iris: Make iris_bo_import_dmabuf take a modifier
[mesa.git] / src / gallium / drivers / iris / iris_bufmgr.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_bufmgr.c
25 *
26 * The Iris buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34 #include <xf86drm.h>
35 #include <util/u_atomic.h>
36 #include <fcntl.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <unistd.h>
41 #include <assert.h>
42 #include <sys/ioctl.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/types.h>
46 #include <stdbool.h>
47 #include <time.h>
48 #include <unistd.h>
49
50 #include "errno.h"
51 #include "common/gen_aux_map.h"
52 #include "common/gen_clflush.h"
53 #include "dev/gen_debug.h"
54 #include "common/gen_gem.h"
55 #include "dev/gen_device_info.h"
56 #include "main/macros.h"
57 #include "os/os_mman.h"
58 #include "util/debug.h"
59 #include "util/macros.h"
60 #include "util/hash_table.h"
61 #include "util/list.h"
62 #include "util/os_file.h"
63 #include "util/u_dynarray.h"
64 #include "util/vma.h"
65 #include "iris_bufmgr.h"
66 #include "iris_context.h"
67 #include "string.h"
68
69 #include "drm-uapi/i915_drm.h"
70
71 #ifdef HAVE_VALGRIND
72 #include <valgrind.h>
73 #include <memcheck.h>
74 #define VG(x) x
75 #else
76 #define VG(x)
77 #endif
78
79 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
80 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
81 * leaked. All because it does not call VG(cli_free) from its
82 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
83 * and allocation, we mark it available for use upon mmapping and remove
84 * it upon unmapping.
85 */
86 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
87 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
88
89 #define PAGE_SIZE 4096
90
91 #define WARN_ONCE(cond, fmt...) do { \
92 if (unlikely(cond)) { \
93 static bool _warned = false; \
94 if (!_warned) { \
95 fprintf(stderr, "WARNING: "); \
96 fprintf(stderr, fmt); \
97 _warned = true; \
98 } \
99 } \
100 } while (0)
101
102 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
103
104 static inline int
105 atomic_add_unless(int *v, int add, int unless)
106 {
107 int c, old;
108 c = p_atomic_read(v);
109 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
110 c = old;
111 return c == unless;
112 }
113
114 static const char *
115 memzone_name(enum iris_memory_zone memzone)
116 {
117 const char *names[] = {
118 [IRIS_MEMZONE_SHADER] = "shader",
119 [IRIS_MEMZONE_BINDER] = "binder",
120 [IRIS_MEMZONE_SURFACE] = "surface",
121 [IRIS_MEMZONE_DYNAMIC] = "dynamic",
122 [IRIS_MEMZONE_OTHER] = "other",
123 [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
124 };
125 assert(memzone < ARRAY_SIZE(names));
126 return names[memzone];
127 }
128
129 struct bo_cache_bucket {
130 /** List of cached BOs. */
131 struct list_head head;
132
133 /** Size of this bucket, in bytes. */
134 uint64_t size;
135 };
136
137 struct bo_export {
138 /** File descriptor associated with a handle export. */
139 int drm_fd;
140
141 /** GEM handle in drm_fd */
142 uint32_t gem_handle;
143
144 struct list_head link;
145 };
146
147 struct iris_bufmgr {
148 /**
149 * List into the list of bufmgr.
150 */
151 struct list_head link;
152
153 uint32_t refcount;
154
155 int fd;
156
157 mtx_t lock;
158
159 /** Array of lists of cached gem objects of power-of-two sizes */
160 struct bo_cache_bucket cache_bucket[14 * 4];
161 int num_buckets;
162 time_t time;
163
164 struct hash_table *name_table;
165 struct hash_table *handle_table;
166
167 /**
168 * List of BOs which we've effectively freed, but are hanging on to
169 * until they're idle before closing and returning the VMA.
170 */
171 struct list_head zombie_list;
172
173 struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
174
175 bool has_llc:1;
176 bool has_mmap_offset:1;
177 bool has_tiling_uapi:1;
178 bool bo_reuse:1;
179
180 struct gen_aux_map_context *aux_map_ctx;
181 };
182
183 static mtx_t global_bufmgr_list_mutex = _MTX_INITIALIZER_NP;
184 static struct list_head global_bufmgr_list = {
185 .next = &global_bufmgr_list,
186 .prev = &global_bufmgr_list,
187 };
188
189 static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
190 uint32_t stride);
191
192 static void bo_free(struct iris_bo *bo);
193
194 static struct iris_bo *
195 find_and_ref_external_bo(struct hash_table *ht, unsigned int key)
196 {
197 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
198 struct iris_bo *bo = entry ? entry->data : NULL;
199
200 if (bo) {
201 assert(bo->external);
202 assert(!bo->reusable);
203
204 /* Being non-reusable, the BO cannot be in the cache lists, but it
205 * may be in the zombie list if it had reached zero references, but
206 * we hadn't yet closed it...and then reimported the same BO. If it
207 * is, then remove it since it's now been resurrected.
208 */
209 if (bo->head.prev || bo->head.next)
210 list_del(&bo->head);
211
212 iris_bo_reference(bo);
213 }
214
215 return bo;
216 }
217
218 /**
219 * This function finds the correct bucket fit for the input size.
220 * The function works with O(1) complexity when the requested size
221 * was queried instead of iterating the size through all the buckets.
222 */
223 static struct bo_cache_bucket *
224 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size)
225 {
226 /* Calculating the pages and rounding up to the page size. */
227 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
228
229 /* Row Bucket sizes clz((x-1) | 3) Row Column
230 * in pages stride size
231 * 0: 1 2 3 4 -> 30 30 30 30 4 1
232 * 1: 5 6 7 8 -> 29 29 29 29 4 1
233 * 2: 10 12 14 16 -> 28 28 28 28 8 2
234 * 3: 20 24 28 32 -> 27 27 27 27 16 4
235 */
236 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
237 const unsigned row_max_pages = 4 << row;
238
239 /* The '& ~2' is the special case for row 1. In row 1, max pages /
240 * 2 is 2, but the previous row maximum is zero (because there is
241 * no previous row). All row maximum sizes are power of 2, so that
242 * is the only case where that bit will be set.
243 */
244 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
245 int col_size_log2 = row - 1;
246 col_size_log2 += (col_size_log2 < 0);
247
248 const unsigned col = (pages - prev_row_max_pages +
249 ((1 << col_size_log2) - 1)) >> col_size_log2;
250
251 /* Calculating the index based on the row and column. */
252 const unsigned index = (row * 4) + (col - 1);
253
254 return (index < bufmgr->num_buckets) ?
255 &bufmgr->cache_bucket[index] : NULL;
256 }
257
258 enum iris_memory_zone
259 iris_memzone_for_address(uint64_t address)
260 {
261 STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
262 STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
263 STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDER_START);
264 STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START);
265 STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
266
267 if (address >= IRIS_MEMZONE_OTHER_START)
268 return IRIS_MEMZONE_OTHER;
269
270 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
271 return IRIS_MEMZONE_BORDER_COLOR_POOL;
272
273 if (address > IRIS_MEMZONE_DYNAMIC_START)
274 return IRIS_MEMZONE_DYNAMIC;
275
276 if (address >= IRIS_MEMZONE_SURFACE_START)
277 return IRIS_MEMZONE_SURFACE;
278
279 if (address >= IRIS_MEMZONE_BINDER_START)
280 return IRIS_MEMZONE_BINDER;
281
282 return IRIS_MEMZONE_SHADER;
283 }
284
285 /**
286 * Allocate a section of virtual memory for a buffer, assigning an address.
287 *
288 * This uses either the bucket allocator for the given size, or the large
289 * object allocator (util_vma).
290 */
291 static uint64_t
292 vma_alloc(struct iris_bufmgr *bufmgr,
293 enum iris_memory_zone memzone,
294 uint64_t size,
295 uint64_t alignment)
296 {
297 /* Force alignment to be some number of pages */
298 alignment = ALIGN(alignment, PAGE_SIZE);
299
300 if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
301 return IRIS_BORDER_COLOR_POOL_ADDRESS;
302
303 /* The binder handles its own allocations. Return non-zero here. */
304 if (memzone == IRIS_MEMZONE_BINDER)
305 return IRIS_MEMZONE_BINDER_START;
306
307 uint64_t addr =
308 util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
309
310 assert((addr >> 48ull) == 0);
311 assert((addr % alignment) == 0);
312
313 return gen_canonical_address(addr);
314 }
315
316 static void
317 vma_free(struct iris_bufmgr *bufmgr,
318 uint64_t address,
319 uint64_t size)
320 {
321 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
322 return;
323
324 /* Un-canonicalize the address. */
325 address = gen_48b_address(address);
326
327 if (address == 0ull)
328 return;
329
330 enum iris_memory_zone memzone = iris_memzone_for_address(address);
331
332 /* The binder handles its own allocations. */
333 if (memzone == IRIS_MEMZONE_BINDER)
334 return;
335
336 assert(memzone < ARRAY_SIZE(bufmgr->vma_allocator));
337
338 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
339 }
340
341 int
342 iris_bo_busy(struct iris_bo *bo)
343 {
344 struct iris_bufmgr *bufmgr = bo->bufmgr;
345 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
346
347 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
348 if (ret == 0) {
349 bo->idle = !busy.busy;
350 return busy.busy;
351 }
352 return false;
353 }
354
355 int
356 iris_bo_madvise(struct iris_bo *bo, int state)
357 {
358 struct drm_i915_gem_madvise madv = {
359 .handle = bo->gem_handle,
360 .madv = state,
361 .retained = 1,
362 };
363
364 gen_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
365
366 return madv.retained;
367 }
368
369 static struct iris_bo *
370 bo_calloc(void)
371 {
372 struct iris_bo *bo = calloc(1, sizeof(*bo));
373 if (!bo)
374 return NULL;
375
376 list_inithead(&bo->exports);
377
378 bo->hash = _mesa_hash_pointer(bo);
379
380 return bo;
381 }
382
383 static struct iris_bo *
384 alloc_bo_from_cache(struct iris_bufmgr *bufmgr,
385 struct bo_cache_bucket *bucket,
386 uint32_t alignment,
387 enum iris_memory_zone memzone,
388 unsigned flags,
389 bool match_zone)
390 {
391 if (!bucket)
392 return NULL;
393
394 struct iris_bo *bo = NULL;
395
396 list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) {
397 /* Try a little harder to find one that's already in the right memzone */
398 if (match_zone && memzone != iris_memzone_for_address(cur->gtt_offset))
399 continue;
400
401 /* If the last BO in the cache is busy, there are no idle BOs. Bail,
402 * either falling back to a non-matching memzone, or if that fails,
403 * allocating a fresh buffer.
404 */
405 if (iris_bo_busy(cur))
406 return NULL;
407
408 list_del(&cur->head);
409
410 /* Tell the kernel we need this BO. If it still exists, we're done! */
411 if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) {
412 bo = cur;
413 break;
414 }
415
416 /* This BO was purged, throw it out and keep looking. */
417 bo_free(cur);
418 }
419
420 if (!bo)
421 return NULL;
422
423 if (bo->aux_map_address) {
424 /* This buffer was associated with an aux-buffer range. We make sure
425 * that buffers are not reused from the cache while the buffer is (busy)
426 * being used by an executing batch. Since we are here, the buffer is no
427 * longer being used by a batch and the buffer was deleted (in order to
428 * end up in the cache). Therefore its old aux-buffer range can be
429 * removed from the aux-map.
430 */
431 if (bo->bufmgr->aux_map_ctx)
432 gen_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->gtt_offset,
433 bo->size);
434 bo->aux_map_address = 0;
435 }
436
437 /* If the cached BO isn't in the right memory zone, or the alignment
438 * isn't sufficient, free the old memory and assign it a new address.
439 */
440 if (memzone != iris_memzone_for_address(bo->gtt_offset) ||
441 bo->gtt_offset % alignment != 0) {
442 vma_free(bufmgr, bo->gtt_offset, bo->size);
443 bo->gtt_offset = 0ull;
444 }
445
446 /* Zero the contents if necessary. If this fails, fall back to
447 * allocating a fresh BO, which will always be zeroed by the kernel.
448 */
449 if (flags & BO_ALLOC_ZEROED) {
450 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
451 if (map) {
452 memset(map, 0, bo->size);
453 } else {
454 bo_free(bo);
455 return NULL;
456 }
457 }
458
459 return bo;
460 }
461
462 static struct iris_bo *
463 alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size)
464 {
465 struct iris_bo *bo = bo_calloc();
466 if (!bo)
467 return NULL;
468
469 struct drm_i915_gem_create create = { .size = bo_size };
470
471 /* All new BOs we get from the kernel are zeroed, so we don't need to
472 * worry about that here.
473 */
474 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
475 free(bo);
476 return NULL;
477 }
478
479 bo->gem_handle = create.handle;
480 bo->bufmgr = bufmgr;
481 bo->size = bo_size;
482 bo->idle = true;
483 bo->tiling_mode = I915_TILING_NONE;
484 bo->stride = 0;
485
486 /* Calling set_domain() will allocate pages for the BO outside of the
487 * struct mutex lock in the kernel, which is more efficient than waiting
488 * to create them during the first execbuf that uses the BO.
489 */
490 struct drm_i915_gem_set_domain sd = {
491 .handle = bo->gem_handle,
492 .read_domains = I915_GEM_DOMAIN_CPU,
493 .write_domain = 0,
494 };
495
496 if (gen_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) {
497 bo_free(bo);
498 return NULL;
499 }
500
501 return bo;
502 }
503
504 static struct iris_bo *
505 bo_alloc_internal(struct iris_bufmgr *bufmgr,
506 const char *name,
507 uint64_t size,
508 uint32_t alignment,
509 enum iris_memory_zone memzone,
510 unsigned flags,
511 uint32_t tiling_mode,
512 uint32_t stride)
513 {
514 struct iris_bo *bo;
515 unsigned int page_size = getpagesize();
516 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
517
518 /* Round the size up to the bucket size, or if we don't have caching
519 * at this size, a multiple of the page size.
520 */
521 uint64_t bo_size =
522 bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
523
524 mtx_lock(&bufmgr->lock);
525
526 /* Get a buffer out of the cache if available. First, we try to find
527 * one with a matching memory zone so we can avoid reallocating VMA.
528 */
529 bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, flags, true);
530
531 /* If that fails, we try for any cached BO, without matching memzone. */
532 if (!bo) {
533 bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, flags,
534 false);
535 }
536
537 mtx_unlock(&bufmgr->lock);
538
539 if (!bo) {
540 bo = alloc_fresh_bo(bufmgr, bo_size);
541 if (!bo)
542 return NULL;
543 }
544
545 if (bo->gtt_offset == 0ull) {
546 mtx_lock(&bufmgr->lock);
547 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, alignment);
548 mtx_unlock(&bufmgr->lock);
549
550 if (bo->gtt_offset == 0ull)
551 goto err_free;
552 }
553
554 if (bo_set_tiling_internal(bo, tiling_mode, stride))
555 goto err_free;
556
557 bo->name = name;
558 p_atomic_set(&bo->refcount, 1);
559 bo->reusable = bucket && bufmgr->bo_reuse;
560 bo->cache_coherent = bufmgr->has_llc;
561 bo->index = -1;
562 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
563
564 /* By default, capture all driver-internal buffers like shader kernels,
565 * surface states, dynamic states, border colors, and so on.
566 */
567 if (memzone < IRIS_MEMZONE_OTHER)
568 bo->kflags |= EXEC_OBJECT_CAPTURE;
569
570 if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) {
571 struct drm_i915_gem_caching arg = {
572 .handle = bo->gem_handle,
573 .caching = 1,
574 };
575 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) {
576 bo->cache_coherent = true;
577 bo->reusable = false;
578 }
579 }
580
581 DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle,
582 bo->name, memzone_name(memzone), (unsigned long long) size);
583
584 return bo;
585
586 err_free:
587 bo_free(bo);
588 return NULL;
589 }
590
591 struct iris_bo *
592 iris_bo_alloc(struct iris_bufmgr *bufmgr,
593 const char *name,
594 uint64_t size,
595 enum iris_memory_zone memzone)
596 {
597 return bo_alloc_internal(bufmgr, name, size, 1, memzone,
598 0, I915_TILING_NONE, 0);
599 }
600
601 struct iris_bo *
602 iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
603 uint64_t size, uint32_t alignment,
604 enum iris_memory_zone memzone,
605 uint32_t tiling_mode, uint32_t pitch, unsigned flags)
606 {
607 return bo_alloc_internal(bufmgr, name, size, alignment, memzone,
608 flags, tiling_mode, pitch);
609 }
610
611 struct iris_bo *
612 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
613 void *ptr, size_t size,
614 enum iris_memory_zone memzone)
615 {
616 struct drm_gem_close close = { 0, };
617 struct iris_bo *bo;
618
619 bo = bo_calloc();
620 if (!bo)
621 return NULL;
622
623 struct drm_i915_gem_userptr arg = {
624 .user_ptr = (uintptr_t)ptr,
625 .user_size = size,
626 };
627 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
628 goto err_free;
629 bo->gem_handle = arg.handle;
630
631 /* Check the buffer for validity before we try and use it in a batch */
632 struct drm_i915_gem_set_domain sd = {
633 .handle = bo->gem_handle,
634 .read_domains = I915_GEM_DOMAIN_CPU,
635 };
636 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
637 goto err_close;
638
639 bo->name = name;
640 bo->size = size;
641 bo->map_cpu = ptr;
642
643 bo->bufmgr = bufmgr;
644 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
645
646 mtx_lock(&bufmgr->lock);
647 bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
648 mtx_unlock(&bufmgr->lock);
649
650 if (bo->gtt_offset == 0ull)
651 goto err_close;
652
653 p_atomic_set(&bo->refcount, 1);
654 bo->userptr = true;
655 bo->cache_coherent = true;
656 bo->index = -1;
657 bo->idle = true;
658
659 return bo;
660
661 err_close:
662 close.handle = bo->gem_handle;
663 gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
664 err_free:
665 free(bo);
666 return NULL;
667 }
668
669 /**
670 * Returns a iris_bo wrapping the given buffer object handle.
671 *
672 * This can be used when one application needs to pass a buffer object
673 * to another.
674 */
675 struct iris_bo *
676 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
677 const char *name, unsigned int handle)
678 {
679 struct iris_bo *bo;
680
681 /* At the moment most applications only have a few named bo.
682 * For instance, in a DRI client only the render buffers passed
683 * between X and the client are named. And since X returns the
684 * alternating names for the front/back buffer a linear search
685 * provides a sufficiently fast match.
686 */
687 mtx_lock(&bufmgr->lock);
688 bo = find_and_ref_external_bo(bufmgr->name_table, handle);
689 if (bo)
690 goto out;
691
692 struct drm_gem_open open_arg = { .name = handle };
693 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
694 if (ret != 0) {
695 DBG("Couldn't reference %s handle 0x%08x: %s\n",
696 name, handle, strerror(errno));
697 bo = NULL;
698 goto out;
699 }
700 /* Now see if someone has used a prime handle to get this
701 * object from the kernel before by looking through the list
702 * again for a matching gem_handle
703 */
704 bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle);
705 if (bo)
706 goto out;
707
708 bo = bo_calloc();
709 if (!bo)
710 goto out;
711
712 p_atomic_set(&bo->refcount, 1);
713
714 bo->size = open_arg.size;
715 bo->bufmgr = bufmgr;
716 bo->gem_handle = open_arg.handle;
717 bo->name = name;
718 bo->global_name = handle;
719 bo->reusable = false;
720 bo->external = true;
721 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
722 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
723
724 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
725 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
726
727 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
728 ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
729 if (ret != 0)
730 goto err_unref;
731
732 bo->tiling_mode = get_tiling.tiling_mode;
733
734 /* XXX stride is unknown */
735 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
736
737 out:
738 mtx_unlock(&bufmgr->lock);
739 return bo;
740
741 err_unref:
742 bo_free(bo);
743 mtx_unlock(&bufmgr->lock);
744 return NULL;
745 }
746
747 static void
748 bo_close(struct iris_bo *bo)
749 {
750 struct iris_bufmgr *bufmgr = bo->bufmgr;
751
752 if (bo->external) {
753 struct hash_entry *entry;
754
755 if (bo->global_name) {
756 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
757 _mesa_hash_table_remove(bufmgr->name_table, entry);
758 }
759
760 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
761 _mesa_hash_table_remove(bufmgr->handle_table, entry);
762
763 list_for_each_entry_safe(struct bo_export, export, &bo->exports, link) {
764 struct drm_gem_close close = { .handle = export->gem_handle };
765 gen_ioctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &close);
766
767 list_del(&export->link);
768 free(export);
769 }
770 } else {
771 assert(list_is_empty(&bo->exports));
772 }
773
774 /* Close this object */
775 struct drm_gem_close close = { .handle = bo->gem_handle };
776 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
777 if (ret != 0) {
778 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
779 bo->gem_handle, bo->name, strerror(errno));
780 }
781
782 if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
783 gen_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->gtt_offset,
784 bo->size);
785 }
786
787 /* Return the VMA for reuse */
788 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
789
790 free(bo);
791 }
792
793 static void
794 bo_free(struct iris_bo *bo)
795 {
796 struct iris_bufmgr *bufmgr = bo->bufmgr;
797
798 if (bo->map_cpu && !bo->userptr) {
799 VG_NOACCESS(bo->map_cpu, bo->size);
800 os_munmap(bo->map_cpu, bo->size);
801 }
802 if (bo->map_wc) {
803 VG_NOACCESS(bo->map_wc, bo->size);
804 os_munmap(bo->map_wc, bo->size);
805 }
806 if (bo->map_gtt) {
807 VG_NOACCESS(bo->map_gtt, bo->size);
808 os_munmap(bo->map_gtt, bo->size);
809 }
810
811 if (bo->idle) {
812 bo_close(bo);
813 } else {
814 /* Defer closing the GEM BO and returning the VMA for reuse until the
815 * BO is idle. Just move it to the dead list for now.
816 */
817 list_addtail(&bo->head, &bufmgr->zombie_list);
818 }
819 }
820
821 /** Frees all cached buffers significantly older than @time. */
822 static void
823 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
824 {
825 int i;
826
827 if (bufmgr->time == time)
828 return;
829
830 for (i = 0; i < bufmgr->num_buckets; i++) {
831 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
832
833 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
834 if (time - bo->free_time <= 1)
835 break;
836
837 list_del(&bo->head);
838
839 bo_free(bo);
840 }
841 }
842
843 list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
844 /* Stop once we reach a busy BO - all others past this point were
845 * freed more recently so are likely also busy.
846 */
847 if (!bo->idle && iris_bo_busy(bo))
848 break;
849
850 list_del(&bo->head);
851 bo_close(bo);
852 }
853
854 bufmgr->time = time;
855 }
856
857 static void
858 bo_unreference_final(struct iris_bo *bo, time_t time)
859 {
860 struct iris_bufmgr *bufmgr = bo->bufmgr;
861 struct bo_cache_bucket *bucket;
862
863 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
864
865 bucket = NULL;
866 if (bo->reusable)
867 bucket = bucket_for_size(bufmgr, bo->size);
868 /* Put the buffer into our internal cache for reuse if we can. */
869 if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
870 bo->free_time = time;
871 bo->name = NULL;
872
873 list_addtail(&bo->head, &bucket->head);
874 } else {
875 bo_free(bo);
876 }
877 }
878
879 void
880 iris_bo_unreference(struct iris_bo *bo)
881 {
882 if (bo == NULL)
883 return;
884
885 assert(p_atomic_read(&bo->refcount) > 0);
886
887 if (atomic_add_unless(&bo->refcount, -1, 1)) {
888 struct iris_bufmgr *bufmgr = bo->bufmgr;
889 struct timespec time;
890
891 clock_gettime(CLOCK_MONOTONIC, &time);
892
893 mtx_lock(&bufmgr->lock);
894
895 if (p_atomic_dec_zero(&bo->refcount)) {
896 bo_unreference_final(bo, time.tv_sec);
897 cleanup_bo_cache(bufmgr, time.tv_sec);
898 }
899
900 mtx_unlock(&bufmgr->lock);
901 }
902 }
903
904 static void
905 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
906 struct iris_bo *bo,
907 const char *action)
908 {
909 bool busy = dbg && !bo->idle;
910 double elapsed = unlikely(busy) ? -get_time() : 0.0;
911
912 iris_bo_wait_rendering(bo);
913
914 if (unlikely(busy)) {
915 elapsed += get_time();
916 if (elapsed > 1e-5) /* 0.01ms */ {
917 perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
918 action, bo->name, elapsed * 1000);
919 }
920 }
921 }
922
923 static void
924 print_flags(unsigned flags)
925 {
926 if (flags & MAP_READ)
927 DBG("READ ");
928 if (flags & MAP_WRITE)
929 DBG("WRITE ");
930 if (flags & MAP_ASYNC)
931 DBG("ASYNC ");
932 if (flags & MAP_PERSISTENT)
933 DBG("PERSISTENT ");
934 if (flags & MAP_COHERENT)
935 DBG("COHERENT ");
936 if (flags & MAP_RAW)
937 DBG("RAW ");
938 DBG("\n");
939 }
940
941 static void *
942 iris_bo_gem_mmap_legacy(struct pipe_debug_callback *dbg,
943 struct iris_bo *bo, bool wc)
944 {
945 struct iris_bufmgr *bufmgr = bo->bufmgr;
946
947 struct drm_i915_gem_mmap mmap_arg = {
948 .handle = bo->gem_handle,
949 .size = bo->size,
950 .flags = wc ? I915_MMAP_WC : 0,
951 };
952
953 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
954 if (ret != 0) {
955 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
956 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
957 return NULL;
958 }
959 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
960
961 return map;
962 }
963
964 static void *
965 iris_bo_gem_mmap_offset(struct pipe_debug_callback *dbg, struct iris_bo *bo,
966 bool wc)
967 {
968 struct iris_bufmgr *bufmgr = bo->bufmgr;
969
970 struct drm_i915_gem_mmap_offset mmap_arg = {
971 .handle = bo->gem_handle,
972 .flags = wc ? I915_MMAP_OFFSET_WC : I915_MMAP_OFFSET_WB,
973 };
974
975 /* Get the fake offset back */
976 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &mmap_arg);
977 if (ret != 0) {
978 DBG("%s:%d: Error preparing buffer %d (%s): %s .\n",
979 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
980 return NULL;
981 }
982
983 /* And map it */
984 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
985 bufmgr->fd, mmap_arg.offset);
986 if (map == MAP_FAILED) {
987 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
988 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
989 return NULL;
990 }
991
992 return map;
993 }
994
995 static void *
996 iris_bo_gem_mmap(struct pipe_debug_callback *dbg, struct iris_bo *bo, bool wc)
997 {
998 struct iris_bufmgr *bufmgr = bo->bufmgr;
999
1000 if (bufmgr->has_mmap_offset)
1001 return iris_bo_gem_mmap_offset(dbg, bo, wc);
1002 else
1003 return iris_bo_gem_mmap_legacy(dbg, bo, wc);
1004 }
1005
1006 static void *
1007 iris_bo_map_cpu(struct pipe_debug_callback *dbg,
1008 struct iris_bo *bo, unsigned flags)
1009 {
1010 /* We disallow CPU maps for writing to non-coherent buffers, as the
1011 * CPU map can become invalidated when a batch is flushed out, which
1012 * can happen at unpredictable times. You should use WC maps instead.
1013 */
1014 assert(bo->cache_coherent || !(flags & MAP_WRITE));
1015
1016 if (!bo->map_cpu) {
1017 DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
1018 void *map = iris_bo_gem_mmap(dbg, bo, false);
1019 if (!map) {
1020 return NULL;
1021 }
1022
1023 VG_DEFINED(map, bo->size);
1024
1025 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
1026 VG_NOACCESS(map, bo->size);
1027 os_munmap(map, bo->size);
1028 }
1029 }
1030 assert(bo->map_cpu);
1031
1032 DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
1033 bo->map_cpu);
1034 print_flags(flags);
1035
1036 if (!(flags & MAP_ASYNC)) {
1037 bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
1038 }
1039
1040 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
1041 /* If we're reusing an existing CPU mapping, the CPU caches may
1042 * contain stale data from the last time we read from that mapping.
1043 * (With the BO cache, it might even be data from a previous buffer!)
1044 * Even if it's a brand new mapping, the kernel may have zeroed the
1045 * buffer via CPU writes.
1046 *
1047 * We need to invalidate those cachelines so that we see the latest
1048 * contents, and so long as we only read from the CPU mmap we do not
1049 * need to write those cachelines back afterwards.
1050 *
1051 * On LLC, the emprical evidence suggests that writes from the GPU
1052 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
1053 * cachelines. (Other reads, such as the display engine, bypass the
1054 * LLC entirely requiring us to keep dirty pixels for the scanout
1055 * out of any cache.)
1056 */
1057 gen_invalidate_range(bo->map_cpu, bo->size);
1058 }
1059
1060 return bo->map_cpu;
1061 }
1062
1063 static void *
1064 iris_bo_map_wc(struct pipe_debug_callback *dbg,
1065 struct iris_bo *bo, unsigned flags)
1066 {
1067 if (!bo->map_wc) {
1068 DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
1069 void *map = iris_bo_gem_mmap(dbg, bo, true);
1070 if (!map) {
1071 return NULL;
1072 }
1073
1074 VG_DEFINED(map, bo->size);
1075
1076 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
1077 VG_NOACCESS(map, bo->size);
1078 os_munmap(map, bo->size);
1079 }
1080 }
1081 assert(bo->map_wc);
1082
1083 DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
1084 print_flags(flags);
1085
1086 if (!(flags & MAP_ASYNC)) {
1087 bo_wait_with_stall_warning(dbg, bo, "WC mapping");
1088 }
1089
1090 return bo->map_wc;
1091 }
1092
1093 /**
1094 * Perform an uncached mapping via the GTT.
1095 *
1096 * Write access through the GTT is not quite fully coherent. On low power
1097 * systems especially, like modern Atoms, we can observe reads from RAM before
1098 * the write via GTT has landed. A write memory barrier that flushes the Write
1099 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
1100 * read after the write as the GTT write suffers a small delay through the GTT
1101 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
1102 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
1103 * flushes prior to execbuf submission. However, if we are not informing the
1104 * kernel about our GTT writes, it will not flush before earlier access, such
1105 * as when using the cmdparser. Similarly, we need to be careful if we should
1106 * ever issue a CPU read immediately following a GTT write.
1107 *
1108 * Telling the kernel about write access also has one more important
1109 * side-effect. Upon receiving notification about the write, it cancels any
1110 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
1111 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
1112 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
1113 * tracking is handled on the buffer exchange instead.
1114 */
1115 static void *
1116 iris_bo_map_gtt(struct pipe_debug_callback *dbg,
1117 struct iris_bo *bo, unsigned flags)
1118 {
1119 struct iris_bufmgr *bufmgr = bo->bufmgr;
1120
1121 /* If we don't support get/set_tiling, there's no support for GTT mapping
1122 * either (it won't do any de-tiling for us).
1123 */
1124 assert(bufmgr->has_tiling_uapi);
1125
1126 /* Get a mapping of the buffer if we haven't before. */
1127 if (bo->map_gtt == NULL) {
1128 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
1129
1130 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
1131
1132 /* Get the fake offset back... */
1133 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
1134 if (ret != 0) {
1135 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1136 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1137 return NULL;
1138 }
1139
1140 /* and mmap it. */
1141 void *map = os_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1142 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
1143 if (map == MAP_FAILED) {
1144 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1145 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1146 return NULL;
1147 }
1148
1149 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1150 * already intercept this mmap call. However, for consistency between
1151 * all the mmap paths, we mark the pointer as defined now and mark it
1152 * as inaccessible afterwards.
1153 */
1154 VG_DEFINED(map, bo->size);
1155
1156 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1157 VG_NOACCESS(map, bo->size);
1158 os_munmap(map, bo->size);
1159 }
1160 }
1161 assert(bo->map_gtt);
1162
1163 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1164 print_flags(flags);
1165
1166 if (!(flags & MAP_ASYNC)) {
1167 bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
1168 }
1169
1170 return bo->map_gtt;
1171 }
1172
1173 static bool
1174 can_map_cpu(struct iris_bo *bo, unsigned flags)
1175 {
1176 if (bo->cache_coherent)
1177 return true;
1178
1179 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1180 * an LLC platform reads always are coherent (as they are performed via the
1181 * central system agent). It is just the writes that we need to take special
1182 * care to ensure that land in main memory and not stick in the CPU cache.
1183 */
1184 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1185 return true;
1186
1187 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1188 * across batch flushes where the kernel will change cache domains of the
1189 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1190 *
1191 * Similarly, ASYNC typically means that the buffer will be accessed via
1192 * both the CPU and the GPU simultaneously. Batches may be executed that
1193 * use the BO even while it is mapped. While OpenGL technically disallows
1194 * most drawing while non-persistent mappings are active, we may still use
1195 * the GPU for blits or other operations, causing batches to happen at
1196 * inconvenient times.
1197 *
1198 * If RAW is set, we expect the caller to be able to handle a WC buffer
1199 * more efficiently than the involuntary clflushes.
1200 */
1201 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW))
1202 return false;
1203
1204 return !(flags & MAP_WRITE);
1205 }
1206
1207 void *
1208 iris_bo_map(struct pipe_debug_callback *dbg,
1209 struct iris_bo *bo, unsigned flags)
1210 {
1211 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1212 return iris_bo_map_gtt(dbg, bo, flags);
1213
1214 void *map;
1215
1216 if (can_map_cpu(bo, flags))
1217 map = iris_bo_map_cpu(dbg, bo, flags);
1218 else
1219 map = iris_bo_map_wc(dbg, bo, flags);
1220
1221 /* Allow the attempt to fail by falling back to the GTT where necessary.
1222 *
1223 * Not every buffer can be mmaped directly using the CPU (or WC), for
1224 * example buffers that wrap stolen memory or are imported from other
1225 * devices. For those, we have little choice but to use a GTT mmapping.
1226 * However, if we use a slow GTT mmapping for reads where we expected fast
1227 * access, that order of magnitude difference in throughput will be clearly
1228 * expressed by angry users.
1229 *
1230 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1231 */
1232 if (!map && !(flags & MAP_RAW)) {
1233 perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
1234 bo->name, flags);
1235 map = iris_bo_map_gtt(dbg, bo, flags);
1236 }
1237
1238 return map;
1239 }
1240
1241 /** Waits for all GPU rendering with the object to have completed. */
1242 void
1243 iris_bo_wait_rendering(struct iris_bo *bo)
1244 {
1245 /* We require a kernel recent enough for WAIT_IOCTL support.
1246 * See intel_init_bufmgr()
1247 */
1248 iris_bo_wait(bo, -1);
1249 }
1250
1251 /**
1252 * Waits on a BO for the given amount of time.
1253 *
1254 * @bo: buffer object to wait for
1255 * @timeout_ns: amount of time to wait in nanoseconds.
1256 * If value is less than 0, an infinite wait will occur.
1257 *
1258 * Returns 0 if the wait was successful ie. the last batch referencing the
1259 * object has completed within the allotted time. Otherwise some negative return
1260 * value describes the error. Of particular interest is -ETIME when the wait has
1261 * failed to yield the desired result.
1262 *
1263 * Similar to iris_bo_wait_rendering except a timeout parameter allows
1264 * the operation to give up after a certain amount of time. Another subtle
1265 * difference is the internal locking semantics are different (this variant does
1266 * not hold the lock for the duration of the wait). This makes the wait subject
1267 * to a larger userspace race window.
1268 *
1269 * The implementation shall wait until the object is no longer actively
1270 * referenced within a batch buffer at the time of the call. The wait will
1271 * not guarantee that the buffer is re-issued via another thread, or an flinked
1272 * handle. Userspace must make sure this race does not occur if such precision
1273 * is important.
1274 *
1275 * Note that some kernels have broken the inifite wait for negative values
1276 * promise, upgrade to latest stable kernels if this is the case.
1277 */
1278 int
1279 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1280 {
1281 struct iris_bufmgr *bufmgr = bo->bufmgr;
1282
1283 /* If we know it's idle, don't bother with the kernel round trip */
1284 if (bo->idle && !bo->external)
1285 return 0;
1286
1287 struct drm_i915_gem_wait wait = {
1288 .bo_handle = bo->gem_handle,
1289 .timeout_ns = timeout_ns,
1290 };
1291 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1292 if (ret != 0)
1293 return -errno;
1294
1295 bo->idle = true;
1296
1297 return ret;
1298 }
1299
1300 static void
1301 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1302 {
1303 /* Free aux-map buffers */
1304 gen_aux_map_finish(bufmgr->aux_map_ctx);
1305
1306 /* bufmgr will no longer try to free VMA entries in the aux-map */
1307 bufmgr->aux_map_ctx = NULL;
1308
1309 mtx_destroy(&bufmgr->lock);
1310
1311 /* Free any cached buffer objects we were going to reuse */
1312 for (int i = 0; i < bufmgr->num_buckets; i++) {
1313 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1314
1315 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1316 list_del(&bo->head);
1317
1318 bo_free(bo);
1319 }
1320 }
1321
1322 /* Close any buffer objects on the dead list. */
1323 list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1324 list_del(&bo->head);
1325 bo_close(bo);
1326 }
1327
1328 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1329 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1330
1331 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1332 if (z != IRIS_MEMZONE_BINDER)
1333 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1334 }
1335
1336 close(bufmgr->fd);
1337
1338 free(bufmgr);
1339 }
1340
1341 static int
1342 bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
1343 uint32_t stride)
1344 {
1345 struct iris_bufmgr *bufmgr = bo->bufmgr;
1346 struct drm_i915_gem_set_tiling set_tiling;
1347 int ret;
1348
1349 if (bo->global_name == 0 &&
1350 tiling_mode == bo->tiling_mode && stride == bo->stride)
1351 return 0;
1352
1353 /* If we can't do map_gtt, the set/get_tiling API isn't useful. And it's
1354 * actually not supported by the kernel in those cases.
1355 */
1356 if (!bufmgr->has_tiling_uapi) {
1357 bo->tiling_mode = tiling_mode;
1358 bo->stride = stride;
1359 return 0;
1360 }
1361
1362 memset(&set_tiling, 0, sizeof(set_tiling));
1363 do {
1364 /* set_tiling is slightly broken and overwrites the
1365 * input on the error path, so we have to open code
1366 * drm_ioctl.
1367 */
1368 set_tiling.handle = bo->gem_handle;
1369 set_tiling.tiling_mode = tiling_mode;
1370 set_tiling.stride = stride;
1371
1372 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1373 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1374 if (ret == -1)
1375 return -errno;
1376
1377 bo->tiling_mode = set_tiling.tiling_mode;
1378 bo->stride = set_tiling.stride;
1379 return 0;
1380 }
1381
1382 struct iris_bo *
1383 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd,
1384 uint64_t modifier)
1385 {
1386 uint32_t handle;
1387 struct iris_bo *bo;
1388
1389 mtx_lock(&bufmgr->lock);
1390 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1391 if (ret) {
1392 DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1393 strerror(errno));
1394 mtx_unlock(&bufmgr->lock);
1395 return NULL;
1396 }
1397
1398 /*
1399 * See if the kernel has already returned this buffer to us. Just as
1400 * for named buffers, we must not create two bo's pointing at the same
1401 * kernel object
1402 */
1403 bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
1404 if (bo)
1405 goto out;
1406
1407 bo = bo_calloc();
1408 if (!bo)
1409 goto out;
1410
1411 p_atomic_set(&bo->refcount, 1);
1412
1413 /* Determine size of bo. The fd-to-handle ioctl really should
1414 * return the size, but it doesn't. If we have kernel 3.12 or
1415 * later, we can lseek on the prime fd to get the size. Older
1416 * kernels will just fail, in which case we fall back to the
1417 * provided (estimated or guess size). */
1418 ret = lseek(prime_fd, 0, SEEK_END);
1419 if (ret != -1)
1420 bo->size = ret;
1421
1422 bo->bufmgr = bufmgr;
1423 bo->name = "prime";
1424 bo->reusable = false;
1425 bo->external = true;
1426 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1427
1428 /* From the Bspec, Memory Compression - Gen12:
1429 *
1430 * The base address for the surface has to be 64K page aligned and the
1431 * surface is expected to be padded in the virtual domain to be 4 4K
1432 * pages.
1433 *
1434 * The dmabuf may contain a compressed surface. Align the BO to 64KB just
1435 * in case. We always align to 64KB even on platforms where we don't need
1436 * to, because it's a fairly reasonable thing to do anyway.
1437 */
1438 bo->gtt_offset =
1439 vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024);
1440
1441 bo->gem_handle = handle;
1442 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1443
1444 const struct isl_drm_modifier_info *mod_info =
1445 isl_drm_modifier_get_info(modifier);
1446 if (mod_info) {
1447 bo->tiling_mode = isl_tiling_to_i915_tiling(mod_info->tiling);
1448 } else if (bufmgr->has_tiling_uapi) {
1449 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1450 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1451 goto err;
1452 bo->tiling_mode = get_tiling.tiling_mode;
1453 } else {
1454 bo->tiling_mode = I915_TILING_NONE;
1455 }
1456
1457 out:
1458 mtx_unlock(&bufmgr->lock);
1459 return bo;
1460
1461 err:
1462 bo_free(bo);
1463 mtx_unlock(&bufmgr->lock);
1464 return NULL;
1465 }
1466
1467 static void
1468 iris_bo_make_external_locked(struct iris_bo *bo)
1469 {
1470 if (!bo->external) {
1471 _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
1472 /* If a BO is going to be used externally, it could be sent to the
1473 * display HW. So make sure our CPU mappings don't assume cache
1474 * coherency since display is outside that cache.
1475 */
1476 bo->cache_coherent = false;
1477 bo->external = true;
1478 bo->reusable = false;
1479 }
1480 }
1481
1482 void
1483 iris_bo_make_external(struct iris_bo *bo)
1484 {
1485 struct iris_bufmgr *bufmgr = bo->bufmgr;
1486
1487 if (bo->external) {
1488 assert(!bo->reusable);
1489 return;
1490 }
1491
1492 mtx_lock(&bufmgr->lock);
1493 iris_bo_make_external_locked(bo);
1494 mtx_unlock(&bufmgr->lock);
1495 }
1496
1497 int
1498 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1499 {
1500 struct iris_bufmgr *bufmgr = bo->bufmgr;
1501
1502 iris_bo_make_external(bo);
1503
1504 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1505 DRM_CLOEXEC, prime_fd) != 0)
1506 return -errno;
1507
1508 return 0;
1509 }
1510
1511 uint32_t
1512 iris_bo_export_gem_handle(struct iris_bo *bo)
1513 {
1514 iris_bo_make_external(bo);
1515
1516 return bo->gem_handle;
1517 }
1518
1519 int
1520 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1521 {
1522 struct iris_bufmgr *bufmgr = bo->bufmgr;
1523
1524 if (!bo->global_name) {
1525 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1526
1527 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1528 return -errno;
1529
1530 mtx_lock(&bufmgr->lock);
1531 if (!bo->global_name) {
1532 iris_bo_make_external_locked(bo);
1533 bo->global_name = flink.name;
1534 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1535 }
1536 mtx_unlock(&bufmgr->lock);
1537 }
1538
1539 *name = bo->global_name;
1540 return 0;
1541 }
1542
1543 int
1544 iris_bo_export_gem_handle_for_device(struct iris_bo *bo, int drm_fd,
1545 uint32_t *out_handle)
1546 {
1547 /* Only add the new GEM handle to the list of export if it belongs to a
1548 * different GEM device. Otherwise we might close the same buffer multiple
1549 * times.
1550 */
1551 struct iris_bufmgr *bufmgr = bo->bufmgr;
1552 int ret = os_same_file_description(drm_fd, bufmgr->fd);
1553 WARN_ONCE(ret < 0,
1554 "Kernel has no file descriptor comparison support: %s\n",
1555 strerror(errno));
1556 if (ret == 0) {
1557 *out_handle = iris_bo_export_gem_handle(bo);
1558 return 0;
1559 }
1560
1561 struct bo_export *export = calloc(1, sizeof(*export));
1562 if (!export)
1563 return -ENOMEM;
1564
1565 export->drm_fd = drm_fd;
1566
1567 int dmabuf_fd = -1;
1568 int err = iris_bo_export_dmabuf(bo, &dmabuf_fd);
1569 if (err) {
1570 free(export);
1571 return err;
1572 }
1573
1574 mtx_lock(&bufmgr->lock);
1575 err = drmPrimeFDToHandle(drm_fd, dmabuf_fd, &export->gem_handle);
1576 close(dmabuf_fd);
1577 if (err) {
1578 mtx_unlock(&bufmgr->lock);
1579 free(export);
1580 return err;
1581 }
1582
1583 bool found = false;
1584 list_for_each_entry(struct bo_export, iter, &bo->exports, link) {
1585 if (iter->drm_fd != drm_fd)
1586 continue;
1587 /* Here we assume that for a given DRM fd, we'll always get back the
1588 * same GEM handle for a given buffer.
1589 */
1590 assert(iter->gem_handle == export->gem_handle);
1591 free(export);
1592 export = iter;
1593 found = true;
1594 break;
1595 }
1596 if (!found)
1597 list_addtail(&export->link, &bo->exports);
1598
1599 mtx_unlock(&bufmgr->lock);
1600
1601 *out_handle = export->gem_handle;
1602
1603 return 0;
1604 }
1605
1606 static void
1607 add_bucket(struct iris_bufmgr *bufmgr, int size)
1608 {
1609 unsigned int i = bufmgr->num_buckets;
1610
1611 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1612
1613 list_inithead(&bufmgr->cache_bucket[i].head);
1614 bufmgr->cache_bucket[i].size = size;
1615 bufmgr->num_buckets++;
1616
1617 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1618 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1619 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1620 }
1621
1622 static void
1623 init_cache_buckets(struct iris_bufmgr *bufmgr)
1624 {
1625 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1626
1627 /* OK, so power of two buckets was too wasteful of memory.
1628 * Give 3 other sizes between each power of two, to hopefully
1629 * cover things accurately enough. (The alternative is
1630 * probably to just go for exact matching of sizes, and assume
1631 * that for things like composited window resize the tiled
1632 * width/height alignment and rounding of sizes to pages will
1633 * get us useful cache hit rates anyway)
1634 */
1635 add_bucket(bufmgr, PAGE_SIZE);
1636 add_bucket(bufmgr, PAGE_SIZE * 2);
1637 add_bucket(bufmgr, PAGE_SIZE * 3);
1638
1639 /* Initialize the linked lists for BO reuse cache. */
1640 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1641 add_bucket(bufmgr, size);
1642
1643 add_bucket(bufmgr, size + size * 1 / 4);
1644 add_bucket(bufmgr, size + size * 2 / 4);
1645 add_bucket(bufmgr, size + size * 3 / 4);
1646 }
1647 }
1648
1649 uint32_t
1650 iris_create_hw_context(struct iris_bufmgr *bufmgr)
1651 {
1652 struct drm_i915_gem_context_create create = { };
1653 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1654 if (ret != 0) {
1655 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1656 return 0;
1657 }
1658
1659 /* Upon declaring a GPU hang, the kernel will zap the guilty context
1660 * back to the default logical HW state and attempt to continue on to
1661 * our next submitted batchbuffer. However, our render batches assume
1662 * the previous GPU state is preserved, and only emit commands needed
1663 * to incrementally change that state. In particular, we inherit the
1664 * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
1665 * With default base addresses, our next batches will almost certainly
1666 * cause more GPU hangs, leading to repeated hangs until we're banned
1667 * or the machine is dead.
1668 *
1669 * Here we tell the kernel not to attempt to recover our context but
1670 * immediately (on the next batchbuffer submission) report that the
1671 * context is lost, and we will do the recovery ourselves. Ideally,
1672 * we'll have two lost batches instead of a continual stream of hangs.
1673 */
1674 struct drm_i915_gem_context_param p = {
1675 .ctx_id = create.ctx_id,
1676 .param = I915_CONTEXT_PARAM_RECOVERABLE,
1677 .value = false,
1678 };
1679 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
1680
1681 return create.ctx_id;
1682 }
1683
1684 static int
1685 iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1686 {
1687 struct drm_i915_gem_context_param p = {
1688 .ctx_id = ctx_id,
1689 .param = I915_CONTEXT_PARAM_PRIORITY,
1690 };
1691 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
1692 return p.value; /* on error, return 0 i.e. default priority */
1693 }
1694
1695 int
1696 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
1697 uint32_t ctx_id,
1698 int priority)
1699 {
1700 struct drm_i915_gem_context_param p = {
1701 .ctx_id = ctx_id,
1702 .param = I915_CONTEXT_PARAM_PRIORITY,
1703 .value = priority,
1704 };
1705 int err;
1706
1707 err = 0;
1708 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1709 err = -errno;
1710
1711 return err;
1712 }
1713
1714 uint32_t
1715 iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1716 {
1717 uint32_t new_ctx = iris_create_hw_context(bufmgr);
1718
1719 if (new_ctx) {
1720 int priority = iris_hw_context_get_priority(bufmgr, ctx_id);
1721 iris_hw_context_set_priority(bufmgr, new_ctx, priority);
1722 }
1723
1724 return new_ctx;
1725 }
1726
1727 void
1728 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1729 {
1730 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1731
1732 if (ctx_id != 0 &&
1733 gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1734 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1735 strerror(errno));
1736 }
1737 }
1738
1739 int
1740 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1741 {
1742 struct drm_i915_reg_read reg_read = { .offset = offset };
1743 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1744
1745 *result = reg_read.val;
1746 return ret;
1747 }
1748
1749 static uint64_t
1750 iris_gtt_size(int fd)
1751 {
1752 /* We use the default (already allocated) context to determine
1753 * the default configuration of the virtual address space.
1754 */
1755 struct drm_i915_gem_context_param p = {
1756 .param = I915_CONTEXT_PARAM_GTT_SIZE,
1757 };
1758 if (!gen_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p))
1759 return p.value;
1760
1761 return 0;
1762 }
1763
1764 static struct gen_buffer *
1765 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
1766 {
1767 struct gen_buffer *buf = malloc(sizeof(struct gen_buffer));
1768 if (!buf)
1769 return NULL;
1770
1771 struct iris_bufmgr *bufmgr = (struct iris_bufmgr *)driver_ctx;
1772
1773 struct iris_bo *bo =
1774 iris_bo_alloc_tiled(bufmgr, "aux-map", size, 64 * 1024,
1775 IRIS_MEMZONE_OTHER, I915_TILING_NONE, 0, 0);
1776
1777 buf->driver_bo = bo;
1778 buf->gpu = bo->gtt_offset;
1779 buf->gpu_end = buf->gpu + bo->size;
1780 buf->map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
1781 return buf;
1782 }
1783
1784 static void
1785 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
1786 {
1787 iris_bo_unreference((struct iris_bo*)buffer->driver_bo);
1788 free(buffer);
1789 }
1790
1791 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
1792 .alloc = gen_aux_map_buffer_alloc,
1793 .free = gen_aux_map_buffer_free,
1794 };
1795
1796 static int
1797 gem_param(int fd, int name)
1798 {
1799 int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
1800
1801 struct drm_i915_getparam gp = { .param = name, .value = &v };
1802 if (gen_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
1803 return -1;
1804
1805 return v;
1806 }
1807
1808 /**
1809 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1810 * and manage map buffer objections.
1811 *
1812 * \param fd File descriptor of the opened DRM device.
1813 */
1814 static struct iris_bufmgr *
1815 iris_bufmgr_create(struct gen_device_info *devinfo, int fd, bool bo_reuse)
1816 {
1817 uint64_t gtt_size = iris_gtt_size(fd);
1818 if (gtt_size <= IRIS_MEMZONE_OTHER_START)
1819 return NULL;
1820
1821 struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
1822 if (bufmgr == NULL)
1823 return NULL;
1824
1825 /* Handles to buffer objects belong to the device fd and are not
1826 * reference counted by the kernel. If the same fd is used by
1827 * multiple parties (threads sharing the same screen bufmgr, or
1828 * even worse the same device fd passed to multiple libraries)
1829 * ownership of those handles is shared by those independent parties.
1830 *
1831 * Don't do this! Ensure that each library/bufmgr has its own device
1832 * fd so that its namespace does not clash with another.
1833 */
1834 bufmgr->fd = os_dupfd_cloexec(fd);
1835
1836 p_atomic_set(&bufmgr->refcount, 1);
1837
1838 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1839 close(bufmgr->fd);
1840 free(bufmgr);
1841 return NULL;
1842 }
1843
1844 list_inithead(&bufmgr->zombie_list);
1845
1846 bufmgr->has_llc = devinfo->has_llc;
1847 bufmgr->has_tiling_uapi = devinfo->has_tiling_uapi;
1848 bufmgr->bo_reuse = bo_reuse;
1849 bufmgr->has_mmap_offset = gem_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
1850
1851 STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
1852 const uint64_t _4GB = 1ull << 32;
1853 const uint64_t _2GB = 1ul << 31;
1854
1855 /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
1856 const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
1857
1858 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
1859 PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
1860 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
1861 IRIS_MEMZONE_SURFACE_START,
1862 _4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE);
1863 /* TODO: Why does limiting to 2GB help some state items on gen12?
1864 * - CC Viewport Pointer
1865 * - Blend State Pointer
1866 * - Color Calc State Pointer
1867 */
1868 const uint64_t dynamic_pool_size =
1869 (devinfo->gen >= 12 ? _2GB : _4GB_minus_1) - IRIS_BORDER_COLOR_POOL_SIZE;
1870 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
1871 IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
1872 dynamic_pool_size);
1873
1874 /* Leave the last 4GB out of the high vma range, so that no state
1875 * base address + size can overflow 48 bits.
1876 */
1877 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
1878 IRIS_MEMZONE_OTHER_START,
1879 (gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
1880
1881 init_cache_buckets(bufmgr);
1882
1883 bufmgr->name_table =
1884 _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
1885 bufmgr->handle_table =
1886 _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
1887
1888 if (devinfo->has_aux_map) {
1889 bufmgr->aux_map_ctx = gen_aux_map_init(bufmgr, &aux_map_allocator,
1890 devinfo);
1891 assert(bufmgr->aux_map_ctx);
1892 }
1893
1894 return bufmgr;
1895 }
1896
1897 static struct iris_bufmgr *
1898 iris_bufmgr_ref(struct iris_bufmgr *bufmgr)
1899 {
1900 p_atomic_inc(&bufmgr->refcount);
1901 return bufmgr;
1902 }
1903
1904 void
1905 iris_bufmgr_unref(struct iris_bufmgr *bufmgr)
1906 {
1907 mtx_lock(&global_bufmgr_list_mutex);
1908 if (p_atomic_dec_zero(&bufmgr->refcount)) {
1909 list_del(&bufmgr->link);
1910 iris_bufmgr_destroy(bufmgr);
1911 }
1912 mtx_unlock(&global_bufmgr_list_mutex);
1913 }
1914
1915 /**
1916 * Gets an already existing GEM buffer manager or create a new one.
1917 *
1918 * \param fd File descriptor of the opened DRM device.
1919 */
1920 struct iris_bufmgr *
1921 iris_bufmgr_get_for_fd(struct gen_device_info *devinfo, int fd, bool bo_reuse)
1922 {
1923 struct stat st;
1924
1925 if (fstat(fd, &st))
1926 return NULL;
1927
1928 struct iris_bufmgr *bufmgr = NULL;
1929
1930 mtx_lock(&global_bufmgr_list_mutex);
1931 list_for_each_entry(struct iris_bufmgr, iter_bufmgr, &global_bufmgr_list, link) {
1932 struct stat iter_st;
1933 if (fstat(iter_bufmgr->fd, &iter_st))
1934 continue;
1935
1936 if (st.st_rdev == iter_st.st_rdev) {
1937 assert(iter_bufmgr->bo_reuse == bo_reuse);
1938 bufmgr = iris_bufmgr_ref(iter_bufmgr);
1939 goto unlock;
1940 }
1941 }
1942
1943 bufmgr = iris_bufmgr_create(devinfo, fd, bo_reuse);
1944 list_addtail(&bufmgr->link, &global_bufmgr_list);
1945
1946 unlock:
1947 mtx_unlock(&global_bufmgr_list_mutex);
1948
1949 return bufmgr;
1950 }
1951
1952 int
1953 iris_bufmgr_get_fd(struct iris_bufmgr *bufmgr)
1954 {
1955 return bufmgr->fd;
1956 }
1957
1958 void*
1959 iris_bufmgr_get_aux_map_context(struct iris_bufmgr *bufmgr)
1960 {
1961 return bufmgr->aux_map_ctx;
1962 }