gallium/docs: fix section title formatting
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: LRP - Linear Interpolate
250
251 .. math::
252
253 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
254
255 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
256
257 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
258
259 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
260
261
262 .. opcode:: FMA - Fused Multiply-Add
263
264 Perform a * b + c with no intermediate rounding step.
265
266 .. math::
267
268 dst.x = src0.x \times src1.x + src2.x
269
270 dst.y = src0.y \times src1.y + src2.y
271
272 dst.z = src0.z \times src1.z + src2.z
273
274 dst.w = src0.w \times src1.w + src2.w
275
276
277 .. opcode:: DP2A - 2-component Dot Product And Add
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289
290 .. opcode:: FRC - Fraction
291
292 .. math::
293
294 dst.x = src.x - \lfloor src.x\rfloor
295
296 dst.y = src.y - \lfloor src.y\rfloor
297
298 dst.z = src.z - \lfloor src.z\rfloor
299
300 dst.w = src.w - \lfloor src.w\rfloor
301
302
303 .. opcode:: FLR - Floor
304
305 .. math::
306
307 dst.x = \lfloor src.x\rfloor
308
309 dst.y = \lfloor src.y\rfloor
310
311 dst.z = \lfloor src.z\rfloor
312
313 dst.w = \lfloor src.w\rfloor
314
315
316 .. opcode:: ROUND - Round
317
318 .. math::
319
320 dst.x = round(src.x)
321
322 dst.y = round(src.y)
323
324 dst.z = round(src.z)
325
326 dst.w = round(src.w)
327
328
329 .. opcode:: EX2 - Exponential Base 2
330
331 This instruction replicates its result.
332
333 .. math::
334
335 dst = 2^{src.x}
336
337
338 .. opcode:: LG2 - Logarithm Base 2
339
340 This instruction replicates its result.
341
342 .. math::
343
344 dst = \log_2{src.x}
345
346
347 .. opcode:: POW - Power
348
349 This instruction replicates its result.
350
351 .. math::
352
353 dst = src0.x^{src1.x}
354
355 .. opcode:: XPD - Cross Product
356
357 .. math::
358
359 dst.x = src0.y \times src1.z - src1.y \times src0.z
360
361 dst.y = src0.z \times src1.x - src1.z \times src0.x
362
363 dst.z = src0.x \times src1.y - src1.x \times src0.y
364
365 dst.w = 1
366
367
368 .. opcode:: DPH - Homogeneous Dot Product
369
370 This instruction replicates its result.
371
372 .. math::
373
374 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
375
376
377 .. opcode:: COS - Cosine
378
379 This instruction replicates its result.
380
381 .. math::
382
383 dst = \cos{src.x}
384
385
386 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
387
388 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
389 advertised. When it is, the fine version guarantees one derivative per row
390 while DDX is allowed to be the same for the entire 2x2 quad.
391
392 .. math::
393
394 dst.x = partialx(src.x)
395
396 dst.y = partialx(src.y)
397
398 dst.z = partialx(src.z)
399
400 dst.w = partialx(src.w)
401
402
403 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
404
405 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
406 advertised. When it is, the fine version guarantees one derivative per column
407 while DDY is allowed to be the same for the entire 2x2 quad.
408
409 .. math::
410
411 dst.x = partialy(src.x)
412
413 dst.y = partialy(src.y)
414
415 dst.z = partialy(src.z)
416
417 dst.w = partialy(src.w)
418
419
420 .. opcode:: PK2H - Pack Two 16-bit Floats
421
422 This instruction replicates its result.
423
424 .. math::
425
426 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
427
428
429 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
430
431 TBD
432
433
434 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
435
436 TBD
437
438
439 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
440
441 TBD
442
443
444 .. opcode:: SEQ - Set On Equal
445
446 .. math::
447
448 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
449
450 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
451
452 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
453
454 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
455
456
457 .. opcode:: SGT - Set On Greater Than
458
459 .. math::
460
461 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
462
463 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
464
465 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
466
467 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
468
469
470 .. opcode:: SIN - Sine
471
472 This instruction replicates its result.
473
474 .. math::
475
476 dst = \sin{src.x}
477
478
479 .. opcode:: SLE - Set On Less Equal Than
480
481 .. math::
482
483 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SNE - Set On Not Equal
493
494 .. math::
495
496 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
497
498 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
499
500 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
501
502 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
503
504
505 .. opcode:: TEX - Texture Lookup
506
507 for array textures src0.y contains the slice for 1D,
508 and src0.z contain the slice for 2D.
509
510 for shadow textures with no arrays (and not cube map),
511 src0.z contains the reference value.
512
513 for shadow textures with arrays, src0.z contains
514 the reference value for 1D arrays, and src0.w contains
515 the reference value for 2D arrays and cube maps.
516
517 for cube map array shadow textures, the reference value
518 cannot be passed in src0.w, and TEX2 must be used instead.
519
520 .. math::
521
522 coord = src0
523
524 shadow_ref = src0.z or src0.w (optional)
525
526 unit = src1
527
528 dst = texture\_sample(unit, coord, shadow_ref)
529
530
531 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
532
533 this is the same as TEX, but uses another reg to encode the
534 reference value.
535
536 .. math::
537
538 coord = src0
539
540 shadow_ref = src1.x
541
542 unit = src2
543
544 dst = texture\_sample(unit, coord, shadow_ref)
545
546
547
548
549 .. opcode:: TXD - Texture Lookup with Derivatives
550
551 .. math::
552
553 coord = src0
554
555 ddx = src1
556
557 ddy = src2
558
559 unit = src3
560
561 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
562
563
564 .. opcode:: TXP - Projective Texture Lookup
565
566 .. math::
567
568 coord.x = src0.x / src0.w
569
570 coord.y = src0.y / src0.w
571
572 coord.z = src0.z / src0.w
573
574 coord.w = src0.w
575
576 unit = src1
577
578 dst = texture\_sample(unit, coord)
579
580
581 .. opcode:: UP2H - Unpack Two 16-Bit Floats
582
583 .. math::
584
585 dst.x = f16\_to\_f32(src0.x \& 0xffff)
586
587 dst.y = f16\_to\_f32(src0.x >> 16)
588
589 dst.z = f16\_to\_f32(src0.x \& 0xffff)
590
591 dst.w = f16\_to\_f32(src0.x >> 16)
592
593 .. note::
594
595 Considered for removal.
596
597 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
598
599 TBD
600
601 .. note::
602
603 Considered for removal.
604
605 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
606
607 TBD
608
609 .. note::
610
611 Considered for removal.
612
613 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
614
615 TBD
616
617 .. note::
618
619 Considered for removal.
620
621
622 .. opcode:: ARR - Address Register Load With Round
623
624 .. math::
625
626 dst.x = (int) round(src.x)
627
628 dst.y = (int) round(src.y)
629
630 dst.z = (int) round(src.z)
631
632 dst.w = (int) round(src.w)
633
634
635 .. opcode:: SSG - Set Sign
636
637 .. math::
638
639 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
640
641 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
642
643 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
644
645 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
646
647
648 .. opcode:: CMP - Compare
649
650 .. math::
651
652 dst.x = (src0.x < 0) ? src1.x : src2.x
653
654 dst.y = (src0.y < 0) ? src1.y : src2.y
655
656 dst.z = (src0.z < 0) ? src1.z : src2.z
657
658 dst.w = (src0.w < 0) ? src1.w : src2.w
659
660
661 .. opcode:: KILL_IF - Conditional Discard
662
663 Conditional discard. Allowed in fragment shaders only.
664
665 .. math::
666
667 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
668 discard
669 endif
670
671
672 .. opcode:: KILL - Discard
673
674 Unconditional discard. Allowed in fragment shaders only.
675
676
677 .. opcode:: SCS - Sine Cosine
678
679 .. math::
680
681 dst.x = \cos{src.x}
682
683 dst.y = \sin{src.x}
684
685 dst.z = 0
686
687 dst.w = 1
688
689
690 .. opcode:: TXB - Texture Lookup With Bias
691
692 for cube map array textures and shadow cube maps, the bias value
693 cannot be passed in src0.w, and TXB2 must be used instead.
694
695 if the target is a shadow texture, the reference value is always
696 in src.z (this prevents shadow 3d and shadow 2d arrays from
697 using this instruction, but this is not needed).
698
699 .. math::
700
701 coord.x = src0.x
702
703 coord.y = src0.y
704
705 coord.z = src0.z
706
707 coord.w = none
708
709 bias = src0.w
710
711 unit = src1
712
713 dst = texture\_sample(unit, coord, bias)
714
715
716 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
717
718 this is the same as TXB, but uses another reg to encode the
719 lod bias value for cube map arrays and shadow cube maps.
720 Presumably shadow 2d arrays and shadow 3d targets could use
721 this encoding too, but this is not legal.
722
723 shadow cube map arrays are neither possible nor required.
724
725 .. math::
726
727 coord = src0
728
729 bias = src1.x
730
731 unit = src2
732
733 dst = texture\_sample(unit, coord, bias)
734
735
736 .. opcode:: DIV - Divide
737
738 .. math::
739
740 dst.x = \frac{src0.x}{src1.x}
741
742 dst.y = \frac{src0.y}{src1.y}
743
744 dst.z = \frac{src0.z}{src1.z}
745
746 dst.w = \frac{src0.w}{src1.w}
747
748
749 .. opcode:: DP2 - 2-component Dot Product
750
751 This instruction replicates its result.
752
753 .. math::
754
755 dst = src0.x \times src1.x + src0.y \times src1.y
756
757
758 .. opcode:: TXL - Texture Lookup With explicit LOD
759
760 for cube map array textures, the explicit lod value
761 cannot be passed in src0.w, and TXL2 must be used instead.
762
763 if the target is a shadow texture, the reference value is always
764 in src.z (this prevents shadow 3d / 2d array / cube targets from
765 using this instruction, but this is not needed).
766
767 .. math::
768
769 coord.x = src0.x
770
771 coord.y = src0.y
772
773 coord.z = src0.z
774
775 coord.w = none
776
777 lod = src0.w
778
779 unit = src1
780
781 dst = texture\_sample(unit, coord, lod)
782
783
784 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
785
786 this is the same as TXL, but uses another reg to encode the
787 explicit lod value.
788 Presumably shadow 3d / 2d array / cube targets could use
789 this encoding too, but this is not legal.
790
791 shadow cube map arrays are neither possible nor required.
792
793 .. math::
794
795 coord = src0
796
797 lod = src1.x
798
799 unit = src2
800
801 dst = texture\_sample(unit, coord, lod)
802
803
804 .. opcode:: PUSHA - Push Address Register On Stack
805
806 push(src.x)
807 push(src.y)
808 push(src.z)
809 push(src.w)
810
811 .. note::
812
813 Considered for cleanup.
814
815 .. note::
816
817 Considered for removal.
818
819 .. opcode:: POPA - Pop Address Register From Stack
820
821 dst.w = pop()
822 dst.z = pop()
823 dst.y = pop()
824 dst.x = pop()
825
826 .. note::
827
828 Considered for cleanup.
829
830 .. note::
831
832 Considered for removal.
833
834
835 .. opcode:: CALLNZ - Subroutine Call If Not Zero
836
837 TBD
838
839 .. note::
840
841 Considered for cleanup.
842
843 .. note::
844
845 Considered for removal.
846
847
848 Compute ISA
849 ^^^^^^^^^^^^^^^^^^^^^^^^
850
851 These opcodes are primarily provided for special-use computational shaders.
852 Support for these opcodes indicated by a special pipe capability bit (TBD).
853
854 XXX doesn't look like most of the opcodes really belong here.
855
856 .. opcode:: CEIL - Ceiling
857
858 .. math::
859
860 dst.x = \lceil src.x\rceil
861
862 dst.y = \lceil src.y\rceil
863
864 dst.z = \lceil src.z\rceil
865
866 dst.w = \lceil src.w\rceil
867
868
869 .. opcode:: TRUNC - Truncate
870
871 .. math::
872
873 dst.x = trunc(src.x)
874
875 dst.y = trunc(src.y)
876
877 dst.z = trunc(src.z)
878
879 dst.w = trunc(src.w)
880
881
882 .. opcode:: MOD - Modulus
883
884 .. math::
885
886 dst.x = src0.x \bmod src1.x
887
888 dst.y = src0.y \bmod src1.y
889
890 dst.z = src0.z \bmod src1.z
891
892 dst.w = src0.w \bmod src1.w
893
894
895 .. opcode:: UARL - Integer Address Register Load
896
897 Moves the contents of the source register, assumed to be an integer, into the
898 destination register, which is assumed to be an address (ADDR) register.
899
900
901 .. opcode:: SAD - Sum Of Absolute Differences
902
903 .. math::
904
905 dst.x = |src0.x - src1.x| + src2.x
906
907 dst.y = |src0.y - src1.y| + src2.y
908
909 dst.z = |src0.z - src1.z| + src2.z
910
911 dst.w = |src0.w - src1.w| + src2.w
912
913
914 .. opcode:: TXF - Texel Fetch
915
916 As per NV_gpu_shader4, extract a single texel from a specified texture
917 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
918 four-component signed integer vector used to identify the single texel
919 accessed. 3 components + level. Just like texture instructions, an optional
920 offset vector is provided, which is subject to various driver restrictions
921 (regarding range, source of offsets).
922 TXF(uint_vec coord, int_vec offset).
923
924
925 .. opcode:: TXQ - Texture Size Query
926
927 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
928 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
929 depth), 1D array (width, layers), 2D array (width, height, layers).
930 Also return the number of accessible levels (last_level - first_level + 1)
931 in W.
932
933 For components which don't return a resource dimension, their value
934 is undefined.
935
936 .. math::
937
938 lod = src0.x
939
940 dst.x = texture\_width(unit, lod)
941
942 dst.y = texture\_height(unit, lod)
943
944 dst.z = texture\_depth(unit, lod)
945
946 dst.w = texture\_levels(unit)
947
948
949 .. opcode:: TXQS - Texture Samples Query
950
951 This retrieves the number of samples in the texture, and stores it
952 into the x component. The other components are undefined.
953
954 .. math::
955
956 dst.x = texture\_samples(unit)
957
958
959 .. opcode:: TG4 - Texture Gather
960
961 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
962 filtering operation and packs them into a single register. Only works with
963 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
964 addressing modes of the sampler and the top level of any mip pyramid are
965 used. Set W to zero. It behaves like the TEX instruction, but a filtered
966 sample is not generated. The four samples that contribute to filtering are
967 placed into xyzw in clockwise order, starting with the (u,v) texture
968 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
969 where the magnitude of the deltas are half a texel.
970
971 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
972 depth compares, single component selection, and a non-constant offset. It
973 doesn't allow support for the GL independent offset to get i0,j0. This would
974 require another CAP is hw can do it natively. For now we lower that before
975 TGSI.
976
977 .. math::
978
979 coord = src0
980
981 component = src1
982
983 dst = texture\_gather4 (unit, coord, component)
984
985 (with SM5 - cube array shadow)
986
987 .. math::
988
989 coord = src0
990
991 compare = src1
992
993 dst = texture\_gather (uint, coord, compare)
994
995 .. opcode:: LODQ - level of detail query
996
997 Compute the LOD information that the texture pipe would use to access the
998 texture. The Y component contains the computed LOD lambda_prime. The X
999 component contains the LOD that will be accessed, based on min/max lod's
1000 and mipmap filters.
1001
1002 .. math::
1003
1004 coord = src0
1005
1006 dst.xy = lodq(uint, coord);
1007
1008 Integer ISA
1009 ^^^^^^^^^^^^^^^^^^^^^^^^
1010 These opcodes are used for integer operations.
1011 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1012
1013
1014 .. opcode:: I2F - Signed Integer To Float
1015
1016 Rounding is unspecified (round to nearest even suggested).
1017
1018 .. math::
1019
1020 dst.x = (float) src.x
1021
1022 dst.y = (float) src.y
1023
1024 dst.z = (float) src.z
1025
1026 dst.w = (float) src.w
1027
1028
1029 .. opcode:: U2F - Unsigned Integer To Float
1030
1031 Rounding is unspecified (round to nearest even suggested).
1032
1033 .. math::
1034
1035 dst.x = (float) src.x
1036
1037 dst.y = (float) src.y
1038
1039 dst.z = (float) src.z
1040
1041 dst.w = (float) src.w
1042
1043
1044 .. opcode:: F2I - Float to Signed Integer
1045
1046 Rounding is towards zero (truncate).
1047 Values outside signed range (including NaNs) produce undefined results.
1048
1049 .. math::
1050
1051 dst.x = (int) src.x
1052
1053 dst.y = (int) src.y
1054
1055 dst.z = (int) src.z
1056
1057 dst.w = (int) src.w
1058
1059
1060 .. opcode:: F2U - Float to Unsigned Integer
1061
1062 Rounding is towards zero (truncate).
1063 Values outside unsigned range (including NaNs) produce undefined results.
1064
1065 .. math::
1066
1067 dst.x = (unsigned) src.x
1068
1069 dst.y = (unsigned) src.y
1070
1071 dst.z = (unsigned) src.z
1072
1073 dst.w = (unsigned) src.w
1074
1075
1076 .. opcode:: UADD - Integer Add
1077
1078 This instruction works the same for signed and unsigned integers.
1079 The low 32bit of the result is returned.
1080
1081 .. math::
1082
1083 dst.x = src0.x + src1.x
1084
1085 dst.y = src0.y + src1.y
1086
1087 dst.z = src0.z + src1.z
1088
1089 dst.w = src0.w + src1.w
1090
1091
1092 .. opcode:: UMAD - Integer Multiply And Add
1093
1094 This instruction works the same for signed and unsigned integers.
1095 The multiplication returns the low 32bit (as does the result itself).
1096
1097 .. math::
1098
1099 dst.x = src0.x \times src1.x + src2.x
1100
1101 dst.y = src0.y \times src1.y + src2.y
1102
1103 dst.z = src0.z \times src1.z + src2.z
1104
1105 dst.w = src0.w \times src1.w + src2.w
1106
1107
1108 .. opcode:: UMUL - Integer Multiply
1109
1110 This instruction works the same for signed and unsigned integers.
1111 The low 32bit of the result is returned.
1112
1113 .. math::
1114
1115 dst.x = src0.x \times src1.x
1116
1117 dst.y = src0.y \times src1.y
1118
1119 dst.z = src0.z \times src1.z
1120
1121 dst.w = src0.w \times src1.w
1122
1123
1124 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1125
1126 The high 32bits of the multiplication of 2 signed integers are returned.
1127
1128 .. math::
1129
1130 dst.x = (src0.x \times src1.x) >> 32
1131
1132 dst.y = (src0.y \times src1.y) >> 32
1133
1134 dst.z = (src0.z \times src1.z) >> 32
1135
1136 dst.w = (src0.w \times src1.w) >> 32
1137
1138
1139 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1140
1141 The high 32bits of the multiplication of 2 unsigned integers are returned.
1142
1143 .. math::
1144
1145 dst.x = (src0.x \times src1.x) >> 32
1146
1147 dst.y = (src0.y \times src1.y) >> 32
1148
1149 dst.z = (src0.z \times src1.z) >> 32
1150
1151 dst.w = (src0.w \times src1.w) >> 32
1152
1153
1154 .. opcode:: IDIV - Signed Integer Division
1155
1156 TBD: behavior for division by zero.
1157
1158 .. math::
1159
1160 dst.x = src0.x \ src1.x
1161
1162 dst.y = src0.y \ src1.y
1163
1164 dst.z = src0.z \ src1.z
1165
1166 dst.w = src0.w \ src1.w
1167
1168
1169 .. opcode:: UDIV - Unsigned Integer Division
1170
1171 For division by zero, 0xffffffff is returned.
1172
1173 .. math::
1174
1175 dst.x = src0.x \ src1.x
1176
1177 dst.y = src0.y \ src1.y
1178
1179 dst.z = src0.z \ src1.z
1180
1181 dst.w = src0.w \ src1.w
1182
1183
1184 .. opcode:: UMOD - Unsigned Integer Remainder
1185
1186 If second arg is zero, 0xffffffff is returned.
1187
1188 .. math::
1189
1190 dst.x = src0.x \ src1.x
1191
1192 dst.y = src0.y \ src1.y
1193
1194 dst.z = src0.z \ src1.z
1195
1196 dst.w = src0.w \ src1.w
1197
1198
1199 .. opcode:: NOT - Bitwise Not
1200
1201 .. math::
1202
1203 dst.x = \sim src.x
1204
1205 dst.y = \sim src.y
1206
1207 dst.z = \sim src.z
1208
1209 dst.w = \sim src.w
1210
1211
1212 .. opcode:: AND - Bitwise And
1213
1214 .. math::
1215
1216 dst.x = src0.x \& src1.x
1217
1218 dst.y = src0.y \& src1.y
1219
1220 dst.z = src0.z \& src1.z
1221
1222 dst.w = src0.w \& src1.w
1223
1224
1225 .. opcode:: OR - Bitwise Or
1226
1227 .. math::
1228
1229 dst.x = src0.x | src1.x
1230
1231 dst.y = src0.y | src1.y
1232
1233 dst.z = src0.z | src1.z
1234
1235 dst.w = src0.w | src1.w
1236
1237
1238 .. opcode:: XOR - Bitwise Xor
1239
1240 .. math::
1241
1242 dst.x = src0.x \oplus src1.x
1243
1244 dst.y = src0.y \oplus src1.y
1245
1246 dst.z = src0.z \oplus src1.z
1247
1248 dst.w = src0.w \oplus src1.w
1249
1250
1251 .. opcode:: IMAX - Maximum of Signed Integers
1252
1253 .. math::
1254
1255 dst.x = max(src0.x, src1.x)
1256
1257 dst.y = max(src0.y, src1.y)
1258
1259 dst.z = max(src0.z, src1.z)
1260
1261 dst.w = max(src0.w, src1.w)
1262
1263
1264 .. opcode:: UMAX - Maximum of Unsigned Integers
1265
1266 .. math::
1267
1268 dst.x = max(src0.x, src1.x)
1269
1270 dst.y = max(src0.y, src1.y)
1271
1272 dst.z = max(src0.z, src1.z)
1273
1274 dst.w = max(src0.w, src1.w)
1275
1276
1277 .. opcode:: IMIN - Minimum of Signed Integers
1278
1279 .. math::
1280
1281 dst.x = min(src0.x, src1.x)
1282
1283 dst.y = min(src0.y, src1.y)
1284
1285 dst.z = min(src0.z, src1.z)
1286
1287 dst.w = min(src0.w, src1.w)
1288
1289
1290 .. opcode:: UMIN - Minimum of Unsigned Integers
1291
1292 .. math::
1293
1294 dst.x = min(src0.x, src1.x)
1295
1296 dst.y = min(src0.y, src1.y)
1297
1298 dst.z = min(src0.z, src1.z)
1299
1300 dst.w = min(src0.w, src1.w)
1301
1302
1303 .. opcode:: SHL - Shift Left
1304
1305 The shift count is masked with 0x1f before the shift is applied.
1306
1307 .. math::
1308
1309 dst.x = src0.x << (0x1f \& src1.x)
1310
1311 dst.y = src0.y << (0x1f \& src1.y)
1312
1313 dst.z = src0.z << (0x1f \& src1.z)
1314
1315 dst.w = src0.w << (0x1f \& src1.w)
1316
1317
1318 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1319
1320 The shift count is masked with 0x1f before the shift is applied.
1321
1322 .. math::
1323
1324 dst.x = src0.x >> (0x1f \& src1.x)
1325
1326 dst.y = src0.y >> (0x1f \& src1.y)
1327
1328 dst.z = src0.z >> (0x1f \& src1.z)
1329
1330 dst.w = src0.w >> (0x1f \& src1.w)
1331
1332
1333 .. opcode:: USHR - Logical Shift Right
1334
1335 The shift count is masked with 0x1f before the shift is applied.
1336
1337 .. math::
1338
1339 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1340
1341 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1342
1343 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1344
1345 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1346
1347
1348 .. opcode:: UCMP - Integer Conditional Move
1349
1350 .. math::
1351
1352 dst.x = src0.x ? src1.x : src2.x
1353
1354 dst.y = src0.y ? src1.y : src2.y
1355
1356 dst.z = src0.z ? src1.z : src2.z
1357
1358 dst.w = src0.w ? src1.w : src2.w
1359
1360
1361
1362 .. opcode:: ISSG - Integer Set Sign
1363
1364 .. math::
1365
1366 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1367
1368 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1369
1370 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1371
1372 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1373
1374
1375
1376 .. opcode:: FSLT - Float Set On Less Than (ordered)
1377
1378 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1379
1380 .. math::
1381
1382 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1383
1384 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1385
1386 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1387
1388 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1389
1390
1391 .. opcode:: ISLT - Signed Integer Set On Less Than
1392
1393 .. math::
1394
1395 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1396
1397 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1398
1399 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1400
1401 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1402
1403
1404 .. opcode:: USLT - Unsigned Integer Set On Less Than
1405
1406 .. math::
1407
1408 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1409
1410 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1411
1412 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1413
1414 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1415
1416
1417 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1418
1419 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1420
1421 .. math::
1422
1423 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1424
1425 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1426
1427 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1428
1429 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1430
1431
1432 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1433
1434 .. math::
1435
1436 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1437
1438 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1439
1440 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1441
1442 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1443
1444
1445 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1446
1447 .. math::
1448
1449 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1450
1451 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1452
1453 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1454
1455 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1456
1457
1458 .. opcode:: FSEQ - Float Set On Equal (ordered)
1459
1460 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1461
1462 .. math::
1463
1464 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1465
1466 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1467
1468 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1469
1470 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1471
1472
1473 .. opcode:: USEQ - Integer Set On Equal
1474
1475 .. math::
1476
1477 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1478
1479 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1480
1481 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1482
1483 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1484
1485
1486 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1487
1488 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1489
1490 .. math::
1491
1492 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1493
1494 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1495
1496 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1497
1498 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1499
1500
1501 .. opcode:: USNE - Integer Set On Not Equal
1502
1503 .. math::
1504
1505 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1506
1507 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1508
1509 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1510
1511 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1512
1513
1514 .. opcode:: INEG - Integer Negate
1515
1516 Two's complement.
1517
1518 .. math::
1519
1520 dst.x = -src.x
1521
1522 dst.y = -src.y
1523
1524 dst.z = -src.z
1525
1526 dst.w = -src.w
1527
1528
1529 .. opcode:: IABS - Integer Absolute Value
1530
1531 .. math::
1532
1533 dst.x = |src.x|
1534
1535 dst.y = |src.y|
1536
1537 dst.z = |src.z|
1538
1539 dst.w = |src.w|
1540
1541 Bitwise ISA
1542 ^^^^^^^^^^^
1543 These opcodes are used for bit-level manipulation of integers.
1544
1545 .. opcode:: IBFE - Signed Bitfield Extract
1546
1547 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1548 sign-extends them if the high bit of the extracted window is set.
1549
1550 Pseudocode::
1551
1552 def ibfe(value, offset, bits):
1553 if offset < 0 or bits < 0 or offset + bits > 32:
1554 return undefined
1555 if bits == 0: return 0
1556 # Note: >> sign-extends
1557 return (value << (32 - offset - bits)) >> (32 - bits)
1558
1559 .. opcode:: UBFE - Unsigned Bitfield Extract
1560
1561 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1562 any sign-extension.
1563
1564 Pseudocode::
1565
1566 def ubfe(value, offset, bits):
1567 if offset < 0 or bits < 0 or offset + bits > 32:
1568 return undefined
1569 if bits == 0: return 0
1570 # Note: >> does not sign-extend
1571 return (value << (32 - offset - bits)) >> (32 - bits)
1572
1573 .. opcode:: BFI - Bitfield Insert
1574
1575 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1576 of 'insert'.
1577
1578 Pseudocode::
1579
1580 def bfi(base, insert, offset, bits):
1581 if offset < 0 or bits < 0 or offset + bits > 32:
1582 return undefined
1583 # << defined such that mask == ~0 when bits == 32, offset == 0
1584 mask = ((1 << bits) - 1) << offset
1585 return ((insert << offset) & mask) | (base & ~mask)
1586
1587 .. opcode:: BREV - Bitfield Reverse
1588
1589 See SM5 instruction BFREV. Reverses the bits of the argument.
1590
1591 .. opcode:: POPC - Population Count
1592
1593 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1594
1595 .. opcode:: LSB - Index of lowest set bit
1596
1597 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1598 bit of the argument. Returns -1 if none are set.
1599
1600 .. opcode:: IMSB - Index of highest non-sign bit
1601
1602 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1603 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1604 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1605 (i.e. for inputs 0 and -1).
1606
1607 .. opcode:: UMSB - Index of highest set bit
1608
1609 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1610 set bit of the argument. Returns -1 if none are set.
1611
1612 Geometry ISA
1613 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1614
1615 These opcodes are only supported in geometry shaders; they have no meaning
1616 in any other type of shader.
1617
1618 .. opcode:: EMIT - Emit
1619
1620 Generate a new vertex for the current primitive into the specified vertex
1621 stream using the values in the output registers.
1622
1623
1624 .. opcode:: ENDPRIM - End Primitive
1625
1626 Complete the current primitive in the specified vertex stream (consisting of
1627 the emitted vertices), and start a new one.
1628
1629
1630 GLSL ISA
1631 ^^^^^^^^^^
1632
1633 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1634 opcodes is determined by a special capability bit, ``GLSL``.
1635 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1636
1637 .. opcode:: CAL - Subroutine Call
1638
1639 push(pc)
1640 pc = target
1641
1642
1643 .. opcode:: RET - Subroutine Call Return
1644
1645 pc = pop()
1646
1647
1648 .. opcode:: CONT - Continue
1649
1650 Unconditionally moves the point of execution to the instruction after the
1651 last bgnloop. The instruction must appear within a bgnloop/endloop.
1652
1653 .. note::
1654
1655 Support for CONT is determined by a special capability bit,
1656 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1657
1658
1659 .. opcode:: BGNLOOP - Begin a Loop
1660
1661 Start a loop. Must have a matching endloop.
1662
1663
1664 .. opcode:: BGNSUB - Begin Subroutine
1665
1666 Starts definition of a subroutine. Must have a matching endsub.
1667
1668
1669 .. opcode:: ENDLOOP - End a Loop
1670
1671 End a loop started with bgnloop.
1672
1673
1674 .. opcode:: ENDSUB - End Subroutine
1675
1676 Ends definition of a subroutine.
1677
1678
1679 .. opcode:: NOP - No Operation
1680
1681 Do nothing.
1682
1683
1684 .. opcode:: BRK - Break
1685
1686 Unconditionally moves the point of execution to the instruction after the
1687 next endloop or endswitch. The instruction must appear within a loop/endloop
1688 or switch/endswitch.
1689
1690
1691 .. opcode:: BREAKC - Break Conditional
1692
1693 Conditionally moves the point of execution to the instruction after the
1694 next endloop or endswitch. The instruction must appear within a loop/endloop
1695 or switch/endswitch.
1696 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1697 as an integer register.
1698
1699 .. note::
1700
1701 Considered for removal as it's quite inconsistent wrt other opcodes
1702 (could emulate with UIF/BRK/ENDIF).
1703
1704
1705 .. opcode:: IF - Float If
1706
1707 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1708
1709 src0.x != 0.0
1710
1711 where src0.x is interpreted as a floating point register.
1712
1713
1714 .. opcode:: UIF - Bitwise If
1715
1716 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1717
1718 src0.x != 0
1719
1720 where src0.x is interpreted as an integer register.
1721
1722
1723 .. opcode:: ELSE - Else
1724
1725 Starts an else block, after an IF or UIF statement.
1726
1727
1728 .. opcode:: ENDIF - End If
1729
1730 Ends an IF or UIF block.
1731
1732
1733 .. opcode:: SWITCH - Switch
1734
1735 Starts a C-style switch expression. The switch consists of one or multiple
1736 CASE statements, and at most one DEFAULT statement. Execution of a statement
1737 ends when a BRK is hit, but just like in C falling through to other cases
1738 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1739 just as last statement, and fallthrough is allowed into/from it.
1740 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1741
1742 Example::
1743
1744 SWITCH src[0].x
1745 CASE src[0].x
1746 (some instructions here)
1747 (optional BRK here)
1748 DEFAULT
1749 (some instructions here)
1750 (optional BRK here)
1751 CASE src[0].x
1752 (some instructions here)
1753 (optional BRK here)
1754 ENDSWITCH
1755
1756
1757 .. opcode:: CASE - Switch case
1758
1759 This represents a switch case label. The src arg must be an integer immediate.
1760
1761
1762 .. opcode:: DEFAULT - Switch default
1763
1764 This represents the default case in the switch, which is taken if no other
1765 case matches.
1766
1767
1768 .. opcode:: ENDSWITCH - End of switch
1769
1770 Ends a switch expression.
1771
1772
1773 Interpolation ISA
1774 ^^^^^^^^^^^^^^^^^
1775
1776 The interpolation instructions allow an input to be interpolated in a
1777 different way than its declaration. This corresponds to the GLSL 4.00
1778 interpolateAt* functions. The first argument of each of these must come from
1779 ``TGSI_FILE_INPUT``.
1780
1781 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1782
1783 Interpolates the varying specified by src0 at the centroid
1784
1785 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1786
1787 Interpolates the varying specified by src0 at the sample id specified by
1788 src1.x (interpreted as an integer)
1789
1790 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1791
1792 Interpolates the varying specified by src0 at the offset src1.xy from the
1793 pixel center (interpreted as floats)
1794
1795
1796 .. _doubleopcodes:
1797
1798 Double ISA
1799 ^^^^^^^^^^^^^^^
1800
1801 The double-precision opcodes reinterpret four-component vectors into
1802 two-component vectors with doubled precision in each component.
1803
1804 .. opcode:: DABS - Absolute
1805
1806 .. math::
1807
1808 dst.xy = |src0.xy|
1809
1810 dst.zw = |src0.zw|
1811
1812 .. opcode:: DADD - Add
1813
1814 .. math::
1815
1816 dst.xy = src0.xy + src1.xy
1817
1818 dst.zw = src0.zw + src1.zw
1819
1820 .. opcode:: DSEQ - Set on Equal
1821
1822 .. math::
1823
1824 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1825
1826 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1827
1828 .. opcode:: DSNE - Set on Equal
1829
1830 .. math::
1831
1832 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1833
1834 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1835
1836 .. opcode:: DSLT - Set on Less than
1837
1838 .. math::
1839
1840 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1841
1842 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1843
1844 .. opcode:: DSGE - Set on Greater equal
1845
1846 .. math::
1847
1848 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1849
1850 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1851
1852 .. opcode:: DFRAC - Fraction
1853
1854 .. math::
1855
1856 dst.xy = src.xy - \lfloor src.xy\rfloor
1857
1858 dst.zw = src.zw - \lfloor src.zw\rfloor
1859
1860 .. opcode:: DTRUNC - Truncate
1861
1862 .. math::
1863
1864 dst.xy = trunc(src.xy)
1865
1866 dst.zw = trunc(src.zw)
1867
1868 .. opcode:: DCEIL - Ceiling
1869
1870 .. math::
1871
1872 dst.xy = \lceil src.xy\rceil
1873
1874 dst.zw = \lceil src.zw\rceil
1875
1876 .. opcode:: DFLR - Floor
1877
1878 .. math::
1879
1880 dst.xy = \lfloor src.xy\rfloor
1881
1882 dst.zw = \lfloor src.zw\rfloor
1883
1884 .. opcode:: DROUND - Fraction
1885
1886 .. math::
1887
1888 dst.xy = round(src.xy)
1889
1890 dst.zw = round(src.zw)
1891
1892 .. opcode:: DSSG - Set Sign
1893
1894 .. math::
1895
1896 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1897
1898 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1899
1900 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1901
1902 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1903 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1904 :math:`dst1 \times 2^{dst0} = src` .
1905
1906 .. math::
1907
1908 dst0.xy = exp(src.xy)
1909
1910 dst1.xy = frac(src.xy)
1911
1912 dst0.zw = exp(src.zw)
1913
1914 dst1.zw = frac(src.zw)
1915
1916 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1917
1918 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1919 source is an integer.
1920
1921 .. math::
1922
1923 dst.xy = src0.xy \times 2^{src1.x}
1924
1925 dst.zw = src0.zw \times 2^{src1.y}
1926
1927 .. opcode:: DMIN - Minimum
1928
1929 .. math::
1930
1931 dst.xy = min(src0.xy, src1.xy)
1932
1933 dst.zw = min(src0.zw, src1.zw)
1934
1935 .. opcode:: DMAX - Maximum
1936
1937 .. math::
1938
1939 dst.xy = max(src0.xy, src1.xy)
1940
1941 dst.zw = max(src0.zw, src1.zw)
1942
1943 .. opcode:: DMUL - Multiply
1944
1945 .. math::
1946
1947 dst.xy = src0.xy \times src1.xy
1948
1949 dst.zw = src0.zw \times src1.zw
1950
1951
1952 .. opcode:: DMAD - Multiply And Add
1953
1954 .. math::
1955
1956 dst.xy = src0.xy \times src1.xy + src2.xy
1957
1958 dst.zw = src0.zw \times src1.zw + src2.zw
1959
1960
1961 .. opcode:: DFMA - Fused Multiply-Add
1962
1963 Perform a * b + c with no intermediate rounding step.
1964
1965 .. math::
1966
1967 dst.xy = src0.xy \times src1.xy + src2.xy
1968
1969 dst.zw = src0.zw \times src1.zw + src2.zw
1970
1971
1972 .. opcode:: DDIV - Divide
1973
1974 .. math::
1975
1976 dst.xy = \frac{src0.xy}{src1.xy}
1977
1978 dst.zw = \frac{src0.zw}{src1.zw}
1979
1980
1981 .. opcode:: DRCP - Reciprocal
1982
1983 .. math::
1984
1985 dst.xy = \frac{1}{src.xy}
1986
1987 dst.zw = \frac{1}{src.zw}
1988
1989 .. opcode:: DSQRT - Square Root
1990
1991 .. math::
1992
1993 dst.xy = \sqrt{src.xy}
1994
1995 dst.zw = \sqrt{src.zw}
1996
1997 .. opcode:: DRSQ - Reciprocal Square Root
1998
1999 .. math::
2000
2001 dst.xy = \frac{1}{\sqrt{src.xy}}
2002
2003 dst.zw = \frac{1}{\sqrt{src.zw}}
2004
2005 .. opcode:: F2D - Float to Double
2006
2007 .. math::
2008
2009 dst.xy = double(src0.x)
2010
2011 dst.zw = double(src0.y)
2012
2013 .. opcode:: D2F - Double to Float
2014
2015 .. math::
2016
2017 dst.x = float(src0.xy)
2018
2019 dst.y = float(src0.zw)
2020
2021 .. opcode:: I2D - Int to Double
2022
2023 .. math::
2024
2025 dst.xy = double(src0.x)
2026
2027 dst.zw = double(src0.y)
2028
2029 .. opcode:: D2I - Double to Int
2030
2031 .. math::
2032
2033 dst.x = int(src0.xy)
2034
2035 dst.y = int(src0.zw)
2036
2037 .. opcode:: U2D - Unsigned Int to Double
2038
2039 .. math::
2040
2041 dst.xy = double(src0.x)
2042
2043 dst.zw = double(src0.y)
2044
2045 .. opcode:: D2U - Double to Unsigned Int
2046
2047 .. math::
2048
2049 dst.x = unsigned(src0.xy)
2050
2051 dst.y = unsigned(src0.zw)
2052
2053 64-bit Integer ISA
2054 ^^^^^^^^^^^^^^^^^^
2055
2056 The 64-bit integer opcodes reinterpret four-component vectors into
2057 two-component vectors with 64-bits in each component.
2058
2059 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2060
2061 .. math::
2062
2063 dst.xy = |src0.xy|
2064
2065 dst.zw = |src0.zw|
2066
2067 .. opcode:: I64NEG - 64-bit Integer Negate
2068
2069 Two's complement.
2070
2071 .. math::
2072
2073 dst.xy = -src.xy
2074
2075 dst.zw = -src.zw
2076
2077 .. opcode:: I64SSG - 64-bit Integer Set Sign
2078
2079 .. math::
2080
2081 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2082
2083 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2084
2085 .. opcode:: U64ADD - 64-bit Integer Add
2086
2087 .. math::
2088
2089 dst.xy = src0.xy + src1.xy
2090
2091 dst.zw = src0.zw + src1.zw
2092
2093 .. opcode:: U64MUL - 64-bit Integer Multiply
2094
2095 .. math::
2096
2097 dst.xy = src0.xy * src1.xy
2098
2099 dst.zw = src0.zw * src1.zw
2100
2101 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2102
2103 .. math::
2104
2105 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2106
2107 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2108
2109 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2110
2111 .. math::
2112
2113 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2114
2115 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2116
2117 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2118
2119 .. math::
2120
2121 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2122
2123 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2124
2125 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2126
2127 .. math::
2128
2129 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2130
2131 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2132
2133 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2134
2135 .. math::
2136
2137 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2138
2139 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2140
2141 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2142
2143 .. math::
2144
2145 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2146
2147 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2148
2149 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2150
2151 .. math::
2152
2153 dst.xy = min(src0.xy, src1.xy)
2154
2155 dst.zw = min(src0.zw, src1.zw)
2156
2157 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2158
2159 .. math::
2160
2161 dst.xy = min(src0.xy, src1.xy)
2162
2163 dst.zw = min(src0.zw, src1.zw)
2164
2165 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2166
2167 .. math::
2168
2169 dst.xy = max(src0.xy, src1.xy)
2170
2171 dst.zw = max(src0.zw, src1.zw)
2172
2173 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2174
2175 .. math::
2176
2177 dst.xy = max(src0.xy, src1.xy)
2178
2179 dst.zw = max(src0.zw, src1.zw)
2180
2181 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2182
2183 The shift count is masked with 0x3f before the shift is applied.
2184
2185 .. math::
2186
2187 dst.xy = src0.xy << (0x3f \& src1.x)
2188
2189 dst.zw = src0.zw << (0x3f \& src1.y)
2190
2191 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2192
2193 The shift count is masked with 0x3f before the shift is applied.
2194
2195 .. math::
2196
2197 dst.xy = src0.xy >> (0x3f \& src1.x)
2198
2199 dst.zw = src0.zw >> (0x3f \& src1.y)
2200
2201 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2202
2203 The shift count is masked with 0x3f before the shift is applied.
2204
2205 .. math::
2206
2207 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2208
2209 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2210
2211 .. opcode:: I64DIV - 64-bit Signed Integer Division
2212
2213 .. math::
2214
2215 dst.xy = src0.xy \ src1.xy
2216
2217 dst.zw = src0.zw \ src1.zw
2218
2219 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2220
2221 .. math::
2222
2223 dst.xy = src0.xy \ src1.xy
2224
2225 dst.zw = src0.zw \ src1.zw
2226
2227 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2228
2229 .. math::
2230
2231 dst.xy = src0.xy \bmod src1.xy
2232
2233 dst.zw = src0.zw \bmod src1.zw
2234
2235 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2236
2237 .. math::
2238
2239 dst.xy = src0.xy \bmod src1.xy
2240
2241 dst.zw = src0.zw \bmod src1.zw
2242
2243 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2244
2245 .. math::
2246
2247 dst.xy = (uint64_t) src0.x
2248
2249 dst.zw = (uint64_t) src0.y
2250
2251 .. opcode:: F2I64 - Float to 64-bit Int
2252
2253 .. math::
2254
2255 dst.xy = (int64_t) src0.x
2256
2257 dst.zw = (int64_t) src0.y
2258
2259 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2260
2261 This is a zero extension.
2262
2263 .. math::
2264
2265 dst.xy = (uint64_t) src0.x
2266
2267 dst.zw = (uint64_t) src0.y
2268
2269 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2270
2271 This is a sign extension.
2272
2273 .. math::
2274
2275 dst.xy = (int64_t) src0.x
2276
2277 dst.zw = (int64_t) src0.y
2278
2279 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2280
2281 .. math::
2282
2283 dst.xy = (uint64_t) src0.xy
2284
2285 dst.zw = (uint64_t) src0.zw
2286
2287 .. opcode:: D2I64 - Double to 64-bit Int
2288
2289 .. math::
2290
2291 dst.xy = (int64_t) src0.xy
2292
2293 dst.zw = (int64_t) src0.zw
2294
2295 .. opcode:: U642F - 64-bit unsigned integer to float
2296
2297 .. math::
2298
2299 dst.x = (float) src0.xy
2300
2301 dst.y = (float) src0.zw
2302
2303 .. opcode:: I642F - 64-bit Int to Float
2304
2305 .. math::
2306
2307 dst.x = (float) src0.xy
2308
2309 dst.y = (float) src0.zw
2310
2311 .. opcode:: U642D - 64-bit unsigned integer to double
2312
2313 .. math::
2314
2315 dst.xy = (double) src0.xy
2316
2317 dst.zw = (double) src0.zw
2318
2319 .. opcode:: I642D - 64-bit Int to double
2320
2321 .. math::
2322
2323 dst.xy = (double) src0.xy
2324
2325 dst.zw = (double) src0.zw
2326
2327 .. _samplingopcodes:
2328
2329 Resource Sampling Opcodes
2330 ^^^^^^^^^^^^^^^^^^^^^^^^^
2331
2332 Those opcodes follow very closely semantics of the respective Direct3D
2333 instructions. If in doubt double check Direct3D documentation.
2334 Note that the swizzle on SVIEW (src1) determines texel swizzling
2335 after lookup.
2336
2337 .. opcode:: SAMPLE
2338
2339 Using provided address, sample data from the specified texture using the
2340 filtering mode identified by the given sampler. The source data may come from
2341 any resource type other than buffers.
2342
2343 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2344
2345 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2346
2347 .. opcode:: SAMPLE_I
2348
2349 Simplified alternative to the SAMPLE instruction. Using the provided
2350 integer address, SAMPLE_I fetches data from the specified sampler view
2351 without any filtering. The source data may come from any resource type
2352 other than CUBE.
2353
2354 Syntax: ``SAMPLE_I dst, address, sampler_view``
2355
2356 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2357
2358 The 'address' is specified as unsigned integers. If the 'address' is out of
2359 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2360 components. As such the instruction doesn't honor address wrap modes, in
2361 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2362 address.w always provides an unsigned integer mipmap level. If the value is
2363 out of the range then the instruction always returns 0 in all components.
2364 address.yz are ignored for buffers and 1d textures. address.z is ignored
2365 for 1d texture arrays and 2d textures.
2366
2367 For 1D texture arrays address.y provides the array index (also as unsigned
2368 integer). If the value is out of the range of available array indices
2369 [0... (array size - 1)] then the opcode always returns 0 in all components.
2370 For 2D texture arrays address.z provides the array index, otherwise it
2371 exhibits the same behavior as in the case for 1D texture arrays. The exact
2372 semantics of the source address are presented in the table below:
2373
2374 +---------------------------+----+-----+-----+---------+
2375 | resource type | X | Y | Z | W |
2376 +===========================+====+=====+=====+=========+
2377 | ``PIPE_BUFFER`` | x | | | ignored |
2378 +---------------------------+----+-----+-----+---------+
2379 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2380 +---------------------------+----+-----+-----+---------+
2381 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2382 +---------------------------+----+-----+-----+---------+
2383 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2384 +---------------------------+----+-----+-----+---------+
2385 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2386 +---------------------------+----+-----+-----+---------+
2387 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2388 +---------------------------+----+-----+-----+---------+
2389 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2390 +---------------------------+----+-----+-----+---------+
2391 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2392 +---------------------------+----+-----+-----+---------+
2393
2394 Where 'mpl' is a mipmap level and 'idx' is the array index.
2395
2396 .. opcode:: SAMPLE_I_MS
2397
2398 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2399
2400 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2401
2402 .. opcode:: SAMPLE_B
2403
2404 Just like the SAMPLE instruction with the exception that an additional bias
2405 is applied to the level of detail computed as part of the instruction
2406 execution.
2407
2408 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2409
2410 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2411
2412 .. opcode:: SAMPLE_C
2413
2414 Similar to the SAMPLE instruction but it performs a comparison filter. The
2415 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2416 additional float32 operand, reference value, which must be a register with
2417 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2418 current samplers compare_func (in pipe_sampler_state) to compare reference
2419 value against the red component value for the surce resource at each texel
2420 that the currently configured texture filter covers based on the provided
2421 coordinates.
2422
2423 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2424
2425 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2426
2427 .. opcode:: SAMPLE_C_LZ
2428
2429 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2430 for level-zero.
2431
2432 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2433
2434 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2435
2436
2437 .. opcode:: SAMPLE_D
2438
2439 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2440 the source address in the x direction and the y direction are provided by
2441 extra parameters.
2442
2443 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2444
2445 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2446
2447 .. opcode:: SAMPLE_L
2448
2449 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2450 directly as a scalar value, representing no anisotropy.
2451
2452 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2453
2454 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2455
2456 .. opcode:: GATHER4
2457
2458 Gathers the four texels to be used in a bi-linear filtering operation and
2459 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2460 and cubemaps arrays. For 2D textures, only the addressing modes of the
2461 sampler and the top level of any mip pyramid are used. Set W to zero. It
2462 behaves like the SAMPLE instruction, but a filtered sample is not
2463 generated. The four samples that contribute to filtering are placed into
2464 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2465 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2466 magnitude of the deltas are half a texel.
2467
2468
2469 .. opcode:: SVIEWINFO
2470
2471 Query the dimensions of a given sampler view. dst receives width, height,
2472 depth or array size and number of mipmap levels as int4. The dst can have a
2473 writemask which will specify what info is the caller interested in.
2474
2475 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2476
2477 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2478
2479 src_mip_level is an unsigned integer scalar. If it's out of range then
2480 returns 0 for width, height and depth/array size but the total number of
2481 mipmap is still returned correctly for the given sampler view. The returned
2482 width, height and depth values are for the mipmap level selected by the
2483 src_mip_level and are in the number of texels. For 1d texture array width
2484 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2485 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2486 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2487 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2488 resinfo allowing swizzling dst values is ignored (due to the interaction
2489 with rcpfloat modifier which requires some swizzle handling in the state
2490 tracker anyway).
2491
2492 .. opcode:: SAMPLE_POS
2493
2494 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2495 indicated where the sample is located. If the resource is not a multi-sample
2496 resource and not a render target, the result is 0.
2497
2498 .. opcode:: SAMPLE_INFO
2499
2500 dst receives number of samples in x. If the resource is not a multi-sample
2501 resource and not a render target, the result is 0.
2502
2503
2504 .. _resourceopcodes:
2505
2506 Resource Access Opcodes
2507 ^^^^^^^^^^^^^^^^^^^^^^^
2508
2509 .. opcode:: LOAD - Fetch data from a shader buffer or image
2510
2511 Syntax: ``LOAD dst, resource, address``
2512
2513 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2514
2515 Using the provided integer address, LOAD fetches data
2516 from the specified buffer or texture without any
2517 filtering.
2518
2519 The 'address' is specified as a vector of unsigned
2520 integers. If the 'address' is out of range the result
2521 is unspecified.
2522
2523 Only the first mipmap level of a resource can be read
2524 from using this instruction.
2525
2526 For 1D or 2D texture arrays, the array index is
2527 provided as an unsigned integer in address.y or
2528 address.z, respectively. address.yz are ignored for
2529 buffers and 1D textures. address.z is ignored for 1D
2530 texture arrays and 2D textures. address.w is always
2531 ignored.
2532
2533 A swizzle suffix may be added to the resource argument
2534 this will cause the resource data to be swizzled accordingly.
2535
2536 .. opcode:: STORE - Write data to a shader resource
2537
2538 Syntax: ``STORE resource, address, src``
2539
2540 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2541
2542 Using the provided integer address, STORE writes data
2543 to the specified buffer or texture.
2544
2545 The 'address' is specified as a vector of unsigned
2546 integers. If the 'address' is out of range the result
2547 is unspecified.
2548
2549 Only the first mipmap level of a resource can be
2550 written to using this instruction.
2551
2552 For 1D or 2D texture arrays, the array index is
2553 provided as an unsigned integer in address.y or
2554 address.z, respectively. address.yz are ignored for
2555 buffers and 1D textures. address.z is ignored for 1D
2556 texture arrays and 2D textures. address.w is always
2557 ignored.
2558
2559 .. opcode:: RESQ - Query information about a resource
2560
2561 Syntax: ``RESQ dst, resource``
2562
2563 Example: ``RESQ TEMP[0], BUFFER[0]``
2564
2565 Returns information about the buffer or image resource. For buffer
2566 resources, the size (in bytes) is returned in the x component. For
2567 image resources, .xyz will contain the width/height/layers of the
2568 image, while .w will contain the number of samples for multi-sampled
2569 images.
2570
2571 .. opcode:: FBFETCH - Load data from framebuffer
2572
2573 Syntax: ``FBFETCH dst, output``
2574
2575 Example: ``FBFETCH TEMP[0], OUT[0]``
2576
2577 This is only valid on ``COLOR`` semantic outputs. Returns the color
2578 of the current position in the framebuffer from before this fragment
2579 shader invocation. May return the same value from multiple calls for
2580 a particular output within a single invocation. Note that result may
2581 be undefined if a fragment is drawn multiple times without a blend
2582 barrier in between.
2583
2584
2585 .. _threadsyncopcodes:
2586
2587 Inter-thread synchronization opcodes
2588 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2589
2590 These opcodes are intended for communication between threads running
2591 within the same compute grid. For now they're only valid in compute
2592 programs.
2593
2594 .. opcode:: MFENCE - Memory fence
2595
2596 Syntax: ``MFENCE resource``
2597
2598 Example: ``MFENCE RES[0]``
2599
2600 This opcode forces strong ordering between any memory access
2601 operations that affect the specified resource. This means that
2602 previous loads and stores (and only those) will be performed and
2603 visible to other threads before the program execution continues.
2604
2605
2606 .. opcode:: LFENCE - Load memory fence
2607
2608 Syntax: ``LFENCE resource``
2609
2610 Example: ``LFENCE RES[0]``
2611
2612 Similar to MFENCE, but it only affects the ordering of memory loads.
2613
2614
2615 .. opcode:: SFENCE - Store memory fence
2616
2617 Syntax: ``SFENCE resource``
2618
2619 Example: ``SFENCE RES[0]``
2620
2621 Similar to MFENCE, but it only affects the ordering of memory stores.
2622
2623
2624 .. opcode:: BARRIER - Thread group barrier
2625
2626 ``BARRIER``
2627
2628 This opcode suspends the execution of the current thread until all
2629 the remaining threads in the working group reach the same point of
2630 the program. Results are unspecified if any of the remaining
2631 threads terminates or never reaches an executed BARRIER instruction.
2632
2633 .. opcode:: MEMBAR - Memory barrier
2634
2635 ``MEMBAR type``
2636
2637 This opcode waits for the completion of all memory accesses based on
2638 the type passed in. The type is an immediate bitfield with the following
2639 meaning:
2640
2641 Bit 0: Shader storage buffers
2642 Bit 1: Atomic buffers
2643 Bit 2: Images
2644 Bit 3: Shared memory
2645 Bit 4: Thread group
2646
2647 These may be passed in in any combination. An implementation is free to not
2648 distinguish between these as it sees fit. However these map to all the
2649 possibilities made available by GLSL.
2650
2651 .. _atomopcodes:
2652
2653 Atomic opcodes
2654 ^^^^^^^^^^^^^^
2655
2656 These opcodes provide atomic variants of some common arithmetic and
2657 logical operations. In this context atomicity means that another
2658 concurrent memory access operation that affects the same memory
2659 location is guaranteed to be performed strictly before or after the
2660 entire execution of the atomic operation. The resource may be a buffer
2661 or an image. In the case of an image, the offset works the same as for
2662 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2663 only be used with 32-bit integer image formats.
2664
2665 .. opcode:: ATOMUADD - Atomic integer addition
2666
2667 Syntax: ``ATOMUADD dst, resource, offset, src``
2668
2669 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2670
2671 The following operation is performed atomically:
2672
2673 .. math::
2674
2675 dst_x = resource[offset]
2676
2677 resource[offset] = dst_x + src_x
2678
2679
2680 .. opcode:: ATOMXCHG - Atomic exchange
2681
2682 Syntax: ``ATOMXCHG dst, resource, offset, src``
2683
2684 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2685
2686 The following operation is performed atomically:
2687
2688 .. math::
2689
2690 dst_x = resource[offset]
2691
2692 resource[offset] = src_x
2693
2694
2695 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2696
2697 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2698
2699 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2700
2701 The following operation is performed atomically:
2702
2703 .. math::
2704
2705 dst_x = resource[offset]
2706
2707 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2708
2709
2710 .. opcode:: ATOMAND - Atomic bitwise And
2711
2712 Syntax: ``ATOMAND dst, resource, offset, src``
2713
2714 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2715
2716 The following operation is performed atomically:
2717
2718 .. math::
2719
2720 dst_x = resource[offset]
2721
2722 resource[offset] = dst_x \& src_x
2723
2724
2725 .. opcode:: ATOMOR - Atomic bitwise Or
2726
2727 Syntax: ``ATOMOR dst, resource, offset, src``
2728
2729 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2730
2731 The following operation is performed atomically:
2732
2733 .. math::
2734
2735 dst_x = resource[offset]
2736
2737 resource[offset] = dst_x | src_x
2738
2739
2740 .. opcode:: ATOMXOR - Atomic bitwise Xor
2741
2742 Syntax: ``ATOMXOR dst, resource, offset, src``
2743
2744 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2745
2746 The following operation is performed atomically:
2747
2748 .. math::
2749
2750 dst_x = resource[offset]
2751
2752 resource[offset] = dst_x \oplus src_x
2753
2754
2755 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2756
2757 Syntax: ``ATOMUMIN dst, resource, offset, src``
2758
2759 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2760
2761 The following operation is performed atomically:
2762
2763 .. math::
2764
2765 dst_x = resource[offset]
2766
2767 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2768
2769
2770 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2771
2772 Syntax: ``ATOMUMAX dst, resource, offset, src``
2773
2774 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2775
2776 The following operation is performed atomically:
2777
2778 .. math::
2779
2780 dst_x = resource[offset]
2781
2782 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2783
2784
2785 .. opcode:: ATOMIMIN - Atomic signed minimum
2786
2787 Syntax: ``ATOMIMIN dst, resource, offset, src``
2788
2789 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2790
2791 The following operation is performed atomically:
2792
2793 .. math::
2794
2795 dst_x = resource[offset]
2796
2797 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2798
2799
2800 .. opcode:: ATOMIMAX - Atomic signed maximum
2801
2802 Syntax: ``ATOMIMAX dst, resource, offset, src``
2803
2804 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2805
2806 The following operation is performed atomically:
2807
2808 .. math::
2809
2810 dst_x = resource[offset]
2811
2812 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2813
2814
2815 .. _voteopcodes:
2816
2817 Vote opcodes
2818 ^^^^^^^^^^^^
2819
2820 These opcodes compare the given value across the shader invocations
2821 running in the current SIMD group. The details of exactly which
2822 invocations get compared are implementation-defined, and it would be a
2823 correct implementation to only ever consider the current thread's
2824 value. (i.e. SIMD group of 1). The argument is treated as a boolean.
2825
2826 .. opcode:: VOTE_ANY - Value is set in any of the current invocations
2827
2828 .. opcode:: VOTE_ALL - Value is set in all of the current invocations
2829
2830 .. opcode:: VOTE_EQ - Value is the same in all of the current invocations
2831
2832
2833 Explanation of symbols used
2834 ------------------------------
2835
2836
2837 Functions
2838 ^^^^^^^^^^^^^^
2839
2840
2841 :math:`|x|` Absolute value of `x`.
2842
2843 :math:`\lceil x \rceil` Ceiling of `x`.
2844
2845 clamp(x,y,z) Clamp x between y and z.
2846 (x < y) ? y : (x > z) ? z : x
2847
2848 :math:`\lfloor x\rfloor` Floor of `x`.
2849
2850 :math:`\log_2{x}` Logarithm of `x`, base 2.
2851
2852 max(x,y) Maximum of x and y.
2853 (x > y) ? x : y
2854
2855 min(x,y) Minimum of x and y.
2856 (x < y) ? x : y
2857
2858 partialx(x) Derivative of x relative to fragment's X.
2859
2860 partialy(x) Derivative of x relative to fragment's Y.
2861
2862 pop() Pop from stack.
2863
2864 :math:`x^y` `x` to the power `y`.
2865
2866 push(x) Push x on stack.
2867
2868 round(x) Round x.
2869
2870 trunc(x) Truncate x, i.e. drop the fraction bits.
2871
2872
2873 Keywords
2874 ^^^^^^^^^^^^^
2875
2876
2877 discard Discard fragment.
2878
2879 pc Program counter.
2880
2881 target Label of target instruction.
2882
2883
2884 Other tokens
2885 ---------------
2886
2887
2888 Declaration
2889 ^^^^^^^^^^^
2890
2891
2892 Declares a register that is will be referenced as an operand in Instruction
2893 tokens.
2894
2895 File field contains register file that is being declared and is one
2896 of TGSI_FILE.
2897
2898 UsageMask field specifies which of the register components can be accessed
2899 and is one of TGSI_WRITEMASK.
2900
2901 The Local flag specifies that a given value isn't intended for
2902 subroutine parameter passing and, as a result, the implementation
2903 isn't required to give any guarantees of it being preserved across
2904 subroutine boundaries. As it's merely a compiler hint, the
2905 implementation is free to ignore it.
2906
2907 If Dimension flag is set to 1, a Declaration Dimension token follows.
2908
2909 If Semantic flag is set to 1, a Declaration Semantic token follows.
2910
2911 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2912
2913 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2914
2915 If Array flag is set to 1, a Declaration Array token follows.
2916
2917 Array Declaration
2918 ^^^^^^^^^^^^^^^^^^^^^^^^
2919
2920 Declarations can optional have an ArrayID attribute which can be referred by
2921 indirect addressing operands. An ArrayID of zero is reserved and treated as
2922 if no ArrayID is specified.
2923
2924 If an indirect addressing operand refers to a specific declaration by using
2925 an ArrayID only the registers in this declaration are guaranteed to be
2926 accessed, accessing any register outside this declaration results in undefined
2927 behavior. Note that for compatibility the effective index is zero-based and
2928 not relative to the specified declaration
2929
2930 If no ArrayID is specified with an indirect addressing operand the whole
2931 register file might be accessed by this operand. This is strongly discouraged
2932 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2933 This is only legal for TEMP and CONST register files.
2934
2935 Declaration Semantic
2936 ^^^^^^^^^^^^^^^^^^^^^^^^
2937
2938 Vertex and fragment shader input and output registers may be labeled
2939 with semantic information consisting of a name and index.
2940
2941 Follows Declaration token if Semantic bit is set.
2942
2943 Since its purpose is to link a shader with other stages of the pipeline,
2944 it is valid to follow only those Declaration tokens that declare a register
2945 either in INPUT or OUTPUT file.
2946
2947 SemanticName field contains the semantic name of the register being declared.
2948 There is no default value.
2949
2950 SemanticIndex is an optional subscript that can be used to distinguish
2951 different register declarations with the same semantic name. The default value
2952 is 0.
2953
2954 The meanings of the individual semantic names are explained in the following
2955 sections.
2956
2957 TGSI_SEMANTIC_POSITION
2958 """"""""""""""""""""""
2959
2960 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2961 output register which contains the homogeneous vertex position in the clip
2962 space coordinate system. After clipping, the X, Y and Z components of the
2963 vertex will be divided by the W value to get normalized device coordinates.
2964
2965 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2966 fragment shader input (or system value, depending on which one is
2967 supported by the driver) contains the fragment's window position. The X
2968 component starts at zero and always increases from left to right.
2969 The Y component starts at zero and always increases but Y=0 may either
2970 indicate the top of the window or the bottom depending on the fragment
2971 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2972 The Z coordinate ranges from 0 to 1 to represent depth from the front
2973 to the back of the Z buffer. The W component contains the interpolated
2974 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2975 but unlike d3d10 which interpolates the same 1/w but then gives back
2976 the reciprocal of the interpolated value).
2977
2978 Fragment shaders may also declare an output register with
2979 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2980 the fragment shader to change the fragment's Z position.
2981
2982
2983
2984 TGSI_SEMANTIC_COLOR
2985 """""""""""""""""""
2986
2987 For vertex shader outputs or fragment shader inputs/outputs, this
2988 label indicates that the register contains an R,G,B,A color.
2989
2990 Several shader inputs/outputs may contain colors so the semantic index
2991 is used to distinguish them. For example, color[0] may be the diffuse
2992 color while color[1] may be the specular color.
2993
2994 This label is needed so that the flat/smooth shading can be applied
2995 to the right interpolants during rasterization.
2996
2997
2998
2999 TGSI_SEMANTIC_BCOLOR
3000 """"""""""""""""""""
3001
3002 Back-facing colors are only used for back-facing polygons, and are only valid
3003 in vertex shader outputs. After rasterization, all polygons are front-facing
3004 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3005 so all BCOLORs effectively become regular COLORs in the fragment shader.
3006
3007
3008 TGSI_SEMANTIC_FOG
3009 """""""""""""""""
3010
3011 Vertex shader inputs and outputs and fragment shader inputs may be
3012 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3013 a fog coordinate. Typically, the fragment shader will use the fog coordinate
3014 to compute a fog blend factor which is used to blend the normal fragment color
3015 with a constant fog color. But fog coord really is just an ordinary vec4
3016 register like regular semantics.
3017
3018
3019 TGSI_SEMANTIC_PSIZE
3020 """""""""""""""""""
3021
3022 Vertex shader input and output registers may be labeled with
3023 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3024 in the form (S, 0, 0, 1). The point size controls the width or diameter
3025 of points for rasterization. This label cannot be used in fragment
3026 shaders.
3027
3028 When using this semantic, be sure to set the appropriate state in the
3029 :ref:`rasterizer` first.
3030
3031
3032 TGSI_SEMANTIC_TEXCOORD
3033 """"""""""""""""""""""
3034
3035 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3036
3037 Vertex shader outputs and fragment shader inputs may be labeled with
3038 this semantic to make them replaceable by sprite coordinates via the
3039 sprite_coord_enable state in the :ref:`rasterizer`.
3040 The semantic index permitted with this semantic is limited to <= 7.
3041
3042 If the driver does not support TEXCOORD, sprite coordinate replacement
3043 applies to inputs with the GENERIC semantic instead.
3044
3045 The intended use case for this semantic is gl_TexCoord.
3046
3047
3048 TGSI_SEMANTIC_PCOORD
3049 """"""""""""""""""""
3050
3051 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3052
3053 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3054 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3055 the current primitive is a point and point sprites are enabled. Otherwise,
3056 the contents of the register are undefined.
3057
3058 The intended use case for this semantic is gl_PointCoord.
3059
3060
3061 TGSI_SEMANTIC_GENERIC
3062 """""""""""""""""""""
3063
3064 All vertex/fragment shader inputs/outputs not labeled with any other
3065 semantic label can be considered to be generic attributes. Typical
3066 uses of generic inputs/outputs are texcoords and user-defined values.
3067
3068
3069 TGSI_SEMANTIC_NORMAL
3070 """"""""""""""""""""
3071
3072 Indicates that a vertex shader input is a normal vector. This is
3073 typically only used for legacy graphics APIs.
3074
3075
3076 TGSI_SEMANTIC_FACE
3077 """"""""""""""""""
3078
3079 This label applies to fragment shader inputs (or system values,
3080 depending on which one is supported by the driver) and indicates that
3081 the register contains front/back-face information.
3082
3083 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3084 where F will be positive when the fragment belongs to a front-facing polygon,
3085 and negative when the fragment belongs to a back-facing polygon.
3086
3087 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3088 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3089 0 when the fragment belongs to a back-facing polygon.
3090
3091
3092 TGSI_SEMANTIC_EDGEFLAG
3093 """"""""""""""""""""""
3094
3095 For vertex shaders, this sematic label indicates that an input or
3096 output is a boolean edge flag. The register layout is [F, x, x, x]
3097 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3098 simply copies the edge flag input to the edgeflag output.
3099
3100 Edge flags are used to control which lines or points are actually
3101 drawn when the polygon mode converts triangles/quads/polygons into
3102 points or lines.
3103
3104
3105 TGSI_SEMANTIC_STENCIL
3106 """""""""""""""""""""
3107
3108 For fragment shaders, this semantic label indicates that an output
3109 is a writable stencil reference value. Only the Y component is writable.
3110 This allows the fragment shader to change the fragments stencilref value.
3111
3112
3113 TGSI_SEMANTIC_VIEWPORT_INDEX
3114 """"""""""""""""""""""""""""
3115
3116 For geometry shaders, this semantic label indicates that an output
3117 contains the index of the viewport (and scissor) to use.
3118 This is an integer value, and only the X component is used.
3119
3120
3121 TGSI_SEMANTIC_LAYER
3122 """""""""""""""""""
3123
3124 For geometry shaders, this semantic label indicates that an output
3125 contains the layer value to use for the color and depth/stencil surfaces.
3126 This is an integer value, and only the X component is used.
3127 (Also known as rendertarget array index.)
3128
3129
3130 TGSI_SEMANTIC_CULLDIST
3131 """"""""""""""""""""""
3132
3133 Used as distance to plane for performing application-defined culling
3134 of individual primitives against a plane. When components of vertex
3135 elements are given this label, these values are assumed to be a
3136 float32 signed distance to a plane. Primitives will be completely
3137 discarded if the plane distance for all of the vertices in the
3138 primitive are < 0. If a vertex has a cull distance of NaN, that
3139 vertex counts as "out" (as if its < 0);
3140 The limits on both clip and cull distances are bound
3141 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3142 the maximum number of components that can be used to hold the
3143 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3144 which specifies the maximum number of registers which can be
3145 annotated with those semantics.
3146
3147
3148 TGSI_SEMANTIC_CLIPDIST
3149 """"""""""""""""""""""
3150
3151 Note this covers clipping and culling distances.
3152
3153 When components of vertex elements are identified this way, these
3154 values are each assumed to be a float32 signed distance to a plane.
3155
3156 For clip distances:
3157 Primitive setup only invokes rasterization on pixels for which
3158 the interpolated plane distances are >= 0.
3159
3160 For cull distances:
3161 Primitives will be completely discarded if the plane distance
3162 for all of the vertices in the primitive are < 0.
3163 If a vertex has a cull distance of NaN, that vertex counts as "out"
3164 (as if its < 0);
3165
3166 Multiple clip/cull planes can be implemented simultaneously, by
3167 annotating multiple components of one or more vertex elements with
3168 the above specified semantic.
3169 The limits on both clip and cull distances are bound
3170 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3171 the maximum number of components that can be used to hold the
3172 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3173 which specifies the maximum number of registers which can be
3174 annotated with those semantics.
3175 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3176 are used to divide up the 2 x vec4 space between clipping and culling.
3177
3178 TGSI_SEMANTIC_SAMPLEID
3179 """"""""""""""""""""""
3180
3181 For fragment shaders, this semantic label indicates that a system value
3182 contains the current sample id (i.e. gl_SampleID).
3183 This is an integer value, and only the X component is used.
3184
3185 TGSI_SEMANTIC_SAMPLEPOS
3186 """""""""""""""""""""""
3187
3188 For fragment shaders, this semantic label indicates that a system value
3189 contains the current sample's position (i.e. gl_SamplePosition). Only the X
3190 and Y values are used.
3191
3192 TGSI_SEMANTIC_SAMPLEMASK
3193 """"""""""""""""""""""""
3194
3195 For fragment shaders, this semantic label indicates that an output contains
3196 the sample mask used to disable further sample processing
3197 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
3198
3199 TGSI_SEMANTIC_INVOCATIONID
3200 """"""""""""""""""""""""""
3201
3202 For geometry shaders, this semantic label indicates that a system value
3203 contains the current invocation id (i.e. gl_InvocationID).
3204 This is an integer value, and only the X component is used.
3205
3206 TGSI_SEMANTIC_INSTANCEID
3207 """"""""""""""""""""""""
3208
3209 For vertex shaders, this semantic label indicates that a system value contains
3210 the current instance id (i.e. gl_InstanceID). It does not include the base
3211 instance. This is an integer value, and only the X component is used.
3212
3213 TGSI_SEMANTIC_VERTEXID
3214 """"""""""""""""""""""
3215
3216 For vertex shaders, this semantic label indicates that a system value contains
3217 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3218 base vertex. This is an integer value, and only the X component is used.
3219
3220 TGSI_SEMANTIC_VERTEXID_NOBASE
3221 """""""""""""""""""""""""""""""
3222
3223 For vertex shaders, this semantic label indicates that a system value contains
3224 the current vertex id without including the base vertex (this corresponds to
3225 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3226 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3227 is used.
3228
3229 TGSI_SEMANTIC_BASEVERTEX
3230 """"""""""""""""""""""""
3231
3232 For vertex shaders, this semantic label indicates that a system value contains
3233 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3234 this contains the first (or start) value instead.
3235 This is an integer value, and only the X component is used.
3236
3237 TGSI_SEMANTIC_PRIMID
3238 """"""""""""""""""""
3239
3240 For geometry and fragment shaders, this semantic label indicates the value
3241 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3242 and only the X component is used.
3243 FIXME: This right now can be either a ordinary input or a system value...
3244
3245
3246 TGSI_SEMANTIC_PATCH
3247 """""""""""""""""""
3248
3249 For tessellation evaluation/control shaders, this semantic label indicates a
3250 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3251 arrays.
3252
3253 TGSI_SEMANTIC_TESSCOORD
3254 """""""""""""""""""""""
3255
3256 For tessellation evaluation shaders, this semantic label indicates the
3257 coordinates of the vertex being processed. This is available in XYZ; W is
3258 undefined.
3259
3260 TGSI_SEMANTIC_TESSOUTER
3261 """""""""""""""""""""""
3262
3263 For tessellation evaluation/control shaders, this semantic label indicates the
3264 outer tessellation levels of the patch. Isoline tessellation will only have XY
3265 defined, triangle will have XYZ and quads will have XYZW defined. This
3266 corresponds to gl_TessLevelOuter.
3267
3268 TGSI_SEMANTIC_TESSINNER
3269 """""""""""""""""""""""
3270
3271 For tessellation evaluation/control shaders, this semantic label indicates the
3272 inner tessellation levels of the patch. The X value is only defined for
3273 triangle tessellation, while quads will have XY defined. This is entirely
3274 undefined for isoline tessellation.
3275
3276 TGSI_SEMANTIC_VERTICESIN
3277 """"""""""""""""""""""""
3278
3279 For tessellation evaluation/control shaders, this semantic label indicates the
3280 number of vertices provided in the input patch. Only the X value is defined.
3281
3282 TGSI_SEMANTIC_HELPER_INVOCATION
3283 """""""""""""""""""""""""""""""
3284
3285 For fragment shaders, this semantic indicates whether the current
3286 invocation is covered or not. Helper invocations are created in order
3287 to properly compute derivatives, however it may be desirable to skip
3288 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3289
3290 TGSI_SEMANTIC_BASEINSTANCE
3291 """"""""""""""""""""""""""
3292
3293 For vertex shaders, the base instance argument supplied for this
3294 draw. This is an integer value, and only the X component is used.
3295
3296 TGSI_SEMANTIC_DRAWID
3297 """"""""""""""""""""
3298
3299 For vertex shaders, the zero-based index of the current draw in a
3300 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3301 component is used.
3302
3303
3304 TGSI_SEMANTIC_WORK_DIM
3305 """"""""""""""""""""""
3306
3307 For compute shaders started via opencl this retrieves the work_dim
3308 parameter to the clEnqueueNDRangeKernel call with which the shader
3309 was started.
3310
3311
3312 TGSI_SEMANTIC_GRID_SIZE
3313 """""""""""""""""""""""
3314
3315 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3316 of a grid of thread blocks.
3317
3318
3319 TGSI_SEMANTIC_BLOCK_ID
3320 """"""""""""""""""""""
3321
3322 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3323 current block inside of the grid.
3324
3325
3326 TGSI_SEMANTIC_BLOCK_SIZE
3327 """"""""""""""""""""""""
3328
3329 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3330 of a block in threads.
3331
3332
3333 TGSI_SEMANTIC_THREAD_ID
3334 """""""""""""""""""""""
3335
3336 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3337 current thread inside of the block.
3338
3339
3340 Declaration Interpolate
3341 ^^^^^^^^^^^^^^^^^^^^^^^
3342
3343 This token is only valid for fragment shader INPUT declarations.
3344
3345 The Interpolate field specifes the way input is being interpolated by
3346 the rasteriser and is one of TGSI_INTERPOLATE_*.
3347
3348 The Location field specifies the location inside the pixel that the
3349 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3350 when per-sample shading is enabled, the implementation may choose to
3351 interpolate at the sample irrespective of the Location field.
3352
3353 The CylindricalWrap bitfield specifies which register components
3354 should be subject to cylindrical wrapping when interpolating by the
3355 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3356 should be interpolated according to cylindrical wrapping rules.
3357
3358
3359 Declaration Sampler View
3360 ^^^^^^^^^^^^^^^^^^^^^^^^
3361
3362 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3363
3364 DCL SVIEW[#], resource, type(s)
3365
3366 Declares a shader input sampler view and assigns it to a SVIEW[#]
3367 register.
3368
3369 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3370
3371 type must be 1 or 4 entries (if specifying on a per-component
3372 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3373
3374 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3375 which take an explicit SVIEW[#] source register), there may be optionally
3376 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3377 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3378 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3379 But note in particular that some drivers need to know the sampler type
3380 (float/int/unsigned) in order to generate the correct code, so cases
3381 where integer textures are sampled, SVIEW[#] declarations should be
3382 used.
3383
3384 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3385 in the same shader.
3386
3387 Declaration Resource
3388 ^^^^^^^^^^^^^^^^^^^^
3389
3390 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3391
3392 DCL RES[#], resource [, WR] [, RAW]
3393
3394 Declares a shader input resource and assigns it to a RES[#]
3395 register.
3396
3397 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3398 2DArray.
3399
3400 If the RAW keyword is not specified, the texture data will be
3401 subject to conversion, swizzling and scaling as required to yield
3402 the specified data type from the physical data format of the bound
3403 resource.
3404
3405 If the RAW keyword is specified, no channel conversion will be
3406 performed: the values read for each of the channels (X,Y,Z,W) will
3407 correspond to consecutive words in the same order and format
3408 they're found in memory. No element-to-address conversion will be
3409 performed either: the value of the provided X coordinate will be
3410 interpreted in byte units instead of texel units. The result of
3411 accessing a misaligned address is undefined.
3412
3413 Usage of the STORE opcode is only allowed if the WR (writable) flag
3414 is set.
3415
3416
3417 Properties
3418 ^^^^^^^^^^^^^^^^^^^^^^^^
3419
3420 Properties are general directives that apply to the whole TGSI program.
3421
3422 FS_COORD_ORIGIN
3423 """""""""""""""
3424
3425 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3426 The default value is UPPER_LEFT.
3427
3428 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3429 increase downward and rightward.
3430 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3431 increase upward and rightward.
3432
3433 OpenGL defaults to LOWER_LEFT, and is configurable with the
3434 GL_ARB_fragment_coord_conventions extension.
3435
3436 DirectX 9/10 use UPPER_LEFT.
3437
3438 FS_COORD_PIXEL_CENTER
3439 """""""""""""""""""""
3440
3441 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3442 The default value is HALF_INTEGER.
3443
3444 If HALF_INTEGER, the fractionary part of the position will be 0.5
3445 If INTEGER, the fractionary part of the position will be 0.0
3446
3447 Note that this does not affect the set of fragments generated by
3448 rasterization, which is instead controlled by half_pixel_center in the
3449 rasterizer.
3450
3451 OpenGL defaults to HALF_INTEGER, and is configurable with the
3452 GL_ARB_fragment_coord_conventions extension.
3453
3454 DirectX 9 uses INTEGER.
3455 DirectX 10 uses HALF_INTEGER.
3456
3457 FS_COLOR0_WRITES_ALL_CBUFS
3458 """"""""""""""""""""""""""
3459 Specifies that writes to the fragment shader color 0 are replicated to all
3460 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3461 fragData is directed to a single color buffer, but fragColor is broadcast.
3462
3463 VS_PROHIBIT_UCPS
3464 """"""""""""""""""""""""""
3465 If this property is set on the program bound to the shader stage before the
3466 fragment shader, user clip planes should have no effect (be disabled) even if
3467 that shader does not write to any clip distance outputs and the rasterizer's
3468 clip_plane_enable is non-zero.
3469 This property is only supported by drivers that also support shader clip
3470 distance outputs.
3471 This is useful for APIs that don't have UCPs and where clip distances written
3472 by a shader cannot be disabled.
3473
3474 GS_INVOCATIONS
3475 """"""""""""""
3476
3477 Specifies the number of times a geometry shader should be executed for each
3478 input primitive. Each invocation will have a different
3479 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3480 be 1.
3481
3482 VS_WINDOW_SPACE_POSITION
3483 """"""""""""""""""""""""""
3484 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3485 is assumed to contain window space coordinates.
3486 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3487 directly taken from the 4-th component of the shader output.
3488 Naturally, clipping is not performed on window coordinates either.
3489 The effect of this property is undefined if a geometry or tessellation shader
3490 are in use.
3491
3492 TCS_VERTICES_OUT
3493 """"""""""""""""
3494
3495 The number of vertices written by the tessellation control shader. This
3496 effectively defines the patch input size of the tessellation evaluation shader
3497 as well.
3498
3499 TES_PRIM_MODE
3500 """""""""""""
3501
3502 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3503 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3504 separate isolines settings, the regular lines is assumed to mean isolines.)
3505
3506 TES_SPACING
3507 """""""""""
3508
3509 This sets the spacing mode of the tessellation generator, one of
3510 ``PIPE_TESS_SPACING_*``.
3511
3512 TES_VERTEX_ORDER_CW
3513 """""""""""""""""""
3514
3515 This sets the vertex order to be clockwise if the value is 1, or
3516 counter-clockwise if set to 0.
3517
3518 TES_POINT_MODE
3519 """"""""""""""
3520
3521 If set to a non-zero value, this turns on point mode for the tessellator,
3522 which means that points will be generated instead of primitives.
3523
3524 NUM_CLIPDIST_ENABLED
3525 """"""""""""""""""""
3526
3527 How many clip distance scalar outputs are enabled.
3528
3529 NUM_CULLDIST_ENABLED
3530 """"""""""""""""""""
3531
3532 How many cull distance scalar outputs are enabled.
3533
3534 FS_EARLY_DEPTH_STENCIL
3535 """"""""""""""""""""""
3536
3537 Whether depth test, stencil test, and occlusion query should run before
3538 the fragment shader (regardless of fragment shader side effects). Corresponds
3539 to GLSL early_fragment_tests.
3540
3541 NEXT_SHADER
3542 """""""""""
3543
3544 Which shader stage will MOST LIKELY follow after this shader when the shader
3545 is bound. This is only a hint to the driver and doesn't have to be precise.
3546 Only set for VS and TES.
3547
3548 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3549 """""""""""""""""""""""""""""""""""""
3550
3551 Threads per block in each dimension, if known at compile time. If the block size
3552 is known all three should be at least 1. If it is unknown they should all be set
3553 to 0 or not set.
3554
3555 MUL_ZERO_WINS
3556 """""""""""""
3557
3558 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3559 of the operands are equal to 0. That means that 0 * Inf = 0. This
3560 should be set the same way for an entire pipeline. Note that this
3561 applies not only to the literal MUL TGSI opcode, but all FP32
3562 multiplications implied by other operations, such as MAD, FMA, DP2,
3563 DP3, DP4, DPH, DST, LOG, LRP, XPD, and possibly others. If there is a
3564 mismatch between shaders, then it is unspecified whether this behavior
3565 will be enabled.
3566
3567
3568 Texture Sampling and Texture Formats
3569 ------------------------------------
3570
3571 This table shows how texture image components are returned as (x,y,z,w) tuples
3572 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3573 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3574 well.
3575
3576 +--------------------+--------------+--------------------+--------------+
3577 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3578 +====================+==============+====================+==============+
3579 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3580 +--------------------+--------------+--------------------+--------------+
3581 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3582 +--------------------+--------------+--------------------+--------------+
3583 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3584 +--------------------+--------------+--------------------+--------------+
3585 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3586 +--------------------+--------------+--------------------+--------------+
3587 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3588 +--------------------+--------------+--------------------+--------------+
3589 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3590 +--------------------+--------------+--------------------+--------------+
3591 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3592 +--------------------+--------------+--------------------+--------------+
3593 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3594 +--------------------+--------------+--------------------+--------------+
3595 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3596 | | | [#envmap-bumpmap]_ | |
3597 +--------------------+--------------+--------------------+--------------+
3598 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3599 | | | [#depth-tex-mode]_ | |
3600 +--------------------+--------------+--------------------+--------------+
3601 | S | (s, s, s, s) | unknown | unknown |
3602 +--------------------+--------------+--------------------+--------------+
3603
3604 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3605 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3606 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.