gallium: add new float comparison instructions returning integer masks
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x = 1
78
79 dst.y = max(src.x, 0)
80
81 dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
82
83 dst.w = 1
84
85
86 .. opcode:: RCP - Reciprocal
87
88 This instruction replicates its result.
89
90 .. math::
91
92 dst = \frac{1}{src.x}
93
94
95 .. opcode:: RSQ - Reciprocal Square Root
96
97 This instruction replicates its result. The results are undefined for src <= 0.
98
99 .. math::
100
101 dst = \frac{1}{\sqrt{src.x}}
102
103
104 .. opcode:: SQRT - Square Root
105
106 This instruction replicates its result. The results are undefined for src < 0.
107
108 .. math::
109
110 dst = {\sqrt{src.x}}
111
112
113 .. opcode:: EXP - Approximate Exponential Base 2
114
115 .. math::
116
117 dst.x = 2^{\lfloor src.x\rfloor}
118
119 dst.y = src.x - \lfloor src.x\rfloor
120
121 dst.z = 2^{src.x}
122
123 dst.w = 1
124
125
126 .. opcode:: LOG - Approximate Logarithm Base 2
127
128 .. math::
129
130 dst.x = \lfloor\log_2{|src.x|}\rfloor
131
132 dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
133
134 dst.z = \log_2{|src.x|}
135
136 dst.w = 1
137
138
139 .. opcode:: MUL - Multiply
140
141 .. math::
142
143 dst.x = src0.x \times src1.x
144
145 dst.y = src0.y \times src1.y
146
147 dst.z = src0.z \times src1.z
148
149 dst.w = src0.w \times src1.w
150
151
152 .. opcode:: ADD - Add
153
154 .. math::
155
156 dst.x = src0.x + src1.x
157
158 dst.y = src0.y + src1.y
159
160 dst.z = src0.z + src1.z
161
162 dst.w = src0.w + src1.w
163
164
165 .. opcode:: DP3 - 3-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
172
173
174 .. opcode:: DP4 - 4-component Dot Product
175
176 This instruction replicates its result.
177
178 .. math::
179
180 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
181
182
183 .. opcode:: DST - Distance Vector
184
185 .. math::
186
187 dst.x = 1
188
189 dst.y = src0.y \times src1.y
190
191 dst.z = src0.z
192
193 dst.w = src1.w
194
195
196 .. opcode:: MIN - Minimum
197
198 .. math::
199
200 dst.x = min(src0.x, src1.x)
201
202 dst.y = min(src0.y, src1.y)
203
204 dst.z = min(src0.z, src1.z)
205
206 dst.w = min(src0.w, src1.w)
207
208
209 .. opcode:: MAX - Maximum
210
211 .. math::
212
213 dst.x = max(src0.x, src1.x)
214
215 dst.y = max(src0.y, src1.y)
216
217 dst.z = max(src0.z, src1.z)
218
219 dst.w = max(src0.w, src1.w)
220
221
222 .. opcode:: SLT - Set On Less Than
223
224 .. math::
225
226 dst.x = (src0.x < src1.x) ? 1 : 0
227
228 dst.y = (src0.y < src1.y) ? 1 : 0
229
230 dst.z = (src0.z < src1.z) ? 1 : 0
231
232 dst.w = (src0.w < src1.w) ? 1 : 0
233
234
235 .. opcode:: SGE - Set On Greater Equal Than
236
237 .. math::
238
239 dst.x = (src0.x >= src1.x) ? 1 : 0
240
241 dst.y = (src0.y >= src1.y) ? 1 : 0
242
243 dst.z = (src0.z >= src1.z) ? 1 : 0
244
245 dst.w = (src0.w >= src1.w) ? 1 : 0
246
247
248 .. opcode:: MAD - Multiply And Add
249
250 .. math::
251
252 dst.x = src0.x \times src1.x + src2.x
253
254 dst.y = src0.y \times src1.y + src2.y
255
256 dst.z = src0.z \times src1.z + src2.z
257
258 dst.w = src0.w \times src1.w + src2.w
259
260
261 .. opcode:: SUB - Subtract
262
263 .. math::
264
265 dst.x = src0.x - src1.x
266
267 dst.y = src0.y - src1.y
268
269 dst.z = src0.z - src1.z
270
271 dst.w = src0.w - src1.w
272
273
274 .. opcode:: LRP - Linear Interpolate
275
276 .. math::
277
278 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
279
280 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
281
282 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
283
284 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
285
286
287 .. opcode:: CND - Condition
288
289 .. math::
290
291 dst.x = (src2.x > 0.5) ? src0.x : src1.x
292
293 dst.y = (src2.y > 0.5) ? src0.y : src1.y
294
295 dst.z = (src2.z > 0.5) ? src0.z : src1.z
296
297 dst.w = (src2.w > 0.5) ? src0.w : src1.w
298
299
300 .. opcode:: DP2A - 2-component Dot Product And Add
301
302 .. math::
303
304 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
305
306 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
307
308 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
309
310 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
311
312
313 .. opcode:: FRC - Fraction
314
315 .. math::
316
317 dst.x = src.x - \lfloor src.x\rfloor
318
319 dst.y = src.y - \lfloor src.y\rfloor
320
321 dst.z = src.z - \lfloor src.z\rfloor
322
323 dst.w = src.w - \lfloor src.w\rfloor
324
325
326 .. opcode:: CLAMP - Clamp
327
328 .. math::
329
330 dst.x = clamp(src0.x, src1.x, src2.x)
331
332 dst.y = clamp(src0.y, src1.y, src2.y)
333
334 dst.z = clamp(src0.z, src1.z, src2.z)
335
336 dst.w = clamp(src0.w, src1.w, src2.w)
337
338
339 .. opcode:: FLR - Floor
340
341 This is identical to :opcode:`ARL`.
342
343 .. math::
344
345 dst.x = \lfloor src.x\rfloor
346
347 dst.y = \lfloor src.y\rfloor
348
349 dst.z = \lfloor src.z\rfloor
350
351 dst.w = \lfloor src.w\rfloor
352
353
354 .. opcode:: ROUND - Round
355
356 .. math::
357
358 dst.x = round(src.x)
359
360 dst.y = round(src.y)
361
362 dst.z = round(src.z)
363
364 dst.w = round(src.w)
365
366
367 .. opcode:: EX2 - Exponential Base 2
368
369 This instruction replicates its result.
370
371 .. math::
372
373 dst = 2^{src.x}
374
375
376 .. opcode:: LG2 - Logarithm Base 2
377
378 This instruction replicates its result.
379
380 .. math::
381
382 dst = \log_2{src.x}
383
384
385 .. opcode:: POW - Power
386
387 This instruction replicates its result.
388
389 .. math::
390
391 dst = src0.x^{src1.x}
392
393 .. opcode:: XPD - Cross Product
394
395 .. math::
396
397 dst.x = src0.y \times src1.z - src1.y \times src0.z
398
399 dst.y = src0.z \times src1.x - src1.z \times src0.x
400
401 dst.z = src0.x \times src1.y - src1.x \times src0.y
402
403 dst.w = 1
404
405
406 .. opcode:: ABS - Absolute
407
408 .. math::
409
410 dst.x = |src.x|
411
412 dst.y = |src.y|
413
414 dst.z = |src.z|
415
416 dst.w = |src.w|
417
418
419 .. opcode:: RCC - Reciprocal Clamped
420
421 This instruction replicates its result.
422
423 XXX cleanup on aisle three
424
425 .. math::
426
427 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
428
429
430 .. opcode:: DPH - Homogeneous Dot Product
431
432 This instruction replicates its result.
433
434 .. math::
435
436 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
437
438
439 .. opcode:: COS - Cosine
440
441 This instruction replicates its result.
442
443 .. math::
444
445 dst = \cos{src.x}
446
447
448 .. opcode:: DDX - Derivative Relative To X
449
450 .. math::
451
452 dst.x = partialx(src.x)
453
454 dst.y = partialx(src.y)
455
456 dst.z = partialx(src.z)
457
458 dst.w = partialx(src.w)
459
460
461 .. opcode:: DDY - Derivative Relative To Y
462
463 .. math::
464
465 dst.x = partialy(src.x)
466
467 dst.y = partialy(src.y)
468
469 dst.z = partialy(src.z)
470
471 dst.w = partialy(src.w)
472
473
474 .. opcode:: PK2H - Pack Two 16-bit Floats
475
476 TBD
477
478
479 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
480
481 TBD
482
483
484 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
485
486 TBD
487
488
489 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
490
491 TBD
492
493
494 .. opcode:: RFL - Reflection Vector
495
496 .. math::
497
498 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
499
500 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
501
502 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
503
504 dst.w = 1
505
506 .. note::
507
508 Considered for removal.
509
510
511 .. opcode:: SEQ - Set On Equal
512
513 .. math::
514
515 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
516
517 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
518
519 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
520
521 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
522
523
524 .. opcode:: SFL - Set On False
525
526 This instruction replicates its result.
527
528 .. math::
529
530 dst = 0
531
532 .. note::
533
534 Considered for removal.
535
536
537 .. opcode:: SGT - Set On Greater Than
538
539 .. math::
540
541 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
542
543 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
544
545 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
546
547 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
548
549
550 .. opcode:: SIN - Sine
551
552 This instruction replicates its result.
553
554 .. math::
555
556 dst = \sin{src.x}
557
558
559 .. opcode:: SLE - Set On Less Equal Than
560
561 .. math::
562
563 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
564
565 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
566
567 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
568
569 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
570
571
572 .. opcode:: SNE - Set On Not Equal
573
574 .. math::
575
576 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
577
578 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
579
580 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
581
582 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
583
584
585 .. opcode:: STR - Set On True
586
587 This instruction replicates its result.
588
589 .. math::
590
591 dst = 1
592
593
594 .. opcode:: TEX - Texture Lookup
595
596 .. math::
597
598 coord = src0
599
600 bias = 0.0
601
602 dst = texture_sample(unit, coord, bias)
603
604 for array textures src0.y contains the slice for 1D,
605 and src0.z contain the slice for 2D.
606 for shadow textures with no arrays, src0.z contains
607 the reference value.
608 for shadow textures with arrays, src0.z contains
609 the reference value for 1D arrays, and src0.w contains
610 the reference value for 2D arrays.
611 There is no way to pass a bias in the .w value for
612 shadow arrays, and GLSL doesn't allow this.
613 GLSL does allow cube shadows maps to take a bias value,
614 and we have to determine how this will look in TGSI.
615
616 .. opcode:: TXD - Texture Lookup with Derivatives
617
618 .. math::
619
620 coord = src0
621
622 ddx = src1
623
624 ddy = src2
625
626 bias = 0.0
627
628 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
629
630
631 .. opcode:: TXP - Projective Texture Lookup
632
633 .. math::
634
635 coord.x = src0.x / src.w
636
637 coord.y = src0.y / src.w
638
639 coord.z = src0.z / src.w
640
641 coord.w = src0.w
642
643 bias = 0.0
644
645 dst = texture_sample(unit, coord, bias)
646
647
648 .. opcode:: UP2H - Unpack Two 16-Bit Floats
649
650 TBD
651
652 .. note::
653
654 Considered for removal.
655
656 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
657
658 TBD
659
660 .. note::
661
662 Considered for removal.
663
664 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
665
666 TBD
667
668 .. note::
669
670 Considered for removal.
671
672 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
673
674 TBD
675
676 .. note::
677
678 Considered for removal.
679
680 .. opcode:: X2D - 2D Coordinate Transformation
681
682 .. math::
683
684 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
685
686 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
687
688 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
689
690 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
691
692 .. note::
693
694 Considered for removal.
695
696
697 .. opcode:: ARA - Address Register Add
698
699 TBD
700
701 .. note::
702
703 Considered for removal.
704
705 .. opcode:: ARR - Address Register Load With Round
706
707 .. math::
708
709 dst.x = round(src.x)
710
711 dst.y = round(src.y)
712
713 dst.z = round(src.z)
714
715 dst.w = round(src.w)
716
717
718 .. opcode:: SSG - Set Sign
719
720 .. math::
721
722 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
723
724 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
725
726 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
727
728 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
729
730
731 .. opcode:: CMP - Compare
732
733 .. math::
734
735 dst.x = (src0.x < 0) ? src1.x : src2.x
736
737 dst.y = (src0.y < 0) ? src1.y : src2.y
738
739 dst.z = (src0.z < 0) ? src1.z : src2.z
740
741 dst.w = (src0.w < 0) ? src1.w : src2.w
742
743
744 .. opcode:: KILL_IF - Conditional Discard
745
746 Conditional discard. Allowed in fragment shaders only.
747
748 .. math::
749
750 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
751 discard
752 endif
753
754
755 .. opcode:: KILL - Discard
756
757 Unconditional discard. Allowed in fragment shaders only.
758
759
760 .. opcode:: SCS - Sine Cosine
761
762 .. math::
763
764 dst.x = \cos{src.x}
765
766 dst.y = \sin{src.x}
767
768 dst.z = 0
769
770 dst.w = 1
771
772
773 .. opcode:: TXB - Texture Lookup With Bias
774
775 .. math::
776
777 coord.x = src.x
778
779 coord.y = src.y
780
781 coord.z = src.z
782
783 coord.w = 1.0
784
785 bias = src.z
786
787 dst = texture_sample(unit, coord, bias)
788
789
790 .. opcode:: NRM - 3-component Vector Normalise
791
792 .. math::
793
794 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
795
796 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
797
798 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
799
800 dst.w = 1
801
802
803 .. opcode:: DIV - Divide
804
805 .. math::
806
807 dst.x = \frac{src0.x}{src1.x}
808
809 dst.y = \frac{src0.y}{src1.y}
810
811 dst.z = \frac{src0.z}{src1.z}
812
813 dst.w = \frac{src0.w}{src1.w}
814
815
816 .. opcode:: DP2 - 2-component Dot Product
817
818 This instruction replicates its result.
819
820 .. math::
821
822 dst = src0.x \times src1.x + src0.y \times src1.y
823
824
825 .. opcode:: TXL - Texture Lookup With explicit LOD
826
827 .. math::
828
829 coord.x = src0.x
830
831 coord.y = src0.y
832
833 coord.z = src0.z
834
835 coord.w = 1.0
836
837 lod = src0.w
838
839 dst = texture_sample(unit, coord, lod)
840
841
842 .. opcode:: PUSHA - Push Address Register On Stack
843
844 push(src.x)
845 push(src.y)
846 push(src.z)
847 push(src.w)
848
849 .. note::
850
851 Considered for cleanup.
852
853 .. note::
854
855 Considered for removal.
856
857 .. opcode:: POPA - Pop Address Register From Stack
858
859 dst.w = pop()
860 dst.z = pop()
861 dst.y = pop()
862 dst.x = pop()
863
864 .. note::
865
866 Considered for cleanup.
867
868 .. note::
869
870 Considered for removal.
871
872
873 .. opcode:: BRA - Branch
874
875 pc = target
876
877 .. note::
878
879 Considered for removal.
880
881
882 .. opcode:: CALLNZ - Subroutine Call If Not Zero
883
884 TBD
885
886 .. note::
887
888 Considered for cleanup.
889
890 .. note::
891
892 Considered for removal.
893
894
895 Compute ISA
896 ^^^^^^^^^^^^^^^^^^^^^^^^
897
898 These opcodes are primarily provided for special-use computational shaders.
899 Support for these opcodes indicated by a special pipe capability bit (TBD).
900
901 XXX doesn't look like most of the opcodes really belong here.
902
903 .. opcode:: CEIL - Ceiling
904
905 .. math::
906
907 dst.x = \lceil src.x\rceil
908
909 dst.y = \lceil src.y\rceil
910
911 dst.z = \lceil src.z\rceil
912
913 dst.w = \lceil src.w\rceil
914
915
916 .. opcode:: TRUNC - Truncate
917
918 .. math::
919
920 dst.x = trunc(src.x)
921
922 dst.y = trunc(src.y)
923
924 dst.z = trunc(src.z)
925
926 dst.w = trunc(src.w)
927
928
929 .. opcode:: MOD - Modulus
930
931 .. math::
932
933 dst.x = src0.x \bmod src1.x
934
935 dst.y = src0.y \bmod src1.y
936
937 dst.z = src0.z \bmod src1.z
938
939 dst.w = src0.w \bmod src1.w
940
941
942 .. opcode:: UARL - Integer Address Register Load
943
944 Moves the contents of the source register, assumed to be an integer, into the
945 destination register, which is assumed to be an address (ADDR) register.
946
947
948 .. opcode:: SAD - Sum Of Absolute Differences
949
950 .. math::
951
952 dst.x = |src0.x - src1.x| + src2.x
953
954 dst.y = |src0.y - src1.y| + src2.y
955
956 dst.z = |src0.z - src1.z| + src2.z
957
958 dst.w = |src0.w - src1.w| + src2.w
959
960
961 .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
962 from a specified texture image. The source sampler may
963 not be a CUBE or SHADOW.
964 src 0 is a four-component signed integer vector used to
965 identify the single texel accessed. 3 components + level.
966 src 1 is a 3 component constant signed integer vector,
967 with each component only have a range of
968 -8..+8 (hw only seems to deal with this range, interface
969 allows for up to unsigned int).
970 TXF(uint_vec coord, int_vec offset).
971
972
973 .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
974 retrieve the dimensions of the texture
975 depending on the target. For 1D (width), 2D/RECT/CUBE
976 (width, height), 3D (width, height, depth),
977 1D array (width, layers), 2D array (width, height, layers)
978
979 .. math::
980
981 lod = src0.x
982
983 dst.x = texture_width(unit, lod)
984
985 dst.y = texture_height(unit, lod)
986
987 dst.z = texture_depth(unit, lod)
988
989
990 Integer ISA
991 ^^^^^^^^^^^^^^^^^^^^^^^^
992 These opcodes are used for integer operations.
993 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
994
995
996 .. opcode:: I2F - Signed Integer To Float
997
998 Rounding is unspecified (round to nearest even suggested).
999
1000 .. math::
1001
1002 dst.x = (float) src.x
1003
1004 dst.y = (float) src.y
1005
1006 dst.z = (float) src.z
1007
1008 dst.w = (float) src.w
1009
1010
1011 .. opcode:: U2F - Unsigned Integer To Float
1012
1013 Rounding is unspecified (round to nearest even suggested).
1014
1015 .. math::
1016
1017 dst.x = (float) src.x
1018
1019 dst.y = (float) src.y
1020
1021 dst.z = (float) src.z
1022
1023 dst.w = (float) src.w
1024
1025
1026 .. opcode:: F2I - Float to Signed Integer
1027
1028 Rounding is towards zero (truncate).
1029 Values outside signed range (including NaNs) produce undefined results.
1030
1031 .. math::
1032
1033 dst.x = (int) src.x
1034
1035 dst.y = (int) src.y
1036
1037 dst.z = (int) src.z
1038
1039 dst.w = (int) src.w
1040
1041
1042 .. opcode:: F2U - Float to Unsigned Integer
1043
1044 Rounding is towards zero (truncate).
1045 Values outside unsigned range (including NaNs) produce undefined results.
1046
1047 .. math::
1048
1049 dst.x = (unsigned) src.x
1050
1051 dst.y = (unsigned) src.y
1052
1053 dst.z = (unsigned) src.z
1054
1055 dst.w = (unsigned) src.w
1056
1057
1058 .. opcode:: UADD - Integer Add
1059
1060 This instruction works the same for signed and unsigned integers.
1061 The low 32bit of the result is returned.
1062
1063 .. math::
1064
1065 dst.x = src0.x + src1.x
1066
1067 dst.y = src0.y + src1.y
1068
1069 dst.z = src0.z + src1.z
1070
1071 dst.w = src0.w + src1.w
1072
1073
1074 .. opcode:: UMAD - Integer Multiply And Add
1075
1076 This instruction works the same for signed and unsigned integers.
1077 The multiplication returns the low 32bit (as does the result itself).
1078
1079 .. math::
1080
1081 dst.x = src0.x \times src1.x + src2.x
1082
1083 dst.y = src0.y \times src1.y + src2.y
1084
1085 dst.z = src0.z \times src1.z + src2.z
1086
1087 dst.w = src0.w \times src1.w + src2.w
1088
1089
1090 .. opcode:: UMUL - Integer Multiply
1091
1092 This instruction works the same for signed and unsigned integers.
1093 The low 32bit of the result is returned.
1094
1095 .. math::
1096
1097 dst.x = src0.x \times src1.x
1098
1099 dst.y = src0.y \times src1.y
1100
1101 dst.z = src0.z \times src1.z
1102
1103 dst.w = src0.w \times src1.w
1104
1105
1106 .. opcode:: IDIV - Signed Integer Division
1107
1108 TBD: behavior for division by zero.
1109
1110 .. math::
1111
1112 dst.x = src0.x \ src1.x
1113
1114 dst.y = src0.y \ src1.y
1115
1116 dst.z = src0.z \ src1.z
1117
1118 dst.w = src0.w \ src1.w
1119
1120
1121 .. opcode:: UDIV - Unsigned Integer Division
1122
1123 For division by zero, 0xffffffff is returned.
1124
1125 .. math::
1126
1127 dst.x = src0.x \ src1.x
1128
1129 dst.y = src0.y \ src1.y
1130
1131 dst.z = src0.z \ src1.z
1132
1133 dst.w = src0.w \ src1.w
1134
1135
1136 .. opcode:: UMOD - Unsigned Integer Remainder
1137
1138 If second arg is zero, 0xffffffff is returned.
1139
1140 .. math::
1141
1142 dst.x = src0.x \ src1.x
1143
1144 dst.y = src0.y \ src1.y
1145
1146 dst.z = src0.z \ src1.z
1147
1148 dst.w = src0.w \ src1.w
1149
1150
1151 .. opcode:: NOT - Bitwise Not
1152
1153 .. math::
1154
1155 dst.x = ~src.x
1156
1157 dst.y = ~src.y
1158
1159 dst.z = ~src.z
1160
1161 dst.w = ~src.w
1162
1163
1164 .. opcode:: AND - Bitwise And
1165
1166 .. math::
1167
1168 dst.x = src0.x & src1.x
1169
1170 dst.y = src0.y & src1.y
1171
1172 dst.z = src0.z & src1.z
1173
1174 dst.w = src0.w & src1.w
1175
1176
1177 .. opcode:: OR - Bitwise Or
1178
1179 .. math::
1180
1181 dst.x = src0.x | src1.x
1182
1183 dst.y = src0.y | src1.y
1184
1185 dst.z = src0.z | src1.z
1186
1187 dst.w = src0.w | src1.w
1188
1189
1190 .. opcode:: XOR - Bitwise Xor
1191
1192 .. math::
1193
1194 dst.x = src0.x \oplus src1.x
1195
1196 dst.y = src0.y \oplus src1.y
1197
1198 dst.z = src0.z \oplus src1.z
1199
1200 dst.w = src0.w \oplus src1.w
1201
1202
1203 .. opcode:: IMAX - Maximum of Signed Integers
1204
1205 .. math::
1206
1207 dst.x = max(src0.x, src1.x)
1208
1209 dst.y = max(src0.y, src1.y)
1210
1211 dst.z = max(src0.z, src1.z)
1212
1213 dst.w = max(src0.w, src1.w)
1214
1215
1216 .. opcode:: UMAX - Maximum of Unsigned Integers
1217
1218 .. math::
1219
1220 dst.x = max(src0.x, src1.x)
1221
1222 dst.y = max(src0.y, src1.y)
1223
1224 dst.z = max(src0.z, src1.z)
1225
1226 dst.w = max(src0.w, src1.w)
1227
1228
1229 .. opcode:: IMIN - Minimum of Signed Integers
1230
1231 .. math::
1232
1233 dst.x = min(src0.x, src1.x)
1234
1235 dst.y = min(src0.y, src1.y)
1236
1237 dst.z = min(src0.z, src1.z)
1238
1239 dst.w = min(src0.w, src1.w)
1240
1241
1242 .. opcode:: UMIN - Minimum of Unsigned Integers
1243
1244 .. math::
1245
1246 dst.x = min(src0.x, src1.x)
1247
1248 dst.y = min(src0.y, src1.y)
1249
1250 dst.z = min(src0.z, src1.z)
1251
1252 dst.w = min(src0.w, src1.w)
1253
1254
1255 .. opcode:: SHL - Shift Left
1256
1257 The shift count is masked with 0x1f before the shift is applied.
1258
1259 .. math::
1260
1261 dst.x = src0.x << (0x1f & src1.x)
1262
1263 dst.y = src0.y << (0x1f & src1.y)
1264
1265 dst.z = src0.z << (0x1f & src1.z)
1266
1267 dst.w = src0.w << (0x1f & src1.w)
1268
1269
1270 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1271
1272 The shift count is masked with 0x1f before the shift is applied.
1273
1274 .. math::
1275
1276 dst.x = src0.x >> (0x1f & src1.x)
1277
1278 dst.y = src0.y >> (0x1f & src1.y)
1279
1280 dst.z = src0.z >> (0x1f & src1.z)
1281
1282 dst.w = src0.w >> (0x1f & src1.w)
1283
1284
1285 .. opcode:: USHR - Logical Shift Right
1286
1287 The shift count is masked with 0x1f before the shift is applied.
1288
1289 .. math::
1290
1291 dst.x = src0.x >> (unsigned) (0x1f & src1.x)
1292
1293 dst.y = src0.y >> (unsigned) (0x1f & src1.y)
1294
1295 dst.z = src0.z >> (unsigned) (0x1f & src1.z)
1296
1297 dst.w = src0.w >> (unsigned) (0x1f & src1.w)
1298
1299
1300 .. opcode:: UCMP - Integer Conditional Move
1301
1302 .. math::
1303
1304 dst.x = src0.x ? src1.x : src2.x
1305
1306 dst.y = src0.y ? src1.y : src2.y
1307
1308 dst.z = src0.z ? src1.z : src2.z
1309
1310 dst.w = src0.w ? src1.w : src2.w
1311
1312
1313
1314 .. opcode:: ISSG - Integer Set Sign
1315
1316 .. math::
1317
1318 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1319
1320 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1321
1322 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1323
1324 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1325
1326
1327
1328 .. opcode:: FSLT - Float Set On Less Than (ordered)
1329
1330 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1331
1332 .. math::
1333
1334 dst.x = (src0.x < src1.x) ? ~0 : 0
1335
1336 dst.y = (src0.y < src1.y) ? ~0 : 0
1337
1338 dst.z = (src0.z < src1.z) ? ~0 : 0
1339
1340 dst.w = (src0.w < src1.w) ? ~0 : 0
1341
1342
1343 .. opcode:: ISLT - Signed Integer Set On Less Than
1344
1345 .. math::
1346
1347 dst.x = (src0.x < src1.x) ? ~0 : 0
1348
1349 dst.y = (src0.y < src1.y) ? ~0 : 0
1350
1351 dst.z = (src0.z < src1.z) ? ~0 : 0
1352
1353 dst.w = (src0.w < src1.w) ? ~0 : 0
1354
1355
1356 .. opcode:: USLT - Unsigned Integer Set On Less Than
1357
1358 .. math::
1359
1360 dst.x = (src0.x < src1.x) ? ~0 : 0
1361
1362 dst.y = (src0.y < src1.y) ? ~0 : 0
1363
1364 dst.z = (src0.z < src1.z) ? ~0 : 0
1365
1366 dst.w = (src0.w < src1.w) ? ~0 : 0
1367
1368
1369 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1370
1371 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1372
1373 .. math::
1374
1375 dst.x = (src0.x >= src1.x) ? ~0 : 0
1376
1377 dst.y = (src0.y >= src1.y) ? ~0 : 0
1378
1379 dst.z = (src0.z >= src1.z) ? ~0 : 0
1380
1381 dst.w = (src0.w >= src1.w) ? ~0 : 0
1382
1383
1384 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1385
1386 .. math::
1387
1388 dst.x = (src0.x >= src1.x) ? ~0 : 0
1389
1390 dst.y = (src0.y >= src1.y) ? ~0 : 0
1391
1392 dst.z = (src0.z >= src1.z) ? ~0 : 0
1393
1394 dst.w = (src0.w >= src1.w) ? ~0 : 0
1395
1396
1397 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1398
1399 .. math::
1400
1401 dst.x = (src0.x >= src1.x) ? ~0 : 0
1402
1403 dst.y = (src0.y >= src1.y) ? ~0 : 0
1404
1405 dst.z = (src0.z >= src1.z) ? ~0 : 0
1406
1407 dst.w = (src0.w >= src1.w) ? ~0 : 0
1408
1409
1410 .. opcode:: FSEQ - Float Set On Equal (ordered)
1411
1412 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1413
1414 .. math::
1415
1416 dst.x = (src0.x == src1.x) ? ~0 : 0
1417
1418 dst.y = (src0.y == src1.y) ? ~0 : 0
1419
1420 dst.z = (src0.z == src1.z) ? ~0 : 0
1421
1422 dst.w = (src0.w == src1.w) ? ~0 : 0
1423
1424
1425 .. opcode:: USEQ - Integer Set On Equal
1426
1427 .. math::
1428
1429 dst.x = (src0.x == src1.x) ? ~0 : 0
1430
1431 dst.y = (src0.y == src1.y) ? ~0 : 0
1432
1433 dst.z = (src0.z == src1.z) ? ~0 : 0
1434
1435 dst.w = (src0.w == src1.w) ? ~0 : 0
1436
1437
1438 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1439
1440 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1441
1442 .. math::
1443
1444 dst.x = (src0.x != src1.x) ? ~0 : 0
1445
1446 dst.y = (src0.y != src1.y) ? ~0 : 0
1447
1448 dst.z = (src0.z != src1.z) ? ~0 : 0
1449
1450 dst.w = (src0.w != src1.w) ? ~0 : 0
1451
1452
1453 .. opcode:: USNE - Integer Set On Not Equal
1454
1455 .. math::
1456
1457 dst.x = (src0.x != src1.x) ? ~0 : 0
1458
1459 dst.y = (src0.y != src1.y) ? ~0 : 0
1460
1461 dst.z = (src0.z != src1.z) ? ~0 : 0
1462
1463 dst.w = (src0.w != src1.w) ? ~0 : 0
1464
1465
1466 .. opcode:: INEG - Integer Negate
1467
1468 Two's complement.
1469
1470 .. math::
1471
1472 dst.x = -src.x
1473
1474 dst.y = -src.y
1475
1476 dst.z = -src.z
1477
1478 dst.w = -src.w
1479
1480
1481 .. opcode:: IABS - Integer Absolute Value
1482
1483 .. math::
1484
1485 dst.x = |src.x|
1486
1487 dst.y = |src.y|
1488
1489 dst.z = |src.z|
1490
1491 dst.w = |src.w|
1492
1493
1494 Geometry ISA
1495 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1496
1497 These opcodes are only supported in geometry shaders; they have no meaning
1498 in any other type of shader.
1499
1500 .. opcode:: EMIT - Emit
1501
1502 Generate a new vertex for the current primitive using the values in the
1503 output registers.
1504
1505
1506 .. opcode:: ENDPRIM - End Primitive
1507
1508 Complete the current primitive (consisting of the emitted vertices),
1509 and start a new one.
1510
1511
1512 GLSL ISA
1513 ^^^^^^^^^^
1514
1515 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1516 opcodes is determined by a special capability bit, ``GLSL``.
1517 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1518
1519 .. opcode:: CAL - Subroutine Call
1520
1521 push(pc)
1522 pc = target
1523
1524
1525 .. opcode:: RET - Subroutine Call Return
1526
1527 pc = pop()
1528
1529
1530 .. opcode:: CONT - Continue
1531
1532 Unconditionally moves the point of execution to the instruction after the
1533 last bgnloop. The instruction must appear within a bgnloop/endloop.
1534
1535 .. note::
1536
1537 Support for CONT is determined by a special capability bit,
1538 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1539
1540
1541 .. opcode:: BGNLOOP - Begin a Loop
1542
1543 Start a loop. Must have a matching endloop.
1544
1545
1546 .. opcode:: BGNSUB - Begin Subroutine
1547
1548 Starts definition of a subroutine. Must have a matching endsub.
1549
1550
1551 .. opcode:: ENDLOOP - End a Loop
1552
1553 End a loop started with bgnloop.
1554
1555
1556 .. opcode:: ENDSUB - End Subroutine
1557
1558 Ends definition of a subroutine.
1559
1560
1561 .. opcode:: NOP - No Operation
1562
1563 Do nothing.
1564
1565
1566 .. opcode:: BRK - Break
1567
1568 Unconditionally moves the point of execution to the instruction after the
1569 next endloop or endswitch. The instruction must appear within a loop/endloop
1570 or switch/endswitch.
1571
1572
1573 .. opcode:: BREAKC - Break Conditional
1574
1575 Conditionally moves the point of execution to the instruction after the
1576 next endloop or endswitch. The instruction must appear within a loop/endloop
1577 or switch/endswitch.
1578 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1579 as an integer register.
1580
1581 .. note::
1582
1583 Considered for removal as it's quite inconsistent wrt other opcodes
1584 (could emulate with UIF/BRK/ENDIF).
1585
1586
1587 .. opcode:: IF - Float If
1588
1589 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1590
1591 src0.x != 0.0
1592
1593 where src0.x is interpreted as a floating point register.
1594
1595
1596 .. opcode:: UIF - Bitwise If
1597
1598 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1599
1600 src0.x != 0
1601
1602 where src0.x is interpreted as an integer register.
1603
1604
1605 .. opcode:: ELSE - Else
1606
1607 Starts an else block, after an IF or UIF statement.
1608
1609
1610 .. opcode:: ENDIF - End If
1611
1612 Ends an IF or UIF block.
1613
1614
1615 .. opcode:: SWITCH - Switch
1616
1617 Starts a C-style switch expression. The switch consists of one or multiple
1618 CASE statements, and at most one DEFAULT statement. Execution of a statement
1619 ends when a BRK is hit, but just like in C falling through to other cases
1620 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1621 just as last statement, and fallthrough is allowed into/from it.
1622 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1623
1624 Example:
1625 SWITCH src[0].x
1626 CASE src[0].x
1627 (some instructions here)
1628 (optional BRK here)
1629 DEFAULT
1630 (some instructions here)
1631 (optional BRK here)
1632 CASE src[0].x
1633 (some instructions here)
1634 (optional BRK here)
1635 ENDSWITCH
1636
1637
1638 .. opcode:: CASE - Switch case
1639
1640 This represents a switch case label. The src arg must be an integer immediate.
1641
1642
1643 .. opcode:: DEFAULT - Switch default
1644
1645 This represents the default case in the switch, which is taken if no other
1646 case matches.
1647
1648
1649 .. opcode:: ENDSWITCH - End of switch
1650
1651 Ends a switch expression.
1652
1653
1654 .. opcode:: NRM4 - 4-component Vector Normalise
1655
1656 This instruction replicates its result.
1657
1658 .. math::
1659
1660 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1661
1662
1663 .. _doubleopcodes:
1664
1665 Double ISA
1666 ^^^^^^^^^^^^^^^
1667
1668 The double-precision opcodes reinterpret four-component vectors into
1669 two-component vectors with doubled precision in each component.
1670
1671 Support for these opcodes is XXX undecided. :T
1672
1673 .. opcode:: DADD - Add
1674
1675 .. math::
1676
1677 dst.xy = src0.xy + src1.xy
1678
1679 dst.zw = src0.zw + src1.zw
1680
1681
1682 .. opcode:: DDIV - Divide
1683
1684 .. math::
1685
1686 dst.xy = src0.xy / src1.xy
1687
1688 dst.zw = src0.zw / src1.zw
1689
1690 .. opcode:: DSEQ - Set on Equal
1691
1692 .. math::
1693
1694 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1695
1696 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1697
1698 .. opcode:: DSLT - Set on Less than
1699
1700 .. math::
1701
1702 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1703
1704 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1705
1706 .. opcode:: DFRAC - Fraction
1707
1708 .. math::
1709
1710 dst.xy = src.xy - \lfloor src.xy\rfloor
1711
1712 dst.zw = src.zw - \lfloor src.zw\rfloor
1713
1714
1715 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1716
1717 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1718 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1719 :math:`dst1 \times 2^{dst0} = src` .
1720
1721 .. math::
1722
1723 dst0.xy = exp(src.xy)
1724
1725 dst1.xy = frac(src.xy)
1726
1727 dst0.zw = exp(src.zw)
1728
1729 dst1.zw = frac(src.zw)
1730
1731 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1732
1733 This opcode is the inverse of :opcode:`DFRACEXP`.
1734
1735 .. math::
1736
1737 dst.xy = src0.xy \times 2^{src1.xy}
1738
1739 dst.zw = src0.zw \times 2^{src1.zw}
1740
1741 .. opcode:: DMIN - Minimum
1742
1743 .. math::
1744
1745 dst.xy = min(src0.xy, src1.xy)
1746
1747 dst.zw = min(src0.zw, src1.zw)
1748
1749 .. opcode:: DMAX - Maximum
1750
1751 .. math::
1752
1753 dst.xy = max(src0.xy, src1.xy)
1754
1755 dst.zw = max(src0.zw, src1.zw)
1756
1757 .. opcode:: DMUL - Multiply
1758
1759 .. math::
1760
1761 dst.xy = src0.xy \times src1.xy
1762
1763 dst.zw = src0.zw \times src1.zw
1764
1765
1766 .. opcode:: DMAD - Multiply And Add
1767
1768 .. math::
1769
1770 dst.xy = src0.xy \times src1.xy + src2.xy
1771
1772 dst.zw = src0.zw \times src1.zw + src2.zw
1773
1774
1775 .. opcode:: DRCP - Reciprocal
1776
1777 .. math::
1778
1779 dst.xy = \frac{1}{src.xy}
1780
1781 dst.zw = \frac{1}{src.zw}
1782
1783 .. opcode:: DSQRT - Square Root
1784
1785 .. math::
1786
1787 dst.xy = \sqrt{src.xy}
1788
1789 dst.zw = \sqrt{src.zw}
1790
1791
1792 .. _samplingopcodes:
1793
1794 Resource Sampling Opcodes
1795 ^^^^^^^^^^^^^^^^^^^^^^^^^
1796
1797 Those opcodes follow very closely semantics of the respective Direct3D
1798 instructions. If in doubt double check Direct3D documentation.
1799 Note that the swizzle on SVIEW (src1) determines texel swizzling
1800 after lookup.
1801
1802 .. opcode:: SAMPLE - Using provided address, sample data from the
1803 specified texture using the filtering mode identified
1804 by the gven sampler. The source data may come from
1805 any resource type other than buffers.
1806 SAMPLE dst, address, sampler_view, sampler
1807 e.g.
1808 SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1809
1810 .. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction.
1811 Using the provided integer address, SAMPLE_I fetches data
1812 from the specified sampler view without any filtering.
1813 The source data may come from any resource type other
1814 than CUBE.
1815 SAMPLE_I dst, address, sampler_view
1816 e.g.
1817 SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]
1818 The 'address' is specified as unsigned integers. If the
1819 'address' is out of range [0...(# texels - 1)] the
1820 result of the fetch is always 0 in all components.
1821 As such the instruction doesn't honor address wrap
1822 modes, in cases where that behavior is desirable
1823 'SAMPLE' instruction should be used.
1824 address.w always provides an unsigned integer mipmap
1825 level. If the value is out of the range then the
1826 instruction always returns 0 in all components.
1827 address.yz are ignored for buffers and 1d textures.
1828 address.z is ignored for 1d texture arrays and 2d
1829 textures.
1830 For 1D texture arrays address.y provides the array
1831 index (also as unsigned integer). If the value is
1832 out of the range of available array indices
1833 [0... (array size - 1)] then the opcode always returns
1834 0 in all components.
1835 For 2D texture arrays address.z provides the array
1836 index, otherwise it exhibits the same behavior as in
1837 the case for 1D texture arrays.
1838 The exact semantics of the source address are presented
1839 in the table below:
1840 resource type X Y Z W
1841 ------------- ------------------------
1842 PIPE_BUFFER x ignored
1843 PIPE_TEXTURE_1D x mpl
1844 PIPE_TEXTURE_2D x y mpl
1845 PIPE_TEXTURE_3D x y z mpl
1846 PIPE_TEXTURE_RECT x y mpl
1847 PIPE_TEXTURE_CUBE not allowed as source
1848 PIPE_TEXTURE_1D_ARRAY x idx mpl
1849 PIPE_TEXTURE_2D_ARRAY x y idx mpl
1850
1851 Where 'mpl' is a mipmap level and 'idx' is the
1852 array index.
1853
1854 .. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from
1855 multi-sampled surfaces.
1856 SAMPLE_I_MS dst, address, sampler_view, sample
1857
1858 .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1859 exception that an additional bias is applied to the
1860 level of detail computed as part of the instruction
1861 execution.
1862 SAMPLE_B dst, address, sampler_view, sampler, lod_bias
1863 e.g.
1864 SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1865
1866 .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1867 performs a comparison filter. The operands to SAMPLE_C
1868 are identical to SAMPLE, except that there is an additional
1869 float32 operand, reference value, which must be a register
1870 with single-component, or a scalar literal.
1871 SAMPLE_C makes the hardware use the current samplers
1872 compare_func (in pipe_sampler_state) to compare
1873 reference value against the red component value for the
1874 surce resource at each texel that the currently configured
1875 texture filter covers based on the provided coordinates.
1876 SAMPLE_C dst, address, sampler_view.r, sampler, ref_value
1877 e.g.
1878 SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1879
1880 .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1881 are ignored. The LZ stands for level-zero.
1882 SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value
1883 e.g.
1884 SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1885
1886
1887 .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1888 that the derivatives for the source address in the x
1889 direction and the y direction are provided by extra
1890 parameters.
1891 SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y
1892 e.g.
1893 SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]
1894
1895 .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1896 that the LOD is provided directly as a scalar value,
1897 representing no anisotropy.
1898 SAMPLE_L dst, address, sampler_view, sampler, explicit_lod
1899 e.g.
1900 SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1901
1902 .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1903 filtering operation and packs them into a single register.
1904 Only works with 2D, 2D array, cubemaps, and cubemaps arrays.
1905 For 2D textures, only the addressing modes of the sampler and
1906 the top level of any mip pyramid are used. Set W to zero.
1907 It behaves like the SAMPLE instruction, but a filtered
1908 sample is not generated. The four samples that contribute
1909 to filtering are placed into xyzw in counter-clockwise order,
1910 starting with the (u,v) texture coordinate delta at the
1911 following locations (-, +), (+, +), (+, -), (-, -), where
1912 the magnitude of the deltas are half a texel.
1913
1914
1915 .. opcode:: SVIEWINFO - query the dimensions of a given sampler view.
1916 dst receives width, height, depth or array size and
1917 number of mipmap levels as int4. The dst can have a writemask
1918 which will specify what info is the caller interested
1919 in.
1920 SVIEWINFO dst, src_mip_level, sampler_view
1921 e.g.
1922 SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]
1923 src_mip_level is an unsigned integer scalar. If it's
1924 out of range then returns 0 for width, height and
1925 depth/array size but the total number of mipmap is
1926 still returned correctly for the given sampler view.
1927 The returned width, height and depth values are for
1928 the mipmap level selected by the src_mip_level and
1929 are in the number of texels.
1930 For 1d texture array width is in dst.x, array size
1931 is in dst.y and dst.z is 0. The number of mipmaps
1932 is still in dst.w.
1933 In contrast to d3d10 resinfo, there's no way in the
1934 tgsi instruction encoding to specify the return type
1935 (float/rcpfloat/uint), hence always using uint. Also,
1936 unlike the SAMPLE instructions, the swizzle on src1
1937 resinfo allowing swizzling dst values is ignored (due
1938 to the interaction with rcpfloat modifier which requires
1939 some swizzle handling in the state tracker anyway).
1940
1941 .. opcode:: SAMPLE_POS - query the position of a given sample.
1942 dst receives float4 (x, y, 0, 0) indicated where the
1943 sample is located. If the resource is not a multi-sample
1944 resource and not a render target, the result is 0.
1945
1946 .. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1947 If the resource is not a multi-sample resource and
1948 not a render target, the result is 0.
1949
1950
1951 .. _resourceopcodes:
1952
1953 Resource Access Opcodes
1954 ^^^^^^^^^^^^^^^^^^^^^^^
1955
1956 .. opcode:: LOAD - Fetch data from a shader resource
1957
1958 Syntax: ``LOAD dst, resource, address``
1959
1960 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
1961
1962 Using the provided integer address, LOAD fetches data
1963 from the specified buffer or texture without any
1964 filtering.
1965
1966 The 'address' is specified as a vector of unsigned
1967 integers. If the 'address' is out of range the result
1968 is unspecified.
1969
1970 Only the first mipmap level of a resource can be read
1971 from using this instruction.
1972
1973 For 1D or 2D texture arrays, the array index is
1974 provided as an unsigned integer in address.y or
1975 address.z, respectively. address.yz are ignored for
1976 buffers and 1D textures. address.z is ignored for 1D
1977 texture arrays and 2D textures. address.w is always
1978 ignored.
1979
1980 .. opcode:: STORE - Write data to a shader resource
1981
1982 Syntax: ``STORE resource, address, src``
1983
1984 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
1985
1986 Using the provided integer address, STORE writes data
1987 to the specified buffer or texture.
1988
1989 The 'address' is specified as a vector of unsigned
1990 integers. If the 'address' is out of range the result
1991 is unspecified.
1992
1993 Only the first mipmap level of a resource can be
1994 written to using this instruction.
1995
1996 For 1D or 2D texture arrays, the array index is
1997 provided as an unsigned integer in address.y or
1998 address.z, respectively. address.yz are ignored for
1999 buffers and 1D textures. address.z is ignored for 1D
2000 texture arrays and 2D textures. address.w is always
2001 ignored.
2002
2003
2004 .. _threadsyncopcodes:
2005
2006 Inter-thread synchronization opcodes
2007 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2008
2009 These opcodes are intended for communication between threads running
2010 within the same compute grid. For now they're only valid in compute
2011 programs.
2012
2013 .. opcode:: MFENCE - Memory fence
2014
2015 Syntax: ``MFENCE resource``
2016
2017 Example: ``MFENCE RES[0]``
2018
2019 This opcode forces strong ordering between any memory access
2020 operations that affect the specified resource. This means that
2021 previous loads and stores (and only those) will be performed and
2022 visible to other threads before the program execution continues.
2023
2024
2025 .. opcode:: LFENCE - Load memory fence
2026
2027 Syntax: ``LFENCE resource``
2028
2029 Example: ``LFENCE RES[0]``
2030
2031 Similar to MFENCE, but it only affects the ordering of memory loads.
2032
2033
2034 .. opcode:: SFENCE - Store memory fence
2035
2036 Syntax: ``SFENCE resource``
2037
2038 Example: ``SFENCE RES[0]``
2039
2040 Similar to MFENCE, but it only affects the ordering of memory stores.
2041
2042
2043 .. opcode:: BARRIER - Thread group barrier
2044
2045 ``BARRIER``
2046
2047 This opcode suspends the execution of the current thread until all
2048 the remaining threads in the working group reach the same point of
2049 the program. Results are unspecified if any of the remaining
2050 threads terminates or never reaches an executed BARRIER instruction.
2051
2052
2053 .. _atomopcodes:
2054
2055 Atomic opcodes
2056 ^^^^^^^^^^^^^^
2057
2058 These opcodes provide atomic variants of some common arithmetic and
2059 logical operations. In this context atomicity means that another
2060 concurrent memory access operation that affects the same memory
2061 location is guaranteed to be performed strictly before or after the
2062 entire execution of the atomic operation.
2063
2064 For the moment they're only valid in compute programs.
2065
2066 .. opcode:: ATOMUADD - Atomic integer addition
2067
2068 Syntax: ``ATOMUADD dst, resource, offset, src``
2069
2070 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2071
2072 The following operation is performed atomically on each component:
2073
2074 .. math::
2075
2076 dst_i = resource[offset]_i
2077
2078 resource[offset]_i = dst_i + src_i
2079
2080
2081 .. opcode:: ATOMXCHG - Atomic exchange
2082
2083 Syntax: ``ATOMXCHG dst, resource, offset, src``
2084
2085 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2086
2087 The following operation is performed atomically on each component:
2088
2089 .. math::
2090
2091 dst_i = resource[offset]_i
2092
2093 resource[offset]_i = src_i
2094
2095
2096 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2097
2098 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2099
2100 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2101
2102 The following operation is performed atomically on each component:
2103
2104 .. math::
2105
2106 dst_i = resource[offset]_i
2107
2108 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2109
2110
2111 .. opcode:: ATOMAND - Atomic bitwise And
2112
2113 Syntax: ``ATOMAND dst, resource, offset, src``
2114
2115 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2116
2117 The following operation is performed atomically on each component:
2118
2119 .. math::
2120
2121 dst_i = resource[offset]_i
2122
2123 resource[offset]_i = dst_i \& src_i
2124
2125
2126 .. opcode:: ATOMOR - Atomic bitwise Or
2127
2128 Syntax: ``ATOMOR dst, resource, offset, src``
2129
2130 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2131
2132 The following operation is performed atomically on each component:
2133
2134 .. math::
2135
2136 dst_i = resource[offset]_i
2137
2138 resource[offset]_i = dst_i | src_i
2139
2140
2141 .. opcode:: ATOMXOR - Atomic bitwise Xor
2142
2143 Syntax: ``ATOMXOR dst, resource, offset, src``
2144
2145 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2146
2147 The following operation is performed atomically on each component:
2148
2149 .. math::
2150
2151 dst_i = resource[offset]_i
2152
2153 resource[offset]_i = dst_i \oplus src_i
2154
2155
2156 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2157
2158 Syntax: ``ATOMUMIN dst, resource, offset, src``
2159
2160 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2161
2162 The following operation is performed atomically on each component:
2163
2164 .. math::
2165
2166 dst_i = resource[offset]_i
2167
2168 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2169
2170
2171 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2172
2173 Syntax: ``ATOMUMAX dst, resource, offset, src``
2174
2175 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2176
2177 The following operation is performed atomically on each component:
2178
2179 .. math::
2180
2181 dst_i = resource[offset]_i
2182
2183 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2184
2185
2186 .. opcode:: ATOMIMIN - Atomic signed minimum
2187
2188 Syntax: ``ATOMIMIN dst, resource, offset, src``
2189
2190 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2191
2192 The following operation is performed atomically on each component:
2193
2194 .. math::
2195
2196 dst_i = resource[offset]_i
2197
2198 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2199
2200
2201 .. opcode:: ATOMIMAX - Atomic signed maximum
2202
2203 Syntax: ``ATOMIMAX dst, resource, offset, src``
2204
2205 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2206
2207 The following operation is performed atomically on each component:
2208
2209 .. math::
2210
2211 dst_i = resource[offset]_i
2212
2213 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2214
2215
2216
2217 Explanation of symbols used
2218 ------------------------------
2219
2220
2221 Functions
2222 ^^^^^^^^^^^^^^
2223
2224
2225 :math:`|x|` Absolute value of `x`.
2226
2227 :math:`\lceil x \rceil` Ceiling of `x`.
2228
2229 clamp(x,y,z) Clamp x between y and z.
2230 (x < y) ? y : (x > z) ? z : x
2231
2232 :math:`\lfloor x\rfloor` Floor of `x`.
2233
2234 :math:`\log_2{x}` Logarithm of `x`, base 2.
2235
2236 max(x,y) Maximum of x and y.
2237 (x > y) ? x : y
2238
2239 min(x,y) Minimum of x and y.
2240 (x < y) ? x : y
2241
2242 partialx(x) Derivative of x relative to fragment's X.
2243
2244 partialy(x) Derivative of x relative to fragment's Y.
2245
2246 pop() Pop from stack.
2247
2248 :math:`x^y` `x` to the power `y`.
2249
2250 push(x) Push x on stack.
2251
2252 round(x) Round x.
2253
2254 trunc(x) Truncate x, i.e. drop the fraction bits.
2255
2256
2257 Keywords
2258 ^^^^^^^^^^^^^
2259
2260
2261 discard Discard fragment.
2262
2263 pc Program counter.
2264
2265 target Label of target instruction.
2266
2267
2268 Other tokens
2269 ---------------
2270
2271
2272 Declaration
2273 ^^^^^^^^^^^
2274
2275
2276 Declares a register that is will be referenced as an operand in Instruction
2277 tokens.
2278
2279 File field contains register file that is being declared and is one
2280 of TGSI_FILE.
2281
2282 UsageMask field specifies which of the register components can be accessed
2283 and is one of TGSI_WRITEMASK.
2284
2285 The Local flag specifies that a given value isn't intended for
2286 subroutine parameter passing and, as a result, the implementation
2287 isn't required to give any guarantees of it being preserved across
2288 subroutine boundaries. As it's merely a compiler hint, the
2289 implementation is free to ignore it.
2290
2291 If Dimension flag is set to 1, a Declaration Dimension token follows.
2292
2293 If Semantic flag is set to 1, a Declaration Semantic token follows.
2294
2295 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2296
2297 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2298
2299 If Array flag is set to 1, a Declaration Array token follows.
2300
2301 Array Declaration
2302 ^^^^^^^^^^^^^^^^^^^^^^^^
2303
2304 Declarations can optional have an ArrayID attribute which can be referred by
2305 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2306 if no ArrayID is specified.
2307
2308 If an indirect addressing operand refers to a specific declaration by using
2309 an ArrayID only the registers in this declaration are guaranteed to be
2310 accessed, accessing any register outside this declaration results in undefined
2311 behavior. Note that for compatibility the effective index is zero-based and
2312 not relative to the specified declaration
2313
2314 If no ArrayID is specified with an indirect addressing operand the whole
2315 register file might be accessed by this operand. This is strongly discouraged
2316 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2317
2318 Declaration Semantic
2319 ^^^^^^^^^^^^^^^^^^^^^^^^
2320
2321 Vertex and fragment shader input and output registers may be labeled
2322 with semantic information consisting of a name and index.
2323
2324 Follows Declaration token if Semantic bit is set.
2325
2326 Since its purpose is to link a shader with other stages of the pipeline,
2327 it is valid to follow only those Declaration tokens that declare a register
2328 either in INPUT or OUTPUT file.
2329
2330 SemanticName field contains the semantic name of the register being declared.
2331 There is no default value.
2332
2333 SemanticIndex is an optional subscript that can be used to distinguish
2334 different register declarations with the same semantic name. The default value
2335 is 0.
2336
2337 The meanings of the individual semantic names are explained in the following
2338 sections.
2339
2340 TGSI_SEMANTIC_POSITION
2341 """"""""""""""""""""""
2342
2343 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2344 output register which contains the homogeneous vertex position in the clip
2345 space coordinate system. After clipping, the X, Y and Z components of the
2346 vertex will be divided by the W value to get normalized device coordinates.
2347
2348 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2349 fragment shader input contains the fragment's window position. The X
2350 component starts at zero and always increases from left to right.
2351 The Y component starts at zero and always increases but Y=0 may either
2352 indicate the top of the window or the bottom depending on the fragment
2353 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2354 The Z coordinate ranges from 0 to 1 to represent depth from the front
2355 to the back of the Z buffer. The W component contains the reciprocol
2356 of the interpolated vertex position W component.
2357
2358 Fragment shaders may also declare an output register with
2359 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2360 the fragment shader to change the fragment's Z position.
2361
2362
2363
2364 TGSI_SEMANTIC_COLOR
2365 """""""""""""""""""
2366
2367 For vertex shader outputs or fragment shader inputs/outputs, this
2368 label indicates that the resister contains an R,G,B,A color.
2369
2370 Several shader inputs/outputs may contain colors so the semantic index
2371 is used to distinguish them. For example, color[0] may be the diffuse
2372 color while color[1] may be the specular color.
2373
2374 This label is needed so that the flat/smooth shading can be applied
2375 to the right interpolants during rasterization.
2376
2377
2378
2379 TGSI_SEMANTIC_BCOLOR
2380 """"""""""""""""""""
2381
2382 Back-facing colors are only used for back-facing polygons, and are only valid
2383 in vertex shader outputs. After rasterization, all polygons are front-facing
2384 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2385 so all BCOLORs effectively become regular COLORs in the fragment shader.
2386
2387
2388 TGSI_SEMANTIC_FOG
2389 """""""""""""""""
2390
2391 Vertex shader inputs and outputs and fragment shader inputs may be
2392 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2393 a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
2394 shader will use the fog coordinate to compute a fog blend factor which
2395 is used to blend the normal fragment color with a constant fog color.
2396
2397 Only the first component matters when writing from the vertex shader;
2398 the driver will ensure that the coordinate is in this format when used
2399 as a fragment shader input.
2400
2401
2402 TGSI_SEMANTIC_PSIZE
2403 """""""""""""""""""
2404
2405 Vertex shader input and output registers may be labeled with
2406 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2407 in the form (S, 0, 0, 1). The point size controls the width or diameter
2408 of points for rasterization. This label cannot be used in fragment
2409 shaders.
2410
2411 When using this semantic, be sure to set the appropriate state in the
2412 :ref:`rasterizer` first.
2413
2414
2415 TGSI_SEMANTIC_TEXCOORD
2416 """"""""""""""""""""""
2417
2418 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2419
2420 Vertex shader outputs and fragment shader inputs may be labeled with
2421 this semantic to make them replaceable by sprite coordinates via the
2422 sprite_coord_enable state in the :ref:`rasterizer`.
2423 The semantic index permitted with this semantic is limited to <= 7.
2424
2425 If the driver does not support TEXCOORD, sprite coordinate replacement
2426 applies to inputs with the GENERIC semantic instead.
2427
2428 The intended use case for this semantic is gl_TexCoord.
2429
2430
2431 TGSI_SEMANTIC_PCOORD
2432 """"""""""""""""""""
2433
2434 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2435
2436 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2437 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2438 the current primitive is a point and point sprites are enabled. Otherwise,
2439 the contents of the register are undefined.
2440
2441 The intended use case for this semantic is gl_PointCoord.
2442
2443
2444 TGSI_SEMANTIC_GENERIC
2445 """""""""""""""""""""
2446
2447 All vertex/fragment shader inputs/outputs not labeled with any other
2448 semantic label can be considered to be generic attributes. Typical
2449 uses of generic inputs/outputs are texcoords and user-defined values.
2450
2451
2452 TGSI_SEMANTIC_NORMAL
2453 """"""""""""""""""""
2454
2455 Indicates that a vertex shader input is a normal vector. This is
2456 typically only used for legacy graphics APIs.
2457
2458
2459 TGSI_SEMANTIC_FACE
2460 """"""""""""""""""
2461
2462 This label applies to fragment shader inputs only and indicates that
2463 the register contains front/back-face information of the form (F, 0,
2464 0, 1). The first component will be positive when the fragment belongs
2465 to a front-facing polygon, and negative when the fragment belongs to a
2466 back-facing polygon.
2467
2468
2469 TGSI_SEMANTIC_EDGEFLAG
2470 """"""""""""""""""""""
2471
2472 For vertex shaders, this sematic label indicates that an input or
2473 output is a boolean edge flag. The register layout is [F, x, x, x]
2474 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2475 simply copies the edge flag input to the edgeflag output.
2476
2477 Edge flags are used to control which lines or points are actually
2478 drawn when the polygon mode converts triangles/quads/polygons into
2479 points or lines.
2480
2481
2482 TGSI_SEMANTIC_STENCIL
2483 """""""""""""""""""""
2484
2485 For fragment shaders, this semantic label indicates that an output
2486 is a writable stencil reference value. Only the Y component is writable.
2487 This allows the fragment shader to change the fragments stencilref value.
2488
2489
2490 TGSI_SEMANTIC_VIEWPORT_INDEX
2491 """"""""""""""""""""""""""""
2492
2493 For geometry shaders, this semantic label indicates that an output
2494 contains the index of the viewport (and scissor) to use.
2495 Only the X value is used.
2496
2497
2498 TGSI_SEMANTIC_LAYER
2499 """""""""""""""""""
2500
2501 For geometry shaders, this semantic label indicates that an output
2502 contains the layer value to use for the color and depth/stencil surfaces.
2503 Only the X value is used. (Also known as rendertarget array index.)
2504
2505
2506 TGSI_SEMANTIC_CULLDIST
2507 """"""""""""""""""""""
2508
2509 Used as distance to plane for performing application-defined culling
2510 of individual primitives against a plane. When components of vertex
2511 elements are given this label, these values are assumed to be a
2512 float32 signed distance to a plane. Primitives will be completely
2513 discarded if the plane distance for all of the vertices in the
2514 primitive are < 0. If a vertex has a cull distance of NaN, that
2515 vertex counts as "out" (as if its < 0);
2516 The limits on both clip and cull distances are bound
2517 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2518 the maximum number of components that can be used to hold the
2519 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2520 which specifies the maximum number of registers which can be
2521 annotated with those semantics.
2522
2523
2524 TGSI_SEMANTIC_CLIPDIST
2525 """"""""""""""""""""""
2526
2527 When components of vertex elements are identified this way, these
2528 values are each assumed to be a float32 signed distance to a plane.
2529 Primitive setup only invokes rasterization on pixels for which
2530 the interpolated plane distances are >= 0. Multiple clip planes
2531 can be implemented simultaneously, by annotating multiple
2532 components of one or more vertex elements with the above specified
2533 semantic. The limits on both clip and cull distances are bound
2534 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2535 the maximum number of components that can be used to hold the
2536 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2537 which specifies the maximum number of registers which can be
2538 annotated with those semantics.
2539
2540
2541 Declaration Interpolate
2542 ^^^^^^^^^^^^^^^^^^^^^^^
2543
2544 This token is only valid for fragment shader INPUT declarations.
2545
2546 The Interpolate field specifes the way input is being interpolated by
2547 the rasteriser and is one of TGSI_INTERPOLATE_*.
2548
2549 The CylindricalWrap bitfield specifies which register components
2550 should be subject to cylindrical wrapping when interpolating by the
2551 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2552 should be interpolated according to cylindrical wrapping rules.
2553
2554
2555 Declaration Sampler View
2556 ^^^^^^^^^^^^^^^^^^^^^^^^
2557
2558 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2559
2560 DCL SVIEW[#], resource, type(s)
2561
2562 Declares a shader input sampler view and assigns it to a SVIEW[#]
2563 register.
2564
2565 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2566
2567 type must be 1 or 4 entries (if specifying on a per-component
2568 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2569
2570
2571 Declaration Resource
2572 ^^^^^^^^^^^^^^^^^^^^
2573
2574 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2575
2576 DCL RES[#], resource [, WR] [, RAW]
2577
2578 Declares a shader input resource and assigns it to a RES[#]
2579 register.
2580
2581 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2582 2DArray.
2583
2584 If the RAW keyword is not specified, the texture data will be
2585 subject to conversion, swizzling and scaling as required to yield
2586 the specified data type from the physical data format of the bound
2587 resource.
2588
2589 If the RAW keyword is specified, no channel conversion will be
2590 performed: the values read for each of the channels (X,Y,Z,W) will
2591 correspond to consecutive words in the same order and format
2592 they're found in memory. No element-to-address conversion will be
2593 performed either: the value of the provided X coordinate will be
2594 interpreted in byte units instead of texel units. The result of
2595 accessing a misaligned address is undefined.
2596
2597 Usage of the STORE opcode is only allowed if the WR (writable) flag
2598 is set.
2599
2600
2601 Properties
2602 ^^^^^^^^^^^^^^^^^^^^^^^^
2603
2604
2605 Properties are general directives that apply to the whole TGSI program.
2606
2607 FS_COORD_ORIGIN
2608 """""""""""""""
2609
2610 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2611 The default value is UPPER_LEFT.
2612
2613 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2614 increase downward and rightward.
2615 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2616 increase upward and rightward.
2617
2618 OpenGL defaults to LOWER_LEFT, and is configurable with the
2619 GL_ARB_fragment_coord_conventions extension.
2620
2621 DirectX 9/10 use UPPER_LEFT.
2622
2623 FS_COORD_PIXEL_CENTER
2624 """""""""""""""""""""
2625
2626 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2627 The default value is HALF_INTEGER.
2628
2629 If HALF_INTEGER, the fractionary part of the position will be 0.5
2630 If INTEGER, the fractionary part of the position will be 0.0
2631
2632 Note that this does not affect the set of fragments generated by
2633 rasterization, which is instead controlled by half_pixel_center in the
2634 rasterizer.
2635
2636 OpenGL defaults to HALF_INTEGER, and is configurable with the
2637 GL_ARB_fragment_coord_conventions extension.
2638
2639 DirectX 9 uses INTEGER.
2640 DirectX 10 uses HALF_INTEGER.
2641
2642 FS_COLOR0_WRITES_ALL_CBUFS
2643 """"""""""""""""""""""""""
2644 Specifies that writes to the fragment shader color 0 are replicated to all
2645 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2646 fragData is directed to a single color buffer, but fragColor is broadcast.
2647
2648 VS_PROHIBIT_UCPS
2649 """"""""""""""""""""""""""
2650 If this property is set on the program bound to the shader stage before the
2651 fragment shader, user clip planes should have no effect (be disabled) even if
2652 that shader does not write to any clip distance outputs and the rasterizer's
2653 clip_plane_enable is non-zero.
2654 This property is only supported by drivers that also support shader clip
2655 distance outputs.
2656 This is useful for APIs that don't have UCPs and where clip distances written
2657 by a shader cannot be disabled.
2658
2659
2660 Texture Sampling and Texture Formats
2661 ------------------------------------
2662
2663 This table shows how texture image components are returned as (x,y,z,w) tuples
2664 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2665 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2666 well.
2667
2668 +--------------------+--------------+--------------------+--------------+
2669 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2670 +====================+==============+====================+==============+
2671 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2672 +--------------------+--------------+--------------------+--------------+
2673 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2674 +--------------------+--------------+--------------------+--------------+
2675 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2676 +--------------------+--------------+--------------------+--------------+
2677 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2678 +--------------------+--------------+--------------------+--------------+
2679 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2680 +--------------------+--------------+--------------------+--------------+
2681 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2682 +--------------------+--------------+--------------------+--------------+
2683 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2684 +--------------------+--------------+--------------------+--------------+
2685 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2686 +--------------------+--------------+--------------------+--------------+
2687 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2688 | | | [#envmap-bumpmap]_ | |
2689 +--------------------+--------------+--------------------+--------------+
2690 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2691 | | | [#depth-tex-mode]_ | |
2692 +--------------------+--------------+--------------------+--------------+
2693 | S | (s, s, s, s) | unknown | unknown |
2694 +--------------------+--------------+--------------------+--------------+
2695
2696 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2697 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2698 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.