8214d4f5770478ce10363fdc191d1f335d608a43
[mesa.git] / src / gallium / drivers / etnaviv / etnaviv_compiler_tgsi.c
1 /*
2 * Copyright (c) 2012-2015 Etnaviv Project
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Wladimir J. van der Laan <laanwj@gmail.com>
25 */
26
27 /* TGSI->Vivante shader ISA conversion */
28
29 /* What does the compiler return (see etna_shader_object)?
30 * 1) instruction data
31 * 2) input-to-temporary mapping (fixed for ps)
32 * *) in case of ps, semantic -> varying id mapping
33 * *) for each varying: number of components used (r, rg, rgb, rgba)
34 * 3) temporary-to-output mapping (in case of vs, fixed for ps)
35 * 4) for each input/output: possible semantic (position, color, glpointcoord, ...)
36 * 5) immediates base offset, immediates data
37 * 6) used texture units (and possibly the TGSI_TEXTURE_* type); not needed to
38 * configure the hw, but useful for error checking
39 * 7) enough information to add the z=(z+w)/2.0 necessary for older chips
40 * (output reg id is enough)
41 *
42 * Empty shaders are not allowed, should always at least generate a NOP. Also
43 * if there is a label at the end of the shader, an extra NOP should be
44 * generated as jump target.
45 *
46 * TODO
47 * * Use an instruction scheduler
48 * * Indirect access to uniforms / temporaries using amode
49 */
50
51 #include "etnaviv_compiler.h"
52
53 #include "etnaviv_asm.h"
54 #include "etnaviv_context.h"
55 #include "etnaviv_debug.h"
56 #include "etnaviv_disasm.h"
57 #include "etnaviv_uniforms.h"
58 #include "etnaviv_util.h"
59
60 #include "pipe/p_shader_tokens.h"
61 #include "tgsi/tgsi_info.h"
62 #include "tgsi/tgsi_iterate.h"
63 #include "tgsi/tgsi_lowering.h"
64 #include "tgsi/tgsi_strings.h"
65 #include "tgsi/tgsi_util.h"
66 #include "util/u_math.h"
67 #include "util/u_memory.h"
68
69 #include <fcntl.h>
70 #include <stdio.h>
71 #include <sys/stat.h>
72 #include <sys/types.h>
73
74 #define ETNA_MAX_INNER_TEMPS 2
75
76 static const float sincos_const[2][4] = {
77 {
78 2., -1., 4., -4.,
79 },
80 {
81 1. / (2. * M_PI), 0.75, 0.5, 0.0,
82 },
83 };
84
85 /* Native register description structure */
86 struct etna_native_reg {
87 unsigned valid : 1;
88 unsigned is_tex : 1; /* is texture unit, overrides rgroup */
89 unsigned rgroup : 3;
90 unsigned id : 9;
91 };
92
93 /* Register description */
94 struct etna_reg_desc {
95 enum tgsi_file_type file; /* IN, OUT, TEMP, ... */
96 int idx; /* index into file */
97 bool active; /* used in program */
98 int first_use; /* instruction id of first use (scope begin) */
99 int last_use; /* instruction id of last use (scope end, inclusive) */
100
101 struct etna_native_reg native; /* native register to map to */
102 unsigned usage_mask : 4; /* usage, per channel */
103 bool has_semantic; /* register has associated TGSI semantic */
104 struct tgsi_declaration_semantic semantic; /* TGSI semantic */
105 struct tgsi_declaration_interp interp; /* Interpolation type */
106 };
107
108 /* Label information structure */
109 struct etna_compile_label {
110 int inst_idx; /* Instruction id that label points to */
111 };
112
113 enum etna_compile_frame_type {
114 ETNA_COMPILE_FRAME_IF, /* IF/ELSE/ENDIF */
115 ETNA_COMPILE_FRAME_LOOP,
116 };
117
118 /* nesting scope frame (LOOP, IF, ...) during compilation
119 */
120 struct etna_compile_frame {
121 enum etna_compile_frame_type type;
122 int lbl_else_idx;
123 int lbl_endif_idx;
124 int lbl_loop_bgn_idx;
125 int lbl_loop_end_idx;
126 };
127
128 struct etna_compile_file {
129 /* Number of registers in each TGSI file (max register+1) */
130 size_t reg_size;
131 /* Register descriptions, per register index */
132 struct etna_reg_desc *reg;
133 };
134
135 #define array_insert(arr, val) \
136 do { \
137 if (arr##_count == arr##_sz) { \
138 arr##_sz = MAX2(2 * arr##_sz, 16); \
139 arr = realloc(arr, arr##_sz * sizeof(arr[0])); \
140 } \
141 arr[arr##_count++] = val; \
142 } while (0)
143
144
145 /* scratch area for compiling shader, freed after compilation finishes */
146 struct etna_compile {
147 const struct tgsi_token *tokens;
148 bool free_tokens;
149
150 struct tgsi_shader_info info;
151
152 /* Register descriptions, per TGSI file, per register index */
153 struct etna_compile_file file[TGSI_FILE_COUNT];
154
155 /* Keep track of TGSI register declarations */
156 struct etna_reg_desc decl[ETNA_MAX_DECL];
157 uint total_decls;
158
159 /* Bitmap of dead instructions which are removed in a separate pass */
160 bool dead_inst[ETNA_MAX_TOKENS];
161
162 /* Immediate data */
163 enum etna_immediate_contents imm_contents[ETNA_MAX_IMM];
164 uint32_t imm_data[ETNA_MAX_IMM];
165 uint32_t imm_base; /* base of immediates (in 32 bit units) */
166 uint32_t imm_size; /* size of immediates (in 32 bit units) */
167
168 /* Next free native register, for register allocation */
169 uint32_t next_free_native;
170
171 /* Temporary register for use within translated TGSI instruction,
172 * only allocated when needed.
173 */
174 int inner_temps; /* number of inner temps used; only up to one available at
175 this point */
176 struct etna_native_reg inner_temp[ETNA_MAX_INNER_TEMPS];
177
178 /* Fields for handling nested conditionals */
179 struct etna_compile_frame frame_stack[ETNA_MAX_DEPTH];
180 int frame_sp;
181 int lbl_usage[ETNA_MAX_INSTRUCTIONS];
182
183 unsigned labels_count, labels_sz;
184 struct etna_compile_label *labels;
185
186 unsigned num_loops;
187
188 /* Code generation */
189 int inst_ptr; /* current instruction pointer */
190 uint32_t code[ETNA_MAX_INSTRUCTIONS * ETNA_INST_SIZE];
191
192 /* I/O */
193
194 /* Number of varyings (PS only) */
195 int num_varyings;
196
197 /* GPU hardware specs */
198 const struct etna_specs *specs;
199
200 const struct etna_shader_key *key;
201 };
202
203 static struct etna_reg_desc *
204 etna_get_dst_reg(struct etna_compile *c, struct tgsi_dst_register dst)
205 {
206 return &c->file[dst.File].reg[dst.Index];
207 }
208
209 static struct etna_reg_desc *
210 etna_get_src_reg(struct etna_compile *c, struct tgsi_src_register src)
211 {
212 return &c->file[src.File].reg[src.Index];
213 }
214
215 static struct etna_native_reg
216 etna_native_temp(unsigned reg)
217 {
218 return (struct etna_native_reg) {
219 .valid = 1,
220 .rgroup = INST_RGROUP_TEMP,
221 .id = reg
222 };
223 }
224
225 /** Register allocation **/
226 enum reg_sort_order {
227 FIRST_USE_ASC,
228 FIRST_USE_DESC,
229 LAST_USE_ASC,
230 LAST_USE_DESC
231 };
232
233 /* Augmented register description for sorting */
234 struct sort_rec {
235 struct etna_reg_desc *ptr;
236 int key;
237 };
238
239 static int
240 sort_rec_compar(const struct sort_rec *a, const struct sort_rec *b)
241 {
242 if (a->key < b->key)
243 return -1;
244
245 if (a->key > b->key)
246 return 1;
247
248 return 0;
249 }
250
251 /* create an index on a register set based on certain criteria. */
252 static int
253 sort_registers(struct sort_rec *sorted, struct etna_compile_file *file,
254 enum reg_sort_order so)
255 {
256 struct etna_reg_desc *regs = file->reg;
257 int ptr = 0;
258
259 /* pre-populate keys from active registers */
260 for (int idx = 0; idx < file->reg_size; ++idx) {
261 /* only interested in active registers now; will only assign inactive ones
262 * if no space in active ones */
263 if (regs[idx].active) {
264 sorted[ptr].ptr = &regs[idx];
265
266 switch (so) {
267 case FIRST_USE_ASC:
268 sorted[ptr].key = regs[idx].first_use;
269 break;
270 case LAST_USE_ASC:
271 sorted[ptr].key = regs[idx].last_use;
272 break;
273 case FIRST_USE_DESC:
274 sorted[ptr].key = -regs[idx].first_use;
275 break;
276 case LAST_USE_DESC:
277 sorted[ptr].key = -regs[idx].last_use;
278 break;
279 }
280 ptr++;
281 }
282 }
283
284 /* sort index by key */
285 qsort(sorted, ptr, sizeof(struct sort_rec),
286 (int (*)(const void *, const void *))sort_rec_compar);
287
288 return ptr;
289 }
290
291 /* Allocate a new, unused, native temp register */
292 static struct etna_native_reg
293 alloc_new_native_reg(struct etna_compile *c)
294 {
295 assert(c->next_free_native < ETNA_MAX_TEMPS);
296 return etna_native_temp(c->next_free_native++);
297 }
298
299 /* assign TEMPs to native registers */
300 static void
301 assign_temporaries_to_native(struct etna_compile *c,
302 struct etna_compile_file *file)
303 {
304 struct etna_reg_desc *temps = file->reg;
305
306 for (int idx = 0; idx < file->reg_size; ++idx)
307 temps[idx].native = alloc_new_native_reg(c);
308 }
309
310 /* assign inputs and outputs to temporaries
311 * Gallium assumes that the hardware has separate registers for taking input and
312 * output, however Vivante GPUs use temporaries both for passing in inputs and
313 * passing back outputs.
314 * Try to re-use temporary registers where possible. */
315 static void
316 assign_inouts_to_temporaries(struct etna_compile *c, uint file)
317 {
318 bool mode_inputs = (file == TGSI_FILE_INPUT);
319 int inout_ptr = 0, num_inouts;
320 int temp_ptr = 0, num_temps;
321 struct sort_rec inout_order[ETNA_MAX_TEMPS];
322 struct sort_rec temps_order[ETNA_MAX_TEMPS];
323 num_inouts = sort_registers(inout_order, &c->file[file],
324 mode_inputs ? LAST_USE_ASC : FIRST_USE_ASC);
325 num_temps = sort_registers(temps_order, &c->file[TGSI_FILE_TEMPORARY],
326 mode_inputs ? FIRST_USE_ASC : LAST_USE_ASC);
327
328 while (inout_ptr < num_inouts && temp_ptr < num_temps) {
329 struct etna_reg_desc *inout = inout_order[inout_ptr].ptr;
330 struct etna_reg_desc *temp = temps_order[temp_ptr].ptr;
331
332 if (!inout->active || inout->native.valid) { /* Skip if already a native register assigned */
333 inout_ptr++;
334 continue;
335 }
336
337 /* last usage of this input is before or in same instruction of first use
338 * of temporary? */
339 if (mode_inputs ? (inout->last_use <= temp->first_use)
340 : (inout->first_use >= temp->last_use)) {
341 /* assign it and advance to next input */
342 inout->native = temp->native;
343 inout_ptr++;
344 }
345
346 temp_ptr++;
347 }
348
349 /* if we couldn't reuse current ones, allocate new temporaries */
350 for (inout_ptr = 0; inout_ptr < num_inouts; ++inout_ptr) {
351 struct etna_reg_desc *inout = inout_order[inout_ptr].ptr;
352
353 if (inout->active && !inout->native.valid)
354 inout->native = alloc_new_native_reg(c);
355 }
356 }
357
358 /* Allocate an immediate with a certain value and return the index. If
359 * there is already an immediate with that value, return that.
360 */
361 static struct etna_inst_src
362 alloc_imm(struct etna_compile *c, enum etna_immediate_contents contents,
363 uint32_t value)
364 {
365 int idx;
366
367 /* Could use a hash table to speed this up */
368 for (idx = 0; idx < c->imm_size; ++idx) {
369 if (c->imm_contents[idx] == contents && c->imm_data[idx] == value)
370 break;
371 }
372
373 /* look if there is an unused slot */
374 if (idx == c->imm_size) {
375 for (idx = 0; idx < c->imm_size; ++idx) {
376 if (c->imm_contents[idx] == ETNA_IMMEDIATE_UNUSED)
377 break;
378 }
379 }
380
381 /* allocate new immediate */
382 if (idx == c->imm_size) {
383 assert(c->imm_size < ETNA_MAX_IMM);
384 idx = c->imm_size++;
385 c->imm_data[idx] = value;
386 c->imm_contents[idx] = contents;
387 }
388
389 /* swizzle so that component with value is returned in all components */
390 idx += c->imm_base;
391 struct etna_inst_src imm_src = {
392 .use = 1,
393 .rgroup = INST_RGROUP_UNIFORM_0,
394 .reg = idx / 4,
395 .swiz = INST_SWIZ_BROADCAST(idx & 3)
396 };
397
398 return imm_src;
399 }
400
401 static struct etna_inst_src
402 alloc_imm_u32(struct etna_compile *c, uint32_t value)
403 {
404 return alloc_imm(c, ETNA_IMMEDIATE_CONSTANT, value);
405 }
406
407 static struct etna_inst_src
408 alloc_imm_vec4u(struct etna_compile *c, enum etna_immediate_contents contents,
409 const uint32_t *values)
410 {
411 struct etna_inst_src imm_src = { };
412 int idx, i;
413
414 for (idx = 0; idx + 3 < c->imm_size; idx += 4) {
415 /* What if we can use a uniform with a different swizzle? */
416 for (i = 0; i < 4; i++)
417 if (c->imm_contents[idx + i] != contents || c->imm_data[idx + i] != values[i])
418 break;
419 if (i == 4)
420 break;
421 }
422
423 if (idx + 3 >= c->imm_size) {
424 idx = align(c->imm_size, 4);
425 assert(idx + 4 <= ETNA_MAX_IMM);
426
427 for (i = 0; i < 4; i++) {
428 c->imm_data[idx + i] = values[i];
429 c->imm_contents[idx + i] = contents;
430 }
431
432 c->imm_size = idx + 4;
433 }
434
435 assert((c->imm_base & 3) == 0);
436 idx += c->imm_base;
437 imm_src.use = 1;
438 imm_src.rgroup = INST_RGROUP_UNIFORM_0;
439 imm_src.reg = idx / 4;
440 imm_src.swiz = INST_SWIZ_IDENTITY;
441
442 return imm_src;
443 }
444
445 static uint32_t
446 get_imm_u32(struct etna_compile *c, const struct etna_inst_src *imm,
447 unsigned swiz_idx)
448 {
449 assert(imm->use == 1 && imm->rgroup == INST_RGROUP_UNIFORM_0);
450 unsigned int idx = imm->reg * 4 + ((imm->swiz >> (swiz_idx * 2)) & 3);
451
452 return c->imm_data[idx];
453 }
454
455 /* Allocate immediate with a certain float value. If there is already an
456 * immediate with that value, return that.
457 */
458 static struct etna_inst_src
459 alloc_imm_f32(struct etna_compile *c, float value)
460 {
461 return alloc_imm_u32(c, fui(value));
462 }
463
464 static struct etna_inst_src
465 etna_imm_vec4f(struct etna_compile *c, const float *vec4)
466 {
467 uint32_t val[4];
468
469 for (int i = 0; i < 4; i++)
470 val[i] = fui(vec4[i]);
471
472 return alloc_imm_vec4u(c, ETNA_IMMEDIATE_CONSTANT, val);
473 }
474
475 /* Pass -- check register file declarations and immediates */
476 static void
477 etna_compile_parse_declarations(struct etna_compile *c)
478 {
479 struct tgsi_parse_context ctx = { };
480 ASSERTED unsigned status = tgsi_parse_init(&ctx, c->tokens);
481 assert(status == TGSI_PARSE_OK);
482
483 while (!tgsi_parse_end_of_tokens(&ctx)) {
484 tgsi_parse_token(&ctx);
485
486 switch (ctx.FullToken.Token.Type) {
487 case TGSI_TOKEN_TYPE_IMMEDIATE: {
488 /* immediates are handled differently from other files; they are
489 * not declared explicitly, and always add four components */
490 const struct tgsi_full_immediate *imm = &ctx.FullToken.FullImmediate;
491 assert(c->imm_size <= (ETNA_MAX_IMM - 4));
492
493 for (int i = 0; i < 4; ++i) {
494 unsigned idx = c->imm_size++;
495
496 c->imm_data[idx] = imm->u[i].Uint;
497 c->imm_contents[idx] = ETNA_IMMEDIATE_CONSTANT;
498 }
499 }
500 break;
501 }
502 }
503
504 tgsi_parse_free(&ctx);
505 }
506
507 /* Allocate register declarations for the registers in all register files */
508 static void
509 etna_allocate_decls(struct etna_compile *c)
510 {
511 uint idx = 0;
512
513 for (int x = 0; x < TGSI_FILE_COUNT; ++x) {
514 c->file[x].reg = &c->decl[idx];
515 c->file[x].reg_size = c->info.file_max[x] + 1;
516
517 for (int sub = 0; sub < c->file[x].reg_size; ++sub) {
518 c->decl[idx].file = x;
519 c->decl[idx].idx = sub;
520 idx++;
521 }
522 }
523
524 c->total_decls = idx;
525 }
526
527 /* Pass -- check and record usage of temporaries, inputs, outputs */
528 static void
529 etna_compile_pass_check_usage(struct etna_compile *c)
530 {
531 struct tgsi_parse_context ctx = { };
532 ASSERTED unsigned status = tgsi_parse_init(&ctx, c->tokens);
533 assert(status == TGSI_PARSE_OK);
534
535 for (int idx = 0; idx < c->total_decls; ++idx) {
536 c->decl[idx].active = false;
537 c->decl[idx].first_use = c->decl[idx].last_use = -1;
538 }
539
540 int inst_idx = 0;
541 while (!tgsi_parse_end_of_tokens(&ctx)) {
542 tgsi_parse_token(&ctx);
543 /* find out max register #s used
544 * For every register mark first and last instruction index where it's
545 * used this allows finding ranges where the temporary can be borrowed
546 * as input and/or output register
547 *
548 * XXX in the case of loops this needs special care, or even be completely
549 * disabled, as
550 * the last usage of a register inside a loop means it can still be used
551 * on next loop
552 * iteration (execution is no longer * chronological). The register can
553 * only be
554 * declared "free" after the loop finishes.
555 *
556 * Same for inputs: the first usage of a register inside a loop doesn't
557 * mean that the register
558 * won't have been overwritten in previous iteration. The register can
559 * only be declared free before the loop
560 * starts.
561 * The proper way would be to do full dominator / post-dominator analysis
562 * (especially with more complicated
563 * control flow such as direct branch instructions) but not for now...
564 */
565 switch (ctx.FullToken.Token.Type) {
566 case TGSI_TOKEN_TYPE_DECLARATION: {
567 /* Declaration: fill in file details */
568 const struct tgsi_full_declaration *decl = &ctx.FullToken.FullDeclaration;
569 struct etna_compile_file *file = &c->file[decl->Declaration.File];
570
571 for (int idx = decl->Range.First; idx <= decl->Range.Last; ++idx) {
572 file->reg[idx].usage_mask = 0; // we'll compute this ourselves
573 file->reg[idx].has_semantic = decl->Declaration.Semantic;
574 file->reg[idx].semantic = decl->Semantic;
575 file->reg[idx].interp = decl->Interp;
576 }
577 } break;
578 case TGSI_TOKEN_TYPE_INSTRUCTION: {
579 /* Instruction: iterate over operands of instruction */
580 const struct tgsi_full_instruction *inst = &ctx.FullToken.FullInstruction;
581
582 /* iterate over destination registers */
583 for (int idx = 0; idx < inst->Instruction.NumDstRegs; ++idx) {
584 struct etna_reg_desc *reg_desc = &c->file[inst->Dst[idx].Register.File].reg[inst->Dst[idx].Register.Index];
585
586 if (reg_desc->first_use == -1)
587 reg_desc->first_use = inst_idx;
588
589 reg_desc->last_use = inst_idx;
590 reg_desc->active = true;
591 }
592
593 /* iterate over source registers */
594 for (int idx = 0; idx < inst->Instruction.NumSrcRegs; ++idx) {
595 struct etna_reg_desc *reg_desc = &c->file[inst->Src[idx].Register.File].reg[inst->Src[idx].Register.Index];
596
597 if (reg_desc->first_use == -1)
598 reg_desc->first_use = inst_idx;
599
600 reg_desc->last_use = inst_idx;
601 reg_desc->active = true;
602 /* accumulate usage mask for register, this is used to determine how
603 * many slots for varyings
604 * should be allocated */
605 reg_desc->usage_mask |= tgsi_util_get_inst_usage_mask(inst, idx);
606 }
607 inst_idx += 1;
608 } break;
609 default:
610 break;
611 }
612 }
613
614 tgsi_parse_free(&ctx);
615 }
616
617 /* assign inputs that need to be assigned to specific registers */
618 static void
619 assign_special_inputs(struct etna_compile *c)
620 {
621 if (c->info.processor == PIPE_SHADER_FRAGMENT) {
622 /* never assign t0 as it is the position output, start assigning at t1 */
623 c->next_free_native = 1;
624
625 /* hardwire TGSI_SEMANTIC_POSITION (input and output) to t0 */
626 for (int idx = 0; idx < c->total_decls; ++idx) {
627 struct etna_reg_desc *reg = &c->decl[idx];
628
629 if (reg->active && reg->semantic.Name == TGSI_SEMANTIC_POSITION)
630 reg->native = etna_native_temp(0);
631 }
632 }
633 }
634
635 /* Check that a move instruction does not swizzle any of the components
636 * that it writes.
637 */
638 static bool
639 etna_mov_check_no_swizzle(const struct tgsi_dst_register dst,
640 const struct tgsi_src_register src)
641 {
642 return (!(dst.WriteMask & TGSI_WRITEMASK_X) || src.SwizzleX == TGSI_SWIZZLE_X) &&
643 (!(dst.WriteMask & TGSI_WRITEMASK_Y) || src.SwizzleY == TGSI_SWIZZLE_Y) &&
644 (!(dst.WriteMask & TGSI_WRITEMASK_Z) || src.SwizzleZ == TGSI_SWIZZLE_Z) &&
645 (!(dst.WriteMask & TGSI_WRITEMASK_W) || src.SwizzleW == TGSI_SWIZZLE_W);
646 }
647
648 /* Pass -- optimize outputs
649 * Mesa tends to generate code like this at the end if their shaders
650 * MOV OUT[1], TEMP[2]
651 * MOV OUT[0], TEMP[0]
652 * MOV OUT[2], TEMP[1]
653 * Recognize if
654 * a) there is only a single assignment to an output register and
655 * b) the temporary is not used after that
656 * Also recognize direct assignment of IN to OUT (passthrough)
657 **/
658 static void
659 etna_compile_pass_optimize_outputs(struct etna_compile *c)
660 {
661 struct tgsi_parse_context ctx = { };
662 int inst_idx = 0;
663 ASSERTED unsigned status = tgsi_parse_init(&ctx, c->tokens);
664 assert(status == TGSI_PARSE_OK);
665
666 while (!tgsi_parse_end_of_tokens(&ctx)) {
667 tgsi_parse_token(&ctx);
668
669 switch (ctx.FullToken.Token.Type) {
670 case TGSI_TOKEN_TYPE_INSTRUCTION: {
671 const struct tgsi_full_instruction *inst = &ctx.FullToken.FullInstruction;
672
673 /* iterate over operands */
674 switch (inst->Instruction.Opcode) {
675 case TGSI_OPCODE_MOV: {
676 /* We are only interested in eliminating MOVs which write to
677 * the shader outputs. Test for this early. */
678 if (inst->Dst[0].Register.File != TGSI_FILE_OUTPUT)
679 break;
680 /* Elimination of a MOV must have no visible effect on the
681 * resulting shader: this means the MOV must not swizzle or
682 * saturate, and its source must not have the negate or
683 * absolute modifiers. */
684 if (!etna_mov_check_no_swizzle(inst->Dst[0].Register, inst->Src[0].Register) ||
685 inst->Instruction.Saturate || inst->Src[0].Register.Negate ||
686 inst->Src[0].Register.Absolute)
687 break;
688
689 uint out_idx = inst->Dst[0].Register.Index;
690 uint in_idx = inst->Src[0].Register.Index;
691 /* assignment of temporary to output --
692 * and the output doesn't yet have a native register assigned
693 * and the last use of the temporary is this instruction
694 * and the MOV does not do a swizzle
695 */
696 if (inst->Src[0].Register.File == TGSI_FILE_TEMPORARY &&
697 !c->file[TGSI_FILE_OUTPUT].reg[out_idx].native.valid &&
698 c->file[TGSI_FILE_TEMPORARY].reg[in_idx].last_use == inst_idx) {
699 c->file[TGSI_FILE_OUTPUT].reg[out_idx].native =
700 c->file[TGSI_FILE_TEMPORARY].reg[in_idx].native;
701 /* prevent temp from being re-used for the rest of the shader */
702 c->file[TGSI_FILE_TEMPORARY].reg[in_idx].last_use = ETNA_MAX_TOKENS;
703 /* mark this MOV instruction as a no-op */
704 c->dead_inst[inst_idx] = true;
705 }
706 /* direct assignment of input to output --
707 * and the input or output doesn't yet have a native register
708 * assigned
709 * and the output is only used in this instruction,
710 * allocate a new register, and associate both input and output to
711 * it
712 * and the MOV does not do a swizzle
713 */
714 if (inst->Src[0].Register.File == TGSI_FILE_INPUT &&
715 !c->file[TGSI_FILE_INPUT].reg[in_idx].native.valid &&
716 !c->file[TGSI_FILE_OUTPUT].reg[out_idx].native.valid &&
717 c->file[TGSI_FILE_OUTPUT].reg[out_idx].last_use == inst_idx &&
718 c->file[TGSI_FILE_OUTPUT].reg[out_idx].first_use == inst_idx) {
719 c->file[TGSI_FILE_OUTPUT].reg[out_idx].native =
720 c->file[TGSI_FILE_INPUT].reg[in_idx].native =
721 alloc_new_native_reg(c);
722 /* mark this MOV instruction as a no-op */
723 c->dead_inst[inst_idx] = true;
724 }
725 } break;
726 default:;
727 }
728 inst_idx += 1;
729 } break;
730 }
731 }
732
733 tgsi_parse_free(&ctx);
734 }
735
736 /* Get a temporary to be used within one TGSI instruction.
737 * The first time that this function is called the temporary will be allocated.
738 * Each call to this function will return the same temporary.
739 */
740 static struct etna_native_reg
741 etna_compile_get_inner_temp(struct etna_compile *c)
742 {
743 int inner_temp = c->inner_temps;
744
745 if (inner_temp < ETNA_MAX_INNER_TEMPS) {
746 if (!c->inner_temp[inner_temp].valid)
747 c->inner_temp[inner_temp] = alloc_new_native_reg(c);
748
749 /* alloc_new_native_reg() handles lack of registers */
750 c->inner_temps += 1;
751 } else {
752 BUG("Too many inner temporaries (%i) requested in one instruction",
753 inner_temp + 1);
754 }
755
756 return c->inner_temp[inner_temp];
757 }
758
759 static struct etna_inst_dst
760 etna_native_to_dst(struct etna_native_reg native, unsigned comps)
761 {
762 /* Can only assign to temporaries */
763 assert(native.valid && !native.is_tex && native.rgroup == INST_RGROUP_TEMP);
764
765 struct etna_inst_dst rv = {
766 .write_mask = comps,
767 .use = 1,
768 .reg = native.id,
769 };
770
771 return rv;
772 }
773
774 static struct etna_inst_src
775 etna_native_to_src(struct etna_native_reg native, uint32_t swizzle)
776 {
777 assert(native.valid && !native.is_tex);
778
779 struct etna_inst_src rv = {
780 .use = 1,
781 .swiz = swizzle,
782 .rgroup = native.rgroup,
783 .reg = native.id,
784 .amode = INST_AMODE_DIRECT,
785 };
786
787 return rv;
788 }
789
790 static inline struct etna_inst_src
791 negate(struct etna_inst_src src)
792 {
793 src.neg = !src.neg;
794
795 return src;
796 }
797
798 static inline struct etna_inst_src
799 absolute(struct etna_inst_src src)
800 {
801 src.abs = 1;
802
803 return src;
804 }
805
806 static inline struct etna_inst_src
807 swizzle(struct etna_inst_src src, unsigned swizzle)
808 {
809 src.swiz = inst_swiz_compose(src.swiz, swizzle);
810
811 return src;
812 }
813
814 /* Emit instruction and append it to program */
815 static void
816 emit_inst(struct etna_compile *c, struct etna_inst *inst)
817 {
818 assert(c->inst_ptr <= ETNA_MAX_INSTRUCTIONS);
819
820 /* Check for uniform conflicts (each instruction can only access one
821 * uniform),
822 * if detected, use an intermediate temporary */
823 unsigned uni_rgroup = -1;
824 unsigned uni_reg = -1;
825
826 for (int src = 0; src < ETNA_NUM_SRC; ++src) {
827 if (etna_rgroup_is_uniform(inst->src[src].rgroup)) {
828 if (uni_reg == -1) { /* first unique uniform used */
829 uni_rgroup = inst->src[src].rgroup;
830 uni_reg = inst->src[src].reg;
831 } else { /* second or later; check that it is a re-use */
832 if (uni_rgroup != inst->src[src].rgroup ||
833 uni_reg != inst->src[src].reg) {
834 DBG_F(ETNA_DBG_COMPILER_MSGS, "perf warning: instruction that "
835 "accesses different uniforms, "
836 "need to generate extra MOV");
837 struct etna_native_reg inner_temp = etna_compile_get_inner_temp(c);
838
839 /* Generate move instruction to temporary */
840 etna_assemble(&c->code[c->inst_ptr * 4], &(struct etna_inst) {
841 .opcode = INST_OPCODE_MOV,
842 .dst = etna_native_to_dst(inner_temp, INST_COMPS_X | INST_COMPS_Y |
843 INST_COMPS_Z | INST_COMPS_W),
844 .src[2] = inst->src[src]
845 });
846
847 c->inst_ptr++;
848
849 /* Modify instruction to use temp register instead of uniform */
850 inst->src[src].use = 1;
851 inst->src[src].rgroup = INST_RGROUP_TEMP;
852 inst->src[src].reg = inner_temp.id;
853 inst->src[src].swiz = INST_SWIZ_IDENTITY; /* swizzling happens on MOV */
854 inst->src[src].neg = 0; /* negation happens on MOV */
855 inst->src[src].abs = 0; /* abs happens on MOV */
856 inst->src[src].amode = 0; /* amode effects happen on MOV */
857 }
858 }
859 }
860 }
861
862 /* Finally assemble the actual instruction */
863 etna_assemble(&c->code[c->inst_ptr * 4], inst);
864 c->inst_ptr++;
865 }
866
867 static unsigned int
868 etna_amode(struct tgsi_ind_register indirect)
869 {
870 assert(indirect.File == TGSI_FILE_ADDRESS);
871 assert(indirect.Index == 0);
872
873 switch (indirect.Swizzle) {
874 case TGSI_SWIZZLE_X:
875 return INST_AMODE_ADD_A_X;
876 case TGSI_SWIZZLE_Y:
877 return INST_AMODE_ADD_A_Y;
878 case TGSI_SWIZZLE_Z:
879 return INST_AMODE_ADD_A_Z;
880 case TGSI_SWIZZLE_W:
881 return INST_AMODE_ADD_A_W;
882 default:
883 assert(!"Invalid swizzle");
884 }
885
886 unreachable("bad swizzle");
887 }
888
889 /* convert destination operand */
890 static struct etna_inst_dst
891 convert_dst(struct etna_compile *c, const struct tgsi_full_dst_register *in)
892 {
893 struct etna_inst_dst rv = {
894 /// XXX .amode
895 .write_mask = in->Register.WriteMask,
896 };
897
898 if (in->Register.File == TGSI_FILE_ADDRESS) {
899 assert(in->Register.Index == 0);
900 rv.reg = in->Register.Index;
901 rv.use = 0;
902 } else {
903 rv = etna_native_to_dst(etna_get_dst_reg(c, in->Register)->native,
904 in->Register.WriteMask);
905 }
906
907 if (in->Register.Indirect)
908 rv.amode = etna_amode(in->Indirect);
909
910 return rv;
911 }
912
913 /* convert texture operand */
914 static struct etna_inst_tex
915 convert_tex(struct etna_compile *c, const struct tgsi_full_src_register *in,
916 const struct tgsi_instruction_texture *tex)
917 {
918 struct etna_native_reg native_reg = etna_get_src_reg(c, in->Register)->native;
919 struct etna_inst_tex rv = {
920 // XXX .amode (to allow for an array of samplers?)
921 .swiz = INST_SWIZ_IDENTITY
922 };
923
924 assert(native_reg.is_tex && native_reg.valid);
925 rv.id = native_reg.id;
926
927 return rv;
928 }
929
930 /* convert source operand */
931 static struct etna_inst_src
932 etna_create_src(const struct tgsi_full_src_register *tgsi,
933 const struct etna_native_reg *native)
934 {
935 const struct tgsi_src_register *reg = &tgsi->Register;
936 struct etna_inst_src rv = {
937 .use = 1,
938 .swiz = INST_SWIZ(reg->SwizzleX, reg->SwizzleY, reg->SwizzleZ, reg->SwizzleW),
939 .neg = reg->Negate,
940 .abs = reg->Absolute,
941 .rgroup = native->rgroup,
942 .reg = native->id,
943 .amode = INST_AMODE_DIRECT,
944 };
945
946 assert(native->valid && !native->is_tex);
947
948 if (reg->Indirect)
949 rv.amode = etna_amode(tgsi->Indirect);
950
951 return rv;
952 }
953
954 static struct etna_inst_src
955 etna_mov_src_to_temp(struct etna_compile *c, struct etna_inst_src src,
956 struct etna_native_reg temp)
957 {
958 struct etna_inst mov = { };
959
960 mov.opcode = INST_OPCODE_MOV;
961 mov.sat = 0;
962 mov.dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y |
963 INST_COMPS_Z | INST_COMPS_W);
964 mov.src[2] = src;
965 emit_inst(c, &mov);
966
967 src.swiz = INST_SWIZ_IDENTITY;
968 src.neg = src.abs = 0;
969 src.rgroup = temp.rgroup;
970 src.reg = temp.id;
971
972 return src;
973 }
974
975 static struct etna_inst_src
976 etna_mov_src(struct etna_compile *c, struct etna_inst_src src)
977 {
978 struct etna_native_reg temp = etna_compile_get_inner_temp(c);
979
980 return etna_mov_src_to_temp(c, src, temp);
981 }
982
983 static bool
984 etna_src_uniforms_conflict(struct etna_inst_src a, struct etna_inst_src b)
985 {
986 return etna_rgroup_is_uniform(a.rgroup) &&
987 etna_rgroup_is_uniform(b.rgroup) &&
988 (a.rgroup != b.rgroup || a.reg != b.reg);
989 }
990
991 /* create a new label */
992 static unsigned int
993 alloc_new_label(struct etna_compile *c)
994 {
995 struct etna_compile_label label = {
996 .inst_idx = -1, /* start by point to no specific instruction */
997 };
998
999 array_insert(c->labels, label);
1000
1001 return c->labels_count - 1;
1002 }
1003
1004 /* place label at current instruction pointer */
1005 static void
1006 label_place(struct etna_compile *c, struct etna_compile_label *label)
1007 {
1008 label->inst_idx = c->inst_ptr;
1009 }
1010
1011 /* mark label use at current instruction.
1012 * target of the label will be filled in in the marked instruction's src2.imm
1013 * slot as soon
1014 * as the value becomes known.
1015 */
1016 static void
1017 label_mark_use(struct etna_compile *c, int lbl_idx)
1018 {
1019 assert(c->inst_ptr < ETNA_MAX_INSTRUCTIONS);
1020 c->lbl_usage[c->inst_ptr] = lbl_idx;
1021 }
1022
1023 /* walk the frame stack and return first frame with matching type */
1024 static struct etna_compile_frame *
1025 find_frame(struct etna_compile *c, enum etna_compile_frame_type type)
1026 {
1027 for (int sp = c->frame_sp; sp >= 0; sp--)
1028 if (c->frame_stack[sp].type == type)
1029 return &c->frame_stack[sp];
1030
1031 assert(0);
1032 return NULL;
1033 }
1034
1035 struct instr_translater {
1036 void (*fxn)(const struct instr_translater *t, struct etna_compile *c,
1037 const struct tgsi_full_instruction *inst,
1038 struct etna_inst_src *src);
1039 unsigned tgsi_opc;
1040 uint8_t opc;
1041
1042 /* tgsi src -> etna src swizzle */
1043 int src[3];
1044
1045 unsigned cond;
1046 };
1047
1048 static void
1049 trans_instr(const struct instr_translater *t, struct etna_compile *c,
1050 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1051 {
1052 const struct tgsi_opcode_info *info = tgsi_get_opcode_info(inst->Instruction.Opcode);
1053 struct etna_inst instr = { };
1054
1055 instr.opcode = t->opc;
1056 instr.cond = t->cond;
1057 instr.sat = inst->Instruction.Saturate;
1058
1059 assert(info->num_dst <= 1);
1060 if (info->num_dst)
1061 instr.dst = convert_dst(c, &inst->Dst[0]);
1062
1063 assert(info->num_src <= ETNA_NUM_SRC);
1064
1065 for (unsigned i = 0; i < info->num_src; i++) {
1066 int swizzle = t->src[i];
1067
1068 assert(swizzle != -1);
1069 instr.src[swizzle] = src[i];
1070 }
1071
1072 emit_inst(c, &instr);
1073 }
1074
1075 static void
1076 trans_min_max(const struct instr_translater *t, struct etna_compile *c,
1077 const struct tgsi_full_instruction *inst,
1078 struct etna_inst_src *src)
1079 {
1080 emit_inst(c, &(struct etna_inst) {
1081 .opcode = INST_OPCODE_SELECT,
1082 .cond = t->cond,
1083 .sat = inst->Instruction.Saturate,
1084 .dst = convert_dst(c, &inst->Dst[0]),
1085 .src[0] = src[0],
1086 .src[1] = src[1],
1087 .src[2] = src[0],
1088 });
1089 }
1090
1091 static void
1092 trans_if(const struct instr_translater *t, struct etna_compile *c,
1093 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1094 {
1095 struct etna_compile_frame *f = &c->frame_stack[c->frame_sp++];
1096 struct etna_inst_src imm_0 = alloc_imm_f32(c, 0.0f);
1097
1098 /* push IF to stack */
1099 f->type = ETNA_COMPILE_FRAME_IF;
1100 /* create "else" label */
1101 f->lbl_else_idx = alloc_new_label(c);
1102 f->lbl_endif_idx = -1;
1103
1104 /* We need to avoid the emit_inst() below becoming two instructions */
1105 if (etna_src_uniforms_conflict(src[0], imm_0))
1106 src[0] = etna_mov_src(c, src[0]);
1107
1108 /* mark position in instruction stream of label reference so that it can be
1109 * filled in in next pass */
1110 label_mark_use(c, f->lbl_else_idx);
1111
1112 /* create conditional branch to label if src0 EQ 0 */
1113 emit_inst(c, &(struct etna_inst){
1114 .opcode = INST_OPCODE_BRANCH,
1115 .cond = INST_CONDITION_EQ,
1116 .src[0] = src[0],
1117 .src[1] = imm_0,
1118 /* imm is filled in later */
1119 });
1120 }
1121
1122 static void
1123 trans_else(const struct instr_translater *t, struct etna_compile *c,
1124 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1125 {
1126 assert(c->frame_sp > 0);
1127 struct etna_compile_frame *f = &c->frame_stack[c->frame_sp - 1];
1128 assert(f->type == ETNA_COMPILE_FRAME_IF);
1129
1130 /* create "endif" label, and branch to endif label */
1131 f->lbl_endif_idx = alloc_new_label(c);
1132 label_mark_use(c, f->lbl_endif_idx);
1133 emit_inst(c, &(struct etna_inst) {
1134 .opcode = INST_OPCODE_BRANCH,
1135 .cond = INST_CONDITION_TRUE,
1136 /* imm is filled in later */
1137 });
1138
1139 /* mark "else" label at this position in instruction stream */
1140 label_place(c, &c->labels[f->lbl_else_idx]);
1141 }
1142
1143 static void
1144 trans_endif(const struct instr_translater *t, struct etna_compile *c,
1145 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1146 {
1147 assert(c->frame_sp > 0);
1148 struct etna_compile_frame *f = &c->frame_stack[--c->frame_sp];
1149 assert(f->type == ETNA_COMPILE_FRAME_IF);
1150
1151 /* assign "endif" or "else" (if no ELSE) label to current position in
1152 * instruction stream, pop IF */
1153 if (f->lbl_endif_idx != -1)
1154 label_place(c, &c->labels[f->lbl_endif_idx]);
1155 else
1156 label_place(c, &c->labels[f->lbl_else_idx]);
1157 }
1158
1159 static void
1160 trans_loop_bgn(const struct instr_translater *t, struct etna_compile *c,
1161 const struct tgsi_full_instruction *inst,
1162 struct etna_inst_src *src)
1163 {
1164 struct etna_compile_frame *f = &c->frame_stack[c->frame_sp++];
1165
1166 /* push LOOP to stack */
1167 f->type = ETNA_COMPILE_FRAME_LOOP;
1168 f->lbl_loop_bgn_idx = alloc_new_label(c);
1169 f->lbl_loop_end_idx = alloc_new_label(c);
1170
1171 label_place(c, &c->labels[f->lbl_loop_bgn_idx]);
1172
1173 c->num_loops++;
1174 }
1175
1176 static void
1177 trans_loop_end(const struct instr_translater *t, struct etna_compile *c,
1178 const struct tgsi_full_instruction *inst,
1179 struct etna_inst_src *src)
1180 {
1181 assert(c->frame_sp > 0);
1182 struct etna_compile_frame *f = &c->frame_stack[--c->frame_sp];
1183 assert(f->type == ETNA_COMPILE_FRAME_LOOP);
1184
1185 /* mark position in instruction stream of label reference so that it can be
1186 * filled in in next pass */
1187 label_mark_use(c, f->lbl_loop_bgn_idx);
1188
1189 /* create branch to loop_bgn label */
1190 emit_inst(c, &(struct etna_inst) {
1191 .opcode = INST_OPCODE_BRANCH,
1192 .cond = INST_CONDITION_TRUE,
1193 .src[0] = src[0],
1194 /* imm is filled in later */
1195 });
1196
1197 label_place(c, &c->labels[f->lbl_loop_end_idx]);
1198 }
1199
1200 static void
1201 trans_brk(const struct instr_translater *t, struct etna_compile *c,
1202 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1203 {
1204 assert(c->frame_sp > 0);
1205 struct etna_compile_frame *f = find_frame(c, ETNA_COMPILE_FRAME_LOOP);
1206
1207 /* mark position in instruction stream of label reference so that it can be
1208 * filled in in next pass */
1209 label_mark_use(c, f->lbl_loop_end_idx);
1210
1211 /* create branch to loop_end label */
1212 emit_inst(c, &(struct etna_inst) {
1213 .opcode = INST_OPCODE_BRANCH,
1214 .cond = INST_CONDITION_TRUE,
1215 .src[0] = src[0],
1216 /* imm is filled in later */
1217 });
1218 }
1219
1220 static void
1221 trans_cont(const struct instr_translater *t, struct etna_compile *c,
1222 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1223 {
1224 assert(c->frame_sp > 0);
1225 struct etna_compile_frame *f = find_frame(c, ETNA_COMPILE_FRAME_LOOP);
1226
1227 /* mark position in instruction stream of label reference so that it can be
1228 * filled in in next pass */
1229 label_mark_use(c, f->lbl_loop_bgn_idx);
1230
1231 /* create branch to loop_end label */
1232 emit_inst(c, &(struct etna_inst) {
1233 .opcode = INST_OPCODE_BRANCH,
1234 .cond = INST_CONDITION_TRUE,
1235 .src[0] = src[0],
1236 /* imm is filled in later */
1237 });
1238 }
1239
1240 static void
1241 trans_deriv(const struct instr_translater *t, struct etna_compile *c,
1242 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1243 {
1244 emit_inst(c, &(struct etna_inst) {
1245 .opcode = t->opc,
1246 .sat = inst->Instruction.Saturate,
1247 .dst = convert_dst(c, &inst->Dst[0]),
1248 .src[0] = src[0],
1249 .src[2] = src[0],
1250 });
1251 }
1252
1253 static void
1254 trans_arl(const struct instr_translater *t, struct etna_compile *c,
1255 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1256 {
1257 struct etna_native_reg temp = etna_compile_get_inner_temp(c);
1258 struct etna_inst arl = { };
1259 struct etna_inst_dst dst;
1260
1261 dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z |
1262 INST_COMPS_W);
1263
1264 if (c->specs->has_sign_floor_ceil) {
1265 struct etna_inst floor = { };
1266
1267 floor.opcode = INST_OPCODE_FLOOR;
1268 floor.src[2] = src[0];
1269 floor.dst = dst;
1270
1271 emit_inst(c, &floor);
1272 } else {
1273 struct etna_inst floor[2] = { };
1274
1275 floor[0].opcode = INST_OPCODE_FRC;
1276 floor[0].sat = inst->Instruction.Saturate;
1277 floor[0].dst = dst;
1278 floor[0].src[2] = src[0];
1279
1280 floor[1].opcode = INST_OPCODE_ADD;
1281 floor[1].sat = inst->Instruction.Saturate;
1282 floor[1].dst = dst;
1283 floor[1].src[0] = src[0];
1284 floor[1].src[2].use = 1;
1285 floor[1].src[2].swiz = INST_SWIZ_IDENTITY;
1286 floor[1].src[2].neg = 1;
1287 floor[1].src[2].rgroup = temp.rgroup;
1288 floor[1].src[2].reg = temp.id;
1289
1290 emit_inst(c, &floor[0]);
1291 emit_inst(c, &floor[1]);
1292 }
1293
1294 arl.opcode = INST_OPCODE_MOVAR;
1295 arl.sat = inst->Instruction.Saturate;
1296 arl.dst = convert_dst(c, &inst->Dst[0]);
1297 arl.src[2] = etna_native_to_src(temp, INST_SWIZ_IDENTITY);
1298
1299 emit_inst(c, &arl);
1300 }
1301
1302 static void
1303 trans_lrp(const struct instr_translater *t, struct etna_compile *c,
1304 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1305 {
1306 /* dst = src0 * src1 + (1 - src0) * src2
1307 * => src0 * src1 - (src0 - 1) * src2
1308 * => src0 * src1 - (src0 * src2 - src2)
1309 * MAD tTEMP.xyzw, tSRC0.xyzw, tSRC2.xyzw, -tSRC2.xyzw
1310 * MAD tDST.xyzw, tSRC0.xyzw, tSRC1.xyzw, -tTEMP.xyzw
1311 */
1312 struct etna_native_reg temp = etna_compile_get_inner_temp(c);
1313 if (etna_src_uniforms_conflict(src[0], src[1]) ||
1314 etna_src_uniforms_conflict(src[0], src[2])) {
1315 src[0] = etna_mov_src(c, src[0]);
1316 }
1317
1318 struct etna_inst mad[2] = { };
1319 mad[0].opcode = INST_OPCODE_MAD;
1320 mad[0].sat = 0;
1321 mad[0].dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y |
1322 INST_COMPS_Z | INST_COMPS_W);
1323 mad[0].src[0] = src[0];
1324 mad[0].src[1] = src[2];
1325 mad[0].src[2] = negate(src[2]);
1326 mad[1].opcode = INST_OPCODE_MAD;
1327 mad[1].sat = inst->Instruction.Saturate;
1328 mad[1].dst = convert_dst(c, &inst->Dst[0]), mad[1].src[0] = src[0];
1329 mad[1].src[1] = src[1];
1330 mad[1].src[2] = negate(etna_native_to_src(temp, INST_SWIZ_IDENTITY));
1331
1332 emit_inst(c, &mad[0]);
1333 emit_inst(c, &mad[1]);
1334 }
1335
1336 static void
1337 trans_lit(const struct instr_translater *t, struct etna_compile *c,
1338 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1339 {
1340 /* SELECT.LT tmp._y__, 0, src.yyyy, 0
1341 * - can be eliminated if src.y is a uniform and >= 0
1342 * SELECT.GT tmp.___w, 128, src.wwww, 128
1343 * SELECT.LT tmp.___w, -128, tmp.wwww, -128
1344 * - can be eliminated if src.w is a uniform and fits clamp
1345 * LOG tmp.x, void, void, tmp.yyyy
1346 * MUL tmp.x, tmp.xxxx, tmp.wwww, void
1347 * LITP dst, undef, src.xxxx, tmp.xxxx
1348 */
1349 struct etna_native_reg inner_temp = etna_compile_get_inner_temp(c);
1350 struct etna_inst_src src_y = { };
1351
1352 if (!etna_rgroup_is_uniform(src[0].rgroup)) {
1353 src_y = etna_native_to_src(inner_temp, SWIZZLE(Y, Y, Y, Y));
1354
1355 struct etna_inst ins = { };
1356 ins.opcode = INST_OPCODE_SELECT;
1357 ins.cond = INST_CONDITION_LT;
1358 ins.dst = etna_native_to_dst(inner_temp, INST_COMPS_Y);
1359 ins.src[0] = ins.src[2] = alloc_imm_f32(c, 0.0);
1360 ins.src[1] = swizzle(src[0], SWIZZLE(Y, Y, Y, Y));
1361 emit_inst(c, &ins);
1362 } else if (uif(get_imm_u32(c, &src[0], 1)) < 0)
1363 src_y = alloc_imm_f32(c, 0.0);
1364 else
1365 src_y = swizzle(src[0], SWIZZLE(Y, Y, Y, Y));
1366
1367 struct etna_inst_src src_w = { };
1368
1369 if (!etna_rgroup_is_uniform(src[0].rgroup)) {
1370 src_w = etna_native_to_src(inner_temp, SWIZZLE(W, W, W, W));
1371
1372 struct etna_inst ins = { };
1373 ins.opcode = INST_OPCODE_SELECT;
1374 ins.cond = INST_CONDITION_GT;
1375 ins.dst = etna_native_to_dst(inner_temp, INST_COMPS_W);
1376 ins.src[0] = ins.src[2] = alloc_imm_f32(c, 128.);
1377 ins.src[1] = swizzle(src[0], SWIZZLE(W, W, W, W));
1378 emit_inst(c, &ins);
1379 ins.cond = INST_CONDITION_LT;
1380 ins.src[0].neg = !ins.src[0].neg;
1381 ins.src[2].neg = !ins.src[2].neg;
1382 ins.src[1] = src_w;
1383 emit_inst(c, &ins);
1384 } else if (uif(get_imm_u32(c, &src[0], 3)) < -128.)
1385 src_w = alloc_imm_f32(c, -128.);
1386 else if (uif(get_imm_u32(c, &src[0], 3)) > 128.)
1387 src_w = alloc_imm_f32(c, 128.);
1388 else
1389 src_w = swizzle(src[0], SWIZZLE(W, W, W, W));
1390
1391 if (c->specs->has_new_transcendentals) { /* Alternative LOG sequence */
1392 emit_inst(c, &(struct etna_inst) {
1393 .opcode = INST_OPCODE_LOG,
1394 .dst = etna_native_to_dst(inner_temp, INST_COMPS_X | INST_COMPS_Y),
1395 .src[2] = src_y,
1396 .tex = { .amode=1 }, /* Unknown bit needs to be set */
1397 });
1398 emit_inst(c, &(struct etna_inst) {
1399 .opcode = INST_OPCODE_MUL,
1400 .dst = etna_native_to_dst(inner_temp, INST_COMPS_X),
1401 .src[0] = etna_native_to_src(inner_temp, SWIZZLE(X, X, X, X)),
1402 .src[1] = etna_native_to_src(inner_temp, SWIZZLE(Y, Y, Y, Y)),
1403 });
1404 } else {
1405 struct etna_inst ins[3] = { };
1406 ins[0].opcode = INST_OPCODE_LOG;
1407 ins[0].dst = etna_native_to_dst(inner_temp, INST_COMPS_X);
1408 ins[0].src[2] = src_y;
1409
1410 emit_inst(c, &ins[0]);
1411 }
1412 emit_inst(c, &(struct etna_inst) {
1413 .opcode = INST_OPCODE_MUL,
1414 .sat = 0,
1415 .dst = etna_native_to_dst(inner_temp, INST_COMPS_X),
1416 .src[0] = etna_native_to_src(inner_temp, SWIZZLE(X, X, X, X)),
1417 .src[1] = src_w,
1418 });
1419 emit_inst(c, &(struct etna_inst) {
1420 .opcode = INST_OPCODE_LITP,
1421 .sat = 0,
1422 .dst = convert_dst(c, &inst->Dst[0]),
1423 .src[0] = swizzle(src[0], SWIZZLE(X, X, X, X)),
1424 .src[1] = swizzle(src[0], SWIZZLE(X, X, X, X)),
1425 .src[2] = etna_native_to_src(inner_temp, SWIZZLE(X, X, X, X)),
1426 });
1427 }
1428
1429 static void
1430 trans_ssg(const struct instr_translater *t, struct etna_compile *c,
1431 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1432 {
1433 if (c->specs->has_sign_floor_ceil) {
1434 emit_inst(c, &(struct etna_inst){
1435 .opcode = INST_OPCODE_SIGN,
1436 .sat = inst->Instruction.Saturate,
1437 .dst = convert_dst(c, &inst->Dst[0]),
1438 .src[2] = src[0],
1439 });
1440 } else {
1441 struct etna_native_reg temp = etna_compile_get_inner_temp(c);
1442 struct etna_inst ins[2] = { };
1443
1444 ins[0].opcode = INST_OPCODE_SET;
1445 ins[0].cond = INST_CONDITION_NZ;
1446 ins[0].dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y |
1447 INST_COMPS_Z | INST_COMPS_W);
1448 ins[0].src[0] = src[0];
1449
1450 ins[1].opcode = INST_OPCODE_SELECT;
1451 ins[1].cond = INST_CONDITION_LZ;
1452 ins[1].sat = inst->Instruction.Saturate;
1453 ins[1].dst = convert_dst(c, &inst->Dst[0]);
1454 ins[1].src[0] = src[0];
1455 ins[1].src[2] = etna_native_to_src(temp, INST_SWIZ_IDENTITY);
1456 ins[1].src[1] = negate(ins[1].src[2]);
1457
1458 emit_inst(c, &ins[0]);
1459 emit_inst(c, &ins[1]);
1460 }
1461 }
1462
1463 static void
1464 trans_trig(const struct instr_translater *t, struct etna_compile *c,
1465 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1466 {
1467 if (c->specs->has_new_transcendentals) { /* Alternative SIN/COS */
1468 /* On newer chips alternative SIN/COS instructions are implemented,
1469 * which:
1470 * - Need their input scaled by 1/pi instead of 2/pi
1471 * - Output an x and y component, which need to be multiplied to
1472 * get the result
1473 */
1474 struct etna_native_reg temp = etna_compile_get_inner_temp(c); /* only using .xyz */
1475 emit_inst(c, &(struct etna_inst) {
1476 .opcode = INST_OPCODE_MUL,
1477 .sat = 0,
1478 .dst = etna_native_to_dst(temp, INST_COMPS_Z),
1479 .src[0] = src[0], /* any swizzling happens here */
1480 .src[1] = alloc_imm_f32(c, 1.0f / M_PI),
1481 });
1482 emit_inst(c, &(struct etna_inst) {
1483 .opcode = inst->Instruction.Opcode == TGSI_OPCODE_COS
1484 ? INST_OPCODE_COS
1485 : INST_OPCODE_SIN,
1486 .sat = 0,
1487 .dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y),
1488 .src[2] = etna_native_to_src(temp, SWIZZLE(Z, Z, Z, Z)),
1489 .tex = { .amode=1 }, /* Unknown bit needs to be set */
1490 });
1491 emit_inst(c, &(struct etna_inst) {
1492 .opcode = INST_OPCODE_MUL,
1493 .sat = inst->Instruction.Saturate,
1494 .dst = convert_dst(c, &inst->Dst[0]),
1495 .src[0] = etna_native_to_src(temp, SWIZZLE(X, X, X, X)),
1496 .src[1] = etna_native_to_src(temp, SWIZZLE(Y, Y, Y, Y)),
1497 });
1498
1499 } else if (c->specs->has_sin_cos_sqrt) {
1500 struct etna_native_reg temp = etna_compile_get_inner_temp(c);
1501 /* add divide by PI/2, using a temp register. GC2000
1502 * fails with src==dst for the trig instruction. */
1503 emit_inst(c, &(struct etna_inst) {
1504 .opcode = INST_OPCODE_MUL,
1505 .sat = 0,
1506 .dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y |
1507 INST_COMPS_Z | INST_COMPS_W),
1508 .src[0] = src[0], /* any swizzling happens here */
1509 .src[1] = alloc_imm_f32(c, 2.0f / M_PI),
1510 });
1511 emit_inst(c, &(struct etna_inst) {
1512 .opcode = inst->Instruction.Opcode == TGSI_OPCODE_COS
1513 ? INST_OPCODE_COS
1514 : INST_OPCODE_SIN,
1515 .sat = inst->Instruction.Saturate,
1516 .dst = convert_dst(c, &inst->Dst[0]),
1517 .src[2] = etna_native_to_src(temp, INST_SWIZ_IDENTITY),
1518 });
1519 } else {
1520 /* Implement Nick's fast sine/cosine. Taken from:
1521 * http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
1522 * A=(1/2*PI 0 1/2*PI 0) B=(0.75 0 0.5 0) C=(-4 4 X X)
1523 * MAD t.x_zw, src.xxxx, A, B
1524 * FRC t.x_z_, void, void, t.xwzw
1525 * MAD t.x_z_, t.xwzw, 2, -1
1526 * MUL t._y__, t.wzww, |t.wzww|, void (for sin/scs)
1527 * DP3 t.x_z_, t.zyww, C, void (for sin)
1528 * DP3 t.__z_, t.zyww, C, void (for scs)
1529 * MUL t._y__, t.wxww, |t.wxww|, void (for cos/scs)
1530 * DP3 t.x_z_, t.xyww, C, void (for cos)
1531 * DP3 t.x___, t.xyww, C, void (for scs)
1532 * MAD t._y_w, t,xxzz, |t.xxzz|, -t.xxzz
1533 * MAD dst, t.ywyw, .2225, t.xzxz
1534 */
1535 struct etna_inst *p, ins[9] = { };
1536 struct etna_native_reg t0 = etna_compile_get_inner_temp(c);
1537 struct etna_inst_src t0s = etna_native_to_src(t0, INST_SWIZ_IDENTITY);
1538 struct etna_inst_src sincos[3], in = src[0];
1539 sincos[0] = etna_imm_vec4f(c, sincos_const[0]);
1540 sincos[1] = etna_imm_vec4f(c, sincos_const[1]);
1541
1542 /* A uniform source will cause the inner temp limit to
1543 * be exceeded. Explicitly deal with that scenario.
1544 */
1545 if (etna_rgroup_is_uniform(src[0].rgroup)) {
1546 struct etna_inst ins = { };
1547 ins.opcode = INST_OPCODE_MOV;
1548 ins.dst = etna_native_to_dst(t0, INST_COMPS_X);
1549 ins.src[2] = in;
1550 emit_inst(c, &ins);
1551 in = t0s;
1552 }
1553
1554 ins[0].opcode = INST_OPCODE_MAD;
1555 ins[0].dst = etna_native_to_dst(t0, INST_COMPS_X | INST_COMPS_Z | INST_COMPS_W);
1556 ins[0].src[0] = swizzle(in, SWIZZLE(X, X, X, X));
1557 ins[0].src[1] = swizzle(sincos[1], SWIZZLE(X, W, X, W)); /* 1/2*PI */
1558 ins[0].src[2] = swizzle(sincos[1], SWIZZLE(Y, W, Z, W)); /* 0.75, 0, 0.5, 0 */
1559
1560 ins[1].opcode = INST_OPCODE_FRC;
1561 ins[1].dst = etna_native_to_dst(t0, INST_COMPS_X | INST_COMPS_Z);
1562 ins[1].src[2] = swizzle(t0s, SWIZZLE(X, W, Z, W));
1563
1564 ins[2].opcode = INST_OPCODE_MAD;
1565 ins[2].dst = etna_native_to_dst(t0, INST_COMPS_X | INST_COMPS_Z);
1566 ins[2].src[0] = swizzle(t0s, SWIZZLE(X, W, Z, W));
1567 ins[2].src[1] = swizzle(sincos[0], SWIZZLE(X, X, X, X)); /* 2 */
1568 ins[2].src[2] = swizzle(sincos[0], SWIZZLE(Y, Y, Y, Y)); /* -1 */
1569
1570 unsigned mul_swiz, dp3_swiz;
1571 if (inst->Instruction.Opcode == TGSI_OPCODE_SIN) {
1572 mul_swiz = SWIZZLE(W, Z, W, W);
1573 dp3_swiz = SWIZZLE(Z, Y, W, W);
1574 } else {
1575 mul_swiz = SWIZZLE(W, X, W, W);
1576 dp3_swiz = SWIZZLE(X, Y, W, W);
1577 }
1578
1579 ins[3].opcode = INST_OPCODE_MUL;
1580 ins[3].dst = etna_native_to_dst(t0, INST_COMPS_Y);
1581 ins[3].src[0] = swizzle(t0s, mul_swiz);
1582 ins[3].src[1] = absolute(ins[3].src[0]);
1583
1584 ins[4].opcode = INST_OPCODE_DP3;
1585 ins[4].dst = etna_native_to_dst(t0, INST_COMPS_X | INST_COMPS_Z);
1586 ins[4].src[0] = swizzle(t0s, dp3_swiz);
1587 ins[4].src[1] = swizzle(sincos[0], SWIZZLE(Z, W, W, W));
1588
1589 p = &ins[5];
1590 p->opcode = INST_OPCODE_MAD;
1591 p->dst = etna_native_to_dst(t0, INST_COMPS_Y | INST_COMPS_W);
1592 p->src[0] = swizzle(t0s, SWIZZLE(X, X, Z, Z));
1593 p->src[1] = absolute(p->src[0]);
1594 p->src[2] = negate(p->src[0]);
1595
1596 p++;
1597 p->opcode = INST_OPCODE_MAD;
1598 p->sat = inst->Instruction.Saturate;
1599 p->dst = convert_dst(c, &inst->Dst[0]),
1600 p->src[0] = swizzle(t0s, SWIZZLE(Y, W, Y, W));
1601 p->src[1] = alloc_imm_f32(c, 0.2225);
1602 p->src[2] = swizzle(t0s, SWIZZLE(X, Z, X, Z));
1603
1604 for (int i = 0; &ins[i] <= p; i++)
1605 emit_inst(c, &ins[i]);
1606 }
1607 }
1608
1609 static void
1610 trans_lg2(const struct instr_translater *t, struct etna_compile *c,
1611 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1612 {
1613 if (c->specs->has_new_transcendentals) {
1614 /* On newer chips alternative LOG instruction is implemented,
1615 * which outputs an x and y component, which need to be multiplied to
1616 * get the result.
1617 */
1618 struct etna_native_reg temp = etna_compile_get_inner_temp(c); /* only using .xy */
1619 emit_inst(c, &(struct etna_inst) {
1620 .opcode = INST_OPCODE_LOG,
1621 .sat = 0,
1622 .dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y),
1623 .src[2] = src[0],
1624 .tex = { .amode=1 }, /* Unknown bit needs to be set */
1625 });
1626 emit_inst(c, &(struct etna_inst) {
1627 .opcode = INST_OPCODE_MUL,
1628 .sat = inst->Instruction.Saturate,
1629 .dst = convert_dst(c, &inst->Dst[0]),
1630 .src[0] = etna_native_to_src(temp, SWIZZLE(X, X, X, X)),
1631 .src[1] = etna_native_to_src(temp, SWIZZLE(Y, Y, Y, Y)),
1632 });
1633 } else {
1634 emit_inst(c, &(struct etna_inst) {
1635 .opcode = INST_OPCODE_LOG,
1636 .sat = inst->Instruction.Saturate,
1637 .dst = convert_dst(c, &inst->Dst[0]),
1638 .src[2] = src[0],
1639 });
1640 }
1641 }
1642
1643 static void
1644 trans_sampler(const struct instr_translater *t, struct etna_compile *c,
1645 const struct tgsi_full_instruction *inst,
1646 struct etna_inst_src *src)
1647 {
1648 /* There is no native support for GL texture rectangle coordinates, so
1649 * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0, 1]). */
1650 if (inst->Texture.Texture == TGSI_TEXTURE_RECT) {
1651 uint32_t unit = inst->Src[1].Register.Index;
1652 struct etna_inst ins[2] = { };
1653 struct etna_native_reg temp = etna_compile_get_inner_temp(c);
1654
1655 ins[0].opcode = INST_OPCODE_MUL;
1656 ins[0].dst = etna_native_to_dst(temp, INST_COMPS_X);
1657 ins[0].src[0] = src[0];
1658 ins[0].src[1] = alloc_imm(c, ETNA_IMMEDIATE_TEXRECT_SCALE_X, unit);
1659
1660 ins[1].opcode = INST_OPCODE_MUL;
1661 ins[1].dst = etna_native_to_dst(temp, INST_COMPS_Y);
1662 ins[1].src[0] = src[0];
1663 ins[1].src[1] = alloc_imm(c, ETNA_IMMEDIATE_TEXRECT_SCALE_Y, unit);
1664
1665 emit_inst(c, &ins[0]);
1666 emit_inst(c, &ins[1]);
1667
1668 src[0] = etna_native_to_src(temp, INST_SWIZ_IDENTITY); /* temp.xyzw */
1669 }
1670
1671 switch (inst->Instruction.Opcode) {
1672 case TGSI_OPCODE_TEX:
1673 emit_inst(c, &(struct etna_inst) {
1674 .opcode = INST_OPCODE_TEXLD,
1675 .sat = 0,
1676 .dst = convert_dst(c, &inst->Dst[0]),
1677 .tex = convert_tex(c, &inst->Src[1], &inst->Texture),
1678 .src[0] = src[0],
1679 });
1680 break;
1681
1682 case TGSI_OPCODE_TXB:
1683 emit_inst(c, &(struct etna_inst) {
1684 .opcode = INST_OPCODE_TEXLDB,
1685 .sat = 0,
1686 .dst = convert_dst(c, &inst->Dst[0]),
1687 .tex = convert_tex(c, &inst->Src[1], &inst->Texture),
1688 .src[0] = src[0],
1689 });
1690 break;
1691
1692 case TGSI_OPCODE_TXL:
1693 emit_inst(c, &(struct etna_inst) {
1694 .opcode = INST_OPCODE_TEXLDL,
1695 .sat = 0,
1696 .dst = convert_dst(c, &inst->Dst[0]),
1697 .tex = convert_tex(c, &inst->Src[1], &inst->Texture),
1698 .src[0] = src[0],
1699 });
1700 break;
1701
1702 case TGSI_OPCODE_TXP: { /* divide src.xyz by src.w */
1703 struct etna_native_reg temp = etna_compile_get_inner_temp(c);
1704
1705 emit_inst(c, &(struct etna_inst) {
1706 .opcode = INST_OPCODE_RCP,
1707 .sat = 0,
1708 .dst = etna_native_to_dst(temp, INST_COMPS_W), /* tmp.w */
1709 .src[2] = swizzle(src[0], SWIZZLE(W, W, W, W)),
1710 });
1711 emit_inst(c, &(struct etna_inst) {
1712 .opcode = INST_OPCODE_MUL,
1713 .sat = 0,
1714 .dst = etna_native_to_dst(temp, INST_COMPS_X | INST_COMPS_Y |
1715 INST_COMPS_Z), /* tmp.xyz */
1716 .src[0] = etna_native_to_src(temp, SWIZZLE(W, W, W, W)),
1717 .src[1] = src[0], /* src.xyzw */
1718 });
1719 emit_inst(c, &(struct etna_inst) {
1720 .opcode = INST_OPCODE_TEXLD,
1721 .sat = 0,
1722 .dst = convert_dst(c, &inst->Dst[0]),
1723 .tex = convert_tex(c, &inst->Src[1], &inst->Texture),
1724 .src[0] = etna_native_to_src(temp, INST_SWIZ_IDENTITY), /* tmp.xyzw */
1725 });
1726 } break;
1727
1728 default:
1729 BUG("Unhandled instruction %s",
1730 tgsi_get_opcode_name(inst->Instruction.Opcode));
1731 assert(0);
1732 break;
1733 }
1734 }
1735
1736 static void
1737 trans_dummy(const struct instr_translater *t, struct etna_compile *c,
1738 const struct tgsi_full_instruction *inst, struct etna_inst_src *src)
1739 {
1740 /* nothing to do */
1741 }
1742
1743 static const struct instr_translater translaters[TGSI_OPCODE_LAST] = {
1744 #define INSTR(n, f, ...) \
1745 [TGSI_OPCODE_##n] = {.fxn = (f), .tgsi_opc = TGSI_OPCODE_##n, ##__VA_ARGS__}
1746
1747 INSTR(MOV, trans_instr, .opc = INST_OPCODE_MOV, .src = {2, -1, -1}),
1748 INSTR(RCP, trans_instr, .opc = INST_OPCODE_RCP, .src = {2, -1, -1}),
1749 INSTR(RSQ, trans_instr, .opc = INST_OPCODE_RSQ, .src = {2, -1, -1}),
1750 INSTR(MUL, trans_instr, .opc = INST_OPCODE_MUL, .src = {0, 1, -1}),
1751 INSTR(ADD, trans_instr, .opc = INST_OPCODE_ADD, .src = {0, 2, -1}),
1752 INSTR(DP2, trans_instr, .opc = INST_OPCODE_DP2, .src = {0, 1, -1}),
1753 INSTR(DP3, trans_instr, .opc = INST_OPCODE_DP3, .src = {0, 1, -1}),
1754 INSTR(DP4, trans_instr, .opc = INST_OPCODE_DP4, .src = {0, 1, -1}),
1755 INSTR(DST, trans_instr, .opc = INST_OPCODE_DST, .src = {0, 1, -1}),
1756 INSTR(MAD, trans_instr, .opc = INST_OPCODE_MAD, .src = {0, 1, 2}),
1757 INSTR(EX2, trans_instr, .opc = INST_OPCODE_EXP, .src = {2, -1, -1}),
1758 INSTR(LG2, trans_lg2),
1759 INSTR(SQRT, trans_instr, .opc = INST_OPCODE_SQRT, .src = {2, -1, -1}),
1760 INSTR(FRC, trans_instr, .opc = INST_OPCODE_FRC, .src = {2, -1, -1}),
1761 INSTR(CEIL, trans_instr, .opc = INST_OPCODE_CEIL, .src = {2, -1, -1}),
1762 INSTR(FLR, trans_instr, .opc = INST_OPCODE_FLOOR, .src = {2, -1, -1}),
1763 INSTR(CMP, trans_instr, .opc = INST_OPCODE_SELECT, .src = {0, 1, 2}, .cond = INST_CONDITION_LZ),
1764
1765 INSTR(KILL, trans_instr, .opc = INST_OPCODE_TEXKILL),
1766 INSTR(KILL_IF, trans_instr, .opc = INST_OPCODE_TEXKILL, .src = {0, -1, -1}, .cond = INST_CONDITION_LZ),
1767
1768 INSTR(DDX, trans_deriv, .opc = INST_OPCODE_DSX),
1769 INSTR(DDY, trans_deriv, .opc = INST_OPCODE_DSY),
1770
1771 INSTR(IF, trans_if),
1772 INSTR(ELSE, trans_else),
1773 INSTR(ENDIF, trans_endif),
1774
1775 INSTR(BGNLOOP, trans_loop_bgn),
1776 INSTR(ENDLOOP, trans_loop_end),
1777 INSTR(BRK, trans_brk),
1778 INSTR(CONT, trans_cont),
1779
1780 INSTR(MIN, trans_min_max, .opc = INST_OPCODE_SELECT, .cond = INST_CONDITION_GT),
1781 INSTR(MAX, trans_min_max, .opc = INST_OPCODE_SELECT, .cond = INST_CONDITION_LT),
1782
1783 INSTR(ARL, trans_arl),
1784 INSTR(LRP, trans_lrp),
1785 INSTR(LIT, trans_lit),
1786 INSTR(SSG, trans_ssg),
1787
1788 INSTR(SIN, trans_trig),
1789 INSTR(COS, trans_trig),
1790
1791 INSTR(SLT, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_LT),
1792 INSTR(SGE, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_GE),
1793 INSTR(SEQ, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_EQ),
1794 INSTR(SGT, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_GT),
1795 INSTR(SLE, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_LE),
1796 INSTR(SNE, trans_instr, .opc = INST_OPCODE_SET, .src = {0, 1, -1}, .cond = INST_CONDITION_NE),
1797
1798 INSTR(TEX, trans_sampler),
1799 INSTR(TXB, trans_sampler),
1800 INSTR(TXL, trans_sampler),
1801 INSTR(TXP, trans_sampler),
1802
1803 INSTR(NOP, trans_dummy),
1804 INSTR(END, trans_dummy),
1805 };
1806
1807 /* Pass -- compile instructions */
1808 static void
1809 etna_compile_pass_generate_code(struct etna_compile *c)
1810 {
1811 struct tgsi_parse_context ctx = { };
1812 ASSERTED unsigned status = tgsi_parse_init(&ctx, c->tokens);
1813 assert(status == TGSI_PARSE_OK);
1814
1815 int inst_idx = 0;
1816 while (!tgsi_parse_end_of_tokens(&ctx)) {
1817 const struct tgsi_full_instruction *inst = 0;
1818
1819 /* No inner temps used yet for this instruction, clear counter */
1820 c->inner_temps = 0;
1821
1822 tgsi_parse_token(&ctx);
1823
1824 switch (ctx.FullToken.Token.Type) {
1825 case TGSI_TOKEN_TYPE_INSTRUCTION:
1826 /* iterate over operands */
1827 inst = &ctx.FullToken.FullInstruction;
1828 if (c->dead_inst[inst_idx]) { /* skip dead instructions */
1829 inst_idx++;
1830 continue;
1831 }
1832
1833 /* Lookup the TGSI information and generate the source arguments */
1834 struct etna_inst_src src[ETNA_NUM_SRC];
1835 memset(src, 0, sizeof(src));
1836
1837 const struct tgsi_opcode_info *tgsi = tgsi_get_opcode_info(inst->Instruction.Opcode);
1838
1839 for (int i = 0; i < tgsi->num_src && i < ETNA_NUM_SRC; i++) {
1840 const struct tgsi_full_src_register *reg = &inst->Src[i];
1841 const struct etna_native_reg *n = &etna_get_src_reg(c, reg->Register)->native;
1842
1843 if (!n->valid || n->is_tex)
1844 continue;
1845
1846 src[i] = etna_create_src(reg, n);
1847 }
1848
1849 const unsigned opc = inst->Instruction.Opcode;
1850 const struct instr_translater *t = &translaters[opc];
1851
1852 if (t->fxn) {
1853 t->fxn(t, c, inst, src);
1854
1855 inst_idx += 1;
1856 } else {
1857 BUG("Unhandled instruction %s", tgsi_get_opcode_name(opc));
1858 assert(0);
1859 }
1860 break;
1861 }
1862 }
1863 tgsi_parse_free(&ctx);
1864 }
1865
1866 /* Look up register by semantic */
1867 static struct etna_reg_desc *
1868 find_decl_by_semantic(struct etna_compile *c, uint file, uint name, uint index)
1869 {
1870 for (int idx = 0; idx < c->file[file].reg_size; ++idx) {
1871 struct etna_reg_desc *reg = &c->file[file].reg[idx];
1872
1873 if (reg->semantic.Name == name && reg->semantic.Index == index)
1874 return reg;
1875 }
1876
1877 return NULL; /* not found */
1878 }
1879
1880 /** Add ADD and MUL instruction to bring Z/W to 0..1 if -1..1 if needed:
1881 * - this is a vertex shader
1882 * - and this is an older GPU
1883 */
1884 static void
1885 etna_compile_add_z_div_if_needed(struct etna_compile *c)
1886 {
1887 if (c->info.processor == PIPE_SHADER_VERTEX && c->specs->vs_need_z_div) {
1888 /* find position out */
1889 struct etna_reg_desc *pos_reg =
1890 find_decl_by_semantic(c, TGSI_FILE_OUTPUT, TGSI_SEMANTIC_POSITION, 0);
1891
1892 if (pos_reg != NULL) {
1893 /*
1894 * ADD tX.__z_, tX.zzzz, void, tX.wwww
1895 * MUL tX.__z_, tX.zzzz, 0.5, void
1896 */
1897 emit_inst(c, &(struct etna_inst) {
1898 .opcode = INST_OPCODE_ADD,
1899 .dst = etna_native_to_dst(pos_reg->native, INST_COMPS_Z),
1900 .src[0] = etna_native_to_src(pos_reg->native, SWIZZLE(Z, Z, Z, Z)),
1901 .src[2] = etna_native_to_src(pos_reg->native, SWIZZLE(W, W, W, W)),
1902 });
1903 emit_inst(c, &(struct etna_inst) {
1904 .opcode = INST_OPCODE_MUL,
1905 .dst = etna_native_to_dst(pos_reg->native, INST_COMPS_Z),
1906 .src[0] = etna_native_to_src(pos_reg->native, SWIZZLE(Z, Z, Z, Z)),
1907 .src[1] = alloc_imm_f32(c, 0.5f),
1908 });
1909 }
1910 }
1911 }
1912
1913 static void
1914 etna_compile_frag_rb_swap(struct etna_compile *c)
1915 {
1916 if (c->info.processor == PIPE_SHADER_FRAGMENT && c->key->frag_rb_swap) {
1917 /* find color out */
1918 struct etna_reg_desc *color_reg =
1919 find_decl_by_semantic(c, TGSI_FILE_OUTPUT, TGSI_SEMANTIC_COLOR, 0);
1920
1921 emit_inst(c, &(struct etna_inst) {
1922 .opcode = INST_OPCODE_MOV,
1923 .dst = etna_native_to_dst(color_reg->native, INST_COMPS_X | INST_COMPS_Y | INST_COMPS_Z | INST_COMPS_W),
1924 .src[2] = etna_native_to_src(color_reg->native, SWIZZLE(Z, Y, X, W)),
1925 });
1926 }
1927 }
1928
1929 /** add a NOP to the shader if
1930 * a) the shader is empty
1931 * or
1932 * b) there is a label at the end of the shader
1933 */
1934 static void
1935 etna_compile_add_nop_if_needed(struct etna_compile *c)
1936 {
1937 bool label_at_last_inst = false;
1938
1939 for (int idx = 0; idx < c->labels_count; ++idx) {
1940 if (c->labels[idx].inst_idx == c->inst_ptr)
1941 label_at_last_inst = true;
1942
1943 }
1944
1945 if (c->inst_ptr == 0 || label_at_last_inst)
1946 emit_inst(c, &(struct etna_inst){.opcode = INST_OPCODE_NOP});
1947 }
1948
1949 static void
1950 assign_uniforms(struct etna_compile_file *file, unsigned base)
1951 {
1952 for (int idx = 0; idx < file->reg_size; ++idx) {
1953 file->reg[idx].native.valid = 1;
1954 file->reg[idx].native.rgroup = INST_RGROUP_UNIFORM_0;
1955 file->reg[idx].native.id = base + idx;
1956 }
1957 }
1958
1959 /* Allocate CONST and IMM to native ETNA_RGROUP_UNIFORM(x).
1960 * CONST must be consecutive as const buffers are supposed to be consecutive,
1961 * and before IMM, as this is
1962 * more convenient because is possible for the compilation process itself to
1963 * generate extra
1964 * immediates for constants such as pi, one, zero.
1965 */
1966 static void
1967 assign_constants_and_immediates(struct etna_compile *c)
1968 {
1969 assign_uniforms(&c->file[TGSI_FILE_CONSTANT], 0);
1970 /* immediates start after the constants */
1971 c->imm_base = c->file[TGSI_FILE_CONSTANT].reg_size * 4;
1972 assign_uniforms(&c->file[TGSI_FILE_IMMEDIATE], c->imm_base / 4);
1973 DBG_F(ETNA_DBG_COMPILER_MSGS, "imm base: %i size: %i", c->imm_base,
1974 c->imm_size);
1975 }
1976
1977 /* Assign declared samplers to native texture units */
1978 static void
1979 assign_texture_units(struct etna_compile *c)
1980 {
1981 uint tex_base = 0;
1982
1983 if (c->info.processor == PIPE_SHADER_VERTEX)
1984 tex_base = c->specs->vertex_sampler_offset;
1985
1986 for (int idx = 0; idx < c->file[TGSI_FILE_SAMPLER].reg_size; ++idx) {
1987 c->file[TGSI_FILE_SAMPLER].reg[idx].native.valid = 1;
1988 c->file[TGSI_FILE_SAMPLER].reg[idx].native.is_tex = 1; // overrides rgroup
1989 c->file[TGSI_FILE_SAMPLER].reg[idx].native.id = tex_base + idx;
1990 }
1991 }
1992
1993 /* Additional pass to fill in branch targets. This pass should be last
1994 * as no instruction reordering or removing/addition can be done anymore
1995 * once the branch targets are computed.
1996 */
1997 static void
1998 etna_compile_fill_in_labels(struct etna_compile *c)
1999 {
2000 for (int idx = 0; idx < c->inst_ptr; ++idx) {
2001 if (c->lbl_usage[idx] != -1)
2002 etna_assemble_set_imm(&c->code[idx * 4],
2003 c->labels[c->lbl_usage[idx]].inst_idx);
2004 }
2005 }
2006
2007 /* compare two etna_native_reg structures, return true if equal */
2008 static bool
2009 cmp_etna_native_reg(const struct etna_native_reg to,
2010 const struct etna_native_reg from)
2011 {
2012 return to.valid == from.valid && to.is_tex == from.is_tex &&
2013 to.rgroup == from.rgroup && to.id == from.id;
2014 }
2015
2016 /* go through all declarations and swap native registers *to* and *from* */
2017 static void
2018 swap_native_registers(struct etna_compile *c, const struct etna_native_reg to,
2019 const struct etna_native_reg from)
2020 {
2021 if (cmp_etna_native_reg(from, to))
2022 return; /* Nothing to do */
2023
2024 for (int idx = 0; idx < c->total_decls; ++idx) {
2025 if (cmp_etna_native_reg(c->decl[idx].native, from)) {
2026 c->decl[idx].native = to;
2027 } else if (cmp_etna_native_reg(c->decl[idx].native, to)) {
2028 c->decl[idx].native = from;
2029 }
2030 }
2031 }
2032
2033 /* For PS we need to permute so that inputs are always in temporary 0..N-1.
2034 * Semantic POS is always t0. If that semantic is not used, avoid t0.
2035 */
2036 static void
2037 permute_ps_inputs(struct etna_compile *c)
2038 {
2039 /* Special inputs:
2040 * gl_FragCoord VARYING_SLOT_POS TGSI_SEMANTIC_POSITION
2041 * gl_PointCoord VARYING_SLOT_PNTC TGSI_SEMANTIC_PCOORD
2042 */
2043 uint native_idx = 1;
2044
2045 for (int idx = 0; idx < c->file[TGSI_FILE_INPUT].reg_size; ++idx) {
2046 struct etna_reg_desc *reg = &c->file[TGSI_FILE_INPUT].reg[idx];
2047 uint input_id;
2048 assert(reg->has_semantic);
2049
2050 if (!reg->active || reg->semantic.Name == TGSI_SEMANTIC_POSITION)
2051 continue;
2052
2053 input_id = native_idx++;
2054 swap_native_registers(c, etna_native_temp(input_id),
2055 c->file[TGSI_FILE_INPUT].reg[idx].native);
2056 }
2057
2058 c->num_varyings = native_idx - 1;
2059
2060 if (native_idx > c->next_free_native)
2061 c->next_free_native = native_idx;
2062 }
2063
2064 /* fill in ps inputs into shader object */
2065 static void
2066 fill_in_ps_inputs(struct etna_shader_variant *sobj, struct etna_compile *c)
2067 {
2068 struct etna_shader_io_file *sf = &sobj->infile;
2069
2070 sf->num_reg = 0;
2071
2072 for (int idx = 0; idx < c->file[TGSI_FILE_INPUT].reg_size; ++idx) {
2073 struct etna_reg_desc *reg = &c->file[TGSI_FILE_INPUT].reg[idx];
2074
2075 if (reg->native.id > 0) {
2076 assert(sf->num_reg < ETNA_NUM_INPUTS);
2077 sf->reg[sf->num_reg].reg = reg->native.id;
2078 sf->reg[sf->num_reg].semantic = reg->semantic;
2079 /* convert usage mask to number of components (*=wildcard)
2080 * .r (0..1) -> 1 component
2081 * .*g (2..3) -> 2 component
2082 * .**b (4..7) -> 3 components
2083 * .***a (8..15) -> 4 components
2084 */
2085 sf->reg[sf->num_reg].num_components = util_last_bit(reg->usage_mask);
2086 sf->num_reg++;
2087 }
2088 }
2089
2090 assert(sf->num_reg == c->num_varyings);
2091 sobj->input_count_unk8 = 31; /* XXX what is this */
2092 }
2093
2094 /* fill in output mapping for ps into shader object */
2095 static void
2096 fill_in_ps_outputs(struct etna_shader_variant *sobj, struct etna_compile *c)
2097 {
2098 sobj->outfile.num_reg = 0;
2099
2100 for (int idx = 0; idx < c->file[TGSI_FILE_OUTPUT].reg_size; ++idx) {
2101 struct etna_reg_desc *reg = &c->file[TGSI_FILE_OUTPUT].reg[idx];
2102
2103 switch (reg->semantic.Name) {
2104 case TGSI_SEMANTIC_COLOR: /* FRAG_RESULT_COLOR */
2105 sobj->ps_color_out_reg = reg->native.id;
2106 break;
2107 case TGSI_SEMANTIC_POSITION: /* FRAG_RESULT_DEPTH */
2108 sobj->ps_depth_out_reg = reg->native.id; /* =always native reg 0, only z component should be assigned */
2109 break;
2110 default:
2111 assert(0); /* only outputs supported are COLOR and POSITION at the moment */
2112 }
2113 }
2114 }
2115
2116 /* fill in inputs for vs into shader object */
2117 static void
2118 fill_in_vs_inputs(struct etna_shader_variant *sobj, struct etna_compile *c)
2119 {
2120 struct etna_shader_io_file *sf = &sobj->infile;
2121
2122 sf->num_reg = 0;
2123 for (int idx = 0; idx < c->file[TGSI_FILE_INPUT].reg_size; ++idx) {
2124 struct etna_reg_desc *reg = &c->file[TGSI_FILE_INPUT].reg[idx];
2125 assert(sf->num_reg < ETNA_NUM_INPUTS);
2126
2127 if (!reg->native.valid)
2128 continue;
2129
2130 /* XXX exclude inputs with special semantics such as gl_frontFacing */
2131 sf->reg[sf->num_reg].reg = reg->native.id;
2132 sf->reg[sf->num_reg].semantic = reg->semantic;
2133 sf->reg[sf->num_reg].num_components = util_last_bit(reg->usage_mask);
2134 sf->num_reg++;
2135 }
2136
2137 sobj->input_count_unk8 = (sf->num_reg + 19) / 16; /* XXX what is this */
2138 }
2139
2140 /* build two-level output index [Semantic][Index] for fast linking */
2141 static void
2142 build_output_index(struct etna_shader_variant *sobj)
2143 {
2144 int total = 0;
2145 int offset = 0;
2146
2147 for (int name = 0; name < TGSI_SEMANTIC_COUNT; ++name)
2148 total += sobj->output_count_per_semantic[name];
2149
2150 sobj->output_per_semantic_list = CALLOC(total, sizeof(struct etna_shader_inout *));
2151
2152 for (int name = 0; name < TGSI_SEMANTIC_COUNT; ++name) {
2153 sobj->output_per_semantic[name] = &sobj->output_per_semantic_list[offset];
2154 offset += sobj->output_count_per_semantic[name];
2155 }
2156
2157 for (int idx = 0; idx < sobj->outfile.num_reg; ++idx) {
2158 sobj->output_per_semantic[sobj->outfile.reg[idx].semantic.Name]
2159 [sobj->outfile.reg[idx].semantic.Index] =
2160 &sobj->outfile.reg[idx];
2161 }
2162 }
2163
2164 /* fill in outputs for vs into shader object */
2165 static void
2166 fill_in_vs_outputs(struct etna_shader_variant *sobj, struct etna_compile *c)
2167 {
2168 struct etna_shader_io_file *sf = &sobj->outfile;
2169
2170 sf->num_reg = 0;
2171 for (int idx = 0; idx < c->file[TGSI_FILE_OUTPUT].reg_size; ++idx) {
2172 struct etna_reg_desc *reg = &c->file[TGSI_FILE_OUTPUT].reg[idx];
2173 assert(sf->num_reg < ETNA_NUM_INPUTS);
2174
2175 switch (reg->semantic.Name) {
2176 case TGSI_SEMANTIC_POSITION:
2177 sobj->vs_pos_out_reg = reg->native.id;
2178 break;
2179 case TGSI_SEMANTIC_PSIZE:
2180 sobj->vs_pointsize_out_reg = reg->native.id;
2181 break;
2182 default:
2183 sf->reg[sf->num_reg].reg = reg->native.id;
2184 sf->reg[sf->num_reg].semantic = reg->semantic;
2185 sf->reg[sf->num_reg].num_components = 4; // XXX reg->num_components;
2186 sf->num_reg++;
2187 sobj->output_count_per_semantic[reg->semantic.Name] =
2188 MAX2(reg->semantic.Index + 1,
2189 sobj->output_count_per_semantic[reg->semantic.Name]);
2190 }
2191 }
2192
2193 /* build two-level index for linking */
2194 build_output_index(sobj);
2195
2196 /* fill in "mystery meat" load balancing value. This value determines how
2197 * work is scheduled between VS and PS
2198 * in the unified shader architecture. More precisely, it is determined from
2199 * the number of VS outputs, as well as chip-specific
2200 * vertex output buffer size, vertex cache size, and the number of shader
2201 * cores.
2202 *
2203 * XXX this is a conservative estimate, the "optimal" value is only known for
2204 * sure at link time because some
2205 * outputs may be unused and thus unmapped. Then again, in the general use
2206 * case with GLSL the vertex and fragment
2207 * shaders are linked already before submitting to Gallium, thus all outputs
2208 * are used.
2209 */
2210 int half_out = (c->file[TGSI_FILE_OUTPUT].reg_size + 1) / 2;
2211 assert(half_out);
2212
2213 uint32_t b = ((20480 / (c->specs->vertex_output_buffer_size -
2214 2 * half_out * c->specs->vertex_cache_size)) +
2215 9) /
2216 10;
2217 uint32_t a = (b + 256 / (c->specs->shader_core_count * half_out)) / 2;
2218 sobj->vs_load_balancing = VIVS_VS_LOAD_BALANCING_A(MIN2(a, 255)) |
2219 VIVS_VS_LOAD_BALANCING_B(MIN2(b, 255)) |
2220 VIVS_VS_LOAD_BALANCING_C(0x3f) |
2221 VIVS_VS_LOAD_BALANCING_D(0x0f);
2222 }
2223
2224 static bool
2225 etna_compile_check_limits(struct etna_compile *c)
2226 {
2227 int max_uniforms = (c->info.processor == PIPE_SHADER_VERTEX)
2228 ? c->specs->max_vs_uniforms
2229 : c->specs->max_ps_uniforms;
2230 /* round up number of uniforms, including immediates, in units of four */
2231 int num_uniforms = c->imm_base / 4 + (c->imm_size + 3) / 4;
2232
2233 if (!c->specs->has_icache && c->inst_ptr > c->specs->max_instructions) {
2234 DBG("Number of instructions (%d) exceeds maximum %d", c->inst_ptr,
2235 c->specs->max_instructions);
2236 return false;
2237 }
2238
2239 if (c->next_free_native > c->specs->max_registers) {
2240 DBG("Number of registers (%d) exceeds maximum %d", c->next_free_native,
2241 c->specs->max_registers);
2242 return false;
2243 }
2244
2245 if (num_uniforms > max_uniforms) {
2246 DBG("Number of uniforms (%d) exceeds maximum %d", num_uniforms,
2247 max_uniforms);
2248 return false;
2249 }
2250
2251 if (c->num_varyings > c->specs->max_varyings) {
2252 DBG("Number of varyings (%d) exceeds maximum %d", c->num_varyings,
2253 c->specs->max_varyings);
2254 return false;
2255 }
2256
2257 if (c->imm_base > c->specs->num_constants) {
2258 DBG("Number of constants (%d) exceeds maximum %d", c->imm_base,
2259 c->specs->num_constants);
2260 }
2261
2262 return true;
2263 }
2264
2265 static void
2266 copy_uniform_state_to_shader(struct etna_compile *c, struct etna_shader_variant *sobj)
2267 {
2268 uint32_t count = c->imm_base + c->imm_size;
2269 struct etna_shader_uniform_info *uinfo = &sobj->uniforms;
2270
2271 uinfo->imm_count = count;
2272
2273 uinfo->imm_data = malloc(count * sizeof(*c->imm_data));
2274 for (unsigned i = 0; i < c->imm_base; i++)
2275 uinfo->imm_data[i] = i;
2276 memcpy(&uinfo->imm_data[c->imm_base], c->imm_data, c->imm_size * sizeof(*c->imm_data));
2277
2278 uinfo->imm_contents = malloc(count * sizeof(*c->imm_contents));
2279 for (unsigned i = 0; i < c->imm_base; i++)
2280 uinfo->imm_contents[i] = ETNA_IMMEDIATE_UNIFORM;
2281 memcpy(&uinfo->imm_contents[c->imm_base], c->imm_contents, c->imm_size * sizeof(*c->imm_contents));
2282
2283 etna_set_shader_uniforms_dirty_flags(sobj);
2284 }
2285
2286 bool
2287 etna_compile_shader(struct etna_shader_variant *v)
2288 {
2289 if (DBG_ENABLED(ETNA_DBG_NIR))
2290 return etna_compile_shader_nir(v);
2291
2292 /* Create scratch space that may be too large to fit on stack
2293 */
2294 bool ret;
2295 struct etna_compile *c;
2296
2297 if (unlikely(!v))
2298 return false;
2299
2300 const struct etna_specs *specs = v->shader->specs;
2301
2302 struct tgsi_lowering_config lconfig = {
2303 .lower_FLR = !specs->has_sign_floor_ceil,
2304 .lower_CEIL = !specs->has_sign_floor_ceil,
2305 .lower_POW = true,
2306 .lower_EXP = true,
2307 .lower_LOG = true,
2308 .lower_DP2 = !specs->has_halti2_instructions,
2309 .lower_TRUNC = true,
2310 };
2311
2312 c = CALLOC_STRUCT(etna_compile);
2313 if (!c)
2314 return false;
2315
2316 memset(&c->lbl_usage, -1, sizeof(c->lbl_usage));
2317
2318 const struct tgsi_token *tokens = v->shader->tokens;
2319
2320 c->specs = specs;
2321 c->key = &v->key;
2322 c->tokens = tgsi_transform_lowering(&lconfig, tokens, &c->info);
2323 c->free_tokens = !!c->tokens;
2324 if (!c->tokens) {
2325 /* no lowering */
2326 c->tokens = tokens;
2327 }
2328
2329 /* Build a map from gallium register to native registers for files
2330 * CONST, SAMP, IMM, OUT, IN, TEMP.
2331 * SAMP will map as-is for fragment shaders, there will be a +8 offset for
2332 * vertex shaders.
2333 */
2334 /* Pass one -- check register file declarations and immediates */
2335 etna_compile_parse_declarations(c);
2336
2337 etna_allocate_decls(c);
2338
2339 /* Pass two -- check usage of temporaries, inputs, outputs */
2340 etna_compile_pass_check_usage(c);
2341
2342 assign_special_inputs(c);
2343
2344 /* Assign native temp register to TEMPs */
2345 assign_temporaries_to_native(c, &c->file[TGSI_FILE_TEMPORARY]);
2346
2347 /* optimize outputs */
2348 etna_compile_pass_optimize_outputs(c);
2349
2350 /* XXX assign special inputs: gl_FrontFacing (VARYING_SLOT_FACE)
2351 * this is part of RGROUP_INTERNAL
2352 */
2353
2354 /* assign inputs: last usage of input should be <= first usage of temp */
2355 /* potential optimization case:
2356 * if single MOV TEMP[y], IN[x] before which temp y is not used, and
2357 * after which IN[x]
2358 * is not read, temp[y] can be used as input register as-is
2359 */
2360 /* sort temporaries by first use
2361 * sort inputs by last usage
2362 * iterate over inputs, temporaries
2363 * if last usage of input <= first usage of temp:
2364 * assign input to temp
2365 * advance input, temporary pointer
2366 * else
2367 * advance temporary pointer
2368 *
2369 * potential problem: instruction with multiple inputs of which one is the
2370 * temp and the other is the input;
2371 * however, as the temp is not used before this, how would this make
2372 * sense? uninitialized temporaries have an undefined
2373 * value, so this would be ok
2374 */
2375 assign_inouts_to_temporaries(c, TGSI_FILE_INPUT);
2376
2377 /* assign outputs: first usage of output should be >= last usage of temp */
2378 /* potential optimization case:
2379 * if single MOV OUT[x], TEMP[y] (with full write mask, or at least
2380 * writing all components that are used in
2381 * the shader) after which temp y is no longer used temp[y] can be
2382 * used as output register as-is
2383 *
2384 * potential problem: instruction with multiple outputs of which one is the
2385 * temp and the other is the output;
2386 * however, as the temp is not used after this, how would this make
2387 * sense? could just discard the output value
2388 */
2389 /* sort temporaries by last use
2390 * sort outputs by first usage
2391 * iterate over outputs, temporaries
2392 * if first usage of output >= last usage of temp:
2393 * assign output to temp
2394 * advance output, temporary pointer
2395 * else
2396 * advance temporary pointer
2397 */
2398 assign_inouts_to_temporaries(c, TGSI_FILE_OUTPUT);
2399
2400 assign_constants_and_immediates(c);
2401 assign_texture_units(c);
2402
2403 /* list declarations */
2404 for (int x = 0; x < c->total_decls; ++x) {
2405 DBG_F(ETNA_DBG_COMPILER_MSGS, "%i: %s,%d active=%i first_use=%i "
2406 "last_use=%i native=%i usage_mask=%x "
2407 "has_semantic=%i",
2408 x, tgsi_file_name(c->decl[x].file), c->decl[x].idx,
2409 c->decl[x].active, c->decl[x].first_use, c->decl[x].last_use,
2410 c->decl[x].native.valid ? c->decl[x].native.id : -1,
2411 c->decl[x].usage_mask, c->decl[x].has_semantic);
2412 if (c->decl[x].has_semantic)
2413 DBG_F(ETNA_DBG_COMPILER_MSGS, " semantic_name=%s semantic_idx=%i",
2414 tgsi_semantic_names[c->decl[x].semantic.Name],
2415 c->decl[x].semantic.Index);
2416 }
2417 /* XXX for PS we need to permute so that inputs are always in temporary
2418 * 0..N-1.
2419 * There is no "switchboard" for varyings (AFAIK!). The output color,
2420 * however, can be routed
2421 * from an arbitrary temporary.
2422 */
2423 if (c->info.processor == PIPE_SHADER_FRAGMENT)
2424 permute_ps_inputs(c);
2425
2426
2427 /* list declarations */
2428 for (int x = 0; x < c->total_decls; ++x) {
2429 DBG_F(ETNA_DBG_COMPILER_MSGS, "%i: %s,%d active=%i first_use=%i "
2430 "last_use=%i native=%i usage_mask=%x "
2431 "has_semantic=%i",
2432 x, tgsi_file_name(c->decl[x].file), c->decl[x].idx,
2433 c->decl[x].active, c->decl[x].first_use, c->decl[x].last_use,
2434 c->decl[x].native.valid ? c->decl[x].native.id : -1,
2435 c->decl[x].usage_mask, c->decl[x].has_semantic);
2436 if (c->decl[x].has_semantic)
2437 DBG_F(ETNA_DBG_COMPILER_MSGS, " semantic_name=%s semantic_idx=%i",
2438 tgsi_semantic_names[c->decl[x].semantic.Name],
2439 c->decl[x].semantic.Index);
2440 }
2441
2442 /* pass 3: generate instructions */
2443 etna_compile_pass_generate_code(c);
2444 etna_compile_add_z_div_if_needed(c);
2445 etna_compile_frag_rb_swap(c);
2446 etna_compile_add_nop_if_needed(c);
2447
2448 ret = etna_compile_check_limits(c);
2449 if (!ret)
2450 goto out;
2451
2452 etna_compile_fill_in_labels(c);
2453
2454 /* fill in output structure */
2455 v->stage = c->info.processor == PIPE_SHADER_FRAGMENT ? MESA_SHADER_FRAGMENT : MESA_SHADER_VERTEX;
2456 v->code_size = c->inst_ptr * 4;
2457 v->code = mem_dup(c->code, c->inst_ptr * 16);
2458 v->num_loops = c->num_loops;
2459 v->num_temps = c->next_free_native;
2460 v->vs_id_in_reg = -1;
2461 v->vs_pos_out_reg = -1;
2462 v->vs_pointsize_out_reg = -1;
2463 v->ps_color_out_reg = -1;
2464 v->ps_depth_out_reg = -1;
2465 v->needs_icache = c->inst_ptr > c->specs->max_instructions;
2466 copy_uniform_state_to_shader(c, v);
2467
2468 if (c->info.processor == PIPE_SHADER_VERTEX) {
2469 fill_in_vs_inputs(v, c);
2470 fill_in_vs_outputs(v, c);
2471 } else if (c->info.processor == PIPE_SHADER_FRAGMENT) {
2472 fill_in_ps_inputs(v, c);
2473 fill_in_ps_outputs(v, c);
2474 }
2475
2476 out:
2477 if (c->free_tokens)
2478 FREE((void *)c->tokens);
2479
2480 FREE(c->labels);
2481 FREE(c);
2482
2483 return ret;
2484 }
2485
2486 extern const char *tgsi_swizzle_names[];
2487 void
2488 etna_dump_shader(const struct etna_shader_variant *shader)
2489 {
2490 if (shader->stage == MESA_SHADER_VERTEX)
2491 printf("VERT\n");
2492 else
2493 printf("FRAG\n");
2494
2495
2496 etna_disasm(shader->code, shader->code_size, PRINT_RAW);
2497
2498 printf("num loops: %i\n", shader->num_loops);
2499 printf("num temps: %i\n", shader->num_temps);
2500 printf("immediates:\n");
2501 for (int idx = 0; idx < shader->uniforms.imm_count; ++idx) {
2502 printf(" [%i].%s = %f (0x%08x) (%d)\n",
2503 idx / 4,
2504 tgsi_swizzle_names[idx % 4],
2505 *((float *)&shader->uniforms.imm_data[idx]),
2506 shader->uniforms.imm_data[idx],
2507 shader->uniforms.imm_contents[idx]);
2508 }
2509
2510 if (DBG_ENABLED(ETNA_DBG_NIR)) {
2511 printf("inputs:\n");
2512 for (int idx = 0; idx < shader->infile.num_reg; ++idx) {
2513 printf(" [%i] name=%s comps=%i\n", shader->infile.reg[idx].reg,
2514 (shader->stage == MESA_SHADER_VERTEX) ?
2515 gl_vert_attrib_name(shader->infile.reg[idx].slot) :
2516 gl_varying_slot_name(shader->infile.reg[idx].slot),
2517 shader->infile.reg[idx].num_components);
2518 }
2519 printf("outputs:\n");
2520 for (int idx = 0; idx < shader->outfile.num_reg; ++idx) {
2521 printf(" [%i] name=%s comps=%i\n", shader->outfile.reg[idx].reg,
2522 (shader->stage == MESA_SHADER_VERTEX) ?
2523 gl_varying_slot_name(shader->outfile.reg[idx].slot) :
2524 gl_frag_result_name(shader->outfile.reg[idx].slot),
2525 shader->outfile.reg[idx].num_components);
2526 }
2527 } else {
2528 printf("inputs:\n");
2529 for (int idx = 0; idx < shader->infile.num_reg; ++idx) {
2530 printf(" [%i] name=%s index=%i comps=%i\n", shader->infile.reg[idx].reg,
2531 tgsi_semantic_names[shader->infile.reg[idx].semantic.Name],
2532 shader->infile.reg[idx].semantic.Index,
2533 shader->infile.reg[idx].num_components);
2534 }
2535 printf("outputs:\n");
2536 for (int idx = 0; idx < shader->outfile.num_reg; ++idx) {
2537 printf(" [%i] name=%s index=%i comps=%i\n", shader->outfile.reg[idx].reg,
2538 tgsi_semantic_names[shader->outfile.reg[idx].semantic.Name],
2539 shader->outfile.reg[idx].semantic.Index,
2540 shader->outfile.reg[idx].num_components);
2541 }
2542 }
2543 printf("special:\n");
2544 if (shader->stage == MESA_SHADER_VERTEX) {
2545 printf(" vs_pos_out_reg=%i\n", shader->vs_pos_out_reg);
2546 printf(" vs_pointsize_out_reg=%i\n", shader->vs_pointsize_out_reg);
2547 printf(" vs_load_balancing=0x%08x\n", shader->vs_load_balancing);
2548 } else {
2549 printf(" ps_color_out_reg=%i\n", shader->ps_color_out_reg);
2550 printf(" ps_depth_out_reg=%i\n", shader->ps_depth_out_reg);
2551 }
2552 printf(" input_count_unk8=0x%08x\n", shader->input_count_unk8);
2553 }
2554
2555 void
2556 etna_destroy_shader(struct etna_shader_variant *shader)
2557 {
2558 if (DBG_ENABLED(ETNA_DBG_NIR))
2559 return etna_destroy_shader_nir(shader);
2560
2561 assert(shader);
2562
2563 FREE(shader->code);
2564 FREE(shader->uniforms.imm_data);
2565 FREE(shader->uniforms.imm_contents);
2566 FREE(shader->output_per_semantic_list);
2567 FREE(shader);
2568 }
2569
2570 static const struct etna_shader_inout *
2571 etna_shader_vs_lookup(const struct etna_shader_variant *sobj,
2572 const struct etna_shader_inout *in)
2573 {
2574 if (in->semantic.Index < sobj->output_count_per_semantic[in->semantic.Name])
2575 return sobj->output_per_semantic[in->semantic.Name][in->semantic.Index];
2576
2577 return NULL;
2578 }
2579
2580 bool
2581 etna_link_shader(struct etna_shader_link_info *info,
2582 const struct etna_shader_variant *vs, const struct etna_shader_variant *fs)
2583 {
2584 if (DBG_ENABLED(ETNA_DBG_NIR))
2585 return etna_link_shader_nir(info, vs, fs);
2586
2587 int comp_ofs = 0;
2588 /* For each fragment input we need to find the associated vertex shader
2589 * output, which can be found by matching on semantic name and index. A
2590 * binary search could be used because the vs outputs are sorted by their
2591 * semantic index and grouped by semantic type by fill_in_vs_outputs.
2592 */
2593 assert(fs->infile.num_reg < ETNA_NUM_INPUTS);
2594 info->pcoord_varying_comp_ofs = -1;
2595
2596 for (int idx = 0; idx < fs->infile.num_reg; ++idx) {
2597 const struct etna_shader_inout *fsio = &fs->infile.reg[idx];
2598 const struct etna_shader_inout *vsio = etna_shader_vs_lookup(vs, fsio);
2599 struct etna_varying *varying;
2600 bool interpolate_always = fsio->semantic.Name != TGSI_SEMANTIC_COLOR;
2601
2602 assert(fsio->reg > 0 && fsio->reg <= ARRAY_SIZE(info->varyings));
2603
2604 if (fsio->reg > info->num_varyings)
2605 info->num_varyings = fsio->reg;
2606
2607 varying = &info->varyings[fsio->reg - 1];
2608 varying->num_components = fsio->num_components;
2609
2610 if (!interpolate_always) /* colors affected by flat shading */
2611 varying->pa_attributes = 0x200;
2612 else /* texture coord or other bypasses flat shading */
2613 varying->pa_attributes = 0x2f1;
2614
2615 varying->use[0] = VARYING_COMPONENT_USE_UNUSED;
2616 varying->use[1] = VARYING_COMPONENT_USE_UNUSED;
2617 varying->use[2] = VARYING_COMPONENT_USE_UNUSED;
2618 varying->use[3] = VARYING_COMPONENT_USE_UNUSED;
2619
2620 /* point coord is an input to the PS without matching VS output,
2621 * so it gets a varying slot without being assigned a VS register.
2622 */
2623 if (fsio->semantic.Name == TGSI_SEMANTIC_PCOORD) {
2624 varying->use[0] = VARYING_COMPONENT_USE_POINTCOORD_X;
2625 varying->use[1] = VARYING_COMPONENT_USE_POINTCOORD_Y;
2626
2627 info->pcoord_varying_comp_ofs = comp_ofs;
2628 } else {
2629 if (vsio == NULL) { /* not found -- link error */
2630 BUG("Semantic %d value %d not found in vertex shader outputs\n", fsio->semantic.Name, fsio->semantic.Index);
2631 return true;
2632 }
2633
2634 varying->reg = vsio->reg;
2635 }
2636
2637 comp_ofs += varying->num_components;
2638 }
2639
2640 assert(info->num_varyings == fs->infile.num_reg);
2641
2642 return false;
2643 }