
2570
2571 DirectX 9 uses INTEGER.
2572 DirectX 10 uses HALF_INTEGER.
2573
2574 FS_COLOR0_WRITES_ALL_CBUFS
2575 """"""""""""""""""""""""""
2576 Specifies that writes to the fragment shader color 0 are replicated to all
2577 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2578 fragData is directed to a single color buffer, but fragColor is broadcast.
2579
2580 VS_PROHIBIT_UCPS
2581 """"""""""""""""""""""""""
2582 If this property is set on the program bound to the shader stage before the
2583 fragment shader, user clip planes should have no effect (be disabled) even if
2584 that shader does not write to any clip distance outputs and the rasterizer's
2585 clip_plane_enable is non-zero.
2586 This property is only supported by drivers that also support shader clip
2587 distance outputs.
2588 This is useful for APIs that don't have UCPs and where clip distances written
2589 by a shader cannot be disabled.
2590
2591
2592 Texture Sampling and Texture Formats
2593 ------------------------------------
2594
2595 This table shows how texture image components are returned as (x,y,z,w) tuples
2596 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2597 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2598 well.
2599
2600 +--------------------+--------------+--------------------+--------------+
2601 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2602 +====================+==============+====================+==============+
2603 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2604 +--------------------+--------------+--------------------+--------------+
2605 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2606 +--------------------+--------------+--------------------+--------------+
2607 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2608 +--------------------+--------------+--------------------+--------------+
2609 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2610 +--------------------+--------------+--------------------+--------------+
2611 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2612 +--------------------+--------------+--------------------+--------------+
2613 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2614 +--------------------+--------------+--------------------+--------------+
2615 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2616 +--------------------+--------------+--------------------+--------------+
2617 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2618 +--------------------+--------------+--------------------+--------------+
2619 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2620 | | | [#envmap-bumpmap]_ | |
2621 +--------------------+--------------+--------------------+--------------+
2622 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2623 | | | [#depth-tex-mode]_ | |
2624 +--------------------+--------------+--------------------+--------------+
2625 | S | (s, s, s, s) | unknown | unknown |
2626 +--------------------+--------------+--------------------+--------------+
2627
2628 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2629 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2630 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.