gallium: document breakc and switch/case/default/endswitch
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed type only the negate modifier is supported. This
36 includes instructions which are otherwise ignorant if the type is signed or
37 unsigned, such as TGSI_OPCODE_UADD.
38
39 For inputs with unsigned type no modifiers are allowed.
40
41 Instruction Set
42 ---------------
43
44 Core ISA
45 ^^^^^^^^^^^^^^^^^^^^^^^^^
46
47 These opcodes are guaranteed to be available regardless of the driver being
48 used.
49
50 .. opcode:: ARL - Address Register Load
51
52 .. math::
53
54 dst.x = \lfloor src.x\rfloor
55
56 dst.y = \lfloor src.y\rfloor
57
58 dst.z = \lfloor src.z\rfloor
59
60 dst.w = \lfloor src.w\rfloor
61
62
63 .. opcode:: MOV - Move
64
65 .. math::
66
67 dst.x = src.x
68
69 dst.y = src.y
70
71 dst.z = src.z
72
73 dst.w = src.w
74
75
76 .. opcode:: LIT - Light Coefficients
77
78 .. math::
79
80 dst.x = 1
81
82 dst.y = max(src.x, 0)
83
84 dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
85
86 dst.w = 1
87
88
89 .. opcode:: RCP - Reciprocal
90
91 This instruction replicates its result.
92
93 .. math::
94
95 dst = \frac{1}{src.x}
96
97
98 .. opcode:: RSQ - Reciprocal Square Root
99
100 This instruction replicates its result.
101
102 .. math::
103
104 dst = \frac{1}{\sqrt{|src.x|}}
105
106
107 .. opcode:: SQRT - Square Root
108
109 This instruction replicates its result.
110
111 .. math::
112
113 dst = {\sqrt{src.x}}
114
115
116 .. opcode:: EXP - Approximate Exponential Base 2
117
118 .. math::
119
120 dst.x = 2^{\lfloor src.x\rfloor}
121
122 dst.y = src.x - \lfloor src.x\rfloor
123
124 dst.z = 2^{src.x}
125
126 dst.w = 1
127
128
129 .. opcode:: LOG - Approximate Logarithm Base 2
130
131 .. math::
132
133 dst.x = \lfloor\log_2{|src.x|}\rfloor
134
135 dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
136
137 dst.z = \log_2{|src.x|}
138
139 dst.w = 1
140
141
142 .. opcode:: MUL - Multiply
143
144 .. math::
145
146 dst.x = src0.x \times src1.x
147
148 dst.y = src0.y \times src1.y
149
150 dst.z = src0.z \times src1.z
151
152 dst.w = src0.w \times src1.w
153
154
155 .. opcode:: ADD - Add
156
157 .. math::
158
159 dst.x = src0.x + src1.x
160
161 dst.y = src0.y + src1.y
162
163 dst.z = src0.z + src1.z
164
165 dst.w = src0.w + src1.w
166
167
168 .. opcode:: DP3 - 3-component Dot Product
169
170 This instruction replicates its result.
171
172 .. math::
173
174 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
175
176
177 .. opcode:: DP4 - 4-component Dot Product
178
179 This instruction replicates its result.
180
181 .. math::
182
183 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
184
185
186 .. opcode:: DST - Distance Vector
187
188 .. math::
189
190 dst.x = 1
191
192 dst.y = src0.y \times src1.y
193
194 dst.z = src0.z
195
196 dst.w = src1.w
197
198
199 .. opcode:: MIN - Minimum
200
201 .. math::
202
203 dst.x = min(src0.x, src1.x)
204
205 dst.y = min(src0.y, src1.y)
206
207 dst.z = min(src0.z, src1.z)
208
209 dst.w = min(src0.w, src1.w)
210
211
212 .. opcode:: MAX - Maximum
213
214 .. math::
215
216 dst.x = max(src0.x, src1.x)
217
218 dst.y = max(src0.y, src1.y)
219
220 dst.z = max(src0.z, src1.z)
221
222 dst.w = max(src0.w, src1.w)
223
224
225 .. opcode:: SLT - Set On Less Than
226
227 .. math::
228
229 dst.x = (src0.x < src1.x) ? 1 : 0
230
231 dst.y = (src0.y < src1.y) ? 1 : 0
232
233 dst.z = (src0.z < src1.z) ? 1 : 0
234
235 dst.w = (src0.w < src1.w) ? 1 : 0
236
237
238 .. opcode:: SGE - Set On Greater Equal Than
239
240 .. math::
241
242 dst.x = (src0.x >= src1.x) ? 1 : 0
243
244 dst.y = (src0.y >= src1.y) ? 1 : 0
245
246 dst.z = (src0.z >= src1.z) ? 1 : 0
247
248 dst.w = (src0.w >= src1.w) ? 1 : 0
249
250
251 .. opcode:: MAD - Multiply And Add
252
253 .. math::
254
255 dst.x = src0.x \times src1.x + src2.x
256
257 dst.y = src0.y \times src1.y + src2.y
258
259 dst.z = src0.z \times src1.z + src2.z
260
261 dst.w = src0.w \times src1.w + src2.w
262
263
264 .. opcode:: SUB - Subtract
265
266 .. math::
267
268 dst.x = src0.x - src1.x
269
270 dst.y = src0.y - src1.y
271
272 dst.z = src0.z - src1.z
273
274 dst.w = src0.w - src1.w
275
276
277 .. opcode:: LRP - Linear Interpolate
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
282
283 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
284
285 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
286
287 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
288
289
290 .. opcode:: CND - Condition
291
292 .. math::
293
294 dst.x = (src2.x > 0.5) ? src0.x : src1.x
295
296 dst.y = (src2.y > 0.5) ? src0.y : src1.y
297
298 dst.z = (src2.z > 0.5) ? src0.z : src1.z
299
300 dst.w = (src2.w > 0.5) ? src0.w : src1.w
301
302
303 .. opcode:: DP2A - 2-component Dot Product And Add
304
305 .. math::
306
307 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
308
309 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
310
311 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
312
313 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
314
315
316 .. opcode:: FRC - Fraction
317
318 .. math::
319
320 dst.x = src.x - \lfloor src.x\rfloor
321
322 dst.y = src.y - \lfloor src.y\rfloor
323
324 dst.z = src.z - \lfloor src.z\rfloor
325
326 dst.w = src.w - \lfloor src.w\rfloor
327
328
329 .. opcode:: CLAMP - Clamp
330
331 .. math::
332
333 dst.x = clamp(src0.x, src1.x, src2.x)
334
335 dst.y = clamp(src0.y, src1.y, src2.y)
336
337 dst.z = clamp(src0.z, src1.z, src2.z)
338
339 dst.w = clamp(src0.w, src1.w, src2.w)
340
341
342 .. opcode:: FLR - Floor
343
344 This is identical to :opcode:`ARL`.
345
346 .. math::
347
348 dst.x = \lfloor src.x\rfloor
349
350 dst.y = \lfloor src.y\rfloor
351
352 dst.z = \lfloor src.z\rfloor
353
354 dst.w = \lfloor src.w\rfloor
355
356
357 .. opcode:: ROUND - Round
358
359 .. math::
360
361 dst.x = round(src.x)
362
363 dst.y = round(src.y)
364
365 dst.z = round(src.z)
366
367 dst.w = round(src.w)
368
369
370 .. opcode:: EX2 - Exponential Base 2
371
372 This instruction replicates its result.
373
374 .. math::
375
376 dst = 2^{src.x}
377
378
379 .. opcode:: LG2 - Logarithm Base 2
380
381 This instruction replicates its result.
382
383 .. math::
384
385 dst = \log_2{src.x}
386
387
388 .. opcode:: POW - Power
389
390 This instruction replicates its result.
391
392 .. math::
393
394 dst = src0.x^{src1.x}
395
396 .. opcode:: XPD - Cross Product
397
398 .. math::
399
400 dst.x = src0.y \times src1.z - src1.y \times src0.z
401
402 dst.y = src0.z \times src1.x - src1.z \times src0.x
403
404 dst.z = src0.x \times src1.y - src1.x \times src0.y
405
406 dst.w = 1
407
408
409 .. opcode:: ABS - Absolute
410
411 .. math::
412
413 dst.x = |src.x|
414
415 dst.y = |src.y|
416
417 dst.z = |src.z|
418
419 dst.w = |src.w|
420
421
422 .. opcode:: RCC - Reciprocal Clamped
423
424 This instruction replicates its result.
425
426 XXX cleanup on aisle three
427
428 .. math::
429
430 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
431
432
433 .. opcode:: DPH - Homogeneous Dot Product
434
435 This instruction replicates its result.
436
437 .. math::
438
439 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
440
441
442 .. opcode:: COS - Cosine
443
444 This instruction replicates its result.
445
446 .. math::
447
448 dst = \cos{src.x}
449
450
451 .. opcode:: DDX - Derivative Relative To X
452
453 .. math::
454
455 dst.x = partialx(src.x)
456
457 dst.y = partialx(src.y)
458
459 dst.z = partialx(src.z)
460
461 dst.w = partialx(src.w)
462
463
464 .. opcode:: DDY - Derivative Relative To Y
465
466 .. math::
467
468 dst.x = partialy(src.x)
469
470 dst.y = partialy(src.y)
471
472 dst.z = partialy(src.z)
473
474 dst.w = partialy(src.w)
475
476
477 .. opcode:: KILP - Predicated Discard
478
479 discard
480
481
482 .. opcode:: PK2H - Pack Two 16-bit Floats
483
484 TBD
485
486
487 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
488
489 TBD
490
491
492 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
493
494 TBD
495
496
497 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
498
499 TBD
500
501
502 .. opcode:: RFL - Reflection Vector
503
504 .. math::
505
506 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
507
508 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
509
510 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
511
512 dst.w = 1
513
514 .. note::
515
516 Considered for removal.
517
518
519 .. opcode:: SEQ - Set On Equal
520
521 .. math::
522
523 dst.x = (src0.x == src1.x) ? 1 : 0
524
525 dst.y = (src0.y == src1.y) ? 1 : 0
526
527 dst.z = (src0.z == src1.z) ? 1 : 0
528
529 dst.w = (src0.w == src1.w) ? 1 : 0
530
531
532 .. opcode:: SFL - Set On False
533
534 This instruction replicates its result.
535
536 .. math::
537
538 dst = 0
539
540 .. note::
541
542 Considered for removal.
543
544
545 .. opcode:: SGT - Set On Greater Than
546
547 .. math::
548
549 dst.x = (src0.x > src1.x) ? 1 : 0
550
551 dst.y = (src0.y > src1.y) ? 1 : 0
552
553 dst.z = (src0.z > src1.z) ? 1 : 0
554
555 dst.w = (src0.w > src1.w) ? 1 : 0
556
557
558 .. opcode:: SIN - Sine
559
560 This instruction replicates its result.
561
562 .. math::
563
564 dst = \sin{src.x}
565
566
567 .. opcode:: SLE - Set On Less Equal Than
568
569 .. math::
570
571 dst.x = (src0.x <= src1.x) ? 1 : 0
572
573 dst.y = (src0.y <= src1.y) ? 1 : 0
574
575 dst.z = (src0.z <= src1.z) ? 1 : 0
576
577 dst.w = (src0.w <= src1.w) ? 1 : 0
578
579
580 .. opcode:: SNE - Set On Not Equal
581
582 .. math::
583
584 dst.x = (src0.x != src1.x) ? 1 : 0
585
586 dst.y = (src0.y != src1.y) ? 1 : 0
587
588 dst.z = (src0.z != src1.z) ? 1 : 0
589
590 dst.w = (src0.w != src1.w) ? 1 : 0
591
592
593 .. opcode:: STR - Set On True
594
595 This instruction replicates its result.
596
597 .. math::
598
599 dst = 1
600
601
602 .. opcode:: TEX - Texture Lookup
603
604 .. math::
605
606 coord = src0
607
608 bias = 0.0
609
610 dst = texture_sample(unit, coord, bias)
611
612 for array textures src0.y contains the slice for 1D,
613 and src0.z contain the slice for 2D.
614 for shadow textures with no arrays, src0.z contains
615 the reference value.
616 for shadow textures with arrays, src0.z contains
617 the reference value for 1D arrays, and src0.w contains
618 the reference value for 2D arrays.
619 There is no way to pass a bias in the .w value for
620 shadow arrays, and GLSL doesn't allow this.
621 GLSL does allow cube shadows maps to take a bias value,
622 and we have to determine how this will look in TGSI.
623
624 .. opcode:: TXD - Texture Lookup with Derivatives
625
626 .. math::
627
628 coord = src0
629
630 ddx = src1
631
632 ddy = src2
633
634 bias = 0.0
635
636 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
637
638
639 .. opcode:: TXP - Projective Texture Lookup
640
641 .. math::
642
643 coord.x = src0.x / src.w
644
645 coord.y = src0.y / src.w
646
647 coord.z = src0.z / src.w
648
649 coord.w = src0.w
650
651 bias = 0.0
652
653 dst = texture_sample(unit, coord, bias)
654
655
656 .. opcode:: UP2H - Unpack Two 16-Bit Floats
657
658 TBD
659
660 .. note::
661
662 Considered for removal.
663
664 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
665
666 TBD
667
668 .. note::
669
670 Considered for removal.
671
672 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
673
674 TBD
675
676 .. note::
677
678 Considered for removal.
679
680 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
681
682 TBD
683
684 .. note::
685
686 Considered for removal.
687
688 .. opcode:: X2D - 2D Coordinate Transformation
689
690 .. math::
691
692 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
693
694 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
695
696 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
697
698 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
699
700 .. note::
701
702 Considered for removal.
703
704
705 .. opcode:: ARA - Address Register Add
706
707 TBD
708
709 .. note::
710
711 Considered for removal.
712
713 .. opcode:: ARR - Address Register Load With Round
714
715 .. math::
716
717 dst.x = round(src.x)
718
719 dst.y = round(src.y)
720
721 dst.z = round(src.z)
722
723 dst.w = round(src.w)
724
725
726 .. opcode:: BRA - Branch
727
728 pc = target
729
730 .. note::
731
732 Considered for removal.
733
734 .. opcode:: CAL - Subroutine Call
735
736 push(pc)
737 pc = target
738
739
740 .. opcode:: RET - Subroutine Call Return
741
742 pc = pop()
743
744
745 .. opcode:: SSG - Set Sign
746
747 .. math::
748
749 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
750
751 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
752
753 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
754
755 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
756
757
758 .. opcode:: CMP - Compare
759
760 .. math::
761
762 dst.x = (src0.x < 0) ? src1.x : src2.x
763
764 dst.y = (src0.y < 0) ? src1.y : src2.y
765
766 dst.z = (src0.z < 0) ? src1.z : src2.z
767
768 dst.w = (src0.w < 0) ? src1.w : src2.w
769
770
771 .. opcode:: KIL - Conditional Discard
772
773 .. math::
774
775 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
776 discard
777 endif
778
779
780 .. opcode:: SCS - Sine Cosine
781
782 .. math::
783
784 dst.x = \cos{src.x}
785
786 dst.y = \sin{src.x}
787
788 dst.z = 0
789
790 dst.w = 1
791
792
793 .. opcode:: TXB - Texture Lookup With Bias
794
795 .. math::
796
797 coord.x = src.x
798
799 coord.y = src.y
800
801 coord.z = src.z
802
803 coord.w = 1.0
804
805 bias = src.z
806
807 dst = texture_sample(unit, coord, bias)
808
809
810 .. opcode:: NRM - 3-component Vector Normalise
811
812 .. math::
813
814 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
815
816 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
817
818 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
819
820 dst.w = 1
821
822
823 .. opcode:: DIV - Divide
824
825 .. math::
826
827 dst.x = \frac{src0.x}{src1.x}
828
829 dst.y = \frac{src0.y}{src1.y}
830
831 dst.z = \frac{src0.z}{src1.z}
832
833 dst.w = \frac{src0.w}{src1.w}
834
835
836 .. opcode:: DP2 - 2-component Dot Product
837
838 This instruction replicates its result.
839
840 .. math::
841
842 dst = src0.x \times src1.x + src0.y \times src1.y
843
844
845 .. opcode:: TXL - Texture Lookup With explicit LOD
846
847 .. math::
848
849 coord.x = src0.x
850
851 coord.y = src0.y
852
853 coord.z = src0.z
854
855 coord.w = 1.0
856
857 lod = src0.w
858
859 dst = texture_sample(unit, coord, lod)
860
861
862 .. opcode:: BRK - Break
863
864 Unconditionally moves the point of execution to the instruction after the
865 next endloop or endswitch. The instruction must appear within a loop/endloop
866 or switch/endswitch.
867
868
869 .. opcode:: BREAKC - Break Conditional
870
871 Conditionally moves the point of execution to the instruction after the
872 next endloop or endswitch. The instruction must appear within a loop/endloop
873 or switch/endswitch.
874 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
875 as an integer register.
876
877
878 .. opcode:: IF - Float If
879
880 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
881
882 src0.x != 0.0
883
884 where src0.x is interpreted as a floating point register.
885
886
887 .. opcode:: UIF - Bitwise If
888
889 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
890
891 src0.x != 0
892
893 where src0.x is interpreted as an integer register.
894
895
896 .. opcode:: ELSE - Else
897
898 Starts an else block, after an IF or UIF statement.
899
900
901 .. opcode:: ENDIF - End If
902
903 Ends an IF or UIF block.
904
905
906 .. opcode:: SWITCH - Switch
907
908 Starts a C-style switch expression. The switch consists of one or multiple
909 CASE statements, and at most one DEFAULT statement. Execution of a statement
910 ends when a BRK is hit, but just like in C falling through to other cases
911 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
912 just as last statement, and fallthrough is allowed into/from it.
913 CASE src arguments are evaluated at bit level against the SWITCH src argument.
914
915 Example:
916 SWITCH src[0].x
917 CASE src[0].x
918 (some instructions here)
919 (optional BRK here)
920 DEFAULT
921 (some instructions here)
922 (optional BRK here)
923 CASE src[0].x
924 (some instructions here)
925 (optional BRK here)
926 ENDSWITCH
927
928
929 .. opcode:: CASE - Switch case
930
931 This represents a switch case label. The src arg must be an integer immediate.
932
933
934 .. opcode:: DEFAULT - Switch default
935
936 This represents the default case in the switch, which is taken if no other
937 case matches.
938
939
940 .. opcode:: ENDSWITCH - End of switch
941
942 Ends a switch expression.
943
944
945 .. opcode:: PUSHA - Push Address Register On Stack
946
947 push(src.x)
948 push(src.y)
949 push(src.z)
950 push(src.w)
951
952 .. note::
953
954 Considered for cleanup.
955
956 .. note::
957
958 Considered for removal.
959
960 .. opcode:: POPA - Pop Address Register From Stack
961
962 dst.w = pop()
963 dst.z = pop()
964 dst.y = pop()
965 dst.x = pop()
966
967 .. note::
968
969 Considered for cleanup.
970
971 .. note::
972
973 Considered for removal.
974
975
976 Compute ISA
977 ^^^^^^^^^^^^^^^^^^^^^^^^
978
979 These opcodes are primarily provided for special-use computational shaders.
980 Support for these opcodes indicated by a special pipe capability bit (TBD).
981
982 XXX so let's discuss it, yeah?
983
984 .. opcode:: CEIL - Ceiling
985
986 .. math::
987
988 dst.x = \lceil src.x\rceil
989
990 dst.y = \lceil src.y\rceil
991
992 dst.z = \lceil src.z\rceil
993
994 dst.w = \lceil src.w\rceil
995
996
997 .. opcode:: I2F - Integer To Float
998
999 .. math::
1000
1001 dst.x = (float) src.x
1002
1003 dst.y = (float) src.y
1004
1005 dst.z = (float) src.z
1006
1007 dst.w = (float) src.w
1008
1009
1010 .. opcode:: NOT - Bitwise Not
1011
1012 .. math::
1013
1014 dst.x = ~src.x
1015
1016 dst.y = ~src.y
1017
1018 dst.z = ~src.z
1019
1020 dst.w = ~src.w
1021
1022
1023 .. opcode:: TRUNC - Truncate
1024
1025 .. math::
1026
1027 dst.x = trunc(src.x)
1028
1029 dst.y = trunc(src.y)
1030
1031 dst.z = trunc(src.z)
1032
1033 dst.w = trunc(src.w)
1034
1035
1036 .. opcode:: SHL - Shift Left
1037
1038 .. math::
1039
1040 dst.x = src0.x << src1.x
1041
1042 dst.y = src0.y << src1.x
1043
1044 dst.z = src0.z << src1.x
1045
1046 dst.w = src0.w << src1.x
1047
1048
1049 .. opcode:: SHR - Shift Right
1050
1051 .. math::
1052
1053 dst.x = src0.x >> src1.x
1054
1055 dst.y = src0.y >> src1.x
1056
1057 dst.z = src0.z >> src1.x
1058
1059 dst.w = src0.w >> src1.x
1060
1061
1062 .. opcode:: AND - Bitwise And
1063
1064 .. math::
1065
1066 dst.x = src0.x & src1.x
1067
1068 dst.y = src0.y & src1.y
1069
1070 dst.z = src0.z & src1.z
1071
1072 dst.w = src0.w & src1.w
1073
1074
1075 .. opcode:: OR - Bitwise Or
1076
1077 .. math::
1078
1079 dst.x = src0.x | src1.x
1080
1081 dst.y = src0.y | src1.y
1082
1083 dst.z = src0.z | src1.z
1084
1085 dst.w = src0.w | src1.w
1086
1087
1088 .. opcode:: MOD - Modulus
1089
1090 .. math::
1091
1092 dst.x = src0.x \bmod src1.x
1093
1094 dst.y = src0.y \bmod src1.y
1095
1096 dst.z = src0.z \bmod src1.z
1097
1098 dst.w = src0.w \bmod src1.w
1099
1100
1101 .. opcode:: XOR - Bitwise Xor
1102
1103 .. math::
1104
1105 dst.x = src0.x \oplus src1.x
1106
1107 dst.y = src0.y \oplus src1.y
1108
1109 dst.z = src0.z \oplus src1.z
1110
1111 dst.w = src0.w \oplus src1.w
1112
1113
1114 .. opcode:: UCMP - Integer Conditional Move
1115
1116 .. math::
1117
1118 dst.x = src0.x ? src1.x : src2.x
1119
1120 dst.y = src0.y ? src1.y : src2.y
1121
1122 dst.z = src0.z ? src1.z : src2.z
1123
1124 dst.w = src0.w ? src1.w : src2.w
1125
1126
1127 .. opcode:: UARL - Integer Address Register Load
1128
1129 Moves the contents of the source register, assumed to be an integer, into the
1130 destination register, which is assumed to be an address (ADDR) register.
1131
1132
1133 .. opcode:: IABS - Integer Absolute Value
1134
1135 .. math::
1136
1137 dst.x = |src.x|
1138
1139 dst.y = |src.y|
1140
1141 dst.z = |src.z|
1142
1143 dst.w = |src.w|
1144
1145
1146 .. opcode:: SAD - Sum Of Absolute Differences
1147
1148 .. math::
1149
1150 dst.x = |src0.x - src1.x| + src2.x
1151
1152 dst.y = |src0.y - src1.y| + src2.y
1153
1154 dst.z = |src0.z - src1.z| + src2.z
1155
1156 dst.w = |src0.w - src1.w| + src2.w
1157
1158
1159 .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
1160 from a specified texture image. The source sampler may
1161 not be a CUBE or SHADOW.
1162 src 0 is a four-component signed integer vector used to
1163 identify the single texel accessed. 3 components + level.
1164 src 1 is a 3 component constant signed integer vector,
1165 with each component only have a range of
1166 -8..+8 (hw only seems to deal with this range, interface
1167 allows for up to unsigned int).
1168 TXF(uint_vec coord, int_vec offset).
1169
1170
1171 .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
1172 retrieve the dimensions of the texture
1173 depending on the target. For 1D (width), 2D/RECT/CUBE
1174 (width, height), 3D (width, height, depth),
1175 1D array (width, layers), 2D array (width, height, layers)
1176
1177 .. math::
1178
1179 lod = src0
1180
1181 dst.x = texture_width(unit, lod)
1182
1183 dst.y = texture_height(unit, lod)
1184
1185 dst.z = texture_depth(unit, lod)
1186
1187
1188 .. opcode:: CONT - Continue
1189
1190 TBD
1191
1192 .. note::
1193
1194 Support for CONT is determined by a special capability bit,
1195 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1196
1197
1198 Geometry ISA
1199 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1200
1201 These opcodes are only supported in geometry shaders; they have no meaning
1202 in any other type of shader.
1203
1204 .. opcode:: EMIT - Emit
1205
1206 TBD
1207
1208
1209 .. opcode:: ENDPRIM - End Primitive
1210
1211 TBD
1212
1213
1214 GLSL ISA
1215 ^^^^^^^^^^
1216
1217 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1218 opcodes is determined by a special capability bit, ``GLSL``.
1219
1220 .. opcode:: BGNLOOP - Begin a Loop
1221
1222 TBD
1223
1224
1225 .. opcode:: BGNSUB - Begin Subroutine
1226
1227 TBD
1228
1229
1230 .. opcode:: ENDLOOP - End a Loop
1231
1232 TBD
1233
1234
1235 .. opcode:: ENDSUB - End Subroutine
1236
1237 TBD
1238
1239
1240 .. opcode:: NOP - No Operation
1241
1242 Do nothing.
1243
1244
1245 .. opcode:: NRM4 - 4-component Vector Normalise
1246
1247 This instruction replicates its result.
1248
1249 .. math::
1250
1251 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1252
1253
1254 ps_2_x
1255 ^^^^^^^^^^^^
1256
1257 XXX wait what
1258
1259 .. opcode:: CALLNZ - Subroutine Call If Not Zero
1260
1261 TBD
1262
1263 .. _doubleopcodes:
1264
1265 Double ISA
1266 ^^^^^^^^^^^^^^^
1267
1268 The double-precision opcodes reinterpret four-component vectors into
1269 two-component vectors with doubled precision in each component.
1270
1271 Support for these opcodes is XXX undecided. :T
1272
1273 .. opcode:: DADD - Add
1274
1275 .. math::
1276
1277 dst.xy = src0.xy + src1.xy
1278
1279 dst.zw = src0.zw + src1.zw
1280
1281
1282 .. opcode:: DDIV - Divide
1283
1284 .. math::
1285
1286 dst.xy = src0.xy / src1.xy
1287
1288 dst.zw = src0.zw / src1.zw
1289
1290 .. opcode:: DSEQ - Set on Equal
1291
1292 .. math::
1293
1294 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1295
1296 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1297
1298 .. opcode:: DSLT - Set on Less than
1299
1300 .. math::
1301
1302 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1303
1304 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1305
1306 .. opcode:: DFRAC - Fraction
1307
1308 .. math::
1309
1310 dst.xy = src.xy - \lfloor src.xy\rfloor
1311
1312 dst.zw = src.zw - \lfloor src.zw\rfloor
1313
1314
1315 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1316
1317 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1318 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1319 :math:`dst1 \times 2^{dst0} = src` .
1320
1321 .. math::
1322
1323 dst0.xy = exp(src.xy)
1324
1325 dst1.xy = frac(src.xy)
1326
1327 dst0.zw = exp(src.zw)
1328
1329 dst1.zw = frac(src.zw)
1330
1331 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1332
1333 This opcode is the inverse of :opcode:`DFRACEXP`.
1334
1335 .. math::
1336
1337 dst.xy = src0.xy \times 2^{src1.xy}
1338
1339 dst.zw = src0.zw \times 2^{src1.zw}
1340
1341 .. opcode:: DMIN - Minimum
1342
1343 .. math::
1344
1345 dst.xy = min(src0.xy, src1.xy)
1346
1347 dst.zw = min(src0.zw, src1.zw)
1348
1349 .. opcode:: DMAX - Maximum
1350
1351 .. math::
1352
1353 dst.xy = max(src0.xy, src1.xy)
1354
1355 dst.zw = max(src0.zw, src1.zw)
1356
1357 .. opcode:: DMUL - Multiply
1358
1359 .. math::
1360
1361 dst.xy = src0.xy \times src1.xy
1362
1363 dst.zw = src0.zw \times src1.zw
1364
1365
1366 .. opcode:: DMAD - Multiply And Add
1367
1368 .. math::
1369
1370 dst.xy = src0.xy \times src1.xy + src2.xy
1371
1372 dst.zw = src0.zw \times src1.zw + src2.zw
1373
1374
1375 .. opcode:: DRCP - Reciprocal
1376
1377 .. math::
1378
1379 dst.xy = \frac{1}{src.xy}
1380
1381 dst.zw = \frac{1}{src.zw}
1382
1383 .. opcode:: DSQRT - Square Root
1384
1385 .. math::
1386
1387 dst.xy = \sqrt{src.xy}
1388
1389 dst.zw = \sqrt{src.zw}
1390
1391
1392 .. _samplingopcodes:
1393
1394 Resource Sampling Opcodes
1395 ^^^^^^^^^^^^^^^^^^^^^^^^^
1396
1397 Those opcodes follow very closely semantics of the respective Direct3D
1398 instructions. If in doubt double check Direct3D documentation.
1399
1400 .. opcode:: SAMPLE - Using provided address, sample data from the
1401 specified texture using the filtering mode identified
1402 by the gven sampler. The source data may come from
1403 any resource type other than buffers.
1404 SAMPLE dst, address, sampler_view, sampler
1405 e.g.
1406 SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1407
1408 .. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction.
1409 Using the provided integer address, SAMPLE_I fetches data
1410 from the specified sampler view without any filtering.
1411 The source data may come from any resource type other
1412 than CUBE.
1413 SAMPLE_I dst, address, sampler_view
1414 e.g.
1415 SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]
1416 The 'address' is specified as unsigned integers. If the
1417 'address' is out of range [0...(# texels - 1)] the
1418 result of the fetch is always 0 in all components.
1419 As such the instruction doesn't honor address wrap
1420 modes, in cases where that behavior is desirable
1421 'SAMPLE' instruction should be used.
1422 address.w always provides an unsigned integer mipmap
1423 level. If the value is out of the range then the
1424 instruction always returns 0 in all components.
1425 address.yz are ignored for buffers and 1d textures.
1426 address.z is ignored for 1d texture arrays and 2d
1427 textures.
1428 For 1D texture arrays address.y provides the array
1429 index (also as unsigned integer). If the value is
1430 out of the range of available array indices
1431 [0... (array size - 1)] then the opcode always returns
1432 0 in all components.
1433 For 2D texture arrays address.z provides the array
1434 index, otherwise it exhibits the same behavior as in
1435 the case for 1D texture arrays.
1436 The exact semantics of the source address are presented
1437 in the table below:
1438 resource type X Y Z W
1439 ------------- ------------------------
1440 PIPE_BUFFER x ignored
1441 PIPE_TEXTURE_1D x mpl
1442 PIPE_TEXTURE_2D x y mpl
1443 PIPE_TEXTURE_3D x y z mpl
1444 PIPE_TEXTURE_RECT x y mpl
1445 PIPE_TEXTURE_CUBE not allowed as source
1446 PIPE_TEXTURE_1D_ARRAY x idx mpl
1447 PIPE_TEXTURE_2D_ARRAY x y idx mpl
1448
1449 Where 'mpl' is a mipmap level and 'idx' is the
1450 array index.
1451
1452 .. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from
1453 multi-sampled surfaces.
1454 SAMPLE_I_MS dst, address, sampler_view, sample
1455
1456 .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1457 exception that an additional bias is applied to the
1458 level of detail computed as part of the instruction
1459 execution.
1460 SAMPLE_B dst, address, sampler_view, sampler, lod_bias
1461 e.g.
1462 SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1463
1464 .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1465 performs a comparison filter. The operands to SAMPLE_C
1466 are identical to SAMPLE, except that there is an additional
1467 float32 operand, reference value, which must be a register
1468 with single-component, or a scalar literal.
1469 SAMPLE_C makes the hardware use the current samplers
1470 compare_func (in pipe_sampler_state) to compare
1471 reference value against the red component value for the
1472 surce resource at each texel that the currently configured
1473 texture filter covers based on the provided coordinates.
1474 SAMPLE_C dst, address, sampler_view.r, sampler, ref_value
1475 e.g.
1476 SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1477
1478 .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1479 are ignored. The LZ stands for level-zero.
1480 SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value
1481 e.g.
1482 SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1483
1484
1485 .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1486 that the derivatives for the source address in the x
1487 direction and the y direction are provided by extra
1488 parameters.
1489 SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y
1490 e.g.
1491 SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]
1492
1493 .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1494 that the LOD is provided directly as a scalar value,
1495 representing no anisotropy.
1496 SAMPLE_L dst, address, sampler_view, sampler, explicit_lod
1497 e.g.
1498 SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1499
1500 .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1501 filtering operation and packs them into a single register.
1502 Only works with 2D, 2D array, cubemaps, and cubemaps arrays.
1503 For 2D textures, only the addressing modes of the sampler and
1504 the top level of any mip pyramid are used. Set W to zero.
1505 It behaves like the SAMPLE instruction, but a filtered
1506 sample is not generated. The four samples that contribute
1507 to filtering are placed into xyzw in counter-clockwise order,
1508 starting with the (u,v) texture coordinate delta at the
1509 following locations (-, +), (+, +), (+, -), (-, -), where
1510 the magnitude of the deltas are half a texel.
1511
1512
1513 .. opcode:: SVIEWINFO - query the dimensions of a given sampler view.
1514 dst receives width, height, depth or array size and
1515 number of mipmap levels as int4. The dst can have a writemask
1516 which will specify what info is the caller interested
1517 in.
1518 SVIEWINFO dst, src_mip_level, sampler_view
1519 e.g.
1520 SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]
1521 src_mip_level is an unsigned integer scalar. If it's
1522 out of range then returns 0 for width, height and
1523 depth/array size but the total number of mipmap is
1524 still returned correctly for the given sampler view.
1525 The returned width, height and depth values are for
1526 the mipmap level selected by the src_mip_level and
1527 are in the number of texels.
1528 For 1d texture array width is in dst.x, array size
1529 is in dst.y and dst.zw are always 0.
1530
1531 .. opcode:: SAMPLE_POS - query the position of a given sample.
1532 dst receives float4 (x, y, 0, 0) indicated where the
1533 sample is located. If the resource is not a multi-sample
1534 resource and not a render target, the result is 0.
1535
1536 .. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1537 If the resource is not a multi-sample resource and
1538 not a render target, the result is 0.
1539
1540
1541 .. _resourceopcodes:
1542
1543 Resource Access Opcodes
1544 ^^^^^^^^^^^^^^^^^^^^^^^
1545
1546 .. opcode:: LOAD - Fetch data from a shader resource
1547
1548 Syntax: ``LOAD dst, resource, address``
1549
1550 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
1551
1552 Using the provided integer address, LOAD fetches data
1553 from the specified buffer or texture without any
1554 filtering.
1555
1556 The 'address' is specified as a vector of unsigned
1557 integers. If the 'address' is out of range the result
1558 is unspecified.
1559
1560 Only the first mipmap level of a resource can be read
1561 from using this instruction.
1562
1563 For 1D or 2D texture arrays, the array index is
1564 provided as an unsigned integer in address.y or
1565 address.z, respectively. address.yz are ignored for
1566 buffers and 1D textures. address.z is ignored for 1D
1567 texture arrays and 2D textures. address.w is always
1568 ignored.
1569
1570 .. opcode:: STORE - Write data to a shader resource
1571
1572 Syntax: ``STORE resource, address, src``
1573
1574 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
1575
1576 Using the provided integer address, STORE writes data
1577 to the specified buffer or texture.
1578
1579 The 'address' is specified as a vector of unsigned
1580 integers. If the 'address' is out of range the result
1581 is unspecified.
1582
1583 Only the first mipmap level of a resource can be
1584 written to using this instruction.
1585
1586 For 1D or 2D texture arrays, the array index is
1587 provided as an unsigned integer in address.y or
1588 address.z, respectively. address.yz are ignored for
1589 buffers and 1D textures. address.z is ignored for 1D
1590 texture arrays and 2D textures. address.w is always
1591 ignored.
1592
1593
1594 .. _threadsyncopcodes:
1595
1596 Inter-thread synchronization opcodes
1597 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1598
1599 These opcodes are intended for communication between threads running
1600 within the same compute grid. For now they're only valid in compute
1601 programs.
1602
1603 .. opcode:: MFENCE - Memory fence
1604
1605 Syntax: ``MFENCE resource``
1606
1607 Example: ``MFENCE RES[0]``
1608
1609 This opcode forces strong ordering between any memory access
1610 operations that affect the specified resource. This means that
1611 previous loads and stores (and only those) will be performed and
1612 visible to other threads before the program execution continues.
1613
1614
1615 .. opcode:: LFENCE - Load memory fence
1616
1617 Syntax: ``LFENCE resource``
1618
1619 Example: ``LFENCE RES[0]``
1620
1621 Similar to MFENCE, but it only affects the ordering of memory loads.
1622
1623
1624 .. opcode:: SFENCE - Store memory fence
1625
1626 Syntax: ``SFENCE resource``
1627
1628 Example: ``SFENCE RES[0]``
1629
1630 Similar to MFENCE, but it only affects the ordering of memory stores.
1631
1632
1633 .. opcode:: BARRIER - Thread group barrier
1634
1635 ``BARRIER``
1636
1637 This opcode suspends the execution of the current thread until all
1638 the remaining threads in the working group reach the same point of
1639 the program. Results are unspecified if any of the remaining
1640 threads terminates or never reaches an executed BARRIER instruction.
1641
1642
1643 .. _atomopcodes:
1644
1645 Atomic opcodes
1646 ^^^^^^^^^^^^^^
1647
1648 These opcodes provide atomic variants of some common arithmetic and
1649 logical operations. In this context atomicity means that another
1650 concurrent memory access operation that affects the same memory
1651 location is guaranteed to be performed strictly before or after the
1652 entire execution of the atomic operation.
1653
1654 For the moment they're only valid in compute programs.
1655
1656 .. opcode:: ATOMUADD - Atomic integer addition
1657
1658 Syntax: ``ATOMUADD dst, resource, offset, src``
1659
1660 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
1661
1662 The following operation is performed atomically on each component:
1663
1664 .. math::
1665
1666 dst_i = resource[offset]_i
1667
1668 resource[offset]_i = dst_i + src_i
1669
1670
1671 .. opcode:: ATOMXCHG - Atomic exchange
1672
1673 Syntax: ``ATOMXCHG dst, resource, offset, src``
1674
1675 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
1676
1677 The following operation is performed atomically on each component:
1678
1679 .. math::
1680
1681 dst_i = resource[offset]_i
1682
1683 resource[offset]_i = src_i
1684
1685
1686 .. opcode:: ATOMCAS - Atomic compare-and-exchange
1687
1688 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
1689
1690 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
1691
1692 The following operation is performed atomically on each component:
1693
1694 .. math::
1695
1696 dst_i = resource[offset]_i
1697
1698 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
1699
1700
1701 .. opcode:: ATOMAND - Atomic bitwise And
1702
1703 Syntax: ``ATOMAND dst, resource, offset, src``
1704
1705 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
1706
1707 The following operation is performed atomically on each component:
1708
1709 .. math::
1710
1711 dst_i = resource[offset]_i
1712
1713 resource[offset]_i = dst_i \& src_i
1714
1715
1716 .. opcode:: ATOMOR - Atomic bitwise Or
1717
1718 Syntax: ``ATOMOR dst, resource, offset, src``
1719
1720 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
1721
1722 The following operation is performed atomically on each component:
1723
1724 .. math::
1725
1726 dst_i = resource[offset]_i
1727
1728 resource[offset]_i = dst_i | src_i
1729
1730
1731 .. opcode:: ATOMXOR - Atomic bitwise Xor
1732
1733 Syntax: ``ATOMXOR dst, resource, offset, src``
1734
1735 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
1736
1737 The following operation is performed atomically on each component:
1738
1739 .. math::
1740
1741 dst_i = resource[offset]_i
1742
1743 resource[offset]_i = dst_i \oplus src_i
1744
1745
1746 .. opcode:: ATOMUMIN - Atomic unsigned minimum
1747
1748 Syntax: ``ATOMUMIN dst, resource, offset, src``
1749
1750 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
1751
1752 The following operation is performed atomically on each component:
1753
1754 .. math::
1755
1756 dst_i = resource[offset]_i
1757
1758 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
1759
1760
1761 .. opcode:: ATOMUMAX - Atomic unsigned maximum
1762
1763 Syntax: ``ATOMUMAX dst, resource, offset, src``
1764
1765 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
1766
1767 The following operation is performed atomically on each component:
1768
1769 .. math::
1770
1771 dst_i = resource[offset]_i
1772
1773 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
1774
1775
1776 .. opcode:: ATOMIMIN - Atomic signed minimum
1777
1778 Syntax: ``ATOMIMIN dst, resource, offset, src``
1779
1780 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
1781
1782 The following operation is performed atomically on each component:
1783
1784 .. math::
1785
1786 dst_i = resource[offset]_i
1787
1788 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
1789
1790
1791 .. opcode:: ATOMIMAX - Atomic signed maximum
1792
1793 Syntax: ``ATOMIMAX dst, resource, offset, src``
1794
1795 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
1796
1797 The following operation is performed atomically on each component:
1798
1799 .. math::
1800
1801 dst_i = resource[offset]_i
1802
1803 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
1804
1805
1806
1807 Explanation of symbols used
1808 ------------------------------
1809
1810
1811 Functions
1812 ^^^^^^^^^^^^^^
1813
1814
1815 :math:`|x|` Absolute value of `x`.
1816
1817 :math:`\lceil x \rceil` Ceiling of `x`.
1818
1819 clamp(x,y,z) Clamp x between y and z.
1820 (x < y) ? y : (x > z) ? z : x
1821
1822 :math:`\lfloor x\rfloor` Floor of `x`.
1823
1824 :math:`\log_2{x}` Logarithm of `x`, base 2.
1825
1826 max(x,y) Maximum of x and y.
1827 (x > y) ? x : y
1828
1829 min(x,y) Minimum of x and y.
1830 (x < y) ? x : y
1831
1832 partialx(x) Derivative of x relative to fragment's X.
1833
1834 partialy(x) Derivative of x relative to fragment's Y.
1835
1836 pop() Pop from stack.
1837
1838 :math:`x^y` `x` to the power `y`.
1839
1840 push(x) Push x on stack.
1841
1842 round(x) Round x.
1843
1844 trunc(x) Truncate x, i.e. drop the fraction bits.
1845
1846
1847 Keywords
1848 ^^^^^^^^^^^^^
1849
1850
1851 discard Discard fragment.
1852
1853 pc Program counter.
1854
1855 target Label of target instruction.
1856
1857
1858 Other tokens
1859 ---------------
1860
1861
1862 Declaration
1863 ^^^^^^^^^^^
1864
1865
1866 Declares a register that is will be referenced as an operand in Instruction
1867 tokens.
1868
1869 File field contains register file that is being declared and is one
1870 of TGSI_FILE.
1871
1872 UsageMask field specifies which of the register components can be accessed
1873 and is one of TGSI_WRITEMASK.
1874
1875 The Local flag specifies that a given value isn't intended for
1876 subroutine parameter passing and, as a result, the implementation
1877 isn't required to give any guarantees of it being preserved across
1878 subroutine boundaries. As it's merely a compiler hint, the
1879 implementation is free to ignore it.
1880
1881 If Dimension flag is set to 1, a Declaration Dimension token follows.
1882
1883 If Semantic flag is set to 1, a Declaration Semantic token follows.
1884
1885 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
1886
1887 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
1888
1889 If Array flag is set to 1, a Declaration Array token follows.
1890
1891 Array Declaration
1892 ^^^^^^^^^^^^^^^^^^^^^^^^
1893
1894 Declarations can optional have an ArrayID attribute which can be referred by
1895 indirect addressing operands. An ArrayID of zero is reserved and treaded as
1896 if no ArrayID is specified.
1897
1898 If an indirect addressing operand refers to a specific declaration by using
1899 an ArrayID only the registers in this declaration are guaranteed to be
1900 accessed, accessing any register outside this declaration results in undefined
1901 behavior. Note that for compatibility the effective index is zero-based and
1902 not relative to the specified declaration
1903
1904 If no ArrayID is specified with an indirect addressing operand the whole
1905 register file might be accessed by this operand. This is strongly discouraged
1906 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
1907
1908 Declaration Semantic
1909 ^^^^^^^^^^^^^^^^^^^^^^^^
1910
1911 Vertex and fragment shader input and output registers may be labeled
1912 with semantic information consisting of a name and index.
1913
1914 Follows Declaration token if Semantic bit is set.
1915
1916 Since its purpose is to link a shader with other stages of the pipeline,
1917 it is valid to follow only those Declaration tokens that declare a register
1918 either in INPUT or OUTPUT file.
1919
1920 SemanticName field contains the semantic name of the register being declared.
1921 There is no default value.
1922
1923 SemanticIndex is an optional subscript that can be used to distinguish
1924 different register declarations with the same semantic name. The default value
1925 is 0.
1926
1927 The meanings of the individual semantic names are explained in the following
1928 sections.
1929
1930 TGSI_SEMANTIC_POSITION
1931 """"""""""""""""""""""
1932
1933 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
1934 output register which contains the homogeneous vertex position in the clip
1935 space coordinate system. After clipping, the X, Y and Z components of the
1936 vertex will be divided by the W value to get normalized device coordinates.
1937
1938 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
1939 fragment shader input contains the fragment's window position. The X
1940 component starts at zero and always increases from left to right.
1941 The Y component starts at zero and always increases but Y=0 may either
1942 indicate the top of the window or the bottom depending on the fragment
1943 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
1944 The Z coordinate ranges from 0 to 1 to represent depth from the front
1945 to the back of the Z buffer. The W component contains the reciprocol
1946 of the interpolated vertex position W component.
1947
1948 Fragment shaders may also declare an output register with
1949 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
1950 the fragment shader to change the fragment's Z position.
1951
1952
1953
1954 TGSI_SEMANTIC_COLOR
1955 """""""""""""""""""
1956
1957 For vertex shader outputs or fragment shader inputs/outputs, this
1958 label indicates that the resister contains an R,G,B,A color.
1959
1960 Several shader inputs/outputs may contain colors so the semantic index
1961 is used to distinguish them. For example, color[0] may be the diffuse
1962 color while color[1] may be the specular color.
1963
1964 This label is needed so that the flat/smooth shading can be applied
1965 to the right interpolants during rasterization.
1966
1967
1968
1969 TGSI_SEMANTIC_BCOLOR
1970 """"""""""""""""""""
1971
1972 Back-facing colors are only used for back-facing polygons, and are only valid
1973 in vertex shader outputs. After rasterization, all polygons are front-facing
1974 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
1975 so all BCOLORs effectively become regular COLORs in the fragment shader.
1976
1977
1978 TGSI_SEMANTIC_FOG
1979 """""""""""""""""
1980
1981 Vertex shader inputs and outputs and fragment shader inputs may be
1982 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
1983 a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
1984 shader will use the fog coordinate to compute a fog blend factor which
1985 is used to blend the normal fragment color with a constant fog color.
1986
1987 Only the first component matters when writing from the vertex shader;
1988 the driver will ensure that the coordinate is in this format when used
1989 as a fragment shader input.
1990
1991
1992 TGSI_SEMANTIC_PSIZE
1993 """""""""""""""""""
1994
1995 Vertex shader input and output registers may be labeled with
1996 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
1997 in the form (S, 0, 0, 1). The point size controls the width or diameter
1998 of points for rasterization. This label cannot be used in fragment
1999 shaders.
2000
2001 When using this semantic, be sure to set the appropriate state in the
2002 :ref:`rasterizer` first.
2003
2004
2005 TGSI_SEMANTIC_TEXCOORD
2006 """"""""""""""""""""""
2007
2008 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2009
2010 Vertex shader outputs and fragment shader inputs may be labeled with
2011 this semantic to make them replaceable by sprite coordinates via the
2012 sprite_coord_enable state in the :ref:`rasterizer`.
2013 The semantic index permitted with this semantic is limited to <= 7.
2014
2015 If the driver does not support TEXCOORD, sprite coordinate replacement
2016 applies to inputs with the GENERIC semantic instead.
2017
2018 The intended use case for this semantic is gl_TexCoord.
2019
2020
2021 TGSI_SEMANTIC_PCOORD
2022 """"""""""""""""""""
2023
2024 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2025
2026 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2027 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2028 the current primitive is a point and point sprites are enabled. Otherwise,
2029 the contents of the register are undefined.
2030
2031 The intended use case for this semantic is gl_PointCoord.
2032
2033
2034 TGSI_SEMANTIC_GENERIC
2035 """""""""""""""""""""
2036
2037 All vertex/fragment shader inputs/outputs not labeled with any other
2038 semantic label can be considered to be generic attributes. Typical
2039 uses of generic inputs/outputs are texcoords and user-defined values.
2040
2041
2042 TGSI_SEMANTIC_NORMAL
2043 """"""""""""""""""""
2044
2045 Indicates that a vertex shader input is a normal vector. This is
2046 typically only used for legacy graphics APIs.
2047
2048
2049 TGSI_SEMANTIC_FACE
2050 """"""""""""""""""
2051
2052 This label applies to fragment shader inputs only and indicates that
2053 the register contains front/back-face information of the form (F, 0,
2054 0, 1). The first component will be positive when the fragment belongs
2055 to a front-facing polygon, and negative when the fragment belongs to a
2056 back-facing polygon.
2057
2058
2059 TGSI_SEMANTIC_EDGEFLAG
2060 """"""""""""""""""""""
2061
2062 For vertex shaders, this sematic label indicates that an input or
2063 output is a boolean edge flag. The register layout is [F, x, x, x]
2064 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2065 simply copies the edge flag input to the edgeflag output.
2066
2067 Edge flags are used to control which lines or points are actually
2068 drawn when the polygon mode converts triangles/quads/polygons into
2069 points or lines.
2070
2071 TGSI_SEMANTIC_STENCIL
2072 """"""""""""""""""""""
2073
2074 For fragment shaders, this semantic label indicates than an output
2075 is a writable stencil reference value. Only the Y component is writable.
2076 This allows the fragment shader to change the fragments stencilref value.
2077
2078
2079 Declaration Interpolate
2080 ^^^^^^^^^^^^^^^^^^^^^^^
2081
2082 This token is only valid for fragment shader INPUT declarations.
2083
2084 The Interpolate field specifes the way input is being interpolated by
2085 the rasteriser and is one of TGSI_INTERPOLATE_*.
2086
2087 The CylindricalWrap bitfield specifies which register components
2088 should be subject to cylindrical wrapping when interpolating by the
2089 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2090 should be interpolated according to cylindrical wrapping rules.
2091
2092
2093 Declaration Sampler View
2094 ^^^^^^^^^^^^^^^^^^^^^^^^
2095
2096 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2097
2098 DCL SVIEW[#], resource, type(s)
2099
2100 Declares a shader input sampler view and assigns it to a SVIEW[#]
2101 register.
2102
2103 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2104
2105 type must be 1 or 4 entries (if specifying on a per-component
2106 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2107
2108
2109 Declaration Resource
2110 ^^^^^^^^^^^^^^^^^^^^
2111
2112 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2113
2114 DCL RES[#], resource [, WR] [, RAW]
2115
2116 Declares a shader input resource and assigns it to a RES[#]
2117 register.
2118
2119 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2120 2DArray.
2121
2122 If the RAW keyword is not specified, the texture data will be
2123 subject to conversion, swizzling and scaling as required to yield
2124 the specified data type from the physical data format of the bound
2125 resource.
2126
2127 If the RAW keyword is specified, no channel conversion will be
2128 performed: the values read for each of the channels (X,Y,Z,W) will
2129 correspond to consecutive words in the same order and format
2130 they're found in memory. No element-to-address conversion will be
2131 performed either: the value of the provided X coordinate will be
2132 interpreted in byte units instead of texel units. The result of
2133 accessing a misaligned address is undefined.
2134
2135 Usage of the STORE opcode is only allowed if the WR (writable) flag
2136 is set.
2137
2138
2139 Properties
2140 ^^^^^^^^^^^^^^^^^^^^^^^^
2141
2142
2143 Properties are general directives that apply to the whole TGSI program.
2144
2145 FS_COORD_ORIGIN
2146 """""""""""""""
2147
2148 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2149 The default value is UPPER_LEFT.
2150
2151 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2152 increase downward and rightward.
2153 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2154 increase upward and rightward.
2155
2156 OpenGL defaults to LOWER_LEFT, and is configurable with the
2157 GL_ARB_fragment_coord_conventions extension.
2158
2159 DirectX 9/10 use UPPER_LEFT.
2160
2161 FS_COORD_PIXEL_CENTER
2162 """""""""""""""""""""
2163
2164 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2165 The default value is HALF_INTEGER.
2166
2167 If HALF_INTEGER, the fractionary part of the position will be 0.5
2168 If INTEGER, the fractionary part of the position will be 0.0
2169
2170 Note that this does not affect the set of fragments generated by
2171 rasterization, which is instead controlled by gl_rasterization_rules in the
2172 rasterizer.
2173
2174 OpenGL defaults to HALF_INTEGER, and is configurable with the
2175 GL_ARB_fragment_coord_conventions extension.
2176
2177 DirectX 9 uses INTEGER.
2178 DirectX 10 uses HALF_INTEGER.
2179
2180 FS_COLOR0_WRITES_ALL_CBUFS
2181 """"""""""""""""""""""""""
2182 Specifies that writes to the fragment shader color 0 are replicated to all
2183 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2184 fragData is directed to a single color buffer, but fragColor is broadcast.
2185
2186 VS_PROHIBIT_UCPS
2187 """"""""""""""""""""""""""
2188 If this property is set on the program bound to the shader stage before the
2189 fragment shader, user clip planes should have no effect (be disabled) even if
2190 that shader does not write to any clip distance outputs and the rasterizer's
2191 clip_plane_enable is non-zero.
2192 This property is only supported by drivers that also support shader clip
2193 distance outputs.
2194 This is useful for APIs that don't have UCPs and where clip distances written
2195 by a shader cannot be disabled.
2196
2197
2198 Texture Sampling and Texture Formats
2199 ------------------------------------
2200
2201 This table shows how texture image components are returned as (x,y,z,w) tuples
2202 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2203 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2204 well.
2205
2206 +--------------------+--------------+--------------------+--------------+
2207 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2208 +====================+==============+====================+==============+
2209 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2210 +--------------------+--------------+--------------------+--------------+
2211 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2212 +--------------------+--------------+--------------------+--------------+
2213 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2214 +--------------------+--------------+--------------------+--------------+
2215 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2216 +--------------------+--------------+--------------------+--------------+
2217 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2218 +--------------------+--------------+--------------------+--------------+
2219 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2220 +--------------------+--------------+--------------------+--------------+
2221 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2222 +--------------------+--------------+--------------------+--------------+
2223 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2224 +--------------------+--------------+--------------------+--------------+
2225 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2226 | | | [#envmap-bumpmap]_ | |
2227 +--------------------+--------------+--------------------+--------------+
2228 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2229 | | | [#depth-tex-mode]_ | |
2230 +--------------------+--------------+--------------------+--------------+
2231 | S | (s, s, s, s) | unknown | unknown |
2232 +--------------------+--------------+--------------------+--------------+
2233
2234 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2235 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2236 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.