etnaviv: split dump_shader
[mesa.git] / src / gallium / drivers / etnaviv / etnaviv_compiler_nir.c
1 /*
2 * Copyright (c) 2012-2019 Etnaviv Project
3 * Copyright (c) 2019 Zodiac Inflight Innovations
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sub license,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the
13 * next paragraph) shall be included in all copies or substantial portions
14 * of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Jonathan Marek <jonathan@marek.ca>
26 * Wladimir J. van der Laan <laanwj@gmail.com>
27 */
28
29 #include "etnaviv_compiler.h"
30 #include "etnaviv_asm.h"
31 #include "etnaviv_context.h"
32 #include "etnaviv_debug.h"
33 #include "etnaviv_disasm.h"
34 #include "etnaviv_uniforms.h"
35 #include "etnaviv_util.h"
36
37 #include <math.h>
38 #include "util/u_memory.h"
39 #include "util/register_allocate.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "compiler/nir/nir_worklist.h"
42
43 #include "tgsi/tgsi_strings.h"
44 #include "util/u_half.h"
45
46 struct etna_compile {
47 nir_shader *nir;
48 #define is_fs(c) ((c)->nir->info.stage == MESA_SHADER_FRAGMENT)
49 const struct etna_specs *specs;
50 struct etna_shader_variant *variant;
51
52 /* register assigned to each output, indexed by driver_location */
53 unsigned output_reg[ETNA_NUM_INPUTS];
54
55 /* block # to instr index */
56 unsigned *block_ptr;
57
58 /* Code generation */
59 int inst_ptr; /* current instruction pointer */
60 struct etna_inst code[ETNA_MAX_INSTRUCTIONS * ETNA_INST_SIZE];
61
62 /* There was an error during compilation */
63 bool error;
64 };
65
66 #define compile_error(ctx, args...) ({ \
67 printf(args); \
68 ctx->error = true; \
69 assert(0); \
70 })
71
72 /* io related lowering
73 * run after lower_int_to_float because it adds i2f/f2i ops
74 */
75 static void
76 etna_lower_io(nir_shader *shader, struct etna_shader_variant *v)
77 {
78 bool rb_swap = shader->info.stage == MESA_SHADER_FRAGMENT && v->key.frag_rb_swap;
79
80 unsigned color_location = 0;
81 nir_foreach_variable(var, &shader->outputs) {
82 switch (var->data.location) {
83 case FRAG_RESULT_COLOR:
84 case FRAG_RESULT_DATA0:
85 color_location = var->data.driver_location;
86 break;
87 }
88 }
89
90 nir_foreach_function(function, shader) {
91 nir_builder b;
92 nir_builder_init(&b, function->impl);
93
94 nir_foreach_block(block, function->impl) {
95 nir_foreach_instr_safe(instr, block) {
96 if (instr->type == nir_instr_type_intrinsic) {
97 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
98
99 switch (intr->intrinsic) {
100 case nir_intrinsic_load_front_face: {
101 /* front face inverted (run after int_to_float, so invert as float) */
102 b.cursor = nir_after_instr(instr);
103
104 nir_ssa_def *ssa = nir_seq(&b, &intr->dest.ssa, nir_imm_float(&b, 0.0));
105 nir_ssa_def_rewrite_uses_after(&intr->dest.ssa,
106 nir_src_for_ssa(ssa),
107 ssa->parent_instr);
108 } break;
109 case nir_intrinsic_store_output: {
110 if (!rb_swap || nir_intrinsic_base(intr) != color_location)
111 break;
112 b.cursor = nir_before_instr(instr);
113
114 nir_ssa_def *ssa = nir_mov(&b, intr->src[0].ssa);
115 nir_alu_instr *alu = nir_instr_as_alu(ssa->parent_instr);
116 alu->src[0].swizzle[0] = 2;
117 alu->src[0].swizzle[2] = 0;
118 nir_instr_rewrite_src(instr, &intr->src[0], nir_src_for_ssa(ssa));
119 } break;
120 case nir_intrinsic_load_instance_id: {
121 b.cursor = nir_after_instr(instr);
122 nir_ssa_def *ssa = nir_i2f32(&b, &intr->dest.ssa);
123 nir_ssa_def_rewrite_uses_after(&intr->dest.ssa,
124 nir_src_for_ssa(ssa),
125 ssa->parent_instr);
126 } break;
127 case nir_intrinsic_load_uniform: {
128 /* multiply by 16 and convert to int */
129 b.cursor = nir_before_instr(instr);
130 nir_ssa_def *ssa = nir_f2u32(&b, nir_fmul(&b, intr->src[0].ssa,
131 nir_imm_float(&b, 16.0f)));
132 nir_instr_rewrite_src(instr, &intr->src[0], nir_src_for_ssa(ssa));
133 } break;
134 default:
135 break;
136 }
137 }
138
139 if (instr->type != nir_instr_type_tex)
140 continue;
141
142 nir_tex_instr *tex = nir_instr_as_tex(instr);
143 nir_src *coord = NULL;
144 nir_src *lod_bias = NULL;
145 unsigned lod_bias_idx;
146
147 assert(tex->sampler_index == tex->texture_index);
148
149 for (unsigned i = 0; i < tex->num_srcs; i++) {
150 switch (tex->src[i].src_type) {
151 case nir_tex_src_coord:
152 coord = &tex->src[i].src;
153 break;
154 case nir_tex_src_bias:
155 case nir_tex_src_lod:
156 assert(!lod_bias);
157 lod_bias = &tex->src[i].src;
158 lod_bias_idx = i;
159 break;
160 default:
161 assert(0);
162 break;
163 }
164 }
165
166 if (tex->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
167 /* use a dummy load_uniform here to represent texcoord scale */
168 b.cursor = nir_before_instr(instr);
169 nir_intrinsic_instr *load =
170 nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_uniform);
171 nir_intrinsic_set_base(load, ~tex->sampler_index);
172 load->num_components = 2;
173 load->src[0] = nir_src_for_ssa(nir_imm_float(&b, 0.0f));
174 nir_ssa_dest_init(&load->instr, &load->dest, 2, 32, NULL);
175 nir_intrinsic_set_type(load, nir_type_float);
176
177 nir_builder_instr_insert(&b, &load->instr);
178
179 nir_ssa_def *new_coord = nir_fmul(&b, coord->ssa, &load->dest.ssa);
180 nir_instr_rewrite_src(&tex->instr, coord, nir_src_for_ssa(new_coord));
181 }
182
183 /* pre HALTI5 needs texture sources in a single source */
184
185 if (!lod_bias || v->shader->specs->halti >= 5)
186 continue;
187
188 assert(coord && lod_bias && tex->coord_components < 4);
189
190 nir_alu_instr *vec = nir_alu_instr_create(shader, nir_op_vec4);
191 for (unsigned i = 0; i < tex->coord_components; i++) {
192 vec->src[i].src = nir_src_for_ssa(coord->ssa);
193 vec->src[i].swizzle[0] = i;
194 }
195 for (unsigned i = tex->coord_components; i < 4; i++)
196 vec->src[i].src = nir_src_for_ssa(lod_bias->ssa);
197
198 vec->dest.write_mask = 0xf;
199 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, 4, 32, NULL);
200
201 nir_tex_instr_remove_src(tex, lod_bias_idx);
202 nir_instr_rewrite_src(&tex->instr, coord, nir_src_for_ssa(&vec->dest.dest.ssa));
203 tex->coord_components = 4;
204
205 nir_instr_insert_before(&tex->instr, &vec->instr);
206 }
207 }
208 }
209 }
210
211 static void
212 etna_lower_alu_to_scalar(nir_shader *shader, const struct etna_specs *specs)
213 {
214 BITSET_DECLARE(scalar_ops, nir_num_opcodes);
215 BITSET_ZERO(scalar_ops);
216
217 BITSET_SET(scalar_ops, nir_op_frsq);
218 BITSET_SET(scalar_ops, nir_op_frcp);
219 BITSET_SET(scalar_ops, nir_op_flog2);
220 BITSET_SET(scalar_ops, nir_op_fexp2);
221 BITSET_SET(scalar_ops, nir_op_fsqrt);
222 BITSET_SET(scalar_ops, nir_op_fcos);
223 BITSET_SET(scalar_ops, nir_op_fsin);
224 BITSET_SET(scalar_ops, nir_op_fdiv);
225
226 if (!specs->has_halti2_instructions)
227 BITSET_SET(scalar_ops, nir_op_fdot2);
228
229 nir_lower_alu_to_scalar(shader, scalar_ops);
230 }
231
232 static void
233 etna_lower_alu_impl(nir_function_impl *impl, struct etna_compile *c)
234 {
235 nir_shader *shader = impl->function->shader;
236
237 nir_builder b;
238 nir_builder_init(&b, impl);
239
240 /* in a seperate loop so we can apply the multiple-uniform logic to the new fmul */
241 nir_foreach_block(block, impl) {
242 nir_foreach_instr_safe(instr, block) {
243 if (instr->type != nir_instr_type_alu)
244 continue;
245
246 nir_alu_instr *alu = nir_instr_as_alu(instr);
247 /* multiply sin/cos src by constant
248 * TODO: do this earlier (but it breaks const_prop opt)
249 */
250 if (alu->op == nir_op_fsin || alu->op == nir_op_fcos) {
251 b.cursor = nir_before_instr(instr);
252
253 nir_ssa_def *imm = c->specs->has_new_transcendentals ?
254 nir_imm_float(&b, 1.0 / M_PI) :
255 nir_imm_float(&b, 2.0 / M_PI);
256
257 nir_instr_rewrite_src(instr, &alu->src[0].src,
258 nir_src_for_ssa(nir_fmul(&b, alu->src[0].src.ssa, imm)));
259 }
260
261 /* change transcendental ops to vec2 and insert vec1 mul for the result
262 * TODO: do this earlier (but it breaks with optimizations)
263 */
264 if (c->specs->has_new_transcendentals && (
265 alu->op == nir_op_fdiv || alu->op == nir_op_flog2 ||
266 alu->op == nir_op_fsin || alu->op == nir_op_fcos)) {
267 nir_ssa_def *ssa = &alu->dest.dest.ssa;
268
269 assert(ssa->num_components == 1);
270
271 nir_alu_instr *mul = nir_alu_instr_create(shader, nir_op_fmul);
272 mul->src[0].src = mul->src[1].src = nir_src_for_ssa(ssa);
273 mul->src[1].swizzle[0] = 1;
274
275 mul->dest.write_mask = 1;
276 nir_ssa_dest_init(&mul->instr, &mul->dest.dest, 1, 32, NULL);
277
278 ssa->num_components = 2;
279
280 mul->dest.saturate = alu->dest.saturate;
281 alu->dest.saturate = 0;
282
283 nir_instr_insert_after(instr, &mul->instr);
284
285 nir_ssa_def_rewrite_uses_after(ssa, nir_src_for_ssa(&mul->dest.dest.ssa), &mul->instr);
286 }
287 }
288 }
289 }
290
291 static void etna_lower_alu(nir_shader *shader, struct etna_compile *c)
292 {
293 nir_foreach_function(function, shader) {
294 if (function->impl)
295 etna_lower_alu_impl(function->impl, c);
296 }
297 }
298
299 static void
300 emit_inst(struct etna_compile *c, struct etna_inst *inst)
301 {
302 c->code[c->inst_ptr++] = *inst;
303 }
304
305 /* to map nir srcs should to etna_inst srcs */
306 enum {
307 SRC_0_1_2 = (0 << 0) | (1 << 2) | (2 << 4),
308 SRC_0_1_X = (0 << 0) | (1 << 2) | (3 << 4),
309 SRC_0_X_X = (0 << 0) | (3 << 2) | (3 << 4),
310 SRC_0_X_1 = (0 << 0) | (3 << 2) | (1 << 4),
311 SRC_0_1_0 = (0 << 0) | (1 << 2) | (0 << 4),
312 SRC_X_X_0 = (3 << 0) | (3 << 2) | (0 << 4),
313 SRC_0_X_0 = (0 << 0) | (3 << 2) | (0 << 4),
314 };
315
316 /* info to translate a nir op to etna_inst */
317 struct etna_op_info {
318 uint8_t opcode; /* INST_OPCODE_ */
319 uint8_t src; /* SRC_ enum */
320 uint8_t cond; /* INST_CONDITION_ */
321 uint8_t type; /* INST_TYPE_ */
322 };
323
324 static const struct etna_op_info etna_ops[] = {
325 [0 ... nir_num_opcodes - 1] = {0xff},
326 #undef TRUE
327 #undef FALSE
328 #define OPCT(nir, op, src, cond, type) [nir_op_##nir] = { \
329 INST_OPCODE_##op, \
330 SRC_##src, \
331 INST_CONDITION_##cond, \
332 INST_TYPE_##type \
333 }
334 #define OPC(nir, op, src, cond) OPCT(nir, op, src, cond, F32)
335 #define OP(nir, op, src) OPC(nir, op, src, TRUE)
336 OP(mov, MOV, X_X_0), OP(fneg, MOV, X_X_0), OP(fabs, MOV, X_X_0), OP(fsat, MOV, X_X_0),
337 OP(fmul, MUL, 0_1_X), OP(fadd, ADD, 0_X_1), OP(ffma, MAD, 0_1_2),
338 OP(fdot2, DP2, 0_1_X), OP(fdot3, DP3, 0_1_X), OP(fdot4, DP4, 0_1_X),
339 OPC(fmin, SELECT, 0_1_0, GT), OPC(fmax, SELECT, 0_1_0, LT),
340 OP(ffract, FRC, X_X_0), OP(frcp, RCP, X_X_0), OP(frsq, RSQ, X_X_0),
341 OP(fsqrt, SQRT, X_X_0), OP(fsin, SIN, X_X_0), OP(fcos, COS, X_X_0),
342 OP(fsign, SIGN, X_X_0), OP(ffloor, FLOOR, X_X_0), OP(fceil, CEIL, X_X_0),
343 OP(flog2, LOG, X_X_0), OP(fexp2, EXP, X_X_0),
344 OPC(seq, SET, 0_1_X, EQ), OPC(sne, SET, 0_1_X, NE), OPC(sge, SET, 0_1_X, GE), OPC(slt, SET, 0_1_X, LT),
345 OPC(fcsel, SELECT, 0_1_2, NZ),
346 OP(fdiv, DIV, 0_1_X),
347 OP(fddx, DSX, 0_X_0), OP(fddy, DSY, 0_X_0),
348
349 /* integer opcodes */
350 OPCT(i2f32, I2F, 0_X_X, TRUE, S32),
351 OPCT(f2u32, F2I, 0_X_X, TRUE, U32),
352 };
353
354 static void
355 etna_emit_block_start(struct etna_compile *c, unsigned block)
356 {
357 c->block_ptr[block] = c->inst_ptr;
358 }
359
360 static void
361 etna_emit_alu(struct etna_compile *c, nir_op op, struct etna_inst_dst dst,
362 struct etna_inst_src src[3], bool saturate)
363 {
364 struct etna_op_info ei = etna_ops[op];
365
366 assert(ei.opcode != 0xff);
367
368 struct etna_inst inst = {
369 .opcode = ei.opcode,
370 .type = ei.type,
371 .cond = ei.cond,
372 .dst = dst,
373 .sat = saturate,
374 };
375
376 switch (op) {
377 case nir_op_fdiv:
378 case nir_op_flog2:
379 case nir_op_fsin:
380 case nir_op_fcos:
381 if (c->specs->has_new_transcendentals)
382 inst.tex.amode = 1;
383 /* fall through */
384 case nir_op_frsq:
385 case nir_op_frcp:
386 case nir_op_fexp2:
387 case nir_op_fsqrt:
388 case nir_op_i2f32:
389 case nir_op_f2u32:
390 /* for these instructions we want src to be in x component
391 * note: on HALTI2+ i2f/f2u are not scalar but we only use them this way currently
392 */
393 src[0].swiz = inst_swiz_compose(src[0].swiz,
394 INST_SWIZ_BROADCAST(ffs(inst.dst.write_mask)-1));
395 default:
396 break;
397 }
398
399 for (unsigned j = 0; j < 3; j++) {
400 unsigned i = ((ei.src >> j*2) & 3);
401 if (i < 3)
402 inst.src[j] = src[i];
403 }
404
405 emit_inst(c, &inst);
406 }
407
408 static void
409 etna_emit_tex(struct etna_compile *c, nir_texop op, unsigned texid, unsigned dst_swiz,
410 struct etna_inst_dst dst, struct etna_inst_src coord,
411 struct etna_inst_src lod_bias)
412 {
413 struct etna_inst inst = {
414 .dst = dst,
415 .tex.id = texid + (is_fs(c) ? 0 : c->specs->vertex_sampler_offset),
416 .tex.swiz = dst_swiz,
417 .src[0] = coord,
418 };
419
420 if (lod_bias.use)
421 inst.src[1] = lod_bias;
422
423 switch (op) {
424 case nir_texop_tex: inst.opcode = INST_OPCODE_TEXLD; break;
425 case nir_texop_txb: inst.opcode = INST_OPCODE_TEXLDB; break;
426 case nir_texop_txl: inst.opcode = INST_OPCODE_TEXLDL; break;
427 default:
428 assert(0);
429 }
430
431 emit_inst(c, &inst);
432 }
433
434 static void
435 etna_emit_jump(struct etna_compile *c, unsigned block, struct etna_inst_src condition)
436 {
437 if (!condition.use) {
438 emit_inst(c, &(struct etna_inst) {.opcode = INST_OPCODE_BRANCH, .imm = block });
439 return;
440 }
441
442 struct etna_inst inst = {
443 .opcode = INST_OPCODE_BRANCH,
444 .cond = INST_CONDITION_NOT,
445 .type = INST_TYPE_U32,
446 .src[0] = condition,
447 .imm = block,
448 };
449 inst.src[0].swiz = INST_SWIZ_BROADCAST(inst.src[0].swiz & 3);
450 emit_inst(c, &inst);
451 }
452
453 static void
454 etna_emit_discard(struct etna_compile *c, struct etna_inst_src condition)
455 {
456 if (!condition.use) {
457 emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_TEXKILL });
458 return;
459 }
460
461 struct etna_inst inst = {
462 .opcode = INST_OPCODE_TEXKILL,
463 .cond = INST_CONDITION_GZ,
464 .src[0] = condition,
465 };
466 inst.src[0].swiz = INST_SWIZ_BROADCAST(inst.src[0].swiz & 3);
467 emit_inst(c, &inst);
468 }
469
470 static void
471 etna_emit_output(struct etna_compile *c, unsigned index, struct etna_inst_src src)
472 {
473 c->output_reg[index] = src.reg;
474 }
475
476 static void
477 etna_emit_load_ubo(struct etna_compile *c, struct etna_inst_dst dst,
478 struct etna_inst_src src, struct etna_inst_src base)
479 {
480 emit_inst(c, &(struct etna_inst) {
481 .opcode = INST_OPCODE_LOAD,
482 .type = INST_TYPE_U32,
483 .dst = dst,
484 .src[0] = src,
485 .src[1] = base,
486 });
487 }
488
489 #define OPT(nir, pass, ...) ({ \
490 bool this_progress = false; \
491 NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
492 this_progress; \
493 })
494 #define OPT_V(nir, pass, ...) NIR_PASS_V(nir, pass, ##__VA_ARGS__)
495
496 static void
497 etna_optimize_loop(nir_shader *s)
498 {
499 bool progress;
500 do {
501 progress = false;
502
503 OPT_V(s, nir_lower_vars_to_ssa);
504 progress |= OPT(s, nir_opt_copy_prop_vars);
505 progress |= OPT(s, nir_copy_prop);
506 progress |= OPT(s, nir_opt_dce);
507 progress |= OPT(s, nir_opt_cse);
508 progress |= OPT(s, nir_opt_peephole_select, 16, true, true);
509 progress |= OPT(s, nir_opt_intrinsics);
510 progress |= OPT(s, nir_opt_algebraic);
511 progress |= OPT(s, nir_opt_constant_folding);
512 progress |= OPT(s, nir_opt_dead_cf);
513 if (OPT(s, nir_opt_trivial_continues)) {
514 progress = true;
515 /* If nir_opt_trivial_continues makes progress, then we need to clean
516 * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
517 * to make progress.
518 */
519 OPT(s, nir_copy_prop);
520 OPT(s, nir_opt_dce);
521 }
522 progress |= OPT(s, nir_opt_loop_unroll, nir_var_all);
523 progress |= OPT(s, nir_opt_if, false);
524 progress |= OPT(s, nir_opt_remove_phis);
525 progress |= OPT(s, nir_opt_undef);
526 }
527 while (progress);
528 }
529
530 static int
531 etna_glsl_type_size(const struct glsl_type *type, bool bindless)
532 {
533 return glsl_count_attribute_slots(type, false);
534 }
535
536 static void
537 copy_uniform_state_to_shader(struct etna_shader_variant *sobj, uint64_t *consts, unsigned count)
538 {
539 struct etna_shader_uniform_info *uinfo = &sobj->uniforms;
540
541 uinfo->imm_count = count * 4;
542 uinfo->imm_data = MALLOC(uinfo->imm_count * sizeof(*uinfo->imm_data));
543 uinfo->imm_contents = MALLOC(uinfo->imm_count * sizeof(*uinfo->imm_contents));
544
545 for (unsigned i = 0; i < uinfo->imm_count; i++) {
546 uinfo->imm_data[i] = consts[i];
547 uinfo->imm_contents[i] = consts[i] >> 32;
548 }
549
550 etna_set_shader_uniforms_dirty_flags(sobj);
551 }
552
553 #include "etnaviv_compiler_nir_emit.h"
554
555 bool
556 etna_compile_shader_nir(struct etna_shader_variant *v)
557 {
558 if (unlikely(!v))
559 return false;
560
561 struct etna_compile *c = CALLOC_STRUCT(etna_compile);
562 if (!c)
563 return false;
564
565 c->variant = v;
566 c->specs = v->shader->specs;
567 c->nir = nir_shader_clone(NULL, v->shader->nir);
568
569 nir_shader *s = c->nir;
570 const struct etna_specs *specs = c->specs;
571
572 v->stage = s->info.stage;
573 v->num_loops = 0; /* TODO */
574 v->vs_id_in_reg = -1;
575 v->vs_pos_out_reg = -1;
576 v->vs_pointsize_out_reg = -1;
577 v->ps_color_out_reg = 0; /* 0 for shader that doesn't write fragcolor.. */
578 v->ps_depth_out_reg = -1;
579
580 /* setup input linking */
581 struct etna_shader_io_file *sf = &v->infile;
582 if (s->info.stage == MESA_SHADER_VERTEX) {
583 nir_foreach_variable(var, &s->inputs) {
584 unsigned idx = var->data.driver_location;
585 sf->reg[idx].reg = idx;
586 sf->reg[idx].slot = var->data.location;
587 sf->reg[idx].num_components = 4; /* TODO */
588 sf->num_reg = MAX2(sf->num_reg, idx+1);
589 }
590 } else {
591 unsigned count = 0;
592 nir_foreach_variable(var, &s->inputs) {
593 unsigned idx = var->data.driver_location;
594 sf->reg[idx].reg = idx + 1;
595 sf->reg[idx].slot = var->data.location;
596 sf->reg[idx].num_components = 4; /* TODO */
597 sf->num_reg = MAX2(sf->num_reg, idx+1);
598 count++;
599 }
600 assert(sf->num_reg == count);
601 }
602
603 NIR_PASS_V(s, nir_lower_io, nir_var_all, etna_glsl_type_size,
604 (nir_lower_io_options)0);
605
606 OPT_V(s, nir_lower_regs_to_ssa);
607 OPT_V(s, nir_lower_vars_to_ssa);
608 OPT_V(s, nir_lower_indirect_derefs, nir_var_all);
609 OPT_V(s, nir_lower_tex, &(struct nir_lower_tex_options) { .lower_txp = ~0u });
610 OPT_V(s, etna_lower_alu_to_scalar, specs);
611
612 etna_optimize_loop(s);
613
614 /* use opt_algebraic between int_to_float and boot_to_float because
615 * int_to_float emits ftrunc, and ftrunc lowering generates bool ops
616 */
617 OPT_V(s, nir_lower_int_to_float);
618 OPT_V(s, nir_opt_algebraic);
619 OPT_V(s, nir_lower_bool_to_float);
620
621 /* after int to float because insert i2f for instance_id */
622 OPT_V(s, etna_lower_io, v);
623
624 etna_optimize_loop(s);
625
626 if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
627 nir_print_shader(s, stdout);
628
629 while( OPT(s, nir_opt_vectorize) );
630 OPT_V(s, etna_lower_alu_to_scalar, specs);
631
632 NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp);
633 NIR_PASS_V(s, nir_opt_algebraic_late);
634
635 NIR_PASS_V(s, nir_move_vec_src_uses_to_dest);
636 NIR_PASS_V(s, nir_copy_prop);
637 NIR_PASS_V(s, nir_lower_to_source_mods, ~nir_lower_int_source_mods);
638 /* need copy prop after uses_to_dest, and before src mods: see
639 * dEQP-GLES2.functional.shaders.random.all_features.fragment.95
640 */
641
642 NIR_PASS_V(s, nir_opt_dce);
643
644 NIR_PASS_V(s, etna_lower_alu, c);
645
646 if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
647 nir_print_shader(s, stdout);
648
649 uint64_t consts[ETNA_MAX_IMM] = {};
650
651 unsigned block_ptr[nir_shader_get_entrypoint(s)->num_blocks];
652 c->block_ptr = block_ptr;
653 struct emit_options options = {
654 .max_temps = ETNA_MAX_TEMPS,
655 .max_consts = ETNA_MAX_IMM / 4,
656 .id_reg = sf->num_reg,
657 .single_const_src = c->specs->halti < 5,
658 .etna_new_transcendentals = c->specs->has_new_transcendentals,
659 .user = c,
660 .consts = consts,
661 };
662
663 unsigned num_consts;
664 ASSERTED bool ok = emit_shader(c->nir, &options, &v->num_temps, &num_consts);
665 assert(ok);
666
667 /* empty shader, emit NOP */
668 if (!c->inst_ptr)
669 emit_inst(c, &(struct etna_inst) { .opcode = INST_OPCODE_NOP });
670
671 /* assemble instructions, fixing up labels */
672 uint32_t *code = MALLOC(c->inst_ptr * 16 + 1024);
673 for (unsigned i = 0; i < c->inst_ptr; i++) {
674 struct etna_inst *inst = &c->code[i];
675 if (inst->opcode == INST_OPCODE_BRANCH)
676 inst->imm = block_ptr[inst->imm];
677
678 inst->halti5 = specs->halti >= 5;
679 etna_assemble(&code[i * 4], inst);
680 }
681
682 v->code_size = c->inst_ptr * 4;
683 v->code = code;
684 v->needs_icache = c->inst_ptr > specs->max_instructions;
685
686 copy_uniform_state_to_shader(v, consts, num_consts);
687
688 if (s->info.stage == MESA_SHADER_FRAGMENT) {
689 v->input_count_unk8 = 31; /* XXX what is this */
690
691 nir_foreach_variable(var, &s->outputs) {
692 unsigned reg = c->output_reg[var->data.driver_location];
693 switch (var->data.location) {
694 case FRAG_RESULT_COLOR:
695 case FRAG_RESULT_DATA0: /* DATA0 is used by gallium shaders for color */
696 v->ps_color_out_reg = reg;
697 break;
698 case FRAG_RESULT_DEPTH:
699 v->ps_depth_out_reg = reg;
700 break;
701 default:
702 compile_error(c, "Unsupported fs output %s\n", gl_frag_result_name(var->data.location));
703 }
704 }
705 assert(v->ps_depth_out_reg <= 0);
706 v->outfile.num_reg = 0;
707 ralloc_free(c->nir);
708 FREE(c);
709 return true;
710 }
711
712 v->input_count_unk8 = DIV_ROUND_UP(v->infile.num_reg + 4, 16); /* XXX what is this */
713
714 sf = &v->outfile;
715 sf->num_reg = 0;
716 nir_foreach_variable(var, &s->outputs) {
717 unsigned native = c->output_reg[var->data.driver_location];
718
719 if (var->data.location == VARYING_SLOT_POS) {
720 v->vs_pos_out_reg = native;
721 continue;
722 }
723
724 if (var->data.location == VARYING_SLOT_PSIZ) {
725 v->vs_pointsize_out_reg = native;
726 continue;
727 }
728
729 sf->reg[sf->num_reg].reg = native;
730 sf->reg[sf->num_reg].slot = var->data.location;
731 sf->reg[sf->num_reg].num_components = 4; /* TODO */
732 sf->num_reg++;
733 }
734
735 /* fill in "mystery meat" load balancing value. This value determines how
736 * work is scheduled between VS and PS
737 * in the unified shader architecture. More precisely, it is determined from
738 * the number of VS outputs, as well as chip-specific
739 * vertex output buffer size, vertex cache size, and the number of shader
740 * cores.
741 *
742 * XXX this is a conservative estimate, the "optimal" value is only known for
743 * sure at link time because some
744 * outputs may be unused and thus unmapped. Then again, in the general use
745 * case with GLSL the vertex and fragment
746 * shaders are linked already before submitting to Gallium, thus all outputs
747 * are used.
748 *
749 * note: TGSI compiler counts all outputs (including position and pointsize), here
750 * v->outfile.num_reg only counts varyings, +1 to compensate for the position output
751 * TODO: might have a problem that we don't count pointsize when it is used
752 */
753
754 int half_out = v->outfile.num_reg / 2 + 1;
755 assert(half_out);
756
757 uint32_t b = ((20480 / (specs->vertex_output_buffer_size -
758 2 * half_out * specs->vertex_cache_size)) +
759 9) /
760 10;
761 uint32_t a = (b + 256 / (specs->shader_core_count * half_out)) / 2;
762 v->vs_load_balancing = VIVS_VS_LOAD_BALANCING_A(MIN2(a, 255)) |
763 VIVS_VS_LOAD_BALANCING_B(MIN2(b, 255)) |
764 VIVS_VS_LOAD_BALANCING_C(0x3f) |
765 VIVS_VS_LOAD_BALANCING_D(0x0f);
766
767 ralloc_free(c->nir);
768 FREE(c);
769 return true;
770 }
771
772 void
773 etna_destroy_shader_nir(struct etna_shader_variant *shader)
774 {
775 assert(shader);
776
777 FREE(shader->code);
778 FREE(shader->uniforms.imm_data);
779 FREE(shader->uniforms.imm_contents);
780 FREE(shader);
781 }
782
783 extern const char *tgsi_swizzle_names[];
784 void
785 etna_dump_shader_nir(const struct etna_shader_variant *shader)
786 {
787 if (shader->stage == MESA_SHADER_VERTEX)
788 printf("VERT\n");
789 else
790 printf("FRAG\n");
791
792 etna_disasm(shader->code, shader->code_size, PRINT_RAW);
793
794 printf("num loops: %i\n", shader->num_loops);
795 printf("num temps: %i\n", shader->num_temps);
796 printf("immediates:\n");
797 for (int idx = 0; idx < shader->uniforms.imm_count; ++idx) {
798 printf(" [%i].%s = %f (0x%08x) (%d)\n",
799 idx / 4,
800 tgsi_swizzle_names[idx % 4],
801 *((float *)&shader->uniforms.imm_data[idx]),
802 shader->uniforms.imm_data[idx],
803 shader->uniforms.imm_contents[idx]);
804 }
805 printf("inputs:\n");
806 for (int idx = 0; idx < shader->infile.num_reg; ++idx) {
807 printf(" [%i] name=%s comps=%i\n", shader->infile.reg[idx].reg,
808 (shader->stage == MESA_SHADER_VERTEX) ?
809 gl_vert_attrib_name(shader->infile.reg[idx].slot) :
810 gl_varying_slot_name(shader->infile.reg[idx].slot),
811 shader->infile.reg[idx].num_components);
812 }
813 printf("outputs:\n");
814 for (int idx = 0; idx < shader->outfile.num_reg; ++idx) {
815 printf(" [%i] name=%s comps=%i\n", shader->outfile.reg[idx].reg,
816 (shader->stage == MESA_SHADER_VERTEX) ?
817 gl_varying_slot_name(shader->outfile.reg[idx].slot) :
818 gl_frag_result_name(shader->outfile.reg[idx].slot),
819 shader->outfile.reg[idx].num_components);
820 }
821 printf("special:\n");
822 if (shader->stage == MESA_SHADER_VERTEX) {
823 printf(" vs_pos_out_reg=%i\n", shader->vs_pos_out_reg);
824 printf(" vs_pointsize_out_reg=%i\n", shader->vs_pointsize_out_reg);
825 printf(" vs_load_balancing=0x%08x\n", shader->vs_load_balancing);
826 } else {
827 printf(" ps_color_out_reg=%i\n", shader->ps_color_out_reg);
828 printf(" ps_depth_out_reg=%i\n", shader->ps_depth_out_reg);
829 }
830 printf(" input_count_unk8=0x%08x\n", shader->input_count_unk8);
831 }
832
833 static const struct etna_shader_inout *
834 etna_shader_vs_lookup(const struct etna_shader_variant *sobj,
835 const struct etna_shader_inout *in)
836 {
837 for (int i = 0; i < sobj->outfile.num_reg; i++)
838 if (sobj->outfile.reg[i].slot == in->slot)
839 return &sobj->outfile.reg[i];
840
841 return NULL;
842 }
843
844 bool
845 etna_link_shader_nir(struct etna_shader_link_info *info,
846 const struct etna_shader_variant *vs,
847 const struct etna_shader_variant *fs)
848 {
849 int comp_ofs = 0;
850 /* For each fragment input we need to find the associated vertex shader
851 * output, which can be found by matching on semantic name and index. A
852 * binary search could be used because the vs outputs are sorted by their
853 * semantic index and grouped by semantic type by fill_in_vs_outputs.
854 */
855 assert(fs->infile.num_reg < ETNA_NUM_INPUTS);
856 info->pcoord_varying_comp_ofs = -1;
857
858 for (int idx = 0; idx < fs->infile.num_reg; ++idx) {
859 const struct etna_shader_inout *fsio = &fs->infile.reg[idx];
860 const struct etna_shader_inout *vsio = etna_shader_vs_lookup(vs, fsio);
861 struct etna_varying *varying;
862 bool interpolate_always = true;
863
864 assert(fsio->reg > 0 && fsio->reg <= ARRAY_SIZE(info->varyings));
865
866 if (fsio->reg > info->num_varyings)
867 info->num_varyings = fsio->reg;
868
869 varying = &info->varyings[fsio->reg - 1];
870 varying->num_components = fsio->num_components;
871
872 if (!interpolate_always) /* colors affected by flat shading */
873 varying->pa_attributes = 0x200;
874 else /* texture coord or other bypasses flat shading */
875 varying->pa_attributes = 0x2f1;
876
877 varying->use[0] = VARYING_COMPONENT_USE_UNUSED;
878 varying->use[1] = VARYING_COMPONENT_USE_UNUSED;
879 varying->use[2] = VARYING_COMPONENT_USE_UNUSED;
880 varying->use[3] = VARYING_COMPONENT_USE_UNUSED;
881
882 /* point coord is an input to the PS without matching VS output,
883 * so it gets a varying slot without being assigned a VS register.
884 */
885 if (fsio->slot == VARYING_SLOT_PNTC) {
886 varying->use[0] = VARYING_COMPONENT_USE_POINTCOORD_X;
887 varying->use[1] = VARYING_COMPONENT_USE_POINTCOORD_Y;
888
889 info->pcoord_varying_comp_ofs = comp_ofs;
890 } else {
891 if (vsio == NULL) { /* not found -- link error */
892 BUG("Semantic value not found in vertex shader outputs\n");
893 return true;
894 }
895 varying->reg = vsio->reg;
896 }
897
898 comp_ofs += varying->num_components;
899 }
900
901 assert(info->num_varyings == fs->infile.num_reg);
902
903 return false;
904 }