gallium/docs: clarify fragment shader position input w component.
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: DP2A - 2-component Dot Product And Add
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
280
281 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287
288 .. opcode:: FRC - Fraction
289
290 .. math::
291
292 dst.x = src.x - \lfloor src.x\rfloor
293
294 dst.y = src.y - \lfloor src.y\rfloor
295
296 dst.z = src.z - \lfloor src.z\rfloor
297
298 dst.w = src.w - \lfloor src.w\rfloor
299
300
301 .. opcode:: CLAMP - Clamp
302
303 .. math::
304
305 dst.x = clamp(src0.x, src1.x, src2.x)
306
307 dst.y = clamp(src0.y, src1.y, src2.y)
308
309 dst.z = clamp(src0.z, src1.z, src2.z)
310
311 dst.w = clamp(src0.w, src1.w, src2.w)
312
313
314 .. opcode:: FLR - Floor
315
316 This is identical to :opcode:`ARL`.
317
318 .. math::
319
320 dst.x = \lfloor src.x\rfloor
321
322 dst.y = \lfloor src.y\rfloor
323
324 dst.z = \lfloor src.z\rfloor
325
326 dst.w = \lfloor src.w\rfloor
327
328
329 .. opcode:: ROUND - Round
330
331 .. math::
332
333 dst.x = round(src.x)
334
335 dst.y = round(src.y)
336
337 dst.z = round(src.z)
338
339 dst.w = round(src.w)
340
341
342 .. opcode:: EX2 - Exponential Base 2
343
344 This instruction replicates its result.
345
346 .. math::
347
348 dst = 2^{src.x}
349
350
351 .. opcode:: LG2 - Logarithm Base 2
352
353 This instruction replicates its result.
354
355 .. math::
356
357 dst = \log_2{src.x}
358
359
360 .. opcode:: POW - Power
361
362 This instruction replicates its result.
363
364 .. math::
365
366 dst = src0.x^{src1.x}
367
368 .. opcode:: XPD - Cross Product
369
370 .. math::
371
372 dst.x = src0.y \times src1.z - src1.y \times src0.z
373
374 dst.y = src0.z \times src1.x - src1.z \times src0.x
375
376 dst.z = src0.x \times src1.y - src1.x \times src0.y
377
378 dst.w = 1
379
380
381 .. opcode:: ABS - Absolute
382
383 .. math::
384
385 dst.x = |src.x|
386
387 dst.y = |src.y|
388
389 dst.z = |src.z|
390
391 dst.w = |src.w|
392
393
394 .. opcode:: DPH - Homogeneous Dot Product
395
396 This instruction replicates its result.
397
398 .. math::
399
400 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
401
402
403 .. opcode:: COS - Cosine
404
405 This instruction replicates its result.
406
407 .. math::
408
409 dst = \cos{src.x}
410
411
412 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
413
414 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
415 advertised. When it is, the fine version guarantees one derivative per row
416 while DDX is allowed to be the same for the entire 2x2 quad.
417
418 .. math::
419
420 dst.x = partialx(src.x)
421
422 dst.y = partialx(src.y)
423
424 dst.z = partialx(src.z)
425
426 dst.w = partialx(src.w)
427
428
429 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
430
431 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
432 advertised. When it is, the fine version guarantees one derivative per column
433 while DDY is allowed to be the same for the entire 2x2 quad.
434
435 .. math::
436
437 dst.x = partialy(src.x)
438
439 dst.y = partialy(src.y)
440
441 dst.z = partialy(src.z)
442
443 dst.w = partialy(src.w)
444
445
446 .. opcode:: PK2H - Pack Two 16-bit Floats
447
448 TBD
449
450
451 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
452
453 TBD
454
455
456 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
457
458 TBD
459
460
461 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
462
463 TBD
464
465
466 .. opcode:: SEQ - Set On Equal
467
468 .. math::
469
470 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
471
472 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
473
474 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
475
476 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
477
478
479 .. opcode:: SGT - Set On Greater Than
480
481 .. math::
482
483 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SIN - Sine
493
494 This instruction replicates its result.
495
496 .. math::
497
498 dst = \sin{src.x}
499
500
501 .. opcode:: SLE - Set On Less Equal Than
502
503 .. math::
504
505 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
506
507 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
508
509 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
510
511 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
512
513
514 .. opcode:: SNE - Set On Not Equal
515
516 .. math::
517
518 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
519
520 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
521
522 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
523
524 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
525
526
527 .. opcode:: TEX - Texture Lookup
528
529 for array textures src0.y contains the slice for 1D,
530 and src0.z contain the slice for 2D.
531
532 for shadow textures with no arrays (and not cube map),
533 src0.z contains the reference value.
534
535 for shadow textures with arrays, src0.z contains
536 the reference value for 1D arrays, and src0.w contains
537 the reference value for 2D arrays and cube maps.
538
539 for cube map array shadow textures, the reference value
540 cannot be passed in src0.w, and TEX2 must be used instead.
541
542 .. math::
543
544 coord = src0
545
546 shadow_ref = src0.z or src0.w (optional)
547
548 unit = src1
549
550 dst = texture\_sample(unit, coord, shadow_ref)
551
552
553 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
554
555 this is the same as TEX, but uses another reg to encode the
556 reference value.
557
558 .. math::
559
560 coord = src0
561
562 shadow_ref = src1.x
563
564 unit = src2
565
566 dst = texture\_sample(unit, coord, shadow_ref)
567
568
569
570
571 .. opcode:: TXD - Texture Lookup with Derivatives
572
573 .. math::
574
575 coord = src0
576
577 ddx = src1
578
579 ddy = src2
580
581 unit = src3
582
583 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
584
585
586 .. opcode:: TXP - Projective Texture Lookup
587
588 .. math::
589
590 coord.x = src0.x / src0.w
591
592 coord.y = src0.y / src0.w
593
594 coord.z = src0.z / src0.w
595
596 coord.w = src0.w
597
598 unit = src1
599
600 dst = texture\_sample(unit, coord)
601
602
603 .. opcode:: UP2H - Unpack Two 16-Bit Floats
604
605 TBD
606
607 .. note::
608
609 Considered for removal.
610
611 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
612
613 TBD
614
615 .. note::
616
617 Considered for removal.
618
619 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
620
621 TBD
622
623 .. note::
624
625 Considered for removal.
626
627 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
628
629 TBD
630
631 .. note::
632
633 Considered for removal.
634
635
636 .. opcode:: ARR - Address Register Load With Round
637
638 .. math::
639
640 dst.x = round(src.x)
641
642 dst.y = round(src.y)
643
644 dst.z = round(src.z)
645
646 dst.w = round(src.w)
647
648
649 .. opcode:: SSG - Set Sign
650
651 .. math::
652
653 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
654
655 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
656
657 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
658
659 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
660
661
662 .. opcode:: CMP - Compare
663
664 .. math::
665
666 dst.x = (src0.x < 0) ? src1.x : src2.x
667
668 dst.y = (src0.y < 0) ? src1.y : src2.y
669
670 dst.z = (src0.z < 0) ? src1.z : src2.z
671
672 dst.w = (src0.w < 0) ? src1.w : src2.w
673
674
675 .. opcode:: KILL_IF - Conditional Discard
676
677 Conditional discard. Allowed in fragment shaders only.
678
679 .. math::
680
681 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
682 discard
683 endif
684
685
686 .. opcode:: KILL - Discard
687
688 Unconditional discard. Allowed in fragment shaders only.
689
690
691 .. opcode:: SCS - Sine Cosine
692
693 .. math::
694
695 dst.x = \cos{src.x}
696
697 dst.y = \sin{src.x}
698
699 dst.z = 0
700
701 dst.w = 1
702
703
704 .. opcode:: TXB - Texture Lookup With Bias
705
706 for cube map array textures and shadow cube maps, the bias value
707 cannot be passed in src0.w, and TXB2 must be used instead.
708
709 if the target is a shadow texture, the reference value is always
710 in src.z (this prevents shadow 3d and shadow 2d arrays from
711 using this instruction, but this is not needed).
712
713 .. math::
714
715 coord.x = src0.x
716
717 coord.y = src0.y
718
719 coord.z = src0.z
720
721 coord.w = none
722
723 bias = src0.w
724
725 unit = src1
726
727 dst = texture\_sample(unit, coord, bias)
728
729
730 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
731
732 this is the same as TXB, but uses another reg to encode the
733 lod bias value for cube map arrays and shadow cube maps.
734 Presumably shadow 2d arrays and shadow 3d targets could use
735 this encoding too, but this is not legal.
736
737 shadow cube map arrays are neither possible nor required.
738
739 .. math::
740
741 coord = src0
742
743 bias = src1.x
744
745 unit = src2
746
747 dst = texture\_sample(unit, coord, bias)
748
749
750 .. opcode:: DIV - Divide
751
752 .. math::
753
754 dst.x = \frac{src0.x}{src1.x}
755
756 dst.y = \frac{src0.y}{src1.y}
757
758 dst.z = \frac{src0.z}{src1.z}
759
760 dst.w = \frac{src0.w}{src1.w}
761
762
763 .. opcode:: DP2 - 2-component Dot Product
764
765 This instruction replicates its result.
766
767 .. math::
768
769 dst = src0.x \times src1.x + src0.y \times src1.y
770
771
772 .. opcode:: TXL - Texture Lookup With explicit LOD
773
774 for cube map array textures, the explicit lod value
775 cannot be passed in src0.w, and TXL2 must be used instead.
776
777 if the target is a shadow texture, the reference value is always
778 in src.z (this prevents shadow 3d / 2d array / cube targets from
779 using this instruction, but this is not needed).
780
781 .. math::
782
783 coord.x = src0.x
784
785 coord.y = src0.y
786
787 coord.z = src0.z
788
789 coord.w = none
790
791 lod = src0.w
792
793 unit = src1
794
795 dst = texture\_sample(unit, coord, lod)
796
797
798 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
799
800 this is the same as TXL, but uses another reg to encode the
801 explicit lod value.
802 Presumably shadow 3d / 2d array / cube targets could use
803 this encoding too, but this is not legal.
804
805 shadow cube map arrays are neither possible nor required.
806
807 .. math::
808
809 coord = src0
810
811 lod = src1.x
812
813 unit = src2
814
815 dst = texture\_sample(unit, coord, lod)
816
817
818 .. opcode:: PUSHA - Push Address Register On Stack
819
820 push(src.x)
821 push(src.y)
822 push(src.z)
823 push(src.w)
824
825 .. note::
826
827 Considered for cleanup.
828
829 .. note::
830
831 Considered for removal.
832
833 .. opcode:: POPA - Pop Address Register From Stack
834
835 dst.w = pop()
836 dst.z = pop()
837 dst.y = pop()
838 dst.x = pop()
839
840 .. note::
841
842 Considered for cleanup.
843
844 .. note::
845
846 Considered for removal.
847
848
849 .. opcode:: CALLNZ - Subroutine Call If Not Zero
850
851 TBD
852
853 .. note::
854
855 Considered for cleanup.
856
857 .. note::
858
859 Considered for removal.
860
861
862 Compute ISA
863 ^^^^^^^^^^^^^^^^^^^^^^^^
864
865 These opcodes are primarily provided for special-use computational shaders.
866 Support for these opcodes indicated by a special pipe capability bit (TBD).
867
868 XXX doesn't look like most of the opcodes really belong here.
869
870 .. opcode:: CEIL - Ceiling
871
872 .. math::
873
874 dst.x = \lceil src.x\rceil
875
876 dst.y = \lceil src.y\rceil
877
878 dst.z = \lceil src.z\rceil
879
880 dst.w = \lceil src.w\rceil
881
882
883 .. opcode:: TRUNC - Truncate
884
885 .. math::
886
887 dst.x = trunc(src.x)
888
889 dst.y = trunc(src.y)
890
891 dst.z = trunc(src.z)
892
893 dst.w = trunc(src.w)
894
895
896 .. opcode:: MOD - Modulus
897
898 .. math::
899
900 dst.x = src0.x \bmod src1.x
901
902 dst.y = src0.y \bmod src1.y
903
904 dst.z = src0.z \bmod src1.z
905
906 dst.w = src0.w \bmod src1.w
907
908
909 .. opcode:: UARL - Integer Address Register Load
910
911 Moves the contents of the source register, assumed to be an integer, into the
912 destination register, which is assumed to be an address (ADDR) register.
913
914
915 .. opcode:: SAD - Sum Of Absolute Differences
916
917 .. math::
918
919 dst.x = |src0.x - src1.x| + src2.x
920
921 dst.y = |src0.y - src1.y| + src2.y
922
923 dst.z = |src0.z - src1.z| + src2.z
924
925 dst.w = |src0.w - src1.w| + src2.w
926
927
928 .. opcode:: TXF - Texel Fetch
929
930 As per NV_gpu_shader4, extract a single texel from a specified texture
931 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
932 four-component signed integer vector used to identify the single texel
933 accessed. 3 components + level. Just like texture instructions, an optional
934 offset vector is provided, which is subject to various driver restrictions
935 (regarding range, source of offsets).
936 TXF(uint_vec coord, int_vec offset).
937
938
939 .. opcode:: TXQ - Texture Size Query
940
941 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
942 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
943 depth), 1D array (width, layers), 2D array (width, height, layers).
944 Also return the number of accessible levels (last_level - first_level + 1)
945 in W.
946
947 For components which don't return a resource dimension, their value
948 is undefined.
949
950
951 .. math::
952
953 lod = src0.x
954
955 dst.x = texture\_width(unit, lod)
956
957 dst.y = texture\_height(unit, lod)
958
959 dst.z = texture\_depth(unit, lod)
960
961 dst.w = texture\_levels(unit)
962
963 .. opcode:: TG4 - Texture Gather
964
965 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
966 filtering operation and packs them into a single register. Only works with
967 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
968 addressing modes of the sampler and the top level of any mip pyramid are
969 used. Set W to zero. It behaves like the TEX instruction, but a filtered
970 sample is not generated. The four samples that contribute to filtering are
971 placed into xyzw in clockwise order, starting with the (u,v) texture
972 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
973 where the magnitude of the deltas are half a texel.
974
975 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
976 depth compares, single component selection, and a non-constant offset. It
977 doesn't allow support for the GL independent offset to get i0,j0. This would
978 require another CAP is hw can do it natively. For now we lower that before
979 TGSI.
980
981 .. math::
982
983 coord = src0
984
985 component = src1
986
987 dst = texture\_gather4 (unit, coord, component)
988
989 (with SM5 - cube array shadow)
990
991 .. math::
992
993 coord = src0
994
995 compare = src1
996
997 dst = texture\_gather (uint, coord, compare)
998
999 .. opcode:: LODQ - level of detail query
1000
1001 Compute the LOD information that the texture pipe would use to access the
1002 texture. The Y component contains the computed LOD lambda_prime. The X
1003 component contains the LOD that will be accessed, based on min/max lod's
1004 and mipmap filters.
1005
1006 .. math::
1007
1008 coord = src0
1009
1010 dst.xy = lodq(uint, coord);
1011
1012 Integer ISA
1013 ^^^^^^^^^^^^^^^^^^^^^^^^
1014 These opcodes are used for integer operations.
1015 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1016
1017
1018 .. opcode:: I2F - Signed Integer To Float
1019
1020 Rounding is unspecified (round to nearest even suggested).
1021
1022 .. math::
1023
1024 dst.x = (float) src.x
1025
1026 dst.y = (float) src.y
1027
1028 dst.z = (float) src.z
1029
1030 dst.w = (float) src.w
1031
1032
1033 .. opcode:: U2F - Unsigned Integer To Float
1034
1035 Rounding is unspecified (round to nearest even suggested).
1036
1037 .. math::
1038
1039 dst.x = (float) src.x
1040
1041 dst.y = (float) src.y
1042
1043 dst.z = (float) src.z
1044
1045 dst.w = (float) src.w
1046
1047
1048 .. opcode:: F2I - Float to Signed Integer
1049
1050 Rounding is towards zero (truncate).
1051 Values outside signed range (including NaNs) produce undefined results.
1052
1053 .. math::
1054
1055 dst.x = (int) src.x
1056
1057 dst.y = (int) src.y
1058
1059 dst.z = (int) src.z
1060
1061 dst.w = (int) src.w
1062
1063
1064 .. opcode:: F2U - Float to Unsigned Integer
1065
1066 Rounding is towards zero (truncate).
1067 Values outside unsigned range (including NaNs) produce undefined results.
1068
1069 .. math::
1070
1071 dst.x = (unsigned) src.x
1072
1073 dst.y = (unsigned) src.y
1074
1075 dst.z = (unsigned) src.z
1076
1077 dst.w = (unsigned) src.w
1078
1079
1080 .. opcode:: UADD - Integer Add
1081
1082 This instruction works the same for signed and unsigned integers.
1083 The low 32bit of the result is returned.
1084
1085 .. math::
1086
1087 dst.x = src0.x + src1.x
1088
1089 dst.y = src0.y + src1.y
1090
1091 dst.z = src0.z + src1.z
1092
1093 dst.w = src0.w + src1.w
1094
1095
1096 .. opcode:: UMAD - Integer Multiply And Add
1097
1098 This instruction works the same for signed and unsigned integers.
1099 The multiplication returns the low 32bit (as does the result itself).
1100
1101 .. math::
1102
1103 dst.x = src0.x \times src1.x + src2.x
1104
1105 dst.y = src0.y \times src1.y + src2.y
1106
1107 dst.z = src0.z \times src1.z + src2.z
1108
1109 dst.w = src0.w \times src1.w + src2.w
1110
1111
1112 .. opcode:: UMUL - Integer Multiply
1113
1114 This instruction works the same for signed and unsigned integers.
1115 The low 32bit of the result is returned.
1116
1117 .. math::
1118
1119 dst.x = src0.x \times src1.x
1120
1121 dst.y = src0.y \times src1.y
1122
1123 dst.z = src0.z \times src1.z
1124
1125 dst.w = src0.w \times src1.w
1126
1127
1128 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1129
1130 The high 32bits of the multiplication of 2 signed integers are returned.
1131
1132 .. math::
1133
1134 dst.x = (src0.x \times src1.x) >> 32
1135
1136 dst.y = (src0.y \times src1.y) >> 32
1137
1138 dst.z = (src0.z \times src1.z) >> 32
1139
1140 dst.w = (src0.w \times src1.w) >> 32
1141
1142
1143 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1144
1145 The high 32bits of the multiplication of 2 unsigned integers are returned.
1146
1147 .. math::
1148
1149 dst.x = (src0.x \times src1.x) >> 32
1150
1151 dst.y = (src0.y \times src1.y) >> 32
1152
1153 dst.z = (src0.z \times src1.z) >> 32
1154
1155 dst.w = (src0.w \times src1.w) >> 32
1156
1157
1158 .. opcode:: IDIV - Signed Integer Division
1159
1160 TBD: behavior for division by zero.
1161
1162 .. math::
1163
1164 dst.x = src0.x \ src1.x
1165
1166 dst.y = src0.y \ src1.y
1167
1168 dst.z = src0.z \ src1.z
1169
1170 dst.w = src0.w \ src1.w
1171
1172
1173 .. opcode:: UDIV - Unsigned Integer Division
1174
1175 For division by zero, 0xffffffff is returned.
1176
1177 .. math::
1178
1179 dst.x = src0.x \ src1.x
1180
1181 dst.y = src0.y \ src1.y
1182
1183 dst.z = src0.z \ src1.z
1184
1185 dst.w = src0.w \ src1.w
1186
1187
1188 .. opcode:: UMOD - Unsigned Integer Remainder
1189
1190 If second arg is zero, 0xffffffff is returned.
1191
1192 .. math::
1193
1194 dst.x = src0.x \ src1.x
1195
1196 dst.y = src0.y \ src1.y
1197
1198 dst.z = src0.z \ src1.z
1199
1200 dst.w = src0.w \ src1.w
1201
1202
1203 .. opcode:: NOT - Bitwise Not
1204
1205 .. math::
1206
1207 dst.x = \sim src.x
1208
1209 dst.y = \sim src.y
1210
1211 dst.z = \sim src.z
1212
1213 dst.w = \sim src.w
1214
1215
1216 .. opcode:: AND - Bitwise And
1217
1218 .. math::
1219
1220 dst.x = src0.x \& src1.x
1221
1222 dst.y = src0.y \& src1.y
1223
1224 dst.z = src0.z \& src1.z
1225
1226 dst.w = src0.w \& src1.w
1227
1228
1229 .. opcode:: OR - Bitwise Or
1230
1231 .. math::
1232
1233 dst.x = src0.x | src1.x
1234
1235 dst.y = src0.y | src1.y
1236
1237 dst.z = src0.z | src1.z
1238
1239 dst.w = src0.w | src1.w
1240
1241
1242 .. opcode:: XOR - Bitwise Xor
1243
1244 .. math::
1245
1246 dst.x = src0.x \oplus src1.x
1247
1248 dst.y = src0.y \oplus src1.y
1249
1250 dst.z = src0.z \oplus src1.z
1251
1252 dst.w = src0.w \oplus src1.w
1253
1254
1255 .. opcode:: IMAX - Maximum of Signed Integers
1256
1257 .. math::
1258
1259 dst.x = max(src0.x, src1.x)
1260
1261 dst.y = max(src0.y, src1.y)
1262
1263 dst.z = max(src0.z, src1.z)
1264
1265 dst.w = max(src0.w, src1.w)
1266
1267
1268 .. opcode:: UMAX - Maximum of Unsigned Integers
1269
1270 .. math::
1271
1272 dst.x = max(src0.x, src1.x)
1273
1274 dst.y = max(src0.y, src1.y)
1275
1276 dst.z = max(src0.z, src1.z)
1277
1278 dst.w = max(src0.w, src1.w)
1279
1280
1281 .. opcode:: IMIN - Minimum of Signed Integers
1282
1283 .. math::
1284
1285 dst.x = min(src0.x, src1.x)
1286
1287 dst.y = min(src0.y, src1.y)
1288
1289 dst.z = min(src0.z, src1.z)
1290
1291 dst.w = min(src0.w, src1.w)
1292
1293
1294 .. opcode:: UMIN - Minimum of Unsigned Integers
1295
1296 .. math::
1297
1298 dst.x = min(src0.x, src1.x)
1299
1300 dst.y = min(src0.y, src1.y)
1301
1302 dst.z = min(src0.z, src1.z)
1303
1304 dst.w = min(src0.w, src1.w)
1305
1306
1307 .. opcode:: SHL - Shift Left
1308
1309 The shift count is masked with 0x1f before the shift is applied.
1310
1311 .. math::
1312
1313 dst.x = src0.x << (0x1f \& src1.x)
1314
1315 dst.y = src0.y << (0x1f \& src1.y)
1316
1317 dst.z = src0.z << (0x1f \& src1.z)
1318
1319 dst.w = src0.w << (0x1f \& src1.w)
1320
1321
1322 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1323
1324 The shift count is masked with 0x1f before the shift is applied.
1325
1326 .. math::
1327
1328 dst.x = src0.x >> (0x1f \& src1.x)
1329
1330 dst.y = src0.y >> (0x1f \& src1.y)
1331
1332 dst.z = src0.z >> (0x1f \& src1.z)
1333
1334 dst.w = src0.w >> (0x1f \& src1.w)
1335
1336
1337 .. opcode:: USHR - Logical Shift Right
1338
1339 The shift count is masked with 0x1f before the shift is applied.
1340
1341 .. math::
1342
1343 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1344
1345 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1346
1347 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1348
1349 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1350
1351
1352 .. opcode:: UCMP - Integer Conditional Move
1353
1354 .. math::
1355
1356 dst.x = src0.x ? src1.x : src2.x
1357
1358 dst.y = src0.y ? src1.y : src2.y
1359
1360 dst.z = src0.z ? src1.z : src2.z
1361
1362 dst.w = src0.w ? src1.w : src2.w
1363
1364
1365
1366 .. opcode:: ISSG - Integer Set Sign
1367
1368 .. math::
1369
1370 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1371
1372 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1373
1374 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1375
1376 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1377
1378
1379
1380 .. opcode:: FSLT - Float Set On Less Than (ordered)
1381
1382 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1383
1384 .. math::
1385
1386 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1387
1388 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1389
1390 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1391
1392 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1393
1394
1395 .. opcode:: ISLT - Signed Integer Set On Less Than
1396
1397 .. math::
1398
1399 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1400
1401 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1402
1403 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1404
1405 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1406
1407
1408 .. opcode:: USLT - Unsigned Integer Set On Less Than
1409
1410 .. math::
1411
1412 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1413
1414 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1415
1416 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1417
1418 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1419
1420
1421 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1422
1423 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1424
1425 .. math::
1426
1427 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1428
1429 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1430
1431 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1432
1433 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1434
1435
1436 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1437
1438 .. math::
1439
1440 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1441
1442 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1443
1444 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1445
1446 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1447
1448
1449 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1450
1451 .. math::
1452
1453 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1454
1455 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1456
1457 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1458
1459 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1460
1461
1462 .. opcode:: FSEQ - Float Set On Equal (ordered)
1463
1464 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1465
1466 .. math::
1467
1468 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1469
1470 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1471
1472 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1473
1474 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1475
1476
1477 .. opcode:: USEQ - Integer Set On Equal
1478
1479 .. math::
1480
1481 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1482
1483 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1484
1485 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1486
1487 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1488
1489
1490 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1491
1492 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1493
1494 .. math::
1495
1496 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1497
1498 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1499
1500 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1501
1502 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1503
1504
1505 .. opcode:: USNE - Integer Set On Not Equal
1506
1507 .. math::
1508
1509 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1510
1511 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1512
1513 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1514
1515 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1516
1517
1518 .. opcode:: INEG - Integer Negate
1519
1520 Two's complement.
1521
1522 .. math::
1523
1524 dst.x = -src.x
1525
1526 dst.y = -src.y
1527
1528 dst.z = -src.z
1529
1530 dst.w = -src.w
1531
1532
1533 .. opcode:: IABS - Integer Absolute Value
1534
1535 .. math::
1536
1537 dst.x = |src.x|
1538
1539 dst.y = |src.y|
1540
1541 dst.z = |src.z|
1542
1543 dst.w = |src.w|
1544
1545 Bitwise ISA
1546 ^^^^^^^^^^^
1547 These opcodes are used for bit-level manipulation of integers.
1548
1549 .. opcode:: IBFE - Signed Bitfield Extract
1550
1551 See SM5 instruction of the same name. Extracts a set of bits from the input,
1552 and sign-extends them if the high bit of the extracted window is set.
1553
1554 Pseudocode::
1555
1556 def ibfe(value, offset, bits):
1557 offset = offset & 0x1f
1558 bits = bits & 0x1f
1559 if bits == 0: return 0
1560 # Note: >> sign-extends
1561 if width + offset < 32:
1562 return (value << (32 - offset - bits)) >> (32 - bits)
1563 else:
1564 return value >> offset
1565
1566 .. opcode:: UBFE - Unsigned Bitfield Extract
1567
1568 See SM5 instruction of the same name. Extracts a set of bits from the input,
1569 without any sign-extension.
1570
1571 Pseudocode::
1572
1573 def ubfe(value, offset, bits):
1574 offset = offset & 0x1f
1575 bits = bits & 0x1f
1576 if bits == 0: return 0
1577 # Note: >> does not sign-extend
1578 if width + offset < 32:
1579 return (value << (32 - offset - bits)) >> (32 - bits)
1580 else:
1581 return value >> offset
1582
1583 .. opcode:: BFI - Bitfield Insert
1584
1585 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1586 the low bits of 'insert'.
1587
1588 Pseudocode::
1589
1590 def bfi(base, insert, offset, bits):
1591 offset = offset & 0x1f
1592 bits = bits & 0x1f
1593 mask = ((1 << bits) - 1) << offset
1594 return ((insert << offset) & mask) | (base & ~mask)
1595
1596 .. opcode:: BREV - Bitfield Reverse
1597
1598 See SM5 instruction BFREV. Reverses the bits of the argument.
1599
1600 .. opcode:: POPC - Population Count
1601
1602 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1603
1604 .. opcode:: LSB - Index of lowest set bit
1605
1606 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1607 bit of the argument. Returns -1 if none are set.
1608
1609 .. opcode:: IMSB - Index of highest non-sign bit
1610
1611 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1612 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1613 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1614 (i.e. for inputs 0 and -1).
1615
1616 .. opcode:: UMSB - Index of highest set bit
1617
1618 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1619 set bit of the argument. Returns -1 if none are set.
1620
1621 Geometry ISA
1622 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1623
1624 These opcodes are only supported in geometry shaders; they have no meaning
1625 in any other type of shader.
1626
1627 .. opcode:: EMIT - Emit
1628
1629 Generate a new vertex for the current primitive into the specified vertex
1630 stream using the values in the output registers.
1631
1632
1633 .. opcode:: ENDPRIM - End Primitive
1634
1635 Complete the current primitive in the specified vertex stream (consisting of
1636 the emitted vertices), and start a new one.
1637
1638
1639 GLSL ISA
1640 ^^^^^^^^^^
1641
1642 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1643 opcodes is determined by a special capability bit, ``GLSL``.
1644 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1645
1646 .. opcode:: CAL - Subroutine Call
1647
1648 push(pc)
1649 pc = target
1650
1651
1652 .. opcode:: RET - Subroutine Call Return
1653
1654 pc = pop()
1655
1656
1657 .. opcode:: CONT - Continue
1658
1659 Unconditionally moves the point of execution to the instruction after the
1660 last bgnloop. The instruction must appear within a bgnloop/endloop.
1661
1662 .. note::
1663
1664 Support for CONT is determined by a special capability bit,
1665 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1666
1667
1668 .. opcode:: BGNLOOP - Begin a Loop
1669
1670 Start a loop. Must have a matching endloop.
1671
1672
1673 .. opcode:: BGNSUB - Begin Subroutine
1674
1675 Starts definition of a subroutine. Must have a matching endsub.
1676
1677
1678 .. opcode:: ENDLOOP - End a Loop
1679
1680 End a loop started with bgnloop.
1681
1682
1683 .. opcode:: ENDSUB - End Subroutine
1684
1685 Ends definition of a subroutine.
1686
1687
1688 .. opcode:: NOP - No Operation
1689
1690 Do nothing.
1691
1692
1693 .. opcode:: BRK - Break
1694
1695 Unconditionally moves the point of execution to the instruction after the
1696 next endloop or endswitch. The instruction must appear within a loop/endloop
1697 or switch/endswitch.
1698
1699
1700 .. opcode:: BREAKC - Break Conditional
1701
1702 Conditionally moves the point of execution to the instruction after the
1703 next endloop or endswitch. The instruction must appear within a loop/endloop
1704 or switch/endswitch.
1705 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1706 as an integer register.
1707
1708 .. note::
1709
1710 Considered for removal as it's quite inconsistent wrt other opcodes
1711 (could emulate with UIF/BRK/ENDIF).
1712
1713
1714 .. opcode:: IF - Float If
1715
1716 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1717
1718 src0.x != 0.0
1719
1720 where src0.x is interpreted as a floating point register.
1721
1722
1723 .. opcode:: UIF - Bitwise If
1724
1725 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1726
1727 src0.x != 0
1728
1729 where src0.x is interpreted as an integer register.
1730
1731
1732 .. opcode:: ELSE - Else
1733
1734 Starts an else block, after an IF or UIF statement.
1735
1736
1737 .. opcode:: ENDIF - End If
1738
1739 Ends an IF or UIF block.
1740
1741
1742 .. opcode:: SWITCH - Switch
1743
1744 Starts a C-style switch expression. The switch consists of one or multiple
1745 CASE statements, and at most one DEFAULT statement. Execution of a statement
1746 ends when a BRK is hit, but just like in C falling through to other cases
1747 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1748 just as last statement, and fallthrough is allowed into/from it.
1749 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1750
1751 Example::
1752
1753 SWITCH src[0].x
1754 CASE src[0].x
1755 (some instructions here)
1756 (optional BRK here)
1757 DEFAULT
1758 (some instructions here)
1759 (optional BRK here)
1760 CASE src[0].x
1761 (some instructions here)
1762 (optional BRK here)
1763 ENDSWITCH
1764
1765
1766 .. opcode:: CASE - Switch case
1767
1768 This represents a switch case label. The src arg must be an integer immediate.
1769
1770
1771 .. opcode:: DEFAULT - Switch default
1772
1773 This represents the default case in the switch, which is taken if no other
1774 case matches.
1775
1776
1777 .. opcode:: ENDSWITCH - End of switch
1778
1779 Ends a switch expression.
1780
1781
1782 Interpolation ISA
1783 ^^^^^^^^^^^^^^^^^
1784
1785 The interpolation instructions allow an input to be interpolated in a
1786 different way than its declaration. This corresponds to the GLSL 4.00
1787 interpolateAt* functions. The first argument of each of these must come from
1788 ``TGSI_FILE_INPUT``.
1789
1790 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1791
1792 Interpolates the varying specified by src0 at the centroid
1793
1794 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1795
1796 Interpolates the varying specified by src0 at the sample id specified by
1797 src1.x (interpreted as an integer)
1798
1799 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1800
1801 Interpolates the varying specified by src0 at the offset src1.xy from the
1802 pixel center (interpreted as floats)
1803
1804
1805 .. _doubleopcodes:
1806
1807 Double ISA
1808 ^^^^^^^^^^^^^^^
1809
1810 The double-precision opcodes reinterpret four-component vectors into
1811 two-component vectors with doubled precision in each component.
1812
1813 Support for these opcodes is XXX undecided. :T
1814
1815 .. opcode:: DADD - Add
1816
1817 .. math::
1818
1819 dst.xy = src0.xy + src1.xy
1820
1821 dst.zw = src0.zw + src1.zw
1822
1823
1824 .. opcode:: DDIV - Divide
1825
1826 .. math::
1827
1828 dst.xy = src0.xy / src1.xy
1829
1830 dst.zw = src0.zw / src1.zw
1831
1832 .. opcode:: DSEQ - Set on Equal
1833
1834 .. math::
1835
1836 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1837
1838 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1839
1840 .. opcode:: DSLT - Set on Less than
1841
1842 .. math::
1843
1844 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1845
1846 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1847
1848 .. opcode:: DFRAC - Fraction
1849
1850 .. math::
1851
1852 dst.xy = src.xy - \lfloor src.xy\rfloor
1853
1854 dst.zw = src.zw - \lfloor src.zw\rfloor
1855
1856
1857 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1858
1859 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1860 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1861 :math:`dst1 \times 2^{dst0} = src` .
1862
1863 .. math::
1864
1865 dst0.xy = exp(src.xy)
1866
1867 dst1.xy = frac(src.xy)
1868
1869 dst0.zw = exp(src.zw)
1870
1871 dst1.zw = frac(src.zw)
1872
1873 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1874
1875 This opcode is the inverse of :opcode:`DFRACEXP`.
1876
1877 .. math::
1878
1879 dst.xy = src0.xy \times 2^{src1.xy}
1880
1881 dst.zw = src0.zw \times 2^{src1.zw}
1882
1883 .. opcode:: DMIN - Minimum
1884
1885 .. math::
1886
1887 dst.xy = min(src0.xy, src1.xy)
1888
1889 dst.zw = min(src0.zw, src1.zw)
1890
1891 .. opcode:: DMAX - Maximum
1892
1893 .. math::
1894
1895 dst.xy = max(src0.xy, src1.xy)
1896
1897 dst.zw = max(src0.zw, src1.zw)
1898
1899 .. opcode:: DMUL - Multiply
1900
1901 .. math::
1902
1903 dst.xy = src0.xy \times src1.xy
1904
1905 dst.zw = src0.zw \times src1.zw
1906
1907
1908 .. opcode:: DMAD - Multiply And Add
1909
1910 .. math::
1911
1912 dst.xy = src0.xy \times src1.xy + src2.xy
1913
1914 dst.zw = src0.zw \times src1.zw + src2.zw
1915
1916
1917 .. opcode:: DRCP - Reciprocal
1918
1919 .. math::
1920
1921 dst.xy = \frac{1}{src.xy}
1922
1923 dst.zw = \frac{1}{src.zw}
1924
1925 .. opcode:: DSQRT - Square Root
1926
1927 .. math::
1928
1929 dst.xy = \sqrt{src.xy}
1930
1931 dst.zw = \sqrt{src.zw}
1932
1933
1934 .. _samplingopcodes:
1935
1936 Resource Sampling Opcodes
1937 ^^^^^^^^^^^^^^^^^^^^^^^^^
1938
1939 Those opcodes follow very closely semantics of the respective Direct3D
1940 instructions. If in doubt double check Direct3D documentation.
1941 Note that the swizzle on SVIEW (src1) determines texel swizzling
1942 after lookup.
1943
1944 .. opcode:: SAMPLE
1945
1946 Using provided address, sample data from the specified texture using the
1947 filtering mode identified by the gven sampler. The source data may come from
1948 any resource type other than buffers.
1949
1950 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1951
1952 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1953
1954 .. opcode:: SAMPLE_I
1955
1956 Simplified alternative to the SAMPLE instruction. Using the provided
1957 integer address, SAMPLE_I fetches data from the specified sampler view
1958 without any filtering. The source data may come from any resource type
1959 other than CUBE.
1960
1961 Syntax: ``SAMPLE_I dst, address, sampler_view``
1962
1963 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1964
1965 The 'address' is specified as unsigned integers. If the 'address' is out of
1966 range [0...(# texels - 1)] the result of the fetch is always 0 in all
1967 components. As such the instruction doesn't honor address wrap modes, in
1968 cases where that behavior is desirable 'SAMPLE' instruction should be used.
1969 address.w always provides an unsigned integer mipmap level. If the value is
1970 out of the range then the instruction always returns 0 in all components.
1971 address.yz are ignored for buffers and 1d textures. address.z is ignored
1972 for 1d texture arrays and 2d textures.
1973
1974 For 1D texture arrays address.y provides the array index (also as unsigned
1975 integer). If the value is out of the range of available array indices
1976 [0... (array size - 1)] then the opcode always returns 0 in all components.
1977 For 2D texture arrays address.z provides the array index, otherwise it
1978 exhibits the same behavior as in the case for 1D texture arrays. The exact
1979 semantics of the source address are presented in the table below:
1980
1981 +---------------------------+----+-----+-----+---------+
1982 | resource type | X | Y | Z | W |
1983 +===========================+====+=====+=====+=========+
1984 | ``PIPE_BUFFER`` | x | | | ignored |
1985 +---------------------------+----+-----+-----+---------+
1986 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
1987 +---------------------------+----+-----+-----+---------+
1988 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
1989 +---------------------------+----+-----+-----+---------+
1990 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
1991 +---------------------------+----+-----+-----+---------+
1992 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
1993 +---------------------------+----+-----+-----+---------+
1994 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
1995 +---------------------------+----+-----+-----+---------+
1996 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
1997 +---------------------------+----+-----+-----+---------+
1998 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
1999 +---------------------------+----+-----+-----+---------+
2000
2001 Where 'mpl' is a mipmap level and 'idx' is the array index.
2002
2003 .. opcode:: SAMPLE_I_MS
2004
2005 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2006
2007 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2008
2009 .. opcode:: SAMPLE_B
2010
2011 Just like the SAMPLE instruction with the exception that an additional bias
2012 is applied to the level of detail computed as part of the instruction
2013 execution.
2014
2015 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2016
2017 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2018
2019 .. opcode:: SAMPLE_C
2020
2021 Similar to the SAMPLE instruction but it performs a comparison filter. The
2022 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2023 additional float32 operand, reference value, which must be a register with
2024 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2025 current samplers compare_func (in pipe_sampler_state) to compare reference
2026 value against the red component value for the surce resource at each texel
2027 that the currently configured texture filter covers based on the provided
2028 coordinates.
2029
2030 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2031
2032 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2033
2034 .. opcode:: SAMPLE_C_LZ
2035
2036 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2037 for level-zero.
2038
2039 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2040
2041 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2042
2043
2044 .. opcode:: SAMPLE_D
2045
2046 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2047 the source address in the x direction and the y direction are provided by
2048 extra parameters.
2049
2050 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2051
2052 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2053
2054 .. opcode:: SAMPLE_L
2055
2056 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2057 directly as a scalar value, representing no anisotropy.
2058
2059 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2060
2061 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2062
2063 .. opcode:: GATHER4
2064
2065 Gathers the four texels to be used in a bi-linear filtering operation and
2066 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2067 and cubemaps arrays. For 2D textures, only the addressing modes of the
2068 sampler and the top level of any mip pyramid are used. Set W to zero. It
2069 behaves like the SAMPLE instruction, but a filtered sample is not
2070 generated. The four samples that contribute to filtering are placed into
2071 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2072 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2073 magnitude of the deltas are half a texel.
2074
2075
2076 .. opcode:: SVIEWINFO
2077
2078 Query the dimensions of a given sampler view. dst receives width, height,
2079 depth or array size and number of mipmap levels as int4. The dst can have a
2080 writemask which will specify what info is the caller interested in.
2081
2082 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2083
2084 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2085
2086 src_mip_level is an unsigned integer scalar. If it's out of range then
2087 returns 0 for width, height and depth/array size but the total number of
2088 mipmap is still returned correctly for the given sampler view. The returned
2089 width, height and depth values are for the mipmap level selected by the
2090 src_mip_level and are in the number of texels. For 1d texture array width
2091 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2092 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2093 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2094 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2095 resinfo allowing swizzling dst values is ignored (due to the interaction
2096 with rcpfloat modifier which requires some swizzle handling in the state
2097 tracker anyway).
2098
2099 .. opcode:: SAMPLE_POS
2100
2101 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2102 indicated where the sample is located. If the resource is not a multi-sample
2103 resource and not a render target, the result is 0.
2104
2105 .. opcode:: SAMPLE_INFO
2106
2107 dst receives number of samples in x. If the resource is not a multi-sample
2108 resource and not a render target, the result is 0.
2109
2110
2111 .. _resourceopcodes:
2112
2113 Resource Access Opcodes
2114 ^^^^^^^^^^^^^^^^^^^^^^^
2115
2116 .. opcode:: LOAD - Fetch data from a shader resource
2117
2118 Syntax: ``LOAD dst, resource, address``
2119
2120 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2121
2122 Using the provided integer address, LOAD fetches data
2123 from the specified buffer or texture without any
2124 filtering.
2125
2126 The 'address' is specified as a vector of unsigned
2127 integers. If the 'address' is out of range the result
2128 is unspecified.
2129
2130 Only the first mipmap level of a resource can be read
2131 from using this instruction.
2132
2133 For 1D or 2D texture arrays, the array index is
2134 provided as an unsigned integer in address.y or
2135 address.z, respectively. address.yz are ignored for
2136 buffers and 1D textures. address.z is ignored for 1D
2137 texture arrays and 2D textures. address.w is always
2138 ignored.
2139
2140 .. opcode:: STORE - Write data to a shader resource
2141
2142 Syntax: ``STORE resource, address, src``
2143
2144 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2145
2146 Using the provided integer address, STORE writes data
2147 to the specified buffer or texture.
2148
2149 The 'address' is specified as a vector of unsigned
2150 integers. If the 'address' is out of range the result
2151 is unspecified.
2152
2153 Only the first mipmap level of a resource can be
2154 written to using this instruction.
2155
2156 For 1D or 2D texture arrays, the array index is
2157 provided as an unsigned integer in address.y or
2158 address.z, respectively. address.yz are ignored for
2159 buffers and 1D textures. address.z is ignored for 1D
2160 texture arrays and 2D textures. address.w is always
2161 ignored.
2162
2163
2164 .. _threadsyncopcodes:
2165
2166 Inter-thread synchronization opcodes
2167 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2168
2169 These opcodes are intended for communication between threads running
2170 within the same compute grid. For now they're only valid in compute
2171 programs.
2172
2173 .. opcode:: MFENCE - Memory fence
2174
2175 Syntax: ``MFENCE resource``
2176
2177 Example: ``MFENCE RES[0]``
2178
2179 This opcode forces strong ordering between any memory access
2180 operations that affect the specified resource. This means that
2181 previous loads and stores (and only those) will be performed and
2182 visible to other threads before the program execution continues.
2183
2184
2185 .. opcode:: LFENCE - Load memory fence
2186
2187 Syntax: ``LFENCE resource``
2188
2189 Example: ``LFENCE RES[0]``
2190
2191 Similar to MFENCE, but it only affects the ordering of memory loads.
2192
2193
2194 .. opcode:: SFENCE - Store memory fence
2195
2196 Syntax: ``SFENCE resource``
2197
2198 Example: ``SFENCE RES[0]``
2199
2200 Similar to MFENCE, but it only affects the ordering of memory stores.
2201
2202
2203 .. opcode:: BARRIER - Thread group barrier
2204
2205 ``BARRIER``
2206
2207 This opcode suspends the execution of the current thread until all
2208 the remaining threads in the working group reach the same point of
2209 the program. Results are unspecified if any of the remaining
2210 threads terminates or never reaches an executed BARRIER instruction.
2211
2212
2213 .. _atomopcodes:
2214
2215 Atomic opcodes
2216 ^^^^^^^^^^^^^^
2217
2218 These opcodes provide atomic variants of some common arithmetic and
2219 logical operations. In this context atomicity means that another
2220 concurrent memory access operation that affects the same memory
2221 location is guaranteed to be performed strictly before or after the
2222 entire execution of the atomic operation.
2223
2224 For the moment they're only valid in compute programs.
2225
2226 .. opcode:: ATOMUADD - Atomic integer addition
2227
2228 Syntax: ``ATOMUADD dst, resource, offset, src``
2229
2230 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2231
2232 The following operation is performed atomically on each component:
2233
2234 .. math::
2235
2236 dst_i = resource[offset]_i
2237
2238 resource[offset]_i = dst_i + src_i
2239
2240
2241 .. opcode:: ATOMXCHG - Atomic exchange
2242
2243 Syntax: ``ATOMXCHG dst, resource, offset, src``
2244
2245 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2246
2247 The following operation is performed atomically on each component:
2248
2249 .. math::
2250
2251 dst_i = resource[offset]_i
2252
2253 resource[offset]_i = src_i
2254
2255
2256 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2257
2258 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2259
2260 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2261
2262 The following operation is performed atomically on each component:
2263
2264 .. math::
2265
2266 dst_i = resource[offset]_i
2267
2268 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2269
2270
2271 .. opcode:: ATOMAND - Atomic bitwise And
2272
2273 Syntax: ``ATOMAND dst, resource, offset, src``
2274
2275 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2276
2277 The following operation is performed atomically on each component:
2278
2279 .. math::
2280
2281 dst_i = resource[offset]_i
2282
2283 resource[offset]_i = dst_i \& src_i
2284
2285
2286 .. opcode:: ATOMOR - Atomic bitwise Or
2287
2288 Syntax: ``ATOMOR dst, resource, offset, src``
2289
2290 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2291
2292 The following operation is performed atomically on each component:
2293
2294 .. math::
2295
2296 dst_i = resource[offset]_i
2297
2298 resource[offset]_i = dst_i | src_i
2299
2300
2301 .. opcode:: ATOMXOR - Atomic bitwise Xor
2302
2303 Syntax: ``ATOMXOR dst, resource, offset, src``
2304
2305 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2306
2307 The following operation is performed atomically on each component:
2308
2309 .. math::
2310
2311 dst_i = resource[offset]_i
2312
2313 resource[offset]_i = dst_i \oplus src_i
2314
2315
2316 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2317
2318 Syntax: ``ATOMUMIN dst, resource, offset, src``
2319
2320 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2321
2322 The following operation is performed atomically on each component:
2323
2324 .. math::
2325
2326 dst_i = resource[offset]_i
2327
2328 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2329
2330
2331 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2332
2333 Syntax: ``ATOMUMAX dst, resource, offset, src``
2334
2335 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2336
2337 The following operation is performed atomically on each component:
2338
2339 .. math::
2340
2341 dst_i = resource[offset]_i
2342
2343 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2344
2345
2346 .. opcode:: ATOMIMIN - Atomic signed minimum
2347
2348 Syntax: ``ATOMIMIN dst, resource, offset, src``
2349
2350 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2351
2352 The following operation is performed atomically on each component:
2353
2354 .. math::
2355
2356 dst_i = resource[offset]_i
2357
2358 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2359
2360
2361 .. opcode:: ATOMIMAX - Atomic signed maximum
2362
2363 Syntax: ``ATOMIMAX dst, resource, offset, src``
2364
2365 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2366
2367 The following operation is performed atomically on each component:
2368
2369 .. math::
2370
2371 dst_i = resource[offset]_i
2372
2373 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2374
2375
2376
2377 Explanation of symbols used
2378 ------------------------------
2379
2380
2381 Functions
2382 ^^^^^^^^^^^^^^
2383
2384
2385 :math:`|x|` Absolute value of `x`.
2386
2387 :math:`\lceil x \rceil` Ceiling of `x`.
2388
2389 clamp(x,y,z) Clamp x between y and z.
2390 (x < y) ? y : (x > z) ? z : x
2391
2392 :math:`\lfloor x\rfloor` Floor of `x`.
2393
2394 :math:`\log_2{x}` Logarithm of `x`, base 2.
2395
2396 max(x,y) Maximum of x and y.
2397 (x > y) ? x : y
2398
2399 min(x,y) Minimum of x and y.
2400 (x < y) ? x : y
2401
2402 partialx(x) Derivative of x relative to fragment's X.
2403
2404 partialy(x) Derivative of x relative to fragment's Y.
2405
2406 pop() Pop from stack.
2407
2408 :math:`x^y` `x` to the power `y`.
2409
2410 push(x) Push x on stack.
2411
2412 round(x) Round x.
2413
2414 trunc(x) Truncate x, i.e. drop the fraction bits.
2415
2416
2417 Keywords
2418 ^^^^^^^^^^^^^
2419
2420
2421 discard Discard fragment.
2422
2423 pc Program counter.
2424
2425 target Label of target instruction.
2426
2427
2428 Other tokens
2429 ---------------
2430
2431
2432 Declaration
2433 ^^^^^^^^^^^
2434
2435
2436 Declares a register that is will be referenced as an operand in Instruction
2437 tokens.
2438
2439 File field contains register file that is being declared and is one
2440 of TGSI_FILE.
2441
2442 UsageMask field specifies which of the register components can be accessed
2443 and is one of TGSI_WRITEMASK.
2444
2445 The Local flag specifies that a given value isn't intended for
2446 subroutine parameter passing and, as a result, the implementation
2447 isn't required to give any guarantees of it being preserved across
2448 subroutine boundaries. As it's merely a compiler hint, the
2449 implementation is free to ignore it.
2450
2451 If Dimension flag is set to 1, a Declaration Dimension token follows.
2452
2453 If Semantic flag is set to 1, a Declaration Semantic token follows.
2454
2455 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2456
2457 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2458
2459 If Array flag is set to 1, a Declaration Array token follows.
2460
2461 Array Declaration
2462 ^^^^^^^^^^^^^^^^^^^^^^^^
2463
2464 Declarations can optional have an ArrayID attribute which can be referred by
2465 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2466 if no ArrayID is specified.
2467
2468 If an indirect addressing operand refers to a specific declaration by using
2469 an ArrayID only the registers in this declaration are guaranteed to be
2470 accessed, accessing any register outside this declaration results in undefined
2471 behavior. Note that for compatibility the effective index is zero-based and
2472 not relative to the specified declaration
2473
2474 If no ArrayID is specified with an indirect addressing operand the whole
2475 register file might be accessed by this operand. This is strongly discouraged
2476 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2477
2478 Declaration Semantic
2479 ^^^^^^^^^^^^^^^^^^^^^^^^
2480
2481 Vertex and fragment shader input and output registers may be labeled
2482 with semantic information consisting of a name and index.
2483
2484 Follows Declaration token if Semantic bit is set.
2485
2486 Since its purpose is to link a shader with other stages of the pipeline,
2487 it is valid to follow only those Declaration tokens that declare a register
2488 either in INPUT or OUTPUT file.
2489
2490 SemanticName field contains the semantic name of the register being declared.
2491 There is no default value.
2492
2493 SemanticIndex is an optional subscript that can be used to distinguish
2494 different register declarations with the same semantic name. The default value
2495 is 0.
2496
2497 The meanings of the individual semantic names are explained in the following
2498 sections.
2499
2500 TGSI_SEMANTIC_POSITION
2501 """"""""""""""""""""""
2502
2503 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2504 output register which contains the homogeneous vertex position in the clip
2505 space coordinate system. After clipping, the X, Y and Z components of the
2506 vertex will be divided by the W value to get normalized device coordinates.
2507
2508 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2509 fragment shader input contains the fragment's window position. The X
2510 component starts at zero and always increases from left to right.
2511 The Y component starts at zero and always increases but Y=0 may either
2512 indicate the top of the window or the bottom depending on the fragment
2513 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2514 The Z coordinate ranges from 0 to 1 to represent depth from the front
2515 to the back of the Z buffer. The W component contains the interpolated
2516 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2517 but unlike d3d10 which interpolates the same 1/w but then gives back
2518 the reciprocal of the interpolated value).
2519
2520 Fragment shaders may also declare an output register with
2521 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2522 the fragment shader to change the fragment's Z position.
2523
2524
2525
2526 TGSI_SEMANTIC_COLOR
2527 """""""""""""""""""
2528
2529 For vertex shader outputs or fragment shader inputs/outputs, this
2530 label indicates that the resister contains an R,G,B,A color.
2531
2532 Several shader inputs/outputs may contain colors so the semantic index
2533 is used to distinguish them. For example, color[0] may be the diffuse
2534 color while color[1] may be the specular color.
2535
2536 This label is needed so that the flat/smooth shading can be applied
2537 to the right interpolants during rasterization.
2538
2539
2540
2541 TGSI_SEMANTIC_BCOLOR
2542 """"""""""""""""""""
2543
2544 Back-facing colors are only used for back-facing polygons, and are only valid
2545 in vertex shader outputs. After rasterization, all polygons are front-facing
2546 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2547 so all BCOLORs effectively become regular COLORs in the fragment shader.
2548
2549
2550 TGSI_SEMANTIC_FOG
2551 """""""""""""""""
2552
2553 Vertex shader inputs and outputs and fragment shader inputs may be
2554 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2555 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2556 to compute a fog blend factor which is used to blend the normal fragment color
2557 with a constant fog color. But fog coord really is just an ordinary vec4
2558 register like regular semantics.
2559
2560
2561 TGSI_SEMANTIC_PSIZE
2562 """""""""""""""""""
2563
2564 Vertex shader input and output registers may be labeled with
2565 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2566 in the form (S, 0, 0, 1). The point size controls the width or diameter
2567 of points for rasterization. This label cannot be used in fragment
2568 shaders.
2569
2570 When using this semantic, be sure to set the appropriate state in the
2571 :ref:`rasterizer` first.
2572
2573
2574 TGSI_SEMANTIC_TEXCOORD
2575 """"""""""""""""""""""
2576
2577 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2578
2579 Vertex shader outputs and fragment shader inputs may be labeled with
2580 this semantic to make them replaceable by sprite coordinates via the
2581 sprite_coord_enable state in the :ref:`rasterizer`.
2582 The semantic index permitted with this semantic is limited to <= 7.
2583
2584 If the driver does not support TEXCOORD, sprite coordinate replacement
2585 applies to inputs with the GENERIC semantic instead.
2586
2587 The intended use case for this semantic is gl_TexCoord.
2588
2589
2590 TGSI_SEMANTIC_PCOORD
2591 """"""""""""""""""""
2592
2593 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2594
2595 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2596 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2597 the current primitive is a point and point sprites are enabled. Otherwise,
2598 the contents of the register are undefined.
2599
2600 The intended use case for this semantic is gl_PointCoord.
2601
2602
2603 TGSI_SEMANTIC_GENERIC
2604 """""""""""""""""""""
2605
2606 All vertex/fragment shader inputs/outputs not labeled with any other
2607 semantic label can be considered to be generic attributes. Typical
2608 uses of generic inputs/outputs are texcoords and user-defined values.
2609
2610
2611 TGSI_SEMANTIC_NORMAL
2612 """"""""""""""""""""
2613
2614 Indicates that a vertex shader input is a normal vector. This is
2615 typically only used for legacy graphics APIs.
2616
2617
2618 TGSI_SEMANTIC_FACE
2619 """"""""""""""""""
2620
2621 This label applies to fragment shader inputs only and indicates that
2622 the register contains front/back-face information of the form (F, 0,
2623 0, 1). The first component will be positive when the fragment belongs
2624 to a front-facing polygon, and negative when the fragment belongs to a
2625 back-facing polygon.
2626
2627
2628 TGSI_SEMANTIC_EDGEFLAG
2629 """"""""""""""""""""""
2630
2631 For vertex shaders, this sematic label indicates that an input or
2632 output is a boolean edge flag. The register layout is [F, x, x, x]
2633 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2634 simply copies the edge flag input to the edgeflag output.
2635
2636 Edge flags are used to control which lines or points are actually
2637 drawn when the polygon mode converts triangles/quads/polygons into
2638 points or lines.
2639
2640
2641 TGSI_SEMANTIC_STENCIL
2642 """""""""""""""""""""
2643
2644 For fragment shaders, this semantic label indicates that an output
2645 is a writable stencil reference value. Only the Y component is writable.
2646 This allows the fragment shader to change the fragments stencilref value.
2647
2648
2649 TGSI_SEMANTIC_VIEWPORT_INDEX
2650 """"""""""""""""""""""""""""
2651
2652 For geometry shaders, this semantic label indicates that an output
2653 contains the index of the viewport (and scissor) to use.
2654 Only the X value is used.
2655
2656
2657 TGSI_SEMANTIC_LAYER
2658 """""""""""""""""""
2659
2660 For geometry shaders, this semantic label indicates that an output
2661 contains the layer value to use for the color and depth/stencil surfaces.
2662 Only the X value is used. (Also known as rendertarget array index.)
2663
2664
2665 TGSI_SEMANTIC_CULLDIST
2666 """"""""""""""""""""""
2667
2668 Used as distance to plane for performing application-defined culling
2669 of individual primitives against a plane. When components of vertex
2670 elements are given this label, these values are assumed to be a
2671 float32 signed distance to a plane. Primitives will be completely
2672 discarded if the plane distance for all of the vertices in the
2673 primitive are < 0. If a vertex has a cull distance of NaN, that
2674 vertex counts as "out" (as if its < 0);
2675 The limits on both clip and cull distances are bound
2676 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2677 the maximum number of components that can be used to hold the
2678 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2679 which specifies the maximum number of registers which can be
2680 annotated with those semantics.
2681
2682
2683 TGSI_SEMANTIC_CLIPDIST
2684 """"""""""""""""""""""
2685
2686 When components of vertex elements are identified this way, these
2687 values are each assumed to be a float32 signed distance to a plane.
2688 Primitive setup only invokes rasterization on pixels for which
2689 the interpolated plane distances are >= 0. Multiple clip planes
2690 can be implemented simultaneously, by annotating multiple
2691 components of one or more vertex elements with the above specified
2692 semantic. The limits on both clip and cull distances are bound
2693 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2694 the maximum number of components that can be used to hold the
2695 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2696 which specifies the maximum number of registers which can be
2697 annotated with those semantics.
2698
2699 TGSI_SEMANTIC_SAMPLEID
2700 """"""""""""""""""""""
2701
2702 For fragment shaders, this semantic label indicates that a system value
2703 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2704
2705 TGSI_SEMANTIC_SAMPLEPOS
2706 """""""""""""""""""""""
2707
2708 For fragment shaders, this semantic label indicates that a system value
2709 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2710 and Y values are used.
2711
2712 TGSI_SEMANTIC_SAMPLEMASK
2713 """"""""""""""""""""""""
2714
2715 For fragment shaders, this semantic label indicates that an output contains
2716 the sample mask used to disable further sample processing
2717 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2718
2719 TGSI_SEMANTIC_INVOCATIONID
2720 """"""""""""""""""""""""""
2721
2722 For geometry shaders, this semantic label indicates that a system value
2723 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2724 used.
2725
2726 Declaration Interpolate
2727 ^^^^^^^^^^^^^^^^^^^^^^^
2728
2729 This token is only valid for fragment shader INPUT declarations.
2730
2731 The Interpolate field specifes the way input is being interpolated by
2732 the rasteriser and is one of TGSI_INTERPOLATE_*.
2733
2734 The Location field specifies the location inside the pixel that the
2735 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2736 when per-sample shading is enabled, the implementation may choose to
2737 interpolate at the sample irrespective of the Location field.
2738
2739 The CylindricalWrap bitfield specifies which register components
2740 should be subject to cylindrical wrapping when interpolating by the
2741 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2742 should be interpolated according to cylindrical wrapping rules.
2743
2744
2745 Declaration Sampler View
2746 ^^^^^^^^^^^^^^^^^^^^^^^^
2747
2748 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2749
2750 DCL SVIEW[#], resource, type(s)
2751
2752 Declares a shader input sampler view and assigns it to a SVIEW[#]
2753 register.
2754
2755 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2756
2757 type must be 1 or 4 entries (if specifying on a per-component
2758 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2759
2760
2761 Declaration Resource
2762 ^^^^^^^^^^^^^^^^^^^^
2763
2764 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2765
2766 DCL RES[#], resource [, WR] [, RAW]
2767
2768 Declares a shader input resource and assigns it to a RES[#]
2769 register.
2770
2771 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2772 2DArray.
2773
2774 If the RAW keyword is not specified, the texture data will be
2775 subject to conversion, swizzling and scaling as required to yield
2776 the specified data type from the physical data format of the bound
2777 resource.
2778
2779 If the RAW keyword is specified, no channel conversion will be
2780 performed: the values read for each of the channels (X,Y,Z,W) will
2781 correspond to consecutive words in the same order and format
2782 they're found in memory. No element-to-address conversion will be
2783 performed either: the value of the provided X coordinate will be
2784 interpreted in byte units instead of texel units. The result of
2785 accessing a misaligned address is undefined.
2786
2787 Usage of the STORE opcode is only allowed if the WR (writable) flag
2788 is set.
2789
2790
2791 Properties
2792 ^^^^^^^^^^^^^^^^^^^^^^^^
2793
2794 Properties are general directives that apply to the whole TGSI program.
2795
2796 FS_COORD_ORIGIN
2797 """""""""""""""
2798
2799 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2800 The default value is UPPER_LEFT.
2801
2802 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2803 increase downward and rightward.
2804 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2805 increase upward and rightward.
2806
2807 OpenGL defaults to LOWER_LEFT, and is configurable with the
2808 GL_ARB_fragment_coord_conventions extension.
2809
2810 DirectX 9/10 use UPPER_LEFT.
2811
2812 FS_COORD_PIXEL_CENTER
2813 """""""""""""""""""""
2814
2815 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2816 The default value is HALF_INTEGER.
2817
2818 If HALF_INTEGER, the fractionary part of the position will be 0.5
2819 If INTEGER, the fractionary part of the position will be 0.0
2820
2821 Note that this does not affect the set of fragments generated by
2822 rasterization, which is instead controlled by half_pixel_center in the
2823 rasterizer.
2824
2825 OpenGL defaults to HALF_INTEGER, and is configurable with the
2826 GL_ARB_fragment_coord_conventions extension.
2827
2828 DirectX 9 uses INTEGER.
2829 DirectX 10 uses HALF_INTEGER.
2830
2831 FS_COLOR0_WRITES_ALL_CBUFS
2832 """"""""""""""""""""""""""
2833 Specifies that writes to the fragment shader color 0 are replicated to all
2834 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2835 fragData is directed to a single color buffer, but fragColor is broadcast.
2836
2837 VS_PROHIBIT_UCPS
2838 """"""""""""""""""""""""""
2839 If this property is set on the program bound to the shader stage before the
2840 fragment shader, user clip planes should have no effect (be disabled) even if
2841 that shader does not write to any clip distance outputs and the rasterizer's
2842 clip_plane_enable is non-zero.
2843 This property is only supported by drivers that also support shader clip
2844 distance outputs.
2845 This is useful for APIs that don't have UCPs and where clip distances written
2846 by a shader cannot be disabled.
2847
2848 GS_INVOCATIONS
2849 """"""""""""""
2850
2851 Specifies the number of times a geometry shader should be executed for each
2852 input primitive. Each invocation will have a different
2853 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2854 be 1.
2855
2856 VS_WINDOW_SPACE_POSITION
2857 """"""""""""""""""""""""""
2858 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2859 is assumed to contain window space coordinates.
2860 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2861 directly taken from the 4-th component of the shader output.
2862 Naturally, clipping is not performed on window coordinates either.
2863 The effect of this property is undefined if a geometry or tessellation shader
2864 are in use.
2865
2866 Texture Sampling and Texture Formats
2867 ------------------------------------
2868
2869 This table shows how texture image components are returned as (x,y,z,w) tuples
2870 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2871 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2872 well.
2873
2874 +--------------------+--------------+--------------------+--------------+
2875 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2876 +====================+==============+====================+==============+
2877 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2878 +--------------------+--------------+--------------------+--------------+
2879 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2880 +--------------------+--------------+--------------------+--------------+
2881 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2882 +--------------------+--------------+--------------------+--------------+
2883 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2884 +--------------------+--------------+--------------------+--------------+
2885 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2886 +--------------------+--------------+--------------------+--------------+
2887 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2888 +--------------------+--------------+--------------------+--------------+
2889 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2890 +--------------------+--------------+--------------------+--------------+
2891 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2892 +--------------------+--------------+--------------------+--------------+
2893 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2894 | | | [#envmap-bumpmap]_ | |
2895 +--------------------+--------------+--------------------+--------------+
2896 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2897 | | | [#depth-tex-mode]_ | |
2898 +--------------------+--------------+--------------------+--------------+
2899 | S | (s, s, s, s) | unknown | unknown |
2900 +--------------------+--------------+--------------------+--------------+
2901
2902 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2903 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2904 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.