Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: FMA - Fused Multiply-Add
276
277 Perform a * b + c with no intermediate rounding step.
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + src2.x
282
283 dst.y = src0.y \times src1.y + src2.y
284
285 dst.z = src0.z \times src1.z + src2.z
286
287 dst.w = src0.w \times src1.w + src2.w
288
289
290 .. opcode:: DP2A - 2-component Dot Product And Add
291
292 .. math::
293
294 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
301
302
303 .. opcode:: FRC - Fraction
304
305 .. math::
306
307 dst.x = src.x - \lfloor src.x\rfloor
308
309 dst.y = src.y - \lfloor src.y\rfloor
310
311 dst.z = src.z - \lfloor src.z\rfloor
312
313 dst.w = src.w - \lfloor src.w\rfloor
314
315
316 .. opcode:: CLAMP - Clamp
317
318 .. math::
319
320 dst.x = clamp(src0.x, src1.x, src2.x)
321
322 dst.y = clamp(src0.y, src1.y, src2.y)
323
324 dst.z = clamp(src0.z, src1.z, src2.z)
325
326 dst.w = clamp(src0.w, src1.w, src2.w)
327
328
329 .. opcode:: FLR - Floor
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: DPH - Homogeneous Dot Product
408
409 This instruction replicates its result.
410
411 .. math::
412
413 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416 .. opcode:: COS - Cosine
417
418 This instruction replicates its result.
419
420 .. math::
421
422 dst = \cos{src.x}
423
424
425 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428 advertised. When it is, the fine version guarantees one derivative per row
429 while DDX is allowed to be the same for the entire 2x2 quad.
430
431 .. math::
432
433 dst.x = partialx(src.x)
434
435 dst.y = partialx(src.y)
436
437 dst.z = partialx(src.z)
438
439 dst.w = partialx(src.w)
440
441
442 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445 advertised. When it is, the fine version guarantees one derivative per column
446 while DDY is allowed to be the same for the entire 2x2 quad.
447
448 .. math::
449
450 dst.x = partialy(src.x)
451
452 dst.y = partialy(src.y)
453
454 dst.z = partialy(src.z)
455
456 dst.w = partialy(src.w)
457
458
459 .. opcode:: PK2H - Pack Two 16-bit Floats
460
461 TBD
462
463
464 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
465
466 TBD
467
468
469 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
470
471 TBD
472
473
474 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
475
476 TBD
477
478
479 .. opcode:: SEQ - Set On Equal
480
481 .. math::
482
483 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SGT - Set On Greater Than
493
494 .. math::
495
496 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
497
498 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
499
500 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
501
502 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
503
504
505 .. opcode:: SIN - Sine
506
507 This instruction replicates its result.
508
509 .. math::
510
511 dst = \sin{src.x}
512
513
514 .. opcode:: SLE - Set On Less Equal Than
515
516 .. math::
517
518 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
519
520 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
521
522 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
523
524 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
525
526
527 .. opcode:: SNE - Set On Not Equal
528
529 .. math::
530
531 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
532
533 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
534
535 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
536
537 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
538
539
540 .. opcode:: TEX - Texture Lookup
541
542 for array textures src0.y contains the slice for 1D,
543 and src0.z contain the slice for 2D.
544
545 for shadow textures with no arrays (and not cube map),
546 src0.z contains the reference value.
547
548 for shadow textures with arrays, src0.z contains
549 the reference value for 1D arrays, and src0.w contains
550 the reference value for 2D arrays and cube maps.
551
552 for cube map array shadow textures, the reference value
553 cannot be passed in src0.w, and TEX2 must be used instead.
554
555 .. math::
556
557 coord = src0
558
559 shadow_ref = src0.z or src0.w (optional)
560
561 unit = src1
562
563 dst = texture\_sample(unit, coord, shadow_ref)
564
565
566 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
567
568 this is the same as TEX, but uses another reg to encode the
569 reference value.
570
571 .. math::
572
573 coord = src0
574
575 shadow_ref = src1.x
576
577 unit = src2
578
579 dst = texture\_sample(unit, coord, shadow_ref)
580
581
582
583
584 .. opcode:: TXD - Texture Lookup with Derivatives
585
586 .. math::
587
588 coord = src0
589
590 ddx = src1
591
592 ddy = src2
593
594 unit = src3
595
596 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
597
598
599 .. opcode:: TXP - Projective Texture Lookup
600
601 .. math::
602
603 coord.x = src0.x / src0.w
604
605 coord.y = src0.y / src0.w
606
607 coord.z = src0.z / src0.w
608
609 coord.w = src0.w
610
611 unit = src1
612
613 dst = texture\_sample(unit, coord)
614
615
616 .. opcode:: UP2H - Unpack Two 16-Bit Floats
617
618 TBD
619
620 .. note::
621
622 Considered for removal.
623
624 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
625
626 TBD
627
628 .. note::
629
630 Considered for removal.
631
632 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
633
634 TBD
635
636 .. note::
637
638 Considered for removal.
639
640 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
641
642 TBD
643
644 .. note::
645
646 Considered for removal.
647
648
649 .. opcode:: ARR - Address Register Load With Round
650
651 .. math::
652
653 dst.x = (int) round(src.x)
654
655 dst.y = (int) round(src.y)
656
657 dst.z = (int) round(src.z)
658
659 dst.w = (int) round(src.w)
660
661
662 .. opcode:: SSG - Set Sign
663
664 .. math::
665
666 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
667
668 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
669
670 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
671
672 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
673
674
675 .. opcode:: CMP - Compare
676
677 .. math::
678
679 dst.x = (src0.x < 0) ? src1.x : src2.x
680
681 dst.y = (src0.y < 0) ? src1.y : src2.y
682
683 dst.z = (src0.z < 0) ? src1.z : src2.z
684
685 dst.w = (src0.w < 0) ? src1.w : src2.w
686
687
688 .. opcode:: KILL_IF - Conditional Discard
689
690 Conditional discard. Allowed in fragment shaders only.
691
692 .. math::
693
694 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
695 discard
696 endif
697
698
699 .. opcode:: KILL - Discard
700
701 Unconditional discard. Allowed in fragment shaders only.
702
703
704 .. opcode:: SCS - Sine Cosine
705
706 .. math::
707
708 dst.x = \cos{src.x}
709
710 dst.y = \sin{src.x}
711
712 dst.z = 0
713
714 dst.w = 1
715
716
717 .. opcode:: TXB - Texture Lookup With Bias
718
719 for cube map array textures and shadow cube maps, the bias value
720 cannot be passed in src0.w, and TXB2 must be used instead.
721
722 if the target is a shadow texture, the reference value is always
723 in src.z (this prevents shadow 3d and shadow 2d arrays from
724 using this instruction, but this is not needed).
725
726 .. math::
727
728 coord.x = src0.x
729
730 coord.y = src0.y
731
732 coord.z = src0.z
733
734 coord.w = none
735
736 bias = src0.w
737
738 unit = src1
739
740 dst = texture\_sample(unit, coord, bias)
741
742
743 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
744
745 this is the same as TXB, but uses another reg to encode the
746 lod bias value for cube map arrays and shadow cube maps.
747 Presumably shadow 2d arrays and shadow 3d targets could use
748 this encoding too, but this is not legal.
749
750 shadow cube map arrays are neither possible nor required.
751
752 .. math::
753
754 coord = src0
755
756 bias = src1.x
757
758 unit = src2
759
760 dst = texture\_sample(unit, coord, bias)
761
762
763 .. opcode:: DIV - Divide
764
765 .. math::
766
767 dst.x = \frac{src0.x}{src1.x}
768
769 dst.y = \frac{src0.y}{src1.y}
770
771 dst.z = \frac{src0.z}{src1.z}
772
773 dst.w = \frac{src0.w}{src1.w}
774
775
776 .. opcode:: DP2 - 2-component Dot Product
777
778 This instruction replicates its result.
779
780 .. math::
781
782 dst = src0.x \times src1.x + src0.y \times src1.y
783
784
785 .. opcode:: TXL - Texture Lookup With explicit LOD
786
787 for cube map array textures, the explicit lod value
788 cannot be passed in src0.w, and TXL2 must be used instead.
789
790 if the target is a shadow texture, the reference value is always
791 in src.z (this prevents shadow 3d / 2d array / cube targets from
792 using this instruction, but this is not needed).
793
794 .. math::
795
796 coord.x = src0.x
797
798 coord.y = src0.y
799
800 coord.z = src0.z
801
802 coord.w = none
803
804 lod = src0.w
805
806 unit = src1
807
808 dst = texture\_sample(unit, coord, lod)
809
810
811 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
812
813 this is the same as TXL, but uses another reg to encode the
814 explicit lod value.
815 Presumably shadow 3d / 2d array / cube targets could use
816 this encoding too, but this is not legal.
817
818 shadow cube map arrays are neither possible nor required.
819
820 .. math::
821
822 coord = src0
823
824 lod = src1.x
825
826 unit = src2
827
828 dst = texture\_sample(unit, coord, lod)
829
830
831 .. opcode:: PUSHA - Push Address Register On Stack
832
833 push(src.x)
834 push(src.y)
835 push(src.z)
836 push(src.w)
837
838 .. note::
839
840 Considered for cleanup.
841
842 .. note::
843
844 Considered for removal.
845
846 .. opcode:: POPA - Pop Address Register From Stack
847
848 dst.w = pop()
849 dst.z = pop()
850 dst.y = pop()
851 dst.x = pop()
852
853 .. note::
854
855 Considered for cleanup.
856
857 .. note::
858
859 Considered for removal.
860
861
862 .. opcode:: CALLNZ - Subroutine Call If Not Zero
863
864 TBD
865
866 .. note::
867
868 Considered for cleanup.
869
870 .. note::
871
872 Considered for removal.
873
874
875 Compute ISA
876 ^^^^^^^^^^^^^^^^^^^^^^^^
877
878 These opcodes are primarily provided for special-use computational shaders.
879 Support for these opcodes indicated by a special pipe capability bit (TBD).
880
881 XXX doesn't look like most of the opcodes really belong here.
882
883 .. opcode:: CEIL - Ceiling
884
885 .. math::
886
887 dst.x = \lceil src.x\rceil
888
889 dst.y = \lceil src.y\rceil
890
891 dst.z = \lceil src.z\rceil
892
893 dst.w = \lceil src.w\rceil
894
895
896 .. opcode:: TRUNC - Truncate
897
898 .. math::
899
900 dst.x = trunc(src.x)
901
902 dst.y = trunc(src.y)
903
904 dst.z = trunc(src.z)
905
906 dst.w = trunc(src.w)
907
908
909 .. opcode:: MOD - Modulus
910
911 .. math::
912
913 dst.x = src0.x \bmod src1.x
914
915 dst.y = src0.y \bmod src1.y
916
917 dst.z = src0.z \bmod src1.z
918
919 dst.w = src0.w \bmod src1.w
920
921
922 .. opcode:: UARL - Integer Address Register Load
923
924 Moves the contents of the source register, assumed to be an integer, into the
925 destination register, which is assumed to be an address (ADDR) register.
926
927
928 .. opcode:: SAD - Sum Of Absolute Differences
929
930 .. math::
931
932 dst.x = |src0.x - src1.x| + src2.x
933
934 dst.y = |src0.y - src1.y| + src2.y
935
936 dst.z = |src0.z - src1.z| + src2.z
937
938 dst.w = |src0.w - src1.w| + src2.w
939
940
941 .. opcode:: TXF - Texel Fetch
942
943 As per NV_gpu_shader4, extract a single texel from a specified texture
944 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
945 four-component signed integer vector used to identify the single texel
946 accessed. 3 components + level. Just like texture instructions, an optional
947 offset vector is provided, which is subject to various driver restrictions
948 (regarding range, source of offsets).
949 TXF(uint_vec coord, int_vec offset).
950
951
952 .. opcode:: TXQ - Texture Size Query
953
954 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
955 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
956 depth), 1D array (width, layers), 2D array (width, height, layers).
957 Also return the number of accessible levels (last_level - first_level + 1)
958 in W.
959
960 For components which don't return a resource dimension, their value
961 is undefined.
962
963 .. math::
964
965 lod = src0.x
966
967 dst.x = texture\_width(unit, lod)
968
969 dst.y = texture\_height(unit, lod)
970
971 dst.z = texture\_depth(unit, lod)
972
973 dst.w = texture\_levels(unit)
974
975
976 .. opcode:: TXQS - Texture Samples Query
977
978 This retrieves the number of samples in the texture, and stores it
979 into the x component. The other components are undefined.
980
981 .. math::
982
983 dst.x = texture\_samples(unit)
984
985
986 .. opcode:: TG4 - Texture Gather
987
988 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
989 filtering operation and packs them into a single register. Only works with
990 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
991 addressing modes of the sampler and the top level of any mip pyramid are
992 used. Set W to zero. It behaves like the TEX instruction, but a filtered
993 sample is not generated. The four samples that contribute to filtering are
994 placed into xyzw in clockwise order, starting with the (u,v) texture
995 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
996 where the magnitude of the deltas are half a texel.
997
998 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
999 depth compares, single component selection, and a non-constant offset. It
1000 doesn't allow support for the GL independent offset to get i0,j0. This would
1001 require another CAP is hw can do it natively. For now we lower that before
1002 TGSI.
1003
1004 .. math::
1005
1006 coord = src0
1007
1008 component = src1
1009
1010 dst = texture\_gather4 (unit, coord, component)
1011
1012 (with SM5 - cube array shadow)
1013
1014 .. math::
1015
1016 coord = src0
1017
1018 compare = src1
1019
1020 dst = texture\_gather (uint, coord, compare)
1021
1022 .. opcode:: LODQ - level of detail query
1023
1024 Compute the LOD information that the texture pipe would use to access the
1025 texture. The Y component contains the computed LOD lambda_prime. The X
1026 component contains the LOD that will be accessed, based on min/max lod's
1027 and mipmap filters.
1028
1029 .. math::
1030
1031 coord = src0
1032
1033 dst.xy = lodq(uint, coord);
1034
1035 Integer ISA
1036 ^^^^^^^^^^^^^^^^^^^^^^^^
1037 These opcodes are used for integer operations.
1038 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1039
1040
1041 .. opcode:: I2F - Signed Integer To Float
1042
1043 Rounding is unspecified (round to nearest even suggested).
1044
1045 .. math::
1046
1047 dst.x = (float) src.x
1048
1049 dst.y = (float) src.y
1050
1051 dst.z = (float) src.z
1052
1053 dst.w = (float) src.w
1054
1055
1056 .. opcode:: U2F - Unsigned Integer To Float
1057
1058 Rounding is unspecified (round to nearest even suggested).
1059
1060 .. math::
1061
1062 dst.x = (float) src.x
1063
1064 dst.y = (float) src.y
1065
1066 dst.z = (float) src.z
1067
1068 dst.w = (float) src.w
1069
1070
1071 .. opcode:: F2I - Float to Signed Integer
1072
1073 Rounding is towards zero (truncate).
1074 Values outside signed range (including NaNs) produce undefined results.
1075
1076 .. math::
1077
1078 dst.x = (int) src.x
1079
1080 dst.y = (int) src.y
1081
1082 dst.z = (int) src.z
1083
1084 dst.w = (int) src.w
1085
1086
1087 .. opcode:: F2U - Float to Unsigned Integer
1088
1089 Rounding is towards zero (truncate).
1090 Values outside unsigned range (including NaNs) produce undefined results.
1091
1092 .. math::
1093
1094 dst.x = (unsigned) src.x
1095
1096 dst.y = (unsigned) src.y
1097
1098 dst.z = (unsigned) src.z
1099
1100 dst.w = (unsigned) src.w
1101
1102
1103 .. opcode:: UADD - Integer Add
1104
1105 This instruction works the same for signed and unsigned integers.
1106 The low 32bit of the result is returned.
1107
1108 .. math::
1109
1110 dst.x = src0.x + src1.x
1111
1112 dst.y = src0.y + src1.y
1113
1114 dst.z = src0.z + src1.z
1115
1116 dst.w = src0.w + src1.w
1117
1118
1119 .. opcode:: UMAD - Integer Multiply And Add
1120
1121 This instruction works the same for signed and unsigned integers.
1122 The multiplication returns the low 32bit (as does the result itself).
1123
1124 .. math::
1125
1126 dst.x = src0.x \times src1.x + src2.x
1127
1128 dst.y = src0.y \times src1.y + src2.y
1129
1130 dst.z = src0.z \times src1.z + src2.z
1131
1132 dst.w = src0.w \times src1.w + src2.w
1133
1134
1135 .. opcode:: UMUL - Integer Multiply
1136
1137 This instruction works the same for signed and unsigned integers.
1138 The low 32bit of the result is returned.
1139
1140 .. math::
1141
1142 dst.x = src0.x \times src1.x
1143
1144 dst.y = src0.y \times src1.y
1145
1146 dst.z = src0.z \times src1.z
1147
1148 dst.w = src0.w \times src1.w
1149
1150
1151 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1152
1153 The high 32bits of the multiplication of 2 signed integers are returned.
1154
1155 .. math::
1156
1157 dst.x = (src0.x \times src1.x) >> 32
1158
1159 dst.y = (src0.y \times src1.y) >> 32
1160
1161 dst.z = (src0.z \times src1.z) >> 32
1162
1163 dst.w = (src0.w \times src1.w) >> 32
1164
1165
1166 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1167
1168 The high 32bits of the multiplication of 2 unsigned integers are returned.
1169
1170 .. math::
1171
1172 dst.x = (src0.x \times src1.x) >> 32
1173
1174 dst.y = (src0.y \times src1.y) >> 32
1175
1176 dst.z = (src0.z \times src1.z) >> 32
1177
1178 dst.w = (src0.w \times src1.w) >> 32
1179
1180
1181 .. opcode:: IDIV - Signed Integer Division
1182
1183 TBD: behavior for division by zero.
1184
1185 .. math::
1186
1187 dst.x = src0.x \ src1.x
1188
1189 dst.y = src0.y \ src1.y
1190
1191 dst.z = src0.z \ src1.z
1192
1193 dst.w = src0.w \ src1.w
1194
1195
1196 .. opcode:: UDIV - Unsigned Integer Division
1197
1198 For division by zero, 0xffffffff is returned.
1199
1200 .. math::
1201
1202 dst.x = src0.x \ src1.x
1203
1204 dst.y = src0.y \ src1.y
1205
1206 dst.z = src0.z \ src1.z
1207
1208 dst.w = src0.w \ src1.w
1209
1210
1211 .. opcode:: UMOD - Unsigned Integer Remainder
1212
1213 If second arg is zero, 0xffffffff is returned.
1214
1215 .. math::
1216
1217 dst.x = src0.x \ src1.x
1218
1219 dst.y = src0.y \ src1.y
1220
1221 dst.z = src0.z \ src1.z
1222
1223 dst.w = src0.w \ src1.w
1224
1225
1226 .. opcode:: NOT - Bitwise Not
1227
1228 .. math::
1229
1230 dst.x = \sim src.x
1231
1232 dst.y = \sim src.y
1233
1234 dst.z = \sim src.z
1235
1236 dst.w = \sim src.w
1237
1238
1239 .. opcode:: AND - Bitwise And
1240
1241 .. math::
1242
1243 dst.x = src0.x \& src1.x
1244
1245 dst.y = src0.y \& src1.y
1246
1247 dst.z = src0.z \& src1.z
1248
1249 dst.w = src0.w \& src1.w
1250
1251
1252 .. opcode:: OR - Bitwise Or
1253
1254 .. math::
1255
1256 dst.x = src0.x | src1.x
1257
1258 dst.y = src0.y | src1.y
1259
1260 dst.z = src0.z | src1.z
1261
1262 dst.w = src0.w | src1.w
1263
1264
1265 .. opcode:: XOR - Bitwise Xor
1266
1267 .. math::
1268
1269 dst.x = src0.x \oplus src1.x
1270
1271 dst.y = src0.y \oplus src1.y
1272
1273 dst.z = src0.z \oplus src1.z
1274
1275 dst.w = src0.w \oplus src1.w
1276
1277
1278 .. opcode:: IMAX - Maximum of Signed Integers
1279
1280 .. math::
1281
1282 dst.x = max(src0.x, src1.x)
1283
1284 dst.y = max(src0.y, src1.y)
1285
1286 dst.z = max(src0.z, src1.z)
1287
1288 dst.w = max(src0.w, src1.w)
1289
1290
1291 .. opcode:: UMAX - Maximum of Unsigned Integers
1292
1293 .. math::
1294
1295 dst.x = max(src0.x, src1.x)
1296
1297 dst.y = max(src0.y, src1.y)
1298
1299 dst.z = max(src0.z, src1.z)
1300
1301 dst.w = max(src0.w, src1.w)
1302
1303
1304 .. opcode:: IMIN - Minimum of Signed Integers
1305
1306 .. math::
1307
1308 dst.x = min(src0.x, src1.x)
1309
1310 dst.y = min(src0.y, src1.y)
1311
1312 dst.z = min(src0.z, src1.z)
1313
1314 dst.w = min(src0.w, src1.w)
1315
1316
1317 .. opcode:: UMIN - Minimum of Unsigned Integers
1318
1319 .. math::
1320
1321 dst.x = min(src0.x, src1.x)
1322
1323 dst.y = min(src0.y, src1.y)
1324
1325 dst.z = min(src0.z, src1.z)
1326
1327 dst.w = min(src0.w, src1.w)
1328
1329
1330 .. opcode:: SHL - Shift Left
1331
1332 The shift count is masked with 0x1f before the shift is applied.
1333
1334 .. math::
1335
1336 dst.x = src0.x << (0x1f \& src1.x)
1337
1338 dst.y = src0.y << (0x1f \& src1.y)
1339
1340 dst.z = src0.z << (0x1f \& src1.z)
1341
1342 dst.w = src0.w << (0x1f \& src1.w)
1343
1344
1345 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1346
1347 The shift count is masked with 0x1f before the shift is applied.
1348
1349 .. math::
1350
1351 dst.x = src0.x >> (0x1f \& src1.x)
1352
1353 dst.y = src0.y >> (0x1f \& src1.y)
1354
1355 dst.z = src0.z >> (0x1f \& src1.z)
1356
1357 dst.w = src0.w >> (0x1f \& src1.w)
1358
1359
1360 .. opcode:: USHR - Logical Shift Right
1361
1362 The shift count is masked with 0x1f before the shift is applied.
1363
1364 .. math::
1365
1366 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1367
1368 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1369
1370 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1371
1372 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1373
1374
1375 .. opcode:: UCMP - Integer Conditional Move
1376
1377 .. math::
1378
1379 dst.x = src0.x ? src1.x : src2.x
1380
1381 dst.y = src0.y ? src1.y : src2.y
1382
1383 dst.z = src0.z ? src1.z : src2.z
1384
1385 dst.w = src0.w ? src1.w : src2.w
1386
1387
1388
1389 .. opcode:: ISSG - Integer Set Sign
1390
1391 .. math::
1392
1393 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1394
1395 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1396
1397 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1398
1399 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1400
1401
1402
1403 .. opcode:: FSLT - Float Set On Less Than (ordered)
1404
1405 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1406
1407 .. math::
1408
1409 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1410
1411 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1412
1413 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1414
1415 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1416
1417
1418 .. opcode:: ISLT - Signed Integer Set On Less Than
1419
1420 .. math::
1421
1422 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1423
1424 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1425
1426 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1427
1428 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1429
1430
1431 .. opcode:: USLT - Unsigned Integer Set On Less Than
1432
1433 .. math::
1434
1435 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1436
1437 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1438
1439 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1440
1441 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1442
1443
1444 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1445
1446 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1447
1448 .. math::
1449
1450 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1451
1452 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1453
1454 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1455
1456 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1457
1458
1459 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1460
1461 .. math::
1462
1463 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1464
1465 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1466
1467 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1468
1469 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1470
1471
1472 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1473
1474 .. math::
1475
1476 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1477
1478 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1479
1480 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1481
1482 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1483
1484
1485 .. opcode:: FSEQ - Float Set On Equal (ordered)
1486
1487 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1488
1489 .. math::
1490
1491 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1492
1493 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1494
1495 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1496
1497 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1498
1499
1500 .. opcode:: USEQ - Integer Set On Equal
1501
1502 .. math::
1503
1504 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1505
1506 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1507
1508 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1509
1510 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1511
1512
1513 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1514
1515 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1516
1517 .. math::
1518
1519 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1520
1521 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1522
1523 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1524
1525 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1526
1527
1528 .. opcode:: USNE - Integer Set On Not Equal
1529
1530 .. math::
1531
1532 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1533
1534 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1535
1536 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1537
1538 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1539
1540
1541 .. opcode:: INEG - Integer Negate
1542
1543 Two's complement.
1544
1545 .. math::
1546
1547 dst.x = -src.x
1548
1549 dst.y = -src.y
1550
1551 dst.z = -src.z
1552
1553 dst.w = -src.w
1554
1555
1556 .. opcode:: IABS - Integer Absolute Value
1557
1558 .. math::
1559
1560 dst.x = |src.x|
1561
1562 dst.y = |src.y|
1563
1564 dst.z = |src.z|
1565
1566 dst.w = |src.w|
1567
1568 Bitwise ISA
1569 ^^^^^^^^^^^
1570 These opcodes are used for bit-level manipulation of integers.
1571
1572 .. opcode:: IBFE - Signed Bitfield Extract
1573
1574 See SM5 instruction of the same name. Extracts a set of bits from the input,
1575 and sign-extends them if the high bit of the extracted window is set.
1576
1577 Pseudocode::
1578
1579 def ibfe(value, offset, bits):
1580 offset = offset & 0x1f
1581 bits = bits & 0x1f
1582 if bits == 0: return 0
1583 # Note: >> sign-extends
1584 if width + offset < 32:
1585 return (value << (32 - offset - bits)) >> (32 - bits)
1586 else:
1587 return value >> offset
1588
1589 .. opcode:: UBFE - Unsigned Bitfield Extract
1590
1591 See SM5 instruction of the same name. Extracts a set of bits from the input,
1592 without any sign-extension.
1593
1594 Pseudocode::
1595
1596 def ubfe(value, offset, bits):
1597 offset = offset & 0x1f
1598 bits = bits & 0x1f
1599 if bits == 0: return 0
1600 # Note: >> does not sign-extend
1601 if width + offset < 32:
1602 return (value << (32 - offset - bits)) >> (32 - bits)
1603 else:
1604 return value >> offset
1605
1606 .. opcode:: BFI - Bitfield Insert
1607
1608 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1609 the low bits of 'insert'.
1610
1611 Pseudocode::
1612
1613 def bfi(base, insert, offset, bits):
1614 offset = offset & 0x1f
1615 bits = bits & 0x1f
1616 mask = ((1 << bits) - 1) << offset
1617 return ((insert << offset) & mask) | (base & ~mask)
1618
1619 .. opcode:: BREV - Bitfield Reverse
1620
1621 See SM5 instruction BFREV. Reverses the bits of the argument.
1622
1623 .. opcode:: POPC - Population Count
1624
1625 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1626
1627 .. opcode:: LSB - Index of lowest set bit
1628
1629 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1630 bit of the argument. Returns -1 if none are set.
1631
1632 .. opcode:: IMSB - Index of highest non-sign bit
1633
1634 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1635 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1636 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1637 (i.e. for inputs 0 and -1).
1638
1639 .. opcode:: UMSB - Index of highest set bit
1640
1641 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1642 set bit of the argument. Returns -1 if none are set.
1643
1644 Geometry ISA
1645 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1646
1647 These opcodes are only supported in geometry shaders; they have no meaning
1648 in any other type of shader.
1649
1650 .. opcode:: EMIT - Emit
1651
1652 Generate a new vertex for the current primitive into the specified vertex
1653 stream using the values in the output registers.
1654
1655
1656 .. opcode:: ENDPRIM - End Primitive
1657
1658 Complete the current primitive in the specified vertex stream (consisting of
1659 the emitted vertices), and start a new one.
1660
1661
1662 GLSL ISA
1663 ^^^^^^^^^^
1664
1665 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1666 opcodes is determined by a special capability bit, ``GLSL``.
1667 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1668
1669 .. opcode:: CAL - Subroutine Call
1670
1671 push(pc)
1672 pc = target
1673
1674
1675 .. opcode:: RET - Subroutine Call Return
1676
1677 pc = pop()
1678
1679
1680 .. opcode:: CONT - Continue
1681
1682 Unconditionally moves the point of execution to the instruction after the
1683 last bgnloop. The instruction must appear within a bgnloop/endloop.
1684
1685 .. note::
1686
1687 Support for CONT is determined by a special capability bit,
1688 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1689
1690
1691 .. opcode:: BGNLOOP - Begin a Loop
1692
1693 Start a loop. Must have a matching endloop.
1694
1695
1696 .. opcode:: BGNSUB - Begin Subroutine
1697
1698 Starts definition of a subroutine. Must have a matching endsub.
1699
1700
1701 .. opcode:: ENDLOOP - End a Loop
1702
1703 End a loop started with bgnloop.
1704
1705
1706 .. opcode:: ENDSUB - End Subroutine
1707
1708 Ends definition of a subroutine.
1709
1710
1711 .. opcode:: NOP - No Operation
1712
1713 Do nothing.
1714
1715
1716 .. opcode:: BRK - Break
1717
1718 Unconditionally moves the point of execution to the instruction after the
1719 next endloop or endswitch. The instruction must appear within a loop/endloop
1720 or switch/endswitch.
1721
1722
1723 .. opcode:: BREAKC - Break Conditional
1724
1725 Conditionally moves the point of execution to the instruction after the
1726 next endloop or endswitch. The instruction must appear within a loop/endloop
1727 or switch/endswitch.
1728 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1729 as an integer register.
1730
1731 .. note::
1732
1733 Considered for removal as it's quite inconsistent wrt other opcodes
1734 (could emulate with UIF/BRK/ENDIF).
1735
1736
1737 .. opcode:: IF - Float If
1738
1739 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1740
1741 src0.x != 0.0
1742
1743 where src0.x is interpreted as a floating point register.
1744
1745
1746 .. opcode:: UIF - Bitwise If
1747
1748 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1749
1750 src0.x != 0
1751
1752 where src0.x is interpreted as an integer register.
1753
1754
1755 .. opcode:: ELSE - Else
1756
1757 Starts an else block, after an IF or UIF statement.
1758
1759
1760 .. opcode:: ENDIF - End If
1761
1762 Ends an IF or UIF block.
1763
1764
1765 .. opcode:: SWITCH - Switch
1766
1767 Starts a C-style switch expression. The switch consists of one or multiple
1768 CASE statements, and at most one DEFAULT statement. Execution of a statement
1769 ends when a BRK is hit, but just like in C falling through to other cases
1770 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1771 just as last statement, and fallthrough is allowed into/from it.
1772 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1773
1774 Example::
1775
1776 SWITCH src[0].x
1777 CASE src[0].x
1778 (some instructions here)
1779 (optional BRK here)
1780 DEFAULT
1781 (some instructions here)
1782 (optional BRK here)
1783 CASE src[0].x
1784 (some instructions here)
1785 (optional BRK here)
1786 ENDSWITCH
1787
1788
1789 .. opcode:: CASE - Switch case
1790
1791 This represents a switch case label. The src arg must be an integer immediate.
1792
1793
1794 .. opcode:: DEFAULT - Switch default
1795
1796 This represents the default case in the switch, which is taken if no other
1797 case matches.
1798
1799
1800 .. opcode:: ENDSWITCH - End of switch
1801
1802 Ends a switch expression.
1803
1804
1805 Interpolation ISA
1806 ^^^^^^^^^^^^^^^^^
1807
1808 The interpolation instructions allow an input to be interpolated in a
1809 different way than its declaration. This corresponds to the GLSL 4.00
1810 interpolateAt* functions. The first argument of each of these must come from
1811 ``TGSI_FILE_INPUT``.
1812
1813 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1814
1815 Interpolates the varying specified by src0 at the centroid
1816
1817 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1818
1819 Interpolates the varying specified by src0 at the sample id specified by
1820 src1.x (interpreted as an integer)
1821
1822 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1823
1824 Interpolates the varying specified by src0 at the offset src1.xy from the
1825 pixel center (interpreted as floats)
1826
1827
1828 .. _doubleopcodes:
1829
1830 Double ISA
1831 ^^^^^^^^^^^^^^^
1832
1833 The double-precision opcodes reinterpret four-component vectors into
1834 two-component vectors with doubled precision in each component.
1835
1836 .. opcode:: DABS - Absolute
1837
1838 dst.xy = |src0.xy|
1839 dst.zw = |src0.zw|
1840
1841 .. opcode:: DADD - Add
1842
1843 .. math::
1844
1845 dst.xy = src0.xy + src1.xy
1846
1847 dst.zw = src0.zw + src1.zw
1848
1849 .. opcode:: DSEQ - Set on Equal
1850
1851 .. math::
1852
1853 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1854
1855 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1856
1857 .. opcode:: DSNE - Set on Equal
1858
1859 .. math::
1860
1861 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1862
1863 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1864
1865 .. opcode:: DSLT - Set on Less than
1866
1867 .. math::
1868
1869 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1870
1871 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1872
1873 .. opcode:: DSGE - Set on Greater equal
1874
1875 .. math::
1876
1877 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1878
1879 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1880
1881 .. opcode:: DFRAC - Fraction
1882
1883 .. math::
1884
1885 dst.xy = src.xy - \lfloor src.xy\rfloor
1886
1887 dst.zw = src.zw - \lfloor src.zw\rfloor
1888
1889 .. opcode:: DTRUNC - Truncate
1890
1891 .. math::
1892
1893 dst.xy = trunc(src.xy)
1894
1895 dst.zw = trunc(src.zw)
1896
1897 .. opcode:: DCEIL - Ceiling
1898
1899 .. math::
1900
1901 dst.xy = \lceil src.xy\rceil
1902
1903 dst.zw = \lceil src.zw\rceil
1904
1905 .. opcode:: DFLR - Floor
1906
1907 .. math::
1908
1909 dst.xy = \lfloor src.xy\rfloor
1910
1911 dst.zw = \lfloor src.zw\rfloor
1912
1913 .. opcode:: DROUND - Fraction
1914
1915 .. math::
1916
1917 dst.xy = round(src.xy)
1918
1919 dst.zw = round(src.zw)
1920
1921 .. opcode:: DSSG - Set Sign
1922
1923 .. math::
1924
1925 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1926
1927 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1928
1929 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1930
1931 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1932 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1933 :math:`dst1 \times 2^{dst0} = src` .
1934
1935 .. math::
1936
1937 dst0.xy = exp(src.xy)
1938
1939 dst1.xy = frac(src.xy)
1940
1941 dst0.zw = exp(src.zw)
1942
1943 dst1.zw = frac(src.zw)
1944
1945 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1946
1947 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1948 source is an integer.
1949
1950 .. math::
1951
1952 dst.xy = src0.xy \times 2^{src1.x}
1953
1954 dst.zw = src0.zw \times 2^{src1.y}
1955
1956 .. opcode:: DMIN - Minimum
1957
1958 .. math::
1959
1960 dst.xy = min(src0.xy, src1.xy)
1961
1962 dst.zw = min(src0.zw, src1.zw)
1963
1964 .. opcode:: DMAX - Maximum
1965
1966 .. math::
1967
1968 dst.xy = max(src0.xy, src1.xy)
1969
1970 dst.zw = max(src0.zw, src1.zw)
1971
1972 .. opcode:: DMUL - Multiply
1973
1974 .. math::
1975
1976 dst.xy = src0.xy \times src1.xy
1977
1978 dst.zw = src0.zw \times src1.zw
1979
1980
1981 .. opcode:: DMAD - Multiply And Add
1982
1983 .. math::
1984
1985 dst.xy = src0.xy \times src1.xy + src2.xy
1986
1987 dst.zw = src0.zw \times src1.zw + src2.zw
1988
1989
1990 .. opcode:: DFMA - Fused Multiply-Add
1991
1992 Perform a * b + c with no intermediate rounding step.
1993
1994 .. math::
1995
1996 dst.xy = src0.xy \times src1.xy + src2.xy
1997
1998 dst.zw = src0.zw \times src1.zw + src2.zw
1999
2000
2001 .. opcode:: DRCP - Reciprocal
2002
2003 .. math::
2004
2005 dst.xy = \frac{1}{src.xy}
2006
2007 dst.zw = \frac{1}{src.zw}
2008
2009 .. opcode:: DSQRT - Square Root
2010
2011 .. math::
2012
2013 dst.xy = \sqrt{src.xy}
2014
2015 dst.zw = \sqrt{src.zw}
2016
2017 .. opcode:: DRSQ - Reciprocal Square Root
2018
2019 .. math::
2020
2021 dst.xy = \frac{1}{\sqrt{src.xy}}
2022
2023 dst.zw = \frac{1}{\sqrt{src.zw}}
2024
2025 .. opcode:: F2D - Float to Double
2026
2027 .. math::
2028
2029 dst.xy = double(src0.x)
2030
2031 dst.zw = double(src0.y)
2032
2033 .. opcode:: D2F - Double to Float
2034
2035 .. math::
2036
2037 dst.x = float(src0.xy)
2038
2039 dst.y = float(src0.zw)
2040
2041 .. opcode:: I2D - Int to Double
2042
2043 .. math::
2044
2045 dst.xy = double(src0.x)
2046
2047 dst.zw = double(src0.y)
2048
2049 .. opcode:: D2I - Double to Int
2050
2051 .. math::
2052
2053 dst.x = int(src0.xy)
2054
2055 dst.y = int(src0.zw)
2056
2057 .. opcode:: U2D - Unsigned Int to Double
2058
2059 .. math::
2060
2061 dst.xy = double(src0.x)
2062
2063 dst.zw = double(src0.y)
2064
2065 .. opcode:: D2U - Double to Unsigned Int
2066
2067 .. math::
2068
2069 dst.x = unsigned(src0.xy)
2070
2071 dst.y = unsigned(src0.zw)
2072
2073 .. _samplingopcodes:
2074
2075 Resource Sampling Opcodes
2076 ^^^^^^^^^^^^^^^^^^^^^^^^^
2077
2078 Those opcodes follow very closely semantics of the respective Direct3D
2079 instructions. If in doubt double check Direct3D documentation.
2080 Note that the swizzle on SVIEW (src1) determines texel swizzling
2081 after lookup.
2082
2083 .. opcode:: SAMPLE
2084
2085 Using provided address, sample data from the specified texture using the
2086 filtering mode identified by the gven sampler. The source data may come from
2087 any resource type other than buffers.
2088
2089 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2090
2091 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2092
2093 .. opcode:: SAMPLE_I
2094
2095 Simplified alternative to the SAMPLE instruction. Using the provided
2096 integer address, SAMPLE_I fetches data from the specified sampler view
2097 without any filtering. The source data may come from any resource type
2098 other than CUBE.
2099
2100 Syntax: ``SAMPLE_I dst, address, sampler_view``
2101
2102 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2103
2104 The 'address' is specified as unsigned integers. If the 'address' is out of
2105 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2106 components. As such the instruction doesn't honor address wrap modes, in
2107 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2108 address.w always provides an unsigned integer mipmap level. If the value is
2109 out of the range then the instruction always returns 0 in all components.
2110 address.yz are ignored for buffers and 1d textures. address.z is ignored
2111 for 1d texture arrays and 2d textures.
2112
2113 For 1D texture arrays address.y provides the array index (also as unsigned
2114 integer). If the value is out of the range of available array indices
2115 [0... (array size - 1)] then the opcode always returns 0 in all components.
2116 For 2D texture arrays address.z provides the array index, otherwise it
2117 exhibits the same behavior as in the case for 1D texture arrays. The exact
2118 semantics of the source address are presented in the table below:
2119
2120 +---------------------------+----+-----+-----+---------+
2121 | resource type | X | Y | Z | W |
2122 +===========================+====+=====+=====+=========+
2123 | ``PIPE_BUFFER`` | x | | | ignored |
2124 +---------------------------+----+-----+-----+---------+
2125 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2126 +---------------------------+----+-----+-----+---------+
2127 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2128 +---------------------------+----+-----+-----+---------+
2129 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2130 +---------------------------+----+-----+-----+---------+
2131 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2132 +---------------------------+----+-----+-----+---------+
2133 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2134 +---------------------------+----+-----+-----+---------+
2135 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2136 +---------------------------+----+-----+-----+---------+
2137 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2138 +---------------------------+----+-----+-----+---------+
2139
2140 Where 'mpl' is a mipmap level and 'idx' is the array index.
2141
2142 .. opcode:: SAMPLE_I_MS
2143
2144 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2145
2146 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2147
2148 .. opcode:: SAMPLE_B
2149
2150 Just like the SAMPLE instruction with the exception that an additional bias
2151 is applied to the level of detail computed as part of the instruction
2152 execution.
2153
2154 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2155
2156 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2157
2158 .. opcode:: SAMPLE_C
2159
2160 Similar to the SAMPLE instruction but it performs a comparison filter. The
2161 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2162 additional float32 operand, reference value, which must be a register with
2163 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2164 current samplers compare_func (in pipe_sampler_state) to compare reference
2165 value against the red component value for the surce resource at each texel
2166 that the currently configured texture filter covers based on the provided
2167 coordinates.
2168
2169 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2170
2171 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2172
2173 .. opcode:: SAMPLE_C_LZ
2174
2175 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2176 for level-zero.
2177
2178 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2179
2180 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2181
2182
2183 .. opcode:: SAMPLE_D
2184
2185 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2186 the source address in the x direction and the y direction are provided by
2187 extra parameters.
2188
2189 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2190
2191 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2192
2193 .. opcode:: SAMPLE_L
2194
2195 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2196 directly as a scalar value, representing no anisotropy.
2197
2198 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2199
2200 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2201
2202 .. opcode:: GATHER4
2203
2204 Gathers the four texels to be used in a bi-linear filtering operation and
2205 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2206 and cubemaps arrays. For 2D textures, only the addressing modes of the
2207 sampler and the top level of any mip pyramid are used. Set W to zero. It
2208 behaves like the SAMPLE instruction, but a filtered sample is not
2209 generated. The four samples that contribute to filtering are placed into
2210 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2211 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2212 magnitude of the deltas are half a texel.
2213
2214
2215 .. opcode:: SVIEWINFO
2216
2217 Query the dimensions of a given sampler view. dst receives width, height,
2218 depth or array size and number of mipmap levels as int4. The dst can have a
2219 writemask which will specify what info is the caller interested in.
2220
2221 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2222
2223 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2224
2225 src_mip_level is an unsigned integer scalar. If it's out of range then
2226 returns 0 for width, height and depth/array size but the total number of
2227 mipmap is still returned correctly for the given sampler view. The returned
2228 width, height and depth values are for the mipmap level selected by the
2229 src_mip_level and are in the number of texels. For 1d texture array width
2230 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2231 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2232 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2233 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2234 resinfo allowing swizzling dst values is ignored (due to the interaction
2235 with rcpfloat modifier which requires some swizzle handling in the state
2236 tracker anyway).
2237
2238 .. opcode:: SAMPLE_POS
2239
2240 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2241 indicated where the sample is located. If the resource is not a multi-sample
2242 resource and not a render target, the result is 0.
2243
2244 .. opcode:: SAMPLE_INFO
2245
2246 dst receives number of samples in x. If the resource is not a multi-sample
2247 resource and not a render target, the result is 0.
2248
2249
2250 .. _resourceopcodes:
2251
2252 Resource Access Opcodes
2253 ^^^^^^^^^^^^^^^^^^^^^^^
2254
2255 .. opcode:: LOAD - Fetch data from a shader resource
2256
2257 Syntax: ``LOAD dst, resource, address``
2258
2259 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2260
2261 Using the provided integer address, LOAD fetches data
2262 from the specified buffer or texture without any
2263 filtering.
2264
2265 The 'address' is specified as a vector of unsigned
2266 integers. If the 'address' is out of range the result
2267 is unspecified.
2268
2269 Only the first mipmap level of a resource can be read
2270 from using this instruction.
2271
2272 For 1D or 2D texture arrays, the array index is
2273 provided as an unsigned integer in address.y or
2274 address.z, respectively. address.yz are ignored for
2275 buffers and 1D textures. address.z is ignored for 1D
2276 texture arrays and 2D textures. address.w is always
2277 ignored.
2278
2279 .. opcode:: STORE - Write data to a shader resource
2280
2281 Syntax: ``STORE resource, address, src``
2282
2283 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2284
2285 Using the provided integer address, STORE writes data
2286 to the specified buffer or texture.
2287
2288 The 'address' is specified as a vector of unsigned
2289 integers. If the 'address' is out of range the result
2290 is unspecified.
2291
2292 Only the first mipmap level of a resource can be
2293 written to using this instruction.
2294
2295 For 1D or 2D texture arrays, the array index is
2296 provided as an unsigned integer in address.y or
2297 address.z, respectively. address.yz are ignored for
2298 buffers and 1D textures. address.z is ignored for 1D
2299 texture arrays and 2D textures. address.w is always
2300 ignored.
2301
2302
2303 .. _threadsyncopcodes:
2304
2305 Inter-thread synchronization opcodes
2306 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2307
2308 These opcodes are intended for communication between threads running
2309 within the same compute grid. For now they're only valid in compute
2310 programs.
2311
2312 .. opcode:: MFENCE - Memory fence
2313
2314 Syntax: ``MFENCE resource``
2315
2316 Example: ``MFENCE RES[0]``
2317
2318 This opcode forces strong ordering between any memory access
2319 operations that affect the specified resource. This means that
2320 previous loads and stores (and only those) will be performed and
2321 visible to other threads before the program execution continues.
2322
2323
2324 .. opcode:: LFENCE - Load memory fence
2325
2326 Syntax: ``LFENCE resource``
2327
2328 Example: ``LFENCE RES[0]``
2329
2330 Similar to MFENCE, but it only affects the ordering of memory loads.
2331
2332
2333 .. opcode:: SFENCE - Store memory fence
2334
2335 Syntax: ``SFENCE resource``
2336
2337 Example: ``SFENCE RES[0]``
2338
2339 Similar to MFENCE, but it only affects the ordering of memory stores.
2340
2341
2342 .. opcode:: BARRIER - Thread group barrier
2343
2344 ``BARRIER``
2345
2346 This opcode suspends the execution of the current thread until all
2347 the remaining threads in the working group reach the same point of
2348 the program. Results are unspecified if any of the remaining
2349 threads terminates or never reaches an executed BARRIER instruction.
2350
2351
2352 .. _atomopcodes:
2353
2354 Atomic opcodes
2355 ^^^^^^^^^^^^^^
2356
2357 These opcodes provide atomic variants of some common arithmetic and
2358 logical operations. In this context atomicity means that another
2359 concurrent memory access operation that affects the same memory
2360 location is guaranteed to be performed strictly before or after the
2361 entire execution of the atomic operation.
2362
2363 For the moment they're only valid in compute programs.
2364
2365 .. opcode:: ATOMUADD - Atomic integer addition
2366
2367 Syntax: ``ATOMUADD dst, resource, offset, src``
2368
2369 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2370
2371 The following operation is performed atomically on each component:
2372
2373 .. math::
2374
2375 dst_i = resource[offset]_i
2376
2377 resource[offset]_i = dst_i + src_i
2378
2379
2380 .. opcode:: ATOMXCHG - Atomic exchange
2381
2382 Syntax: ``ATOMXCHG dst, resource, offset, src``
2383
2384 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2385
2386 The following operation is performed atomically on each component:
2387
2388 .. math::
2389
2390 dst_i = resource[offset]_i
2391
2392 resource[offset]_i = src_i
2393
2394
2395 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2396
2397 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2398
2399 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2400
2401 The following operation is performed atomically on each component:
2402
2403 .. math::
2404
2405 dst_i = resource[offset]_i
2406
2407 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2408
2409
2410 .. opcode:: ATOMAND - Atomic bitwise And
2411
2412 Syntax: ``ATOMAND dst, resource, offset, src``
2413
2414 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2415
2416 The following operation is performed atomically on each component:
2417
2418 .. math::
2419
2420 dst_i = resource[offset]_i
2421
2422 resource[offset]_i = dst_i \& src_i
2423
2424
2425 .. opcode:: ATOMOR - Atomic bitwise Or
2426
2427 Syntax: ``ATOMOR dst, resource, offset, src``
2428
2429 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2430
2431 The following operation is performed atomically on each component:
2432
2433 .. math::
2434
2435 dst_i = resource[offset]_i
2436
2437 resource[offset]_i = dst_i | src_i
2438
2439
2440 .. opcode:: ATOMXOR - Atomic bitwise Xor
2441
2442 Syntax: ``ATOMXOR dst, resource, offset, src``
2443
2444 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2445
2446 The following operation is performed atomically on each component:
2447
2448 .. math::
2449
2450 dst_i = resource[offset]_i
2451
2452 resource[offset]_i = dst_i \oplus src_i
2453
2454
2455 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2456
2457 Syntax: ``ATOMUMIN dst, resource, offset, src``
2458
2459 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2460
2461 The following operation is performed atomically on each component:
2462
2463 .. math::
2464
2465 dst_i = resource[offset]_i
2466
2467 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2468
2469
2470 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2471
2472 Syntax: ``ATOMUMAX dst, resource, offset, src``
2473
2474 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2475
2476 The following operation is performed atomically on each component:
2477
2478 .. math::
2479
2480 dst_i = resource[offset]_i
2481
2482 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2483
2484
2485 .. opcode:: ATOMIMIN - Atomic signed minimum
2486
2487 Syntax: ``ATOMIMIN dst, resource, offset, src``
2488
2489 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2490
2491 The following operation is performed atomically on each component:
2492
2493 .. math::
2494
2495 dst_i = resource[offset]_i
2496
2497 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2498
2499
2500 .. opcode:: ATOMIMAX - Atomic signed maximum
2501
2502 Syntax: ``ATOMIMAX dst, resource, offset, src``
2503
2504 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2505
2506 The following operation is performed atomically on each component:
2507
2508 .. math::
2509
2510 dst_i = resource[offset]_i
2511
2512 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2513
2514
2515
2516 Explanation of symbols used
2517 ------------------------------
2518
2519
2520 Functions
2521 ^^^^^^^^^^^^^^
2522
2523
2524 :math:`|x|` Absolute value of `x`.
2525
2526 :math:`\lceil x \rceil` Ceiling of `x`.
2527
2528 clamp(x,y,z) Clamp x between y and z.
2529 (x < y) ? y : (x > z) ? z : x
2530
2531 :math:`\lfloor x\rfloor` Floor of `x`.
2532
2533 :math:`\log_2{x}` Logarithm of `x`, base 2.
2534
2535 max(x,y) Maximum of x and y.
2536 (x > y) ? x : y
2537
2538 min(x,y) Minimum of x and y.
2539 (x < y) ? x : y
2540
2541 partialx(x) Derivative of x relative to fragment's X.
2542
2543 partialy(x) Derivative of x relative to fragment's Y.
2544
2545 pop() Pop from stack.
2546
2547 :math:`x^y` `x` to the power `y`.
2548
2549 push(x) Push x on stack.
2550
2551 round(x) Round x.
2552
2553 trunc(x) Truncate x, i.e. drop the fraction bits.
2554
2555
2556 Keywords
2557 ^^^^^^^^^^^^^
2558
2559
2560 discard Discard fragment.
2561
2562 pc Program counter.
2563
2564 target Label of target instruction.
2565
2566
2567 Other tokens
2568 ---------------
2569
2570
2571 Declaration
2572 ^^^^^^^^^^^
2573
2574
2575 Declares a register that is will be referenced as an operand in Instruction
2576 tokens.
2577
2578 File field contains register file that is being declared and is one
2579 of TGSI_FILE.
2580
2581 UsageMask field specifies which of the register components can be accessed
2582 and is one of TGSI_WRITEMASK.
2583
2584 The Local flag specifies that a given value isn't intended for
2585 subroutine parameter passing and, as a result, the implementation
2586 isn't required to give any guarantees of it being preserved across
2587 subroutine boundaries. As it's merely a compiler hint, the
2588 implementation is free to ignore it.
2589
2590 If Dimension flag is set to 1, a Declaration Dimension token follows.
2591
2592 If Semantic flag is set to 1, a Declaration Semantic token follows.
2593
2594 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2595
2596 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2597
2598 If Array flag is set to 1, a Declaration Array token follows.
2599
2600 Array Declaration
2601 ^^^^^^^^^^^^^^^^^^^^^^^^
2602
2603 Declarations can optional have an ArrayID attribute which can be referred by
2604 indirect addressing operands. An ArrayID of zero is reserved and treated as
2605 if no ArrayID is specified.
2606
2607 If an indirect addressing operand refers to a specific declaration by using
2608 an ArrayID only the registers in this declaration are guaranteed to be
2609 accessed, accessing any register outside this declaration results in undefined
2610 behavior. Note that for compatibility the effective index is zero-based and
2611 not relative to the specified declaration
2612
2613 If no ArrayID is specified with an indirect addressing operand the whole
2614 register file might be accessed by this operand. This is strongly discouraged
2615 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2616 This is only legal for TEMP and CONST register files.
2617
2618 Declaration Semantic
2619 ^^^^^^^^^^^^^^^^^^^^^^^^
2620
2621 Vertex and fragment shader input and output registers may be labeled
2622 with semantic information consisting of a name and index.
2623
2624 Follows Declaration token if Semantic bit is set.
2625
2626 Since its purpose is to link a shader with other stages of the pipeline,
2627 it is valid to follow only those Declaration tokens that declare a register
2628 either in INPUT or OUTPUT file.
2629
2630 SemanticName field contains the semantic name of the register being declared.
2631 There is no default value.
2632
2633 SemanticIndex is an optional subscript that can be used to distinguish
2634 different register declarations with the same semantic name. The default value
2635 is 0.
2636
2637 The meanings of the individual semantic names are explained in the following
2638 sections.
2639
2640 TGSI_SEMANTIC_POSITION
2641 """"""""""""""""""""""
2642
2643 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2644 output register which contains the homogeneous vertex position in the clip
2645 space coordinate system. After clipping, the X, Y and Z components of the
2646 vertex will be divided by the W value to get normalized device coordinates.
2647
2648 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2649 fragment shader input contains the fragment's window position. The X
2650 component starts at zero and always increases from left to right.
2651 The Y component starts at zero and always increases but Y=0 may either
2652 indicate the top of the window or the bottom depending on the fragment
2653 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2654 The Z coordinate ranges from 0 to 1 to represent depth from the front
2655 to the back of the Z buffer. The W component contains the interpolated
2656 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2657 but unlike d3d10 which interpolates the same 1/w but then gives back
2658 the reciprocal of the interpolated value).
2659
2660 Fragment shaders may also declare an output register with
2661 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2662 the fragment shader to change the fragment's Z position.
2663
2664
2665
2666 TGSI_SEMANTIC_COLOR
2667 """""""""""""""""""
2668
2669 For vertex shader outputs or fragment shader inputs/outputs, this
2670 label indicates that the resister contains an R,G,B,A color.
2671
2672 Several shader inputs/outputs may contain colors so the semantic index
2673 is used to distinguish them. For example, color[0] may be the diffuse
2674 color while color[1] may be the specular color.
2675
2676 This label is needed so that the flat/smooth shading can be applied
2677 to the right interpolants during rasterization.
2678
2679
2680
2681 TGSI_SEMANTIC_BCOLOR
2682 """"""""""""""""""""
2683
2684 Back-facing colors are only used for back-facing polygons, and are only valid
2685 in vertex shader outputs. After rasterization, all polygons are front-facing
2686 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2687 so all BCOLORs effectively become regular COLORs in the fragment shader.
2688
2689
2690 TGSI_SEMANTIC_FOG
2691 """""""""""""""""
2692
2693 Vertex shader inputs and outputs and fragment shader inputs may be
2694 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2695 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2696 to compute a fog blend factor which is used to blend the normal fragment color
2697 with a constant fog color. But fog coord really is just an ordinary vec4
2698 register like regular semantics.
2699
2700
2701 TGSI_SEMANTIC_PSIZE
2702 """""""""""""""""""
2703
2704 Vertex shader input and output registers may be labeled with
2705 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2706 in the form (S, 0, 0, 1). The point size controls the width or diameter
2707 of points for rasterization. This label cannot be used in fragment
2708 shaders.
2709
2710 When using this semantic, be sure to set the appropriate state in the
2711 :ref:`rasterizer` first.
2712
2713
2714 TGSI_SEMANTIC_TEXCOORD
2715 """"""""""""""""""""""
2716
2717 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2718
2719 Vertex shader outputs and fragment shader inputs may be labeled with
2720 this semantic to make them replaceable by sprite coordinates via the
2721 sprite_coord_enable state in the :ref:`rasterizer`.
2722 The semantic index permitted with this semantic is limited to <= 7.
2723
2724 If the driver does not support TEXCOORD, sprite coordinate replacement
2725 applies to inputs with the GENERIC semantic instead.
2726
2727 The intended use case for this semantic is gl_TexCoord.
2728
2729
2730 TGSI_SEMANTIC_PCOORD
2731 """"""""""""""""""""
2732
2733 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2734
2735 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2736 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2737 the current primitive is a point and point sprites are enabled. Otherwise,
2738 the contents of the register are undefined.
2739
2740 The intended use case for this semantic is gl_PointCoord.
2741
2742
2743 TGSI_SEMANTIC_GENERIC
2744 """""""""""""""""""""
2745
2746 All vertex/fragment shader inputs/outputs not labeled with any other
2747 semantic label can be considered to be generic attributes. Typical
2748 uses of generic inputs/outputs are texcoords and user-defined values.
2749
2750
2751 TGSI_SEMANTIC_NORMAL
2752 """"""""""""""""""""
2753
2754 Indicates that a vertex shader input is a normal vector. This is
2755 typically only used for legacy graphics APIs.
2756
2757
2758 TGSI_SEMANTIC_FACE
2759 """"""""""""""""""
2760
2761 This label applies to fragment shader inputs only and indicates that
2762 the register contains front/back-face information of the form (F, 0,
2763 0, 1). The first component will be positive when the fragment belongs
2764 to a front-facing polygon, and negative when the fragment belongs to a
2765 back-facing polygon.
2766
2767
2768 TGSI_SEMANTIC_EDGEFLAG
2769 """"""""""""""""""""""
2770
2771 For vertex shaders, this sematic label indicates that an input or
2772 output is a boolean edge flag. The register layout is [F, x, x, x]
2773 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2774 simply copies the edge flag input to the edgeflag output.
2775
2776 Edge flags are used to control which lines or points are actually
2777 drawn when the polygon mode converts triangles/quads/polygons into
2778 points or lines.
2779
2780
2781 TGSI_SEMANTIC_STENCIL
2782 """""""""""""""""""""
2783
2784 For fragment shaders, this semantic label indicates that an output
2785 is a writable stencil reference value. Only the Y component is writable.
2786 This allows the fragment shader to change the fragments stencilref value.
2787
2788
2789 TGSI_SEMANTIC_VIEWPORT_INDEX
2790 """"""""""""""""""""""""""""
2791
2792 For geometry shaders, this semantic label indicates that an output
2793 contains the index of the viewport (and scissor) to use.
2794 This is an integer value, and only the X component is used.
2795
2796
2797 TGSI_SEMANTIC_LAYER
2798 """""""""""""""""""
2799
2800 For geometry shaders, this semantic label indicates that an output
2801 contains the layer value to use for the color and depth/stencil surfaces.
2802 This is an integer value, and only the X component is used.
2803 (Also known as rendertarget array index.)
2804
2805
2806 TGSI_SEMANTIC_CULLDIST
2807 """"""""""""""""""""""
2808
2809 Used as distance to plane for performing application-defined culling
2810 of individual primitives against a plane. When components of vertex
2811 elements are given this label, these values are assumed to be a
2812 float32 signed distance to a plane. Primitives will be completely
2813 discarded if the plane distance for all of the vertices in the
2814 primitive are < 0. If a vertex has a cull distance of NaN, that
2815 vertex counts as "out" (as if its < 0);
2816 The limits on both clip and cull distances are bound
2817 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2818 the maximum number of components that can be used to hold the
2819 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2820 which specifies the maximum number of registers which can be
2821 annotated with those semantics.
2822
2823
2824 TGSI_SEMANTIC_CLIPDIST
2825 """"""""""""""""""""""
2826
2827 When components of vertex elements are identified this way, these
2828 values are each assumed to be a float32 signed distance to a plane.
2829 Primitive setup only invokes rasterization on pixels for which
2830 the interpolated plane distances are >= 0. Multiple clip planes
2831 can be implemented simultaneously, by annotating multiple
2832 components of one or more vertex elements with the above specified
2833 semantic. The limits on both clip and cull distances are bound
2834 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2835 the maximum number of components that can be used to hold the
2836 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2837 which specifies the maximum number of registers which can be
2838 annotated with those semantics.
2839
2840 TGSI_SEMANTIC_SAMPLEID
2841 """"""""""""""""""""""
2842
2843 For fragment shaders, this semantic label indicates that a system value
2844 contains the current sample id (i.e. gl_SampleID).
2845 This is an integer value, and only the X component is used.
2846
2847 TGSI_SEMANTIC_SAMPLEPOS
2848 """""""""""""""""""""""
2849
2850 For fragment shaders, this semantic label indicates that a system value
2851 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2852 and Y values are used.
2853
2854 TGSI_SEMANTIC_SAMPLEMASK
2855 """"""""""""""""""""""""
2856
2857 For fragment shaders, this semantic label indicates that an output contains
2858 the sample mask used to disable further sample processing
2859 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2860
2861 TGSI_SEMANTIC_INVOCATIONID
2862 """"""""""""""""""""""""""
2863
2864 For geometry shaders, this semantic label indicates that a system value
2865 contains the current invocation id (i.e. gl_InvocationID).
2866 This is an integer value, and only the X component is used.
2867
2868 TGSI_SEMANTIC_INSTANCEID
2869 """"""""""""""""""""""""
2870
2871 For vertex shaders, this semantic label indicates that a system value contains
2872 the current instance id (i.e. gl_InstanceID). It does not include the base
2873 instance. This is an integer value, and only the X component is used.
2874
2875 TGSI_SEMANTIC_VERTEXID
2876 """"""""""""""""""""""
2877
2878 For vertex shaders, this semantic label indicates that a system value contains
2879 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
2880 base vertex. This is an integer value, and only the X component is used.
2881
2882 TGSI_SEMANTIC_VERTEXID_NOBASE
2883 """""""""""""""""""""""""""""""
2884
2885 For vertex shaders, this semantic label indicates that a system value contains
2886 the current vertex id without including the base vertex (this corresponds to
2887 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
2888 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
2889 is used.
2890
2891 TGSI_SEMANTIC_BASEVERTEX
2892 """"""""""""""""""""""""
2893
2894 For vertex shaders, this semantic label indicates that a system value contains
2895 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
2896 this contains the first (or start) value instead.
2897 This is an integer value, and only the X component is used.
2898
2899 TGSI_SEMANTIC_PRIMID
2900 """"""""""""""""""""
2901
2902 For geometry and fragment shaders, this semantic label indicates the value
2903 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
2904 and only the X component is used.
2905 FIXME: This right now can be either a ordinary input or a system value...
2906
2907
2908 TGSI_SEMANTIC_PATCH
2909 """""""""""""""""""
2910
2911 For tessellation evaluation/control shaders, this semantic label indicates a
2912 generic per-patch attribute. Such semantics will not implicitly be per-vertex
2913 arrays.
2914
2915 TGSI_SEMANTIC_TESSCOORD
2916 """""""""""""""""""""""
2917
2918 For tessellation evaluation shaders, this semantic label indicates the
2919 coordinates of the vertex being processed. This is available in XYZ; W is
2920 undefined.
2921
2922 TGSI_SEMANTIC_TESSOUTER
2923 """""""""""""""""""""""
2924
2925 For tessellation evaluation/control shaders, this semantic label indicates the
2926 outer tessellation levels of the patch. Isoline tessellation will only have XY
2927 defined, triangle will have XYZ and quads will have XYZW defined. This
2928 corresponds to gl_TessLevelOuter.
2929
2930 TGSI_SEMANTIC_TESSINNER
2931 """""""""""""""""""""""
2932
2933 For tessellation evaluation/control shaders, this semantic label indicates the
2934 inner tessellation levels of the patch. The X value is only defined for
2935 triangle tessellation, while quads will have XY defined. This is entirely
2936 undefined for isoline tessellation.
2937
2938 TGSI_SEMANTIC_VERTICESIN
2939 """"""""""""""""""""""""
2940
2941 For tessellation evaluation/control shaders, this semantic label indicates the
2942 number of vertices provided in the input patch. Only the X value is defined.
2943
2944
2945 Declaration Interpolate
2946 ^^^^^^^^^^^^^^^^^^^^^^^
2947
2948 This token is only valid for fragment shader INPUT declarations.
2949
2950 The Interpolate field specifes the way input is being interpolated by
2951 the rasteriser and is one of TGSI_INTERPOLATE_*.
2952
2953 The Location field specifies the location inside the pixel that the
2954 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2955 when per-sample shading is enabled, the implementation may choose to
2956 interpolate at the sample irrespective of the Location field.
2957
2958 The CylindricalWrap bitfield specifies which register components
2959 should be subject to cylindrical wrapping when interpolating by the
2960 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2961 should be interpolated according to cylindrical wrapping rules.
2962
2963
2964 Declaration Sampler View
2965 ^^^^^^^^^^^^^^^^^^^^^^^^
2966
2967 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2968
2969 DCL SVIEW[#], resource, type(s)
2970
2971 Declares a shader input sampler view and assigns it to a SVIEW[#]
2972 register.
2973
2974 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2975
2976 type must be 1 or 4 entries (if specifying on a per-component
2977 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2978
2979 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
2980 which take an explicit SVIEW[#] source register), there may be optionally
2981 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
2982 SAMP index, and there must be a corresponding SVIEW[#] declaration for
2983 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
2984 But note in particular that some drivers need to know the sampler type
2985 (float/int/unsigned) in order to generate the correct code, so cases
2986 where integer textures are sampled, SVIEW[#] declarations should be
2987 used.
2988
2989 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
2990 in the same shader.
2991
2992 Declaration Resource
2993 ^^^^^^^^^^^^^^^^^^^^
2994
2995 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2996
2997 DCL RES[#], resource [, WR] [, RAW]
2998
2999 Declares a shader input resource and assigns it to a RES[#]
3000 register.
3001
3002 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3003 2DArray.
3004
3005 If the RAW keyword is not specified, the texture data will be
3006 subject to conversion, swizzling and scaling as required to yield
3007 the specified data type from the physical data format of the bound
3008 resource.
3009
3010 If the RAW keyword is specified, no channel conversion will be
3011 performed: the values read for each of the channels (X,Y,Z,W) will
3012 correspond to consecutive words in the same order and format
3013 they're found in memory. No element-to-address conversion will be
3014 performed either: the value of the provided X coordinate will be
3015 interpreted in byte units instead of texel units. The result of
3016 accessing a misaligned address is undefined.
3017
3018 Usage of the STORE opcode is only allowed if the WR (writable) flag
3019 is set.
3020
3021
3022 Properties
3023 ^^^^^^^^^^^^^^^^^^^^^^^^
3024
3025 Properties are general directives that apply to the whole TGSI program.
3026
3027 FS_COORD_ORIGIN
3028 """""""""""""""
3029
3030 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3031 The default value is UPPER_LEFT.
3032
3033 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3034 increase downward and rightward.
3035 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3036 increase upward and rightward.
3037
3038 OpenGL defaults to LOWER_LEFT, and is configurable with the
3039 GL_ARB_fragment_coord_conventions extension.
3040
3041 DirectX 9/10 use UPPER_LEFT.
3042
3043 FS_COORD_PIXEL_CENTER
3044 """""""""""""""""""""
3045
3046 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3047 The default value is HALF_INTEGER.
3048
3049 If HALF_INTEGER, the fractionary part of the position will be 0.5
3050 If INTEGER, the fractionary part of the position will be 0.0
3051
3052 Note that this does not affect the set of fragments generated by
3053 rasterization, which is instead controlled by half_pixel_center in the
3054 rasterizer.
3055
3056 OpenGL defaults to HALF_INTEGER, and is configurable with the
3057 GL_ARB_fragment_coord_conventions extension.
3058
3059 DirectX 9 uses INTEGER.
3060 DirectX 10 uses HALF_INTEGER.
3061
3062 FS_COLOR0_WRITES_ALL_CBUFS
3063 """"""""""""""""""""""""""
3064 Specifies that writes to the fragment shader color 0 are replicated to all
3065 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3066 fragData is directed to a single color buffer, but fragColor is broadcast.
3067
3068 VS_PROHIBIT_UCPS
3069 """"""""""""""""""""""""""
3070 If this property is set on the program bound to the shader stage before the
3071 fragment shader, user clip planes should have no effect (be disabled) even if
3072 that shader does not write to any clip distance outputs and the rasterizer's
3073 clip_plane_enable is non-zero.
3074 This property is only supported by drivers that also support shader clip
3075 distance outputs.
3076 This is useful for APIs that don't have UCPs and where clip distances written
3077 by a shader cannot be disabled.
3078
3079 GS_INVOCATIONS
3080 """"""""""""""
3081
3082 Specifies the number of times a geometry shader should be executed for each
3083 input primitive. Each invocation will have a different
3084 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3085 be 1.
3086
3087 VS_WINDOW_SPACE_POSITION
3088 """"""""""""""""""""""""""
3089 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3090 is assumed to contain window space coordinates.
3091 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3092 directly taken from the 4-th component of the shader output.
3093 Naturally, clipping is not performed on window coordinates either.
3094 The effect of this property is undefined if a geometry or tessellation shader
3095 are in use.
3096
3097 TCS_VERTICES_OUT
3098 """"""""""""""""
3099
3100 The number of vertices written by the tessellation control shader. This
3101 effectively defines the patch input size of the tessellation evaluation shader
3102 as well.
3103
3104 TES_PRIM_MODE
3105 """""""""""""
3106
3107 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3108 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3109 separate isolines settings, the regular lines is assumed to mean isolines.)
3110
3111 TES_SPACING
3112 """""""""""
3113
3114 This sets the spacing mode of the tessellation generator, one of
3115 ``PIPE_TESS_SPACING_*``.
3116
3117 TES_VERTEX_ORDER_CW
3118 """""""""""""""""""
3119
3120 This sets the vertex order to be clockwise if the value is 1, or
3121 counter-clockwise if set to 0.
3122
3123 TES_POINT_MODE
3124 """"""""""""""
3125
3126 If set to a non-zero value, this turns on point mode for the tessellator,
3127 which means that points will be generated instead of primitives.
3128
3129 NUM_CLIPDIST_ENABLED
3130 """"""""""""""""
3131
3132 How many clip distance scalar outputs are enabled.
3133
3134 NUM_CULLDIST_ENABLED
3135 """"""""""""""""
3136
3137 How many cull distance scalar outputs are enabled.
3138
3139
3140 Texture Sampling and Texture Formats
3141 ------------------------------------
3142
3143 This table shows how texture image components are returned as (x,y,z,w) tuples
3144 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3145 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3146 well.
3147
3148 +--------------------+--------------+--------------------+--------------+
3149 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3150 +====================+==============+====================+==============+
3151 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3152 +--------------------+--------------+--------------------+--------------+
3153 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3154 +--------------------+--------------+--------------------+--------------+
3155 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3156 +--------------------+--------------+--------------------+--------------+
3157 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3158 +--------------------+--------------+--------------------+--------------+
3159 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3160 +--------------------+--------------+--------------------+--------------+
3161 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3162 +--------------------+--------------+--------------------+--------------+
3163 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3164 +--------------------+--------------+--------------------+--------------+
3165 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3166 +--------------------+--------------+--------------------+--------------+
3167 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3168 | | | [#envmap-bumpmap]_ | |
3169 +--------------------+--------------+--------------------+--------------+
3170 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3171 | | | [#depth-tex-mode]_ | |
3172 +--------------------+--------------+--------------------+--------------+
3173 | S | (s, s, s, s) | unknown | unknown |
3174 +--------------------+--------------+--------------------+--------------+
3175
3176 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3177 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3178 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.