83fb9d8c39f15d1d9d971b500dbdade04555b655
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/format/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "util/u_memory.h"
99 #include "drm-uapi/i915_drm.h"
100 #include "nir.h"
101 #include "intel/compiler/brw_compiler.h"
102 #include "intel/common/gen_aux_map.h"
103 #include "intel/common/gen_l3_config.h"
104 #include "intel/common/gen_sample_positions.h"
105 #include "iris_batch.h"
106 #include "iris_context.h"
107 #include "iris_defines.h"
108 #include "iris_pipe.h"
109 #include "iris_resource.h"
110
111 #include "iris_genx_macros.h"
112 #include "intel/common/gen_guardband.h"
113
114 /**
115 * Statically assert that PIPE_* enums match the hardware packets.
116 * (As long as they match, we don't need to translate them.)
117 */
118 UNUSED static void pipe_asserts()
119 {
120 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
121
122 /* pipe_logicop happens to match the hardware. */
123 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
124 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
125 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
126 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
127 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
128 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
129 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
130 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
131 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
132 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
133 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
134 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
135 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
136 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
137 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
138 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
139
140 /* pipe_blend_func happens to match the hardware. */
141 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
143 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
144 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
145 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
160
161 /* pipe_blend_func happens to match the hardware. */
162 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
163 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
164 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
165 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
166 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
167
168 /* pipe_stencil_op happens to match the hardware. */
169 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
170 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
171 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
172 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
173 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
174 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
175 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
176 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
177
178 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
179 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
180 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
181 #undef PIPE_ASSERT
182 }
183
184 static unsigned
185 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
186 {
187 static const unsigned map[] = {
188 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
189 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
190 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
191 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
192 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
193 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
194 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
195 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
196 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
197 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
198 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
199 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
200 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
201 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
202 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
203 };
204
205 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
206 }
207
208 static unsigned
209 translate_compare_func(enum pipe_compare_func pipe_func)
210 {
211 static const unsigned map[] = {
212 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
213 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
214 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
215 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
216 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
217 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
218 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
219 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
220 };
221 return map[pipe_func];
222 }
223
224 static unsigned
225 translate_shadow_func(enum pipe_compare_func pipe_func)
226 {
227 /* Gallium specifies the result of shadow comparisons as:
228 *
229 * 1 if ref <op> texel,
230 * 0 otherwise.
231 *
232 * The hardware does:
233 *
234 * 0 if texel <op> ref,
235 * 1 otherwise.
236 *
237 * So we need to flip the operator and also negate.
238 */
239 static const unsigned map[] = {
240 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
241 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
242 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
243 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
244 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
245 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
246 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
247 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
248 };
249 return map[pipe_func];
250 }
251
252 static unsigned
253 translate_cull_mode(unsigned pipe_face)
254 {
255 static const unsigned map[4] = {
256 [PIPE_FACE_NONE] = CULLMODE_NONE,
257 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
258 [PIPE_FACE_BACK] = CULLMODE_BACK,
259 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
260 };
261 return map[pipe_face];
262 }
263
264 static unsigned
265 translate_fill_mode(unsigned pipe_polymode)
266 {
267 static const unsigned map[4] = {
268 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
269 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
270 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
271 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
272 };
273 return map[pipe_polymode];
274 }
275
276 static unsigned
277 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
278 {
279 static const unsigned map[] = {
280 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
281 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
282 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
283 };
284 return map[pipe_mip];
285 }
286
287 static uint32_t
288 translate_wrap(unsigned pipe_wrap)
289 {
290 static const unsigned map[] = {
291 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
292 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
293 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
294 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
295 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
296 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
297
298 /* These are unsupported. */
299 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
300 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
301 };
302 return map[pipe_wrap];
303 }
304
305 /**
306 * Allocate space for some indirect state.
307 *
308 * Return a pointer to the map (to fill it out) and a state ref (for
309 * referring to the state in GPU commands).
310 */
311 static void *
312 upload_state(struct u_upload_mgr *uploader,
313 struct iris_state_ref *ref,
314 unsigned size,
315 unsigned alignment)
316 {
317 void *p = NULL;
318 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
319 return p;
320 }
321
322 /**
323 * Stream out temporary/short-lived state.
324 *
325 * This allocates space, pins the BO, and includes the BO address in the
326 * returned offset (which works because all state lives in 32-bit memory
327 * zones).
328 */
329 static uint32_t *
330 stream_state(struct iris_batch *batch,
331 struct u_upload_mgr *uploader,
332 struct pipe_resource **out_res,
333 unsigned size,
334 unsigned alignment,
335 uint32_t *out_offset)
336 {
337 void *ptr = NULL;
338
339 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
340
341 struct iris_bo *bo = iris_resource_bo(*out_res);
342 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
343
344 iris_record_state_size(batch->state_sizes,
345 bo->gtt_offset + *out_offset, size);
346
347 *out_offset += iris_bo_offset_from_base_address(bo);
348
349 return ptr;
350 }
351
352 /**
353 * stream_state() + memcpy.
354 */
355 static uint32_t
356 emit_state(struct iris_batch *batch,
357 struct u_upload_mgr *uploader,
358 struct pipe_resource **out_res,
359 const void *data,
360 unsigned size,
361 unsigned alignment)
362 {
363 unsigned offset = 0;
364 uint32_t *map =
365 stream_state(batch, uploader, out_res, size, alignment, &offset);
366
367 if (map)
368 memcpy(map, data, size);
369
370 return offset;
371 }
372
373 /**
374 * Did field 'x' change between 'old_cso' and 'new_cso'?
375 *
376 * (If so, we may want to set some dirty flags.)
377 */
378 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
379 #define cso_changed_memcmp(x) \
380 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
381
382 static void
383 flush_before_state_base_change(struct iris_batch *batch)
384 {
385 const struct gen_device_info *devinfo = &batch->screen->devinfo;
386
387 /* Flush before emitting STATE_BASE_ADDRESS.
388 *
389 * This isn't documented anywhere in the PRM. However, it seems to be
390 * necessary prior to changing the surface state base adress. We've
391 * seen issues in Vulkan where we get GPU hangs when using multi-level
392 * command buffers which clear depth, reset state base address, and then
393 * go render stuff.
394 *
395 * Normally, in GL, we would trust the kernel to do sufficient stalls
396 * and flushes prior to executing our batch. However, it doesn't seem
397 * as if the kernel's flushing is always sufficient and we don't want to
398 * rely on it.
399 *
400 * We make this an end-of-pipe sync instead of a normal flush because we
401 * do not know the current status of the GPU. On Haswell at least,
402 * having a fast-clear operation in flight at the same time as a normal
403 * rendering operation can cause hangs. Since the kernel's flushing is
404 * insufficient, we need to ensure that any rendering operations from
405 * other processes are definitely complete before we try to do our own
406 * rendering. It's a bit of a big hammer but it appears to work.
407 */
408 iris_emit_end_of_pipe_sync(batch,
409 "change STATE_BASE_ADDRESS (flushes)",
410 PIPE_CONTROL_RENDER_TARGET_FLUSH |
411 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
412 PIPE_CONTROL_DATA_CACHE_FLUSH |
413 /* GEN:BUG:1606662791:
414 *
415 * Software must program PIPE_CONTROL command
416 * with "HDC Pipeline Flush" prior to
417 * programming of the below two non-pipeline
418 * state :
419 * * STATE_BASE_ADDRESS
420 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
421 */
422 ((GEN_GEN == 12 && devinfo->revision == 0 /* A0 */ ?
423 PIPE_CONTROL_FLUSH_HDC : 0)));
424 }
425
426 static void
427 flush_after_state_base_change(struct iris_batch *batch)
428 {
429 /* After re-setting the surface state base address, we have to do some
430 * cache flusing so that the sampler engine will pick up the new
431 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
432 * Shared Function > 3D Sampler > State > State Caching (page 96):
433 *
434 * Coherency with system memory in the state cache, like the texture
435 * cache is handled partially by software. It is expected that the
436 * command stream or shader will issue Cache Flush operation or
437 * Cache_Flush sampler message to ensure that the L1 cache remains
438 * coherent with system memory.
439 *
440 * [...]
441 *
442 * Whenever the value of the Dynamic_State_Base_Addr,
443 * Surface_State_Base_Addr are altered, the L1 state cache must be
444 * invalidated to ensure the new surface or sampler state is fetched
445 * from system memory.
446 *
447 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
448 * which, according the PIPE_CONTROL instruction documentation in the
449 * Broadwell PRM:
450 *
451 * Setting this bit is independent of any other bit in this packet.
452 * This bit controls the invalidation of the L1 and L2 state caches
453 * at the top of the pipe i.e. at the parsing time.
454 *
455 * Unfortunately, experimentation seems to indicate that state cache
456 * invalidation through a PIPE_CONTROL does nothing whatsoever in
457 * regards to surface state and binding tables. In stead, it seems that
458 * invalidating the texture cache is what is actually needed.
459 *
460 * XXX: As far as we have been able to determine through
461 * experimentation, shows that flush the texture cache appears to be
462 * sufficient. The theory here is that all of the sampling/rendering
463 * units cache the binding table in the texture cache. However, we have
464 * yet to be able to actually confirm this.
465 */
466 iris_emit_end_of_pipe_sync(batch,
467 "change STATE_BASE_ADDRESS (invalidates)",
468 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
469 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
470 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
471 }
472
473 static void
474 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
475 {
476 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
477 lri.RegisterOffset = reg;
478 lri.DataDWord = val;
479 }
480 }
481 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
482
483 static void
484 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
485 {
486 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
487 lrr.SourceRegisterAddress = src;
488 lrr.DestinationRegisterAddress = dst;
489 }
490 }
491
492 static void
493 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
494 uint32_t src)
495 {
496 _iris_emit_lrr(batch, dst, src);
497 }
498
499 static void
500 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
501 uint32_t src)
502 {
503 _iris_emit_lrr(batch, dst, src);
504 _iris_emit_lrr(batch, dst + 4, src + 4);
505 }
506
507 static void
508 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
509 uint32_t val)
510 {
511 _iris_emit_lri(batch, reg, val);
512 }
513
514 static void
515 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
516 uint64_t val)
517 {
518 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
519 _iris_emit_lri(batch, reg + 4, val >> 32);
520 }
521
522 /**
523 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
524 */
525 static void
526 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
527 struct iris_bo *bo, uint32_t offset)
528 {
529 iris_batch_sync_region_start(batch);
530 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
531 lrm.RegisterAddress = reg;
532 lrm.MemoryAddress = ro_bo(bo, offset);
533 }
534 iris_batch_sync_region_end(batch);
535 }
536
537 /**
538 * Load a 64-bit value from a buffer into a MMIO register via
539 * two MI_LOAD_REGISTER_MEM commands.
540 */
541 static void
542 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
543 struct iris_bo *bo, uint32_t offset)
544 {
545 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
546 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
547 }
548
549 static void
550 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
551 struct iris_bo *bo, uint32_t offset,
552 bool predicated)
553 {
554 iris_batch_sync_region_start(batch);
555 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
556 srm.RegisterAddress = reg;
557 srm.MemoryAddress = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
558 srm.PredicateEnable = predicated;
559 }
560 iris_batch_sync_region_end(batch);
561 }
562
563 static void
564 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
565 struct iris_bo *bo, uint32_t offset,
566 bool predicated)
567 {
568 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
569 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
570 }
571
572 static void
573 iris_store_data_imm32(struct iris_batch *batch,
574 struct iris_bo *bo, uint32_t offset,
575 uint32_t imm)
576 {
577 iris_batch_sync_region_start(batch);
578 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
579 sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
580 sdi.ImmediateData = imm;
581 }
582 iris_batch_sync_region_end(batch);
583 }
584
585 static void
586 iris_store_data_imm64(struct iris_batch *batch,
587 struct iris_bo *bo, uint32_t offset,
588 uint64_t imm)
589 {
590 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
591 * 2 in genxml but it's actually variable length and we need 5 DWords.
592 */
593 void *map = iris_get_command_space(batch, 4 * 5);
594 iris_batch_sync_region_start(batch);
595 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
596 sdi.DWordLength = 5 - 2;
597 sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
598 sdi.ImmediateData = imm;
599 }
600 iris_batch_sync_region_end(batch);
601 }
602
603 static void
604 iris_copy_mem_mem(struct iris_batch *batch,
605 struct iris_bo *dst_bo, uint32_t dst_offset,
606 struct iris_bo *src_bo, uint32_t src_offset,
607 unsigned bytes)
608 {
609 /* MI_COPY_MEM_MEM operates on DWords. */
610 assert(bytes % 4 == 0);
611 assert(dst_offset % 4 == 0);
612 assert(src_offset % 4 == 0);
613 iris_batch_sync_region_start(batch);
614
615 for (unsigned i = 0; i < bytes; i += 4) {
616 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
617 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
618 IRIS_DOMAIN_OTHER_WRITE);
619 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
620 }
621 }
622
623 iris_batch_sync_region_end(batch);
624 }
625
626 static void
627 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
628 {
629 #if GEN_GEN >= 8 && GEN_GEN < 10
630 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
631 *
632 * Software must clear the COLOR_CALC_STATE Valid field in
633 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
634 * with Pipeline Select set to GPGPU.
635 *
636 * The internal hardware docs recommend the same workaround for Gen9
637 * hardware too.
638 */
639 if (pipeline == GPGPU)
640 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
641 #endif
642
643
644 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
645 * PIPELINE_SELECT [DevBWR+]":
646 *
647 * "Project: DEVSNB+
648 *
649 * Software must ensure all the write caches are flushed through a
650 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
651 * command to invalidate read only caches prior to programming
652 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
653 */
654 iris_emit_pipe_control_flush(batch,
655 "workaround: PIPELINE_SELECT flushes (1/2)",
656 PIPE_CONTROL_RENDER_TARGET_FLUSH |
657 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
658 PIPE_CONTROL_DATA_CACHE_FLUSH |
659 PIPE_CONTROL_CS_STALL);
660
661 iris_emit_pipe_control_flush(batch,
662 "workaround: PIPELINE_SELECT flushes (2/2)",
663 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
664 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
665 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
666 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
667
668 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
669 #if GEN_GEN >= 9
670 sel.MaskBits = 3;
671 #endif
672 sel.PipelineSelection = pipeline;
673 }
674 }
675
676 UNUSED static void
677 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
678 {
679 #if GEN_GEN == 9
680 /* Project: DevGLK
681 *
682 * "This chicken bit works around a hardware issue with barrier
683 * logic encountered when switching between GPGPU and 3D pipelines.
684 * To workaround the issue, this mode bit should be set after a
685 * pipeline is selected."
686 */
687 uint32_t reg_val;
688 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
689 reg.GLKBarrierMode = value;
690 reg.GLKBarrierModeMask = 1;
691 }
692 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
693 #endif
694 }
695
696 static void
697 init_state_base_address(struct iris_batch *batch)
698 {
699 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
700 flush_before_state_base_change(batch);
701
702 /* We program most base addresses once at context initialization time.
703 * Each base address points at a 4GB memory zone, and never needs to
704 * change. See iris_bufmgr.h for a description of the memory zones.
705 *
706 * The one exception is Surface State Base Address, which needs to be
707 * updated occasionally. See iris_binder.c for the details there.
708 */
709 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
710 sba.GeneralStateMOCS = mocs;
711 sba.StatelessDataPortAccessMOCS = mocs;
712 sba.DynamicStateMOCS = mocs;
713 sba.IndirectObjectMOCS = mocs;
714 sba.InstructionMOCS = mocs;
715 sba.SurfaceStateMOCS = mocs;
716
717 sba.GeneralStateBaseAddressModifyEnable = true;
718 sba.DynamicStateBaseAddressModifyEnable = true;
719 sba.IndirectObjectBaseAddressModifyEnable = true;
720 sba.InstructionBaseAddressModifyEnable = true;
721 sba.GeneralStateBufferSizeModifyEnable = true;
722 sba.DynamicStateBufferSizeModifyEnable = true;
723 #if (GEN_GEN >= 9)
724 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
725 sba.BindlessSurfaceStateMOCS = mocs;
726 #endif
727 sba.IndirectObjectBufferSizeModifyEnable = true;
728 sba.InstructionBuffersizeModifyEnable = true;
729
730 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
731 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
732
733 sba.GeneralStateBufferSize = 0xfffff;
734 sba.IndirectObjectBufferSize = 0xfffff;
735 sba.InstructionBufferSize = 0xfffff;
736 sba.DynamicStateBufferSize = 0xfffff;
737 }
738
739 flush_after_state_base_change(batch);
740 }
741
742 static void
743 iris_emit_l3_config(struct iris_batch *batch,
744 const struct gen_l3_config *cfg)
745 {
746 uint32_t reg_val;
747 assert(cfg || GEN_GEN >= 12);
748
749 #if GEN_GEN >= 12
750 #define L3_ALLOCATION_REG GENX(L3ALLOC)
751 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
752 #else
753 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
754 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
755 #endif
756
757 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
758 #if GEN_GEN < 11
759 reg.SLMEnable = cfg->n[GEN_L3P_SLM] > 0;
760 #endif
761 #if GEN_GEN == 11
762 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
763 * in L3CNTLREG register. The default setting of the bit is not the
764 * desirable behavior.
765 */
766 reg.ErrorDetectionBehaviorControl = true;
767 reg.UseFullWays = true;
768 #endif
769 if (GEN_GEN < 12 || cfg) {
770 reg.URBAllocation = cfg->n[GEN_L3P_URB];
771 reg.ROAllocation = cfg->n[GEN_L3P_RO];
772 reg.DCAllocation = cfg->n[GEN_L3P_DC];
773 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
774 } else {
775 #if GEN_GEN >= 12
776 reg.L3FullWayAllocationEnable = true;
777 #endif
778 }
779 }
780 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
781 }
782
783 #if GEN_GEN == 9
784 static void
785 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
786 {
787 uint32_t reg_val;
788
789 /* A fixed function pipe flush is required before modifying this field */
790 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
791 : "disable preemption",
792 PIPE_CONTROL_RENDER_TARGET_FLUSH);
793
794 /* enable object level preemption */
795 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
796 reg.ReplayMode = enable;
797 reg.ReplayModeMask = true;
798 }
799 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
800 }
801 #endif
802
803 #if GEN_GEN == 11
804 static void
805 iris_upload_slice_hashing_state(struct iris_batch *batch)
806 {
807 const struct gen_device_info *devinfo = &batch->screen->devinfo;
808 int subslices_delta =
809 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
810 if (subslices_delta == 0)
811 return;
812
813 struct iris_context *ice = NULL;
814 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
815 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
816
817 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
818 uint32_t hash_address;
819 struct pipe_resource *tmp = NULL;
820 uint32_t *map =
821 stream_state(batch, ice->state.dynamic_uploader, &tmp,
822 size, 64, &hash_address);
823 pipe_resource_reference(&tmp, NULL);
824
825 struct GENX(SLICE_HASH_TABLE) table0 = {
826 .Entry = {
827 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
828 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
829 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
830 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
831 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
832 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
833 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
834 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
835 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
836 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
837 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
838 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
839 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
840 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
841 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
842 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
843 }
844 };
845
846 struct GENX(SLICE_HASH_TABLE) table1 = {
847 .Entry = {
848 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
849 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
850 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
851 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
852 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
853 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
854 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
855 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
856 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
857 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
858 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
859 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
860 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
861 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
862 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
863 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
864 }
865 };
866
867 const struct GENX(SLICE_HASH_TABLE) *table =
868 subslices_delta < 0 ? &table0 : &table1;
869 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
870
871 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
872 ptr.SliceHashStatePointerValid = true;
873 ptr.SliceHashTableStatePointer = hash_address;
874 }
875
876 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
877 mode.SliceHashingTableEnable = true;
878 }
879 }
880 #endif
881
882 static void
883 iris_alloc_push_constants(struct iris_batch *batch)
884 {
885 /* For now, we set a static partitioning of the push constant area,
886 * assuming that all stages could be in use.
887 *
888 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
889 * see if that improves performance by offering more space to
890 * the VS/FS when those aren't in use. Also, try dynamically
891 * enabling/disabling it like i965 does. This would be more
892 * stalls and may not actually help; we don't know yet.
893 */
894 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
895 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
896 alloc._3DCommandSubOpcode = 18 + i;
897 alloc.ConstantBufferOffset = 6 * i;
898 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
899 }
900 }
901 }
902
903 #if GEN_GEN >= 12
904 static void
905 init_aux_map_state(struct iris_batch *batch);
906 #endif
907
908 /**
909 * Upload the initial GPU state for a render context.
910 *
911 * This sets some invariant state that needs to be programmed a particular
912 * way, but we never actually change.
913 */
914 static void
915 iris_init_render_context(struct iris_batch *batch)
916 {
917 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
918 uint32_t reg_val;
919
920 iris_batch_sync_region_start(batch);
921
922 emit_pipeline_select(batch, _3D);
923
924 iris_emit_l3_config(batch, batch->screen->l3_config_3d);
925
926 init_state_base_address(batch);
927
928 #if GEN_GEN >= 9
929 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
930 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
931 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
932 }
933 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
934 #else
935 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
936 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
937 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
938 }
939 iris_emit_lri(batch, INSTPM, reg_val);
940 #endif
941
942 #if GEN_GEN == 9
943 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
944 reg.FloatBlendOptimizationEnable = true;
945 reg.FloatBlendOptimizationEnableMask = true;
946 reg.PartialResolveDisableInVC = true;
947 reg.PartialResolveDisableInVCMask = true;
948 }
949 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
950
951 if (devinfo->is_geminilake)
952 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
953 #endif
954
955 #if GEN_GEN == 11
956 iris_pack_state(GENX(TCCNTLREG), &reg_val, reg) {
957 reg.L3DataPartialWriteMergingEnable = true;
958 reg.ColorZPartialWriteMergingEnable = true;
959 reg.URBPartialWriteMergingEnable = true;
960 reg.TCDisable = true;
961 }
962 iris_emit_lri(batch, TCCNTLREG, reg_val);
963
964 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
965 reg.HeaderlessMessageforPreemptableContexts = 1;
966 reg.HeaderlessMessageforPreemptableContextsMask = 1;
967 }
968 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
969
970 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
971 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
972 reg.EnabledTexelOffsetPrecisionFix = 1;
973 reg.EnabledTexelOffsetPrecisionFixMask = 1;
974 }
975 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
976
977 /* Hardware specification recommends disabling repacking for the
978 * compatibility with decompression mechanism in display controller.
979 */
980 if (devinfo->disable_ccs_repack) {
981 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
982 reg.DisableRepackingforCompression = true;
983 reg.DisableRepackingforCompressionMask = true;
984 }
985 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
986 }
987
988 iris_upload_slice_hashing_state(batch);
989 #endif
990
991 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
992 * changing it dynamically. We set it to the maximum size here, and
993 * instead include the render target dimensions in the viewport, so
994 * viewport extents clipping takes care of pruning stray geometry.
995 */
996 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
997 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
998 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
999 }
1000
1001 /* Set the initial MSAA sample positions. */
1002 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
1003 GEN_SAMPLE_POS_1X(pat._1xSample);
1004 GEN_SAMPLE_POS_2X(pat._2xSample);
1005 GEN_SAMPLE_POS_4X(pat._4xSample);
1006 GEN_SAMPLE_POS_8X(pat._8xSample);
1007 #if GEN_GEN >= 9
1008 GEN_SAMPLE_POS_16X(pat._16xSample);
1009 #endif
1010 }
1011
1012 /* Use the legacy AA line coverage computation. */
1013 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
1014
1015 /* Disable chromakeying (it's for media) */
1016 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
1017
1018 /* We want regular rendering, not special HiZ operations. */
1019 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
1020
1021 /* No polygon stippling offsets are necessary. */
1022 /* TODO: may need to set an offset for origin-UL framebuffers */
1023 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
1024
1025 iris_alloc_push_constants(batch);
1026
1027
1028 #if GEN_GEN >= 12
1029 init_aux_map_state(batch);
1030 #endif
1031
1032 iris_batch_sync_region_end(batch);
1033 }
1034
1035 static void
1036 iris_init_compute_context(struct iris_batch *batch)
1037 {
1038 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
1039
1040 iris_batch_sync_region_start(batch);
1041
1042 /* GEN:BUG:1607854226:
1043 *
1044 * Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
1045 */
1046 #if GEN_GEN == 12
1047 emit_pipeline_select(batch, _3D);
1048 #else
1049 emit_pipeline_select(batch, GPGPU);
1050 #endif
1051
1052 iris_emit_l3_config(batch, batch->screen->l3_config_cs);
1053
1054 init_state_base_address(batch);
1055
1056 #if GEN_GEN == 12
1057 emit_pipeline_select(batch, GPGPU);
1058 #endif
1059
1060 #if GEN_GEN == 9
1061 if (devinfo->is_geminilake)
1062 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1063 #endif
1064
1065 #if GEN_GEN >= 12
1066 init_aux_map_state(batch);
1067 #endif
1068
1069 iris_batch_sync_region_end(batch);
1070 }
1071
1072 struct iris_vertex_buffer_state {
1073 /** The VERTEX_BUFFER_STATE hardware structure. */
1074 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1075
1076 /** The resource to source vertex data from. */
1077 struct pipe_resource *resource;
1078
1079 int offset;
1080 };
1081
1082 struct iris_depth_buffer_state {
1083 /* Depth/HiZ/Stencil related hardware packets. */
1084 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1085 GENX(3DSTATE_STENCIL_BUFFER_length) +
1086 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1087 GENX(3DSTATE_CLEAR_PARAMS_length) +
1088 GENX(MI_LOAD_REGISTER_IMM_length) * 2];
1089 };
1090
1091 /**
1092 * Generation-specific context state (ice->state.genx->...).
1093 *
1094 * Most state can go in iris_context directly, but these encode hardware
1095 * packets which vary by generation.
1096 */
1097 struct iris_genx_state {
1098 struct iris_vertex_buffer_state vertex_buffers[33];
1099 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1100
1101 struct iris_depth_buffer_state depth_buffer;
1102
1103 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1104
1105 #if GEN_GEN == 8
1106 bool pma_fix_enabled;
1107 #endif
1108
1109 #if GEN_GEN == 9
1110 /* Is object level preemption enabled? */
1111 bool object_preemption;
1112 #endif
1113
1114 struct {
1115 #if GEN_GEN == 8
1116 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1117 #endif
1118 } shaders[MESA_SHADER_STAGES];
1119 };
1120
1121 /**
1122 * The pipe->set_blend_color() driver hook.
1123 *
1124 * This corresponds to our COLOR_CALC_STATE.
1125 */
1126 static void
1127 iris_set_blend_color(struct pipe_context *ctx,
1128 const struct pipe_blend_color *state)
1129 {
1130 struct iris_context *ice = (struct iris_context *) ctx;
1131
1132 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1133 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1134 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1135 }
1136
1137 /**
1138 * Gallium CSO for blend state (see pipe_blend_state).
1139 */
1140 struct iris_blend_state {
1141 /** Partial 3DSTATE_PS_BLEND */
1142 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1143
1144 /** Partial BLEND_STATE */
1145 uint32_t blend_state[GENX(BLEND_STATE_length) +
1146 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1147
1148 bool alpha_to_coverage; /* for shader key */
1149
1150 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1151 uint8_t blend_enables;
1152
1153 /** Bitfield of whether color writes are enabled for RT[i] */
1154 uint8_t color_write_enables;
1155
1156 /** Does RT[0] use dual color blending? */
1157 bool dual_color_blending;
1158 };
1159
1160 static enum pipe_blendfactor
1161 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1162 {
1163 if (alpha_to_one) {
1164 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1165 return PIPE_BLENDFACTOR_ONE;
1166
1167 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1168 return PIPE_BLENDFACTOR_ZERO;
1169 }
1170
1171 return f;
1172 }
1173
1174 /**
1175 * The pipe->create_blend_state() driver hook.
1176 *
1177 * Translates a pipe_blend_state into iris_blend_state.
1178 */
1179 static void *
1180 iris_create_blend_state(struct pipe_context *ctx,
1181 const struct pipe_blend_state *state)
1182 {
1183 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1184 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1185
1186 cso->blend_enables = 0;
1187 cso->color_write_enables = 0;
1188 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1189
1190 cso->alpha_to_coverage = state->alpha_to_coverage;
1191
1192 bool indep_alpha_blend = false;
1193
1194 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1195 const struct pipe_rt_blend_state *rt =
1196 &state->rt[state->independent_blend_enable ? i : 0];
1197
1198 enum pipe_blendfactor src_rgb =
1199 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1200 enum pipe_blendfactor src_alpha =
1201 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1202 enum pipe_blendfactor dst_rgb =
1203 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1204 enum pipe_blendfactor dst_alpha =
1205 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1206
1207 if (rt->rgb_func != rt->alpha_func ||
1208 src_rgb != src_alpha || dst_rgb != dst_alpha)
1209 indep_alpha_blend = true;
1210
1211 if (rt->blend_enable)
1212 cso->blend_enables |= 1u << i;
1213
1214 if (rt->colormask)
1215 cso->color_write_enables |= 1u << i;
1216
1217 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1218 be.LogicOpEnable = state->logicop_enable;
1219 be.LogicOpFunction = state->logicop_func;
1220
1221 be.PreBlendSourceOnlyClampEnable = false;
1222 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1223 be.PreBlendColorClampEnable = true;
1224 be.PostBlendColorClampEnable = true;
1225
1226 be.ColorBufferBlendEnable = rt->blend_enable;
1227
1228 be.ColorBlendFunction = rt->rgb_func;
1229 be.AlphaBlendFunction = rt->alpha_func;
1230 be.SourceBlendFactor = src_rgb;
1231 be.SourceAlphaBlendFactor = src_alpha;
1232 be.DestinationBlendFactor = dst_rgb;
1233 be.DestinationAlphaBlendFactor = dst_alpha;
1234
1235 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1236 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1237 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1238 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1239 }
1240 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1241 }
1242
1243 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1244 /* pb.HasWriteableRT is filled in at draw time.
1245 * pb.AlphaTestEnable is filled in at draw time.
1246 *
1247 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1248 * setting it when dual color blending without an appropriate shader.
1249 */
1250
1251 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1252 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1253
1254 pb.SourceBlendFactor =
1255 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1256 pb.SourceAlphaBlendFactor =
1257 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1258 pb.DestinationBlendFactor =
1259 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1260 pb.DestinationAlphaBlendFactor =
1261 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1262 }
1263
1264 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1265 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1266 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1267 bs.AlphaToOneEnable = state->alpha_to_one;
1268 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1269 bs.ColorDitherEnable = state->dither;
1270 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1271 }
1272
1273 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1274
1275 return cso;
1276 }
1277
1278 /**
1279 * The pipe->bind_blend_state() driver hook.
1280 *
1281 * Bind a blending CSO and flag related dirty bits.
1282 */
1283 static void
1284 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1285 {
1286 struct iris_context *ice = (struct iris_context *) ctx;
1287 struct iris_blend_state *cso = state;
1288
1289 ice->state.cso_blend = cso;
1290
1291 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1292 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1293 ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
1294
1295 if (GEN_GEN == 8)
1296 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1297 }
1298
1299 /**
1300 * Return true if the FS writes to any color outputs which are not disabled
1301 * via color masking.
1302 */
1303 static bool
1304 has_writeable_rt(const struct iris_blend_state *cso_blend,
1305 const struct shader_info *fs_info)
1306 {
1307 if (!fs_info)
1308 return false;
1309
1310 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1311
1312 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1313 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1314
1315 return cso_blend->color_write_enables & rt_outputs;
1316 }
1317
1318 /**
1319 * Gallium CSO for depth, stencil, and alpha testing state.
1320 */
1321 struct iris_depth_stencil_alpha_state {
1322 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1323 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1324
1325 #if GEN_GEN >= 12
1326 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1327 #endif
1328
1329 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1330 struct pipe_alpha_state alpha;
1331
1332 /** Outbound to resolve and cache set tracking. */
1333 bool depth_writes_enabled;
1334 bool stencil_writes_enabled;
1335
1336 /** Outbound to Gen8-9 PMA stall equations */
1337 bool depth_test_enabled;
1338 };
1339
1340 /**
1341 * The pipe->create_depth_stencil_alpha_state() driver hook.
1342 *
1343 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1344 * testing state since we need pieces of it in a variety of places.
1345 */
1346 static void *
1347 iris_create_zsa_state(struct pipe_context *ctx,
1348 const struct pipe_depth_stencil_alpha_state *state)
1349 {
1350 struct iris_depth_stencil_alpha_state *cso =
1351 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1352
1353 bool two_sided_stencil = state->stencil[1].enabled;
1354
1355 cso->alpha = state->alpha;
1356 cso->depth_writes_enabled = state->depth.writemask;
1357 cso->depth_test_enabled = state->depth.enabled;
1358 cso->stencil_writes_enabled =
1359 state->stencil[0].writemask != 0 ||
1360 (two_sided_stencil && state->stencil[1].writemask != 0);
1361
1362 /* gallium frontends need to optimize away EQUAL writes for us. */
1363 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1364
1365 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1366 wmds.StencilFailOp = state->stencil[0].fail_op;
1367 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1368 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1369 wmds.StencilTestFunction =
1370 translate_compare_func(state->stencil[0].func);
1371 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1372 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1373 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1374 wmds.BackfaceStencilTestFunction =
1375 translate_compare_func(state->stencil[1].func);
1376 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1377 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1378 wmds.StencilTestEnable = state->stencil[0].enabled;
1379 wmds.StencilBufferWriteEnable =
1380 state->stencil[0].writemask != 0 ||
1381 (two_sided_stencil && state->stencil[1].writemask != 0);
1382 wmds.DepthTestEnable = state->depth.enabled;
1383 wmds.DepthBufferWriteEnable = state->depth.writemask;
1384 wmds.StencilTestMask = state->stencil[0].valuemask;
1385 wmds.StencilWriteMask = state->stencil[0].writemask;
1386 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1387 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1388 /* wmds.[Backface]StencilReferenceValue are merged later */
1389 #if GEN_GEN >= 12
1390 wmds.StencilReferenceValueModifyDisable = true;
1391 #endif
1392 }
1393
1394 #if GEN_GEN >= 12
1395 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1396 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1397 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1398 depth_bounds.DepthBoundsTestEnable = state->depth.bounds_test;
1399 depth_bounds.DepthBoundsTestMinValue = state->depth.bounds_min;
1400 depth_bounds.DepthBoundsTestMaxValue = state->depth.bounds_max;
1401 }
1402 #endif
1403
1404 return cso;
1405 }
1406
1407 /**
1408 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1409 *
1410 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1411 */
1412 static void
1413 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1414 {
1415 struct iris_context *ice = (struct iris_context *) ctx;
1416 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1417 struct iris_depth_stencil_alpha_state *new_cso = state;
1418
1419 if (new_cso) {
1420 if (cso_changed(alpha.ref_value))
1421 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1422
1423 if (cso_changed(alpha.enabled))
1424 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1425
1426 if (cso_changed(alpha.func))
1427 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1428
1429 if (cso_changed(depth_writes_enabled))
1430 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1431
1432 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1433 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1434
1435 #if GEN_GEN >= 12
1436 if (cso_changed(depth_bounds))
1437 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
1438 #endif
1439 }
1440
1441 ice->state.cso_zsa = new_cso;
1442 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1443 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1444 ice->state.stage_dirty |=
1445 ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1446
1447 if (GEN_GEN == 8)
1448 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1449 }
1450
1451 #if GEN_GEN == 8
1452 static bool
1453 want_pma_fix(struct iris_context *ice)
1454 {
1455 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
1456 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
1457 const struct brw_wm_prog_data *wm_prog_data = (void *)
1458 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1459 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
1460 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
1461 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
1462
1463 /* In very specific combinations of state, we can instruct Gen8-9 hardware
1464 * to avoid stalling at the pixel mask array. The state equations are
1465 * documented in these places:
1466 *
1467 * - Gen8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
1468 * - Gen9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
1469 *
1470 * Both equations share some common elements:
1471 *
1472 * no_hiz_op =
1473 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1474 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1475 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1476 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
1477 *
1478 * killpixels =
1479 * 3DSTATE_WM::ForceKillPix != ForceOff &&
1480 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1481 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1482 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1483 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1484 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1485 *
1486 * (Technically the stencil PMA treats ForceKillPix differently,
1487 * but I think this is a documentation oversight, and we don't
1488 * ever use it in this way, so it doesn't matter).
1489 *
1490 * common_pma_fix =
1491 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
1492 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
1493 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1494 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1495 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
1496 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
1497 * no_hiz_op
1498 *
1499 * These are always true:
1500 *
1501 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
1502 * 3DSTATE_PS_EXTRA::PixelShaderValid
1503 *
1504 * Also, we never use the normal drawing path for HiZ ops; these are true:
1505 *
1506 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1507 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1508 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1509 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
1510 *
1511 * This happens sometimes:
1512 *
1513 * 3DSTATE_WM::ForceThreadDispatch != 1
1514 *
1515 * However, we choose to ignore it as it either agrees with the signal
1516 * (dispatch was already enabled, so nothing out of the ordinary), or
1517 * there are no framebuffer attachments (so no depth or HiZ anyway,
1518 * meaning the PMA signal will already be disabled).
1519 */
1520
1521 if (!cso_fb->zsbuf)
1522 return false;
1523
1524 struct iris_resource *zres, *sres;
1525 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
1526
1527 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1528 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1529 */
1530 if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
1531 return false;
1532
1533 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
1534 if (wm_prog_data->early_fragment_tests)
1535 return false;
1536
1537 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
1538 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1539 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1540 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1541 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1542 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1543 */
1544 bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
1545 cso_blend->alpha_to_coverage || cso_zsa->alpha.enabled;
1546
1547 /* The Gen8 depth PMA equation becomes:
1548 *
1549 * depth_writes =
1550 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
1551 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
1552 *
1553 * stencil_writes =
1554 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
1555 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
1556 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
1557 *
1558 * Z_PMA_OPT =
1559 * common_pma_fix &&
1560 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
1561 * ((killpixels && (depth_writes || stencil_writes)) ||
1562 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
1563 *
1564 */
1565 if (!cso_zsa->depth_test_enabled)
1566 return false;
1567
1568 return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
1569 (killpixels && (cso_zsa->depth_writes_enabled ||
1570 (sres && cso_zsa->stencil_writes_enabled)));
1571 }
1572 #endif
1573
1574 void
1575 genX(update_pma_fix)(struct iris_context *ice,
1576 struct iris_batch *batch,
1577 bool enable)
1578 {
1579 #if GEN_GEN == 8
1580 struct iris_genx_state *genx = ice->state.genx;
1581
1582 if (genx->pma_fix_enabled == enable)
1583 return;
1584
1585 genx->pma_fix_enabled = enable;
1586
1587 /* According to the Broadwell PIPE_CONTROL documentation, software should
1588 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
1589 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
1590 *
1591 * The Gen9 docs say to use a depth stall rather than a command streamer
1592 * stall. However, the hardware seems to violently disagree. A full
1593 * command streamer stall seems to be needed in both cases.
1594 */
1595 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1596 PIPE_CONTROL_CS_STALL |
1597 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1598 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1599
1600 uint32_t reg_val;
1601 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
1602 reg.NPPMAFixEnable = enable;
1603 reg.NPEarlyZFailsDisable = enable;
1604 reg.NPPMAFixEnableMask = true;
1605 reg.NPEarlyZFailsDisableMask = true;
1606 }
1607 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
1608
1609 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
1610 * Flush bits is often necessary. We do it regardless because it's easier.
1611 * The render cache flush is also necessary if stencil writes are enabled.
1612 *
1613 * Again, the Gen9 docs give a different set of flushes but the Broadwell
1614 * flushes seem to work just as well.
1615 */
1616 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1617 PIPE_CONTROL_DEPTH_STALL |
1618 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1619 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1620 #endif
1621 }
1622
1623 /**
1624 * Gallium CSO for rasterizer state.
1625 */
1626 struct iris_rasterizer_state {
1627 uint32_t sf[GENX(3DSTATE_SF_length)];
1628 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1629 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1630 uint32_t wm[GENX(3DSTATE_WM_length)];
1631 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1632
1633 uint8_t num_clip_plane_consts;
1634 bool clip_halfz; /* for CC_VIEWPORT */
1635 bool depth_clip_near; /* for CC_VIEWPORT */
1636 bool depth_clip_far; /* for CC_VIEWPORT */
1637 bool flatshade; /* for shader state */
1638 bool flatshade_first; /* for stream output */
1639 bool clamp_fragment_color; /* for shader state */
1640 bool light_twoside; /* for shader state */
1641 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1642 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1643 bool line_stipple_enable;
1644 bool poly_stipple_enable;
1645 bool multisample;
1646 bool force_persample_interp;
1647 bool conservative_rasterization;
1648 bool fill_mode_point_or_line;
1649 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1650 uint16_t sprite_coord_enable;
1651 };
1652
1653 static float
1654 get_line_width(const struct pipe_rasterizer_state *state)
1655 {
1656 float line_width = state->line_width;
1657
1658 /* From the OpenGL 4.4 spec:
1659 *
1660 * "The actual width of non-antialiased lines is determined by rounding
1661 * the supplied width to the nearest integer, then clamping it to the
1662 * implementation-dependent maximum non-antialiased line width."
1663 */
1664 if (!state->multisample && !state->line_smooth)
1665 line_width = roundf(state->line_width);
1666
1667 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1668 /* For 1 pixel line thickness or less, the general anti-aliasing
1669 * algorithm gives up, and a garbage line is generated. Setting a
1670 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1671 * (one-pixel-wide), non-antialiased lines.
1672 *
1673 * Lines rendered with zero Line Width are rasterized using the
1674 * "Grid Intersection Quantization" rules as specified by the
1675 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1676 */
1677 line_width = 0.0f;
1678 }
1679
1680 return line_width;
1681 }
1682
1683 /**
1684 * The pipe->create_rasterizer_state() driver hook.
1685 */
1686 static void *
1687 iris_create_rasterizer_state(struct pipe_context *ctx,
1688 const struct pipe_rasterizer_state *state)
1689 {
1690 struct iris_rasterizer_state *cso =
1691 malloc(sizeof(struct iris_rasterizer_state));
1692
1693 cso->multisample = state->multisample;
1694 cso->force_persample_interp = state->force_persample_interp;
1695 cso->clip_halfz = state->clip_halfz;
1696 cso->depth_clip_near = state->depth_clip_near;
1697 cso->depth_clip_far = state->depth_clip_far;
1698 cso->flatshade = state->flatshade;
1699 cso->flatshade_first = state->flatshade_first;
1700 cso->clamp_fragment_color = state->clamp_fragment_color;
1701 cso->light_twoside = state->light_twoside;
1702 cso->rasterizer_discard = state->rasterizer_discard;
1703 cso->half_pixel_center = state->half_pixel_center;
1704 cso->sprite_coord_mode = state->sprite_coord_mode;
1705 cso->sprite_coord_enable = state->sprite_coord_enable;
1706 cso->line_stipple_enable = state->line_stipple_enable;
1707 cso->poly_stipple_enable = state->poly_stipple_enable;
1708 cso->conservative_rasterization =
1709 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1710
1711 cso->fill_mode_point_or_line =
1712 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1713 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1714 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1715 state->fill_back == PIPE_POLYGON_MODE_POINT;
1716
1717 if (state->clip_plane_enable != 0)
1718 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1719 else
1720 cso->num_clip_plane_consts = 0;
1721
1722 float line_width = get_line_width(state);
1723
1724 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1725 sf.StatisticsEnable = true;
1726 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1727 sf.LineEndCapAntialiasingRegionWidth =
1728 state->line_smooth ? _10pixels : _05pixels;
1729 sf.LastPixelEnable = state->line_last_pixel;
1730 sf.LineWidth = line_width;
1731 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1732 !state->point_quad_rasterization;
1733 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1734 sf.PointWidth = state->point_size;
1735
1736 if (state->flatshade_first) {
1737 sf.TriangleFanProvokingVertexSelect = 1;
1738 } else {
1739 sf.TriangleStripListProvokingVertexSelect = 2;
1740 sf.TriangleFanProvokingVertexSelect = 2;
1741 sf.LineStripListProvokingVertexSelect = 1;
1742 }
1743 }
1744
1745 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1746 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1747 rr.CullMode = translate_cull_mode(state->cull_face);
1748 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1749 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1750 rr.DXMultisampleRasterizationEnable = state->multisample;
1751 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1752 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1753 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1754 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1755 rr.GlobalDepthOffsetScale = state->offset_scale;
1756 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1757 rr.SmoothPointEnable = state->point_smooth;
1758 rr.AntialiasingEnable = state->line_smooth;
1759 rr.ScissorRectangleEnable = state->scissor;
1760 #if GEN_GEN >= 9
1761 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1762 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1763 rr.ConservativeRasterizationEnable =
1764 cso->conservative_rasterization;
1765 #else
1766 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1767 #endif
1768 }
1769
1770 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1771 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1772 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1773 */
1774 cl.EarlyCullEnable = true;
1775 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1776 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1777 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1778 cl.GuardbandClipTestEnable = true;
1779 cl.ClipEnable = true;
1780 cl.MinimumPointWidth = 0.125;
1781 cl.MaximumPointWidth = 255.875;
1782
1783 if (state->flatshade_first) {
1784 cl.TriangleFanProvokingVertexSelect = 1;
1785 } else {
1786 cl.TriangleStripListProvokingVertexSelect = 2;
1787 cl.TriangleFanProvokingVertexSelect = 2;
1788 cl.LineStripListProvokingVertexSelect = 1;
1789 }
1790 }
1791
1792 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1793 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1794 * filled in at draw time from the FS program.
1795 */
1796 wm.LineAntialiasingRegionWidth = _10pixels;
1797 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1798 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1799 wm.LineStippleEnable = state->line_stipple_enable;
1800 wm.PolygonStippleEnable = state->poly_stipple_enable;
1801 }
1802
1803 /* Remap from 0..255 back to 1..256 */
1804 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1805
1806 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1807 if (state->line_stipple_enable) {
1808 line.LineStipplePattern = state->line_stipple_pattern;
1809 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1810 line.LineStippleRepeatCount = line_stipple_factor;
1811 }
1812 }
1813
1814 return cso;
1815 }
1816
1817 /**
1818 * The pipe->bind_rasterizer_state() driver hook.
1819 *
1820 * Bind a rasterizer CSO and flag related dirty bits.
1821 */
1822 static void
1823 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1824 {
1825 struct iris_context *ice = (struct iris_context *) ctx;
1826 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1827 struct iris_rasterizer_state *new_cso = state;
1828
1829 if (new_cso) {
1830 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1831 if (cso_changed_memcmp(line_stipple))
1832 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1833
1834 if (cso_changed(half_pixel_center))
1835 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1836
1837 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1838 ice->state.dirty |= IRIS_DIRTY_WM;
1839
1840 if (cso_changed(rasterizer_discard))
1841 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1842
1843 if (cso_changed(flatshade_first))
1844 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1845
1846 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1847 cso_changed(clip_halfz))
1848 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1849
1850 if (cso_changed(sprite_coord_enable) ||
1851 cso_changed(sprite_coord_mode) ||
1852 cso_changed(light_twoside))
1853 ice->state.dirty |= IRIS_DIRTY_SBE;
1854
1855 if (cso_changed(conservative_rasterization))
1856 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
1857 }
1858
1859 ice->state.cso_rast = new_cso;
1860 ice->state.dirty |= IRIS_DIRTY_RASTER;
1861 ice->state.dirty |= IRIS_DIRTY_CLIP;
1862 ice->state.stage_dirty |=
1863 ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
1864 }
1865
1866 /**
1867 * Return true if the given wrap mode requires the border color to exist.
1868 *
1869 * (We can skip uploading it if the sampler isn't going to use it.)
1870 */
1871 static bool
1872 wrap_mode_needs_border_color(unsigned wrap_mode)
1873 {
1874 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1875 }
1876
1877 /**
1878 * Gallium CSO for sampler state.
1879 */
1880 struct iris_sampler_state {
1881 union pipe_color_union border_color;
1882 bool needs_border_color;
1883
1884 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1885 };
1886
1887 /**
1888 * The pipe->create_sampler_state() driver hook.
1889 *
1890 * We fill out SAMPLER_STATE (except for the border color pointer), and
1891 * store that on the CPU. It doesn't make sense to upload it to a GPU
1892 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1893 * all bound sampler states to be in contiguous memor.
1894 */
1895 static void *
1896 iris_create_sampler_state(struct pipe_context *ctx,
1897 const struct pipe_sampler_state *state)
1898 {
1899 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1900
1901 if (!cso)
1902 return NULL;
1903
1904 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1905 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1906
1907 unsigned wrap_s = translate_wrap(state->wrap_s);
1908 unsigned wrap_t = translate_wrap(state->wrap_t);
1909 unsigned wrap_r = translate_wrap(state->wrap_r);
1910
1911 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1912
1913 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1914 wrap_mode_needs_border_color(wrap_t) ||
1915 wrap_mode_needs_border_color(wrap_r);
1916
1917 float min_lod = state->min_lod;
1918 unsigned mag_img_filter = state->mag_img_filter;
1919
1920 // XXX: explain this code ported from ilo...I don't get it at all...
1921 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1922 state->min_lod > 0.0f) {
1923 min_lod = 0.0f;
1924 mag_img_filter = state->min_img_filter;
1925 }
1926
1927 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1928 samp.TCXAddressControlMode = wrap_s;
1929 samp.TCYAddressControlMode = wrap_t;
1930 samp.TCZAddressControlMode = wrap_r;
1931 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1932 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1933 samp.MinModeFilter = state->min_img_filter;
1934 samp.MagModeFilter = mag_img_filter;
1935 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1936 samp.MaximumAnisotropy = RATIO21;
1937
1938 if (state->max_anisotropy >= 2) {
1939 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1940 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1941 samp.AnisotropicAlgorithm = EWAApproximation;
1942 }
1943
1944 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1945 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1946
1947 samp.MaximumAnisotropy =
1948 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1949 }
1950
1951 /* Set address rounding bits if not using nearest filtering. */
1952 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1953 samp.UAddressMinFilterRoundingEnable = true;
1954 samp.VAddressMinFilterRoundingEnable = true;
1955 samp.RAddressMinFilterRoundingEnable = true;
1956 }
1957
1958 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1959 samp.UAddressMagFilterRoundingEnable = true;
1960 samp.VAddressMagFilterRoundingEnable = true;
1961 samp.RAddressMagFilterRoundingEnable = true;
1962 }
1963
1964 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1965 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1966
1967 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1968
1969 samp.LODPreClampMode = CLAMP_MODE_OGL;
1970 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1971 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1972 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1973
1974 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1975 }
1976
1977 return cso;
1978 }
1979
1980 /**
1981 * The pipe->bind_sampler_states() driver hook.
1982 */
1983 static void
1984 iris_bind_sampler_states(struct pipe_context *ctx,
1985 enum pipe_shader_type p_stage,
1986 unsigned start, unsigned count,
1987 void **states)
1988 {
1989 struct iris_context *ice = (struct iris_context *) ctx;
1990 gl_shader_stage stage = stage_from_pipe(p_stage);
1991 struct iris_shader_state *shs = &ice->state.shaders[stage];
1992
1993 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1994
1995 bool dirty = false;
1996
1997 for (int i = 0; i < count; i++) {
1998 if (shs->samplers[start + i] != states[i]) {
1999 shs->samplers[start + i] = states[i];
2000 dirty = true;
2001 }
2002 }
2003
2004 if (dirty)
2005 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
2006 }
2007
2008 /**
2009 * Upload the sampler states into a contiguous area of GPU memory, for
2010 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
2011 *
2012 * Also fill out the border color state pointers.
2013 */
2014 static void
2015 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
2016 {
2017 struct iris_shader_state *shs = &ice->state.shaders[stage];
2018 const struct shader_info *info = iris_get_shader_info(ice, stage);
2019
2020 /* We assume gallium frontends will call pipe->bind_sampler_states()
2021 * if the program's number of textures changes.
2022 */
2023 unsigned count = info ? util_last_bit(info->textures_used) : 0;
2024
2025 if (!count)
2026 return;
2027
2028 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
2029 * in the dynamic state memory zone, so we can point to it via the
2030 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
2031 */
2032 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
2033 uint32_t *map =
2034 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
2035 if (unlikely(!map))
2036 return;
2037
2038 struct pipe_resource *res = shs->sampler_table.res;
2039 struct iris_bo *bo = iris_resource_bo(res);
2040
2041 iris_record_state_size(ice->state.sizes,
2042 bo->gtt_offset + shs->sampler_table.offset, size);
2043
2044 shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
2045
2046 /* Make sure all land in the same BO */
2047 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
2048
2049 ice->state.need_border_colors &= ~(1 << stage);
2050
2051 for (int i = 0; i < count; i++) {
2052 struct iris_sampler_state *state = shs->samplers[i];
2053 struct iris_sampler_view *tex = shs->textures[i];
2054
2055 if (!state) {
2056 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
2057 } else if (!state->needs_border_color) {
2058 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
2059 } else {
2060 ice->state.need_border_colors |= 1 << stage;
2061
2062 /* We may need to swizzle the border color for format faking.
2063 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2064 * This means we need to move the border color's A channel into
2065 * the R or G channels so that those read swizzles will move it
2066 * back into A.
2067 */
2068 union pipe_color_union *color = &state->border_color;
2069 union pipe_color_union tmp;
2070 if (tex) {
2071 enum pipe_format internal_format = tex->res->internal_format;
2072
2073 if (util_format_is_alpha(internal_format)) {
2074 unsigned char swz[4] = {
2075 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2076 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2077 };
2078 util_format_apply_color_swizzle(&tmp, color, swz, true);
2079 color = &tmp;
2080 } else if (util_format_is_luminance_alpha(internal_format) &&
2081 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2082 unsigned char swz[4] = {
2083 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2084 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2085 };
2086 util_format_apply_color_swizzle(&tmp, color, swz, true);
2087 color = &tmp;
2088 }
2089 }
2090
2091 /* Stream out the border color and merge the pointer. */
2092 uint32_t offset = iris_upload_border_color(ice, color);
2093
2094 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2095 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2096 dyns.BorderColorPointer = offset;
2097 }
2098
2099 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2100 map[j] = state->sampler_state[j] | dynamic[j];
2101 }
2102
2103 map += GENX(SAMPLER_STATE_length);
2104 }
2105 }
2106
2107 static enum isl_channel_select
2108 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2109 {
2110 switch (swz) {
2111 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2112 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2113 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2114 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2115 case PIPE_SWIZZLE_1: return SCS_ONE;
2116 case PIPE_SWIZZLE_0: return SCS_ZERO;
2117 default: unreachable("invalid swizzle");
2118 }
2119 }
2120
2121 static void
2122 fill_buffer_surface_state(struct isl_device *isl_dev,
2123 struct iris_resource *res,
2124 void *map,
2125 enum isl_format format,
2126 struct isl_swizzle swizzle,
2127 unsigned offset,
2128 unsigned size)
2129 {
2130 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2131 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2132
2133 /* The ARB_texture_buffer_specification says:
2134 *
2135 * "The number of texels in the buffer texture's texel array is given by
2136 *
2137 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2138 *
2139 * where <buffer_size> is the size of the buffer object, in basic
2140 * machine units and <components> and <base_type> are the element count
2141 * and base data type for elements, as specified in Table X.1. The
2142 * number of texels in the texel array is then clamped to the
2143 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2144 *
2145 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2146 * so that when ISL divides by stride to obtain the number of texels, that
2147 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2148 */
2149 unsigned final_size =
2150 MIN3(size, res->bo->size - res->offset - offset,
2151 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2152
2153 isl_buffer_fill_state(isl_dev, map,
2154 .address = res->bo->gtt_offset + res->offset + offset,
2155 .size_B = final_size,
2156 .format = format,
2157 .swizzle = swizzle,
2158 .stride_B = cpp,
2159 .mocs = iris_mocs(res->bo, isl_dev));
2160 }
2161
2162 #define SURFACE_STATE_ALIGNMENT 64
2163
2164 /**
2165 * Allocate several contiguous SURFACE_STATE structures, one for each
2166 * supported auxiliary surface mode. This only allocates the CPU-side
2167 * copy, they will need to be uploaded later after they're filled in.
2168 */
2169 static void
2170 alloc_surface_states(struct iris_surface_state *surf_state,
2171 unsigned aux_usages)
2172 {
2173 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2174
2175 /* If this changes, update this to explicitly align pointers */
2176 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2177
2178 assert(aux_usages != 0);
2179
2180 /* In case we're re-allocating them... */
2181 free(surf_state->cpu);
2182
2183 surf_state->num_states = util_bitcount(aux_usages);
2184 surf_state->cpu = calloc(surf_state->num_states, surf_size);
2185 surf_state->ref.offset = 0;
2186 pipe_resource_reference(&surf_state->ref.res, NULL);
2187
2188 assert(surf_state->cpu);
2189 }
2190
2191 /**
2192 * Upload the CPU side SURFACE_STATEs into a GPU buffer.
2193 */
2194 static void
2195 upload_surface_states(struct u_upload_mgr *mgr,
2196 struct iris_surface_state *surf_state)
2197 {
2198 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2199 const unsigned bytes = surf_state->num_states * surf_size;
2200
2201 void *map =
2202 upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
2203
2204 surf_state->ref.offset +=
2205 iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
2206
2207 if (map)
2208 memcpy(map, surf_state->cpu, bytes);
2209 }
2210
2211 /**
2212 * Update resource addresses in a set of SURFACE_STATE descriptors,
2213 * and re-upload them if necessary.
2214 */
2215 static bool
2216 update_surface_state_addrs(struct u_upload_mgr *mgr,
2217 struct iris_surface_state *surf_state,
2218 struct iris_bo *bo)
2219 {
2220 if (surf_state->bo_address == bo->gtt_offset)
2221 return false;
2222
2223 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
2224 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
2225
2226 uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
2227
2228 /* First, update the CPU copies. We assume no other fields exist in
2229 * the QWord containing Surface Base Address.
2230 */
2231 for (unsigned i = 0; i < surf_state->num_states; i++) {
2232 *ss_addr = *ss_addr - surf_state->bo_address + bo->gtt_offset;
2233 ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
2234 }
2235
2236 /* Next, upload the updated copies to a GPU buffer. */
2237 upload_surface_states(mgr, surf_state);
2238
2239 surf_state->bo_address = bo->gtt_offset;
2240
2241 return true;
2242 }
2243
2244 #if GEN_GEN == 8
2245 /**
2246 * Return an ISL surface for use with non-coherent render target reads.
2247 *
2248 * In a few complex cases, we can't use the SURFACE_STATE for normal render
2249 * target writes. We need to make a separate one for sampling which refers
2250 * to the single slice of the texture being read.
2251 */
2252 static void
2253 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
2254 struct iris_resource *res,
2255 enum pipe_texture_target target,
2256 struct isl_view *view,
2257 uint32_t *offset_to_tile,
2258 uint32_t *tile_x_sa,
2259 uint32_t *tile_y_sa,
2260 struct isl_surf *surf)
2261 {
2262 *surf = res->surf;
2263
2264 const enum isl_dim_layout dim_layout =
2265 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
2266
2267 surf->dim = target_to_isl_surf_dim(target);
2268
2269 if (surf->dim_layout == dim_layout)
2270 return;
2271
2272 /* The layout of the specified texture target is not compatible with the
2273 * actual layout of the miptree structure in memory -- You're entering
2274 * dangerous territory, this can only possibly work if you only intended
2275 * to access a single level and slice of the texture, and the hardware
2276 * supports the tile offset feature in order to allow non-tile-aligned
2277 * base offsets, since we'll have to point the hardware to the first
2278 * texel of the level instead of relying on the usual base level/layer
2279 * controls.
2280 */
2281 assert(view->levels == 1 && view->array_len == 1);
2282 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
2283
2284 *offset_to_tile = iris_resource_get_tile_offsets(res, view->base_level,
2285 view->base_array_layer,
2286 tile_x_sa, tile_y_sa);
2287 const unsigned l = view->base_level;
2288
2289 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
2290 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
2291 minify(surf->logical_level0_px.height, l);
2292 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
2293 minify(surf->logical_level0_px.depth, l);
2294
2295 surf->logical_level0_px.array_len = 1;
2296 surf->levels = 1;
2297 surf->dim_layout = dim_layout;
2298
2299 view->base_level = 0;
2300 view->base_array_layer = 0;
2301 }
2302 #endif
2303
2304 static void
2305 fill_surface_state(struct isl_device *isl_dev,
2306 void *map,
2307 struct iris_resource *res,
2308 struct isl_surf *surf,
2309 struct isl_view *view,
2310 unsigned aux_usage,
2311 uint32_t extra_main_offset,
2312 uint32_t tile_x_sa,
2313 uint32_t tile_y_sa)
2314 {
2315 struct isl_surf_fill_state_info f = {
2316 .surf = surf,
2317 .view = view,
2318 .mocs = iris_mocs(res->bo, isl_dev),
2319 .address = res->bo->gtt_offset + res->offset + extra_main_offset,
2320 .x_offset_sa = tile_x_sa,
2321 .y_offset_sa = tile_y_sa,
2322 };
2323
2324 assert(!iris_resource_unfinished_aux_import(res));
2325
2326 if (aux_usage != ISL_AUX_USAGE_NONE) {
2327 f.aux_surf = &res->aux.surf;
2328 f.aux_usage = aux_usage;
2329 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
2330
2331 struct iris_bo *clear_bo = NULL;
2332 uint64_t clear_offset = 0;
2333 f.clear_color =
2334 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
2335 if (clear_bo) {
2336 f.clear_address = clear_bo->gtt_offset + clear_offset;
2337 f.use_clear_address = isl_dev->info->gen > 9;
2338 }
2339 }
2340
2341 isl_surf_fill_state_s(isl_dev, map, &f);
2342 }
2343
2344 /**
2345 * The pipe->create_sampler_view() driver hook.
2346 */
2347 static struct pipe_sampler_view *
2348 iris_create_sampler_view(struct pipe_context *ctx,
2349 struct pipe_resource *tex,
2350 const struct pipe_sampler_view *tmpl)
2351 {
2352 struct iris_context *ice = (struct iris_context *) ctx;
2353 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2354 const struct gen_device_info *devinfo = &screen->devinfo;
2355 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2356
2357 if (!isv)
2358 return NULL;
2359
2360 /* initialize base object */
2361 isv->base = *tmpl;
2362 isv->base.context = ctx;
2363 isv->base.texture = NULL;
2364 pipe_reference_init(&isv->base.reference, 1);
2365 pipe_resource_reference(&isv->base.texture, tex);
2366
2367 if (util_format_is_depth_or_stencil(tmpl->format)) {
2368 struct iris_resource *zres, *sres;
2369 const struct util_format_description *desc =
2370 util_format_description(tmpl->format);
2371
2372 iris_get_depth_stencil_resources(tex, &zres, &sres);
2373
2374 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
2375 }
2376
2377 isv->res = (struct iris_resource *) tex;
2378
2379 alloc_surface_states(&isv->surface_state, isv->res->aux.sampler_usages);
2380
2381 isv->surface_state.bo_address = isv->res->bo->gtt_offset;
2382
2383 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2384
2385 if (isv->base.target == PIPE_TEXTURE_CUBE ||
2386 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
2387 usage |= ISL_SURF_USAGE_CUBE_BIT;
2388
2389 const struct iris_format_info fmt =
2390 iris_format_for_usage(devinfo, tmpl->format, usage);
2391
2392 isv->clear_color = isv->res->aux.clear_color;
2393
2394 isv->view = (struct isl_view) {
2395 .format = fmt.fmt,
2396 .swizzle = (struct isl_swizzle) {
2397 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
2398 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
2399 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
2400 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2401 },
2402 .usage = usage,
2403 };
2404
2405 void *map = isv->surface_state.cpu;
2406
2407 /* Fill out SURFACE_STATE for this view. */
2408 if (tmpl->target != PIPE_BUFFER) {
2409 isv->view.base_level = tmpl->u.tex.first_level;
2410 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2411 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
2412 isv->view.base_array_layer = tmpl->u.tex.first_layer;
2413 isv->view.array_len =
2414 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2415
2416 if (iris_resource_unfinished_aux_import(isv->res))
2417 iris_resource_finish_aux_import(&screen->base, isv->res);
2418
2419 unsigned aux_modes = isv->res->aux.sampler_usages;
2420 while (aux_modes) {
2421 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2422
2423 /* If we have a multisampled depth buffer, do not create a sampler
2424 * surface state with HiZ.
2425 */
2426 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
2427 &isv->view, aux_usage, 0, 0, 0);
2428
2429 map += SURFACE_STATE_ALIGNMENT;
2430 }
2431 } else {
2432 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
2433 isv->view.format, isv->view.swizzle,
2434 tmpl->u.buf.offset, tmpl->u.buf.size);
2435 }
2436
2437 upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
2438
2439 return &isv->base;
2440 }
2441
2442 static void
2443 iris_sampler_view_destroy(struct pipe_context *ctx,
2444 struct pipe_sampler_view *state)
2445 {
2446 struct iris_sampler_view *isv = (void *) state;
2447 pipe_resource_reference(&state->texture, NULL);
2448 pipe_resource_reference(&isv->surface_state.ref.res, NULL);
2449 free(isv->surface_state.cpu);
2450 free(isv);
2451 }
2452
2453 /**
2454 * The pipe->create_surface() driver hook.
2455 *
2456 * In Gallium nomenclature, "surfaces" are a view of a resource that
2457 * can be bound as a render target or depth/stencil buffer.
2458 */
2459 static struct pipe_surface *
2460 iris_create_surface(struct pipe_context *ctx,
2461 struct pipe_resource *tex,
2462 const struct pipe_surface *tmpl)
2463 {
2464 struct iris_context *ice = (struct iris_context *) ctx;
2465 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2466 const struct gen_device_info *devinfo = &screen->devinfo;
2467
2468 isl_surf_usage_flags_t usage = 0;
2469 if (tmpl->writable)
2470 usage = ISL_SURF_USAGE_STORAGE_BIT;
2471 else if (util_format_is_depth_or_stencil(tmpl->format))
2472 usage = ISL_SURF_USAGE_DEPTH_BIT;
2473 else
2474 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2475
2476 const struct iris_format_info fmt =
2477 iris_format_for_usage(devinfo, tmpl->format, usage);
2478
2479 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2480 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2481 /* Framebuffer validation will reject this invalid case, but it
2482 * hasn't had the opportunity yet. In the meantime, we need to
2483 * avoid hitting ISL asserts about unsupported formats below.
2484 */
2485 return NULL;
2486 }
2487
2488 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2489 struct pipe_surface *psurf = &surf->base;
2490 struct iris_resource *res = (struct iris_resource *) tex;
2491
2492 if (!surf)
2493 return NULL;
2494
2495 pipe_reference_init(&psurf->reference, 1);
2496 pipe_resource_reference(&psurf->texture, tex);
2497 psurf->context = ctx;
2498 psurf->format = tmpl->format;
2499 psurf->width = tex->width0;
2500 psurf->height = tex->height0;
2501 psurf->texture = tex;
2502 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2503 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2504 psurf->u.tex.level = tmpl->u.tex.level;
2505
2506 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2507
2508 struct isl_view *view = &surf->view;
2509 *view = (struct isl_view) {
2510 .format = fmt.fmt,
2511 .base_level = tmpl->u.tex.level,
2512 .levels = 1,
2513 .base_array_layer = tmpl->u.tex.first_layer,
2514 .array_len = array_len,
2515 .swizzle = ISL_SWIZZLE_IDENTITY,
2516 .usage = usage,
2517 };
2518
2519 #if GEN_GEN == 8
2520 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2521 array_len == 1) ? PIPE_TEXTURE_2D :
2522 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2523 PIPE_TEXTURE_2D_ARRAY : tex->target;
2524
2525 struct isl_view *read_view = &surf->read_view;
2526 *read_view = (struct isl_view) {
2527 .format = fmt.fmt,
2528 .base_level = tmpl->u.tex.level,
2529 .levels = 1,
2530 .base_array_layer = tmpl->u.tex.first_layer,
2531 .array_len = array_len,
2532 .swizzle = ISL_SWIZZLE_IDENTITY,
2533 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2534 };
2535 #endif
2536
2537 surf->clear_color = res->aux.clear_color;
2538
2539 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2540 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2541 ISL_SURF_USAGE_STENCIL_BIT))
2542 return psurf;
2543
2544
2545 alloc_surface_states(&surf->surface_state, res->aux.possible_usages);
2546 surf->surface_state.bo_address = res->bo->gtt_offset;
2547
2548 #if GEN_GEN == 8
2549 alloc_surface_states(&surf->surface_state_read, res->aux.possible_usages);
2550 surf->surface_state_read.bo_address = res->bo->gtt_offset;
2551 #endif
2552
2553 if (!isl_format_is_compressed(res->surf.format)) {
2554 if (iris_resource_unfinished_aux_import(res))
2555 iris_resource_finish_aux_import(&screen->base, res);
2556
2557 void *map = surf->surface_state.cpu;
2558 UNUSED void *map_read = surf->surface_state_read.cpu;
2559
2560 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2561 * auxiliary surface mode and return the pipe_surface.
2562 */
2563 unsigned aux_modes = res->aux.possible_usages;
2564 while (aux_modes) {
2565 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2566 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2567 view, aux_usage, 0, 0, 0);
2568 map += SURFACE_STATE_ALIGNMENT;
2569
2570 #if GEN_GEN == 8
2571 struct isl_surf surf;
2572 uint32_t offset_to_tile = 0, tile_x_sa = 0, tile_y_sa = 0;
2573 get_rt_read_isl_surf(devinfo, res, target, read_view,
2574 &offset_to_tile, &tile_x_sa, &tile_y_sa, &surf);
2575 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2576 aux_usage, offset_to_tile, tile_x_sa, tile_y_sa);
2577 map_read += SURFACE_STATE_ALIGNMENT;
2578 #endif
2579 }
2580
2581 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2582
2583 #if GEN_GEN == 8
2584 upload_surface_states(ice->state.surface_uploader,
2585 &surf->surface_state_read);
2586 #endif
2587
2588 return psurf;
2589 }
2590
2591 /* The resource has a compressed format, which is not renderable, but we
2592 * have a renderable view format. We must be attempting to upload blocks
2593 * of compressed data via an uncompressed view.
2594 *
2595 * In this case, we can assume there are no auxiliary buffers, a single
2596 * miplevel, and that the resource is single-sampled. Gallium may try
2597 * and create an uncompressed view with multiple layers, however.
2598 */
2599 assert(!isl_format_is_compressed(fmt.fmt));
2600 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2601 assert(res->surf.samples == 1);
2602 assert(view->levels == 1);
2603
2604 struct isl_surf isl_surf;
2605 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2606
2607 if (view->base_level > 0) {
2608 /* We can't rely on the hardware's miplevel selection with such
2609 * a substantial lie about the format, so we select a single image
2610 * using the Tile X/Y Offset fields. In this case, we can't handle
2611 * multiple array slices.
2612 *
2613 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2614 * hard-coded to align to exactly the block size of the compressed
2615 * texture. This means that, when reinterpreted as a non-compressed
2616 * texture, the tile offsets may be anything and we can't rely on
2617 * X/Y Offset.
2618 *
2619 * Return NULL to force gallium frontends to take fallback paths.
2620 */
2621 if (view->array_len > 1 || GEN_GEN == 8)
2622 return NULL;
2623
2624 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2625 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2626 view->base_level,
2627 is_3d ? 0 : view->base_array_layer,
2628 is_3d ? view->base_array_layer : 0,
2629 &isl_surf,
2630 &offset_B, &tile_x_sa, &tile_y_sa);
2631
2632 /* We use address and tile offsets to access a single level/layer
2633 * as a subimage, so reset level/layer so it doesn't offset again.
2634 */
2635 view->base_array_layer = 0;
2636 view->base_level = 0;
2637 } else {
2638 /* Level 0 doesn't require tile offsets, and the hardware can find
2639 * array slices using QPitch even with the format override, so we
2640 * can allow layers in this case. Copy the original ISL surface.
2641 */
2642 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2643 }
2644
2645 /* Scale down the image dimensions by the block size. */
2646 const struct isl_format_layout *fmtl =
2647 isl_format_get_layout(res->surf.format);
2648 isl_surf.format = fmt.fmt;
2649 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2650 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2651 tile_x_sa /= fmtl->bw;
2652 tile_y_sa /= fmtl->bh;
2653
2654 psurf->width = isl_surf.logical_level0_px.width;
2655 psurf->height = isl_surf.logical_level0_px.height;
2656
2657 struct isl_surf_fill_state_info f = {
2658 .surf = &isl_surf,
2659 .view = view,
2660 .mocs = iris_mocs(res->bo, &screen->isl_dev),
2661 .address = res->bo->gtt_offset + offset_B,
2662 .x_offset_sa = tile_x_sa,
2663 .y_offset_sa = tile_y_sa,
2664 };
2665
2666 isl_surf_fill_state_s(&screen->isl_dev, surf->surface_state.cpu, &f);
2667
2668 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2669
2670 return psurf;
2671 }
2672
2673 #if GEN_GEN < 9
2674 static void
2675 fill_default_image_param(struct brw_image_param *param)
2676 {
2677 memset(param, 0, sizeof(*param));
2678 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2679 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2680 * detailed explanation of these parameters.
2681 */
2682 param->swizzling[0] = 0xff;
2683 param->swizzling[1] = 0xff;
2684 }
2685
2686 static void
2687 fill_buffer_image_param(struct brw_image_param *param,
2688 enum pipe_format pfmt,
2689 unsigned size)
2690 {
2691 const unsigned cpp = util_format_get_blocksize(pfmt);
2692
2693 fill_default_image_param(param);
2694 param->size[0] = size / cpp;
2695 param->stride[0] = cpp;
2696 }
2697 #else
2698 #define isl_surf_fill_image_param(x, ...)
2699 #define fill_default_image_param(x, ...)
2700 #define fill_buffer_image_param(x, ...)
2701 #endif
2702
2703 /**
2704 * The pipe->set_shader_images() driver hook.
2705 */
2706 static void
2707 iris_set_shader_images(struct pipe_context *ctx,
2708 enum pipe_shader_type p_stage,
2709 unsigned start_slot, unsigned count,
2710 const struct pipe_image_view *p_images)
2711 {
2712 struct iris_context *ice = (struct iris_context *) ctx;
2713 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2714 gl_shader_stage stage = stage_from_pipe(p_stage);
2715 struct iris_shader_state *shs = &ice->state.shaders[stage];
2716 #if GEN_GEN == 8
2717 struct iris_genx_state *genx = ice->state.genx;
2718 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2719 #endif
2720
2721 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2722
2723 for (unsigned i = 0; i < count; i++) {
2724 struct iris_image_view *iv = &shs->image[start_slot + i];
2725
2726 if (p_images && p_images[i].resource) {
2727 const struct pipe_image_view *img = &p_images[i];
2728 struct iris_resource *res = (void *) img->resource;
2729
2730 util_copy_image_view(&iv->base, img);
2731
2732 shs->bound_image_views |= 1 << (start_slot + i);
2733
2734 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2735 res->bind_stages |= 1 << stage;
2736
2737 enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
2738
2739 /* Render compression with images supported on gen12+ only. */
2740 unsigned aux_usages = GEN_GEN >= 12 ? res->aux.possible_usages :
2741 1 << ISL_AUX_USAGE_NONE;
2742
2743 alloc_surface_states(&iv->surface_state, aux_usages);
2744 iv->surface_state.bo_address = res->bo->gtt_offset;
2745
2746 void *map = iv->surface_state.cpu;
2747
2748 if (res->base.target != PIPE_BUFFER) {
2749 struct isl_view view = {
2750 .format = isl_fmt,
2751 .base_level = img->u.tex.level,
2752 .levels = 1,
2753 .base_array_layer = img->u.tex.first_layer,
2754 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2755 .swizzle = ISL_SWIZZLE_IDENTITY,
2756 .usage = ISL_SURF_USAGE_STORAGE_BIT,
2757 };
2758
2759 /* If using untyped fallback. */
2760 if (isl_fmt == ISL_FORMAT_RAW) {
2761 fill_buffer_surface_state(&screen->isl_dev, res, map,
2762 isl_fmt, ISL_SWIZZLE_IDENTITY,
2763 0, res->bo->size);
2764 } else {
2765 unsigned aux_modes = aux_usages;
2766 while (aux_modes) {
2767 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2768
2769 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2770 &view, usage, 0, 0, 0);
2771
2772 map += SURFACE_STATE_ALIGNMENT;
2773 }
2774 }
2775
2776 isl_surf_fill_image_param(&screen->isl_dev,
2777 &image_params[start_slot + i],
2778 &res->surf, &view);
2779 } else {
2780 util_range_add(&res->base, &res->valid_buffer_range, img->u.buf.offset,
2781 img->u.buf.offset + img->u.buf.size);
2782
2783 fill_buffer_surface_state(&screen->isl_dev, res, map,
2784 isl_fmt, ISL_SWIZZLE_IDENTITY,
2785 img->u.buf.offset, img->u.buf.size);
2786 fill_buffer_image_param(&image_params[start_slot + i],
2787 img->format, img->u.buf.size);
2788 }
2789
2790 upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
2791 } else {
2792 pipe_resource_reference(&iv->base.resource, NULL);
2793 pipe_resource_reference(&iv->surface_state.ref.res, NULL);
2794 fill_default_image_param(&image_params[start_slot + i]);
2795 }
2796 }
2797
2798 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
2799 ice->state.dirty |=
2800 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2801 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2802
2803 /* Broadwell also needs brw_image_params re-uploaded */
2804 if (GEN_GEN < 9) {
2805 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
2806 shs->sysvals_need_upload = true;
2807 }
2808 }
2809
2810
2811 /**
2812 * The pipe->set_sampler_views() driver hook.
2813 */
2814 static void
2815 iris_set_sampler_views(struct pipe_context *ctx,
2816 enum pipe_shader_type p_stage,
2817 unsigned start, unsigned count,
2818 struct pipe_sampler_view **views)
2819 {
2820 struct iris_context *ice = (struct iris_context *) ctx;
2821 gl_shader_stage stage = stage_from_pipe(p_stage);
2822 struct iris_shader_state *shs = &ice->state.shaders[stage];
2823
2824 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2825
2826 for (unsigned i = 0; i < count; i++) {
2827 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2828 pipe_sampler_view_reference((struct pipe_sampler_view **)
2829 &shs->textures[start + i], pview);
2830 struct iris_sampler_view *view = (void *) pview;
2831 if (view) {
2832 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2833 view->res->bind_stages |= 1 << stage;
2834
2835 shs->bound_sampler_views |= 1 << (start + i);
2836
2837 update_surface_state_addrs(ice->state.surface_uploader,
2838 &view->surface_state, view->res->bo);
2839 }
2840 }
2841
2842 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
2843 ice->state.dirty |=
2844 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2845 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2846 }
2847
2848 static void
2849 iris_set_compute_resources(struct pipe_context *ctx,
2850 unsigned start, unsigned count,
2851 struct pipe_surface **resources)
2852 {
2853 assert(count == 0);
2854 }
2855
2856 /**
2857 * The pipe->set_tess_state() driver hook.
2858 */
2859 static void
2860 iris_set_tess_state(struct pipe_context *ctx,
2861 const float default_outer_level[4],
2862 const float default_inner_level[2])
2863 {
2864 struct iris_context *ice = (struct iris_context *) ctx;
2865 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2866
2867 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2868 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2869
2870 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
2871 shs->sysvals_need_upload = true;
2872 }
2873
2874 static void
2875 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2876 {
2877 struct iris_surface *surf = (void *) p_surf;
2878 pipe_resource_reference(&p_surf->texture, NULL);
2879 pipe_resource_reference(&surf->surface_state.ref.res, NULL);
2880 pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
2881 free(surf->surface_state.cpu);
2882 free(surf);
2883 }
2884
2885 static void
2886 iris_set_clip_state(struct pipe_context *ctx,
2887 const struct pipe_clip_state *state)
2888 {
2889 struct iris_context *ice = (struct iris_context *) ctx;
2890 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2891 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2892 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2893
2894 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2895
2896 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
2897 IRIS_STAGE_DIRTY_CONSTANTS_GS |
2898 IRIS_STAGE_DIRTY_CONSTANTS_TES;
2899 shs->sysvals_need_upload = true;
2900 gshs->sysvals_need_upload = true;
2901 tshs->sysvals_need_upload = true;
2902 }
2903
2904 /**
2905 * The pipe->set_polygon_stipple() driver hook.
2906 */
2907 static void
2908 iris_set_polygon_stipple(struct pipe_context *ctx,
2909 const struct pipe_poly_stipple *state)
2910 {
2911 struct iris_context *ice = (struct iris_context *) ctx;
2912 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2913 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2914 }
2915
2916 /**
2917 * The pipe->set_sample_mask() driver hook.
2918 */
2919 static void
2920 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2921 {
2922 struct iris_context *ice = (struct iris_context *) ctx;
2923
2924 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2925 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2926 */
2927 ice->state.sample_mask = sample_mask & 0xffff;
2928 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2929 }
2930
2931 /**
2932 * The pipe->set_scissor_states() driver hook.
2933 *
2934 * This corresponds to our SCISSOR_RECT state structures. It's an
2935 * exact match, so we just store them, and memcpy them out later.
2936 */
2937 static void
2938 iris_set_scissor_states(struct pipe_context *ctx,
2939 unsigned start_slot,
2940 unsigned num_scissors,
2941 const struct pipe_scissor_state *rects)
2942 {
2943 struct iris_context *ice = (struct iris_context *) ctx;
2944
2945 for (unsigned i = 0; i < num_scissors; i++) {
2946 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2947 /* If the scissor was out of bounds and got clamped to 0 width/height
2948 * at the bounds, the subtraction of 1 from maximums could produce a
2949 * negative number and thus not clip anything. Instead, just provide
2950 * a min > max scissor inside the bounds, which produces the expected
2951 * no rendering.
2952 */
2953 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2954 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2955 };
2956 } else {
2957 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2958 .minx = rects[i].minx, .miny = rects[i].miny,
2959 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2960 };
2961 }
2962 }
2963
2964 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2965 }
2966
2967 /**
2968 * The pipe->set_stencil_ref() driver hook.
2969 *
2970 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2971 */
2972 static void
2973 iris_set_stencil_ref(struct pipe_context *ctx,
2974 const struct pipe_stencil_ref *state)
2975 {
2976 struct iris_context *ice = (struct iris_context *) ctx;
2977 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2978 if (GEN_GEN >= 12)
2979 ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
2980 else if (GEN_GEN >= 9)
2981 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2982 else
2983 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2984 }
2985
2986 static float
2987 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2988 {
2989 return copysignf(state->scale[axis], sign) + state->translate[axis];
2990 }
2991
2992 /**
2993 * The pipe->set_viewport_states() driver hook.
2994 *
2995 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2996 * the guardband yet, as we need the framebuffer dimensions, but we can
2997 * at least fill out the rest.
2998 */
2999 static void
3000 iris_set_viewport_states(struct pipe_context *ctx,
3001 unsigned start_slot,
3002 unsigned count,
3003 const struct pipe_viewport_state *states)
3004 {
3005 struct iris_context *ice = (struct iris_context *) ctx;
3006
3007 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
3008
3009 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3010
3011 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
3012 !ice->state.cso_rast->depth_clip_far))
3013 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
3014 }
3015
3016 /**
3017 * The pipe->set_framebuffer_state() driver hook.
3018 *
3019 * Sets the current draw FBO, including color render targets, depth,
3020 * and stencil buffers.
3021 */
3022 static void
3023 iris_set_framebuffer_state(struct pipe_context *ctx,
3024 const struct pipe_framebuffer_state *state)
3025 {
3026 struct iris_context *ice = (struct iris_context *) ctx;
3027 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3028 struct isl_device *isl_dev = &screen->isl_dev;
3029 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
3030 struct iris_resource *zres;
3031 struct iris_resource *stencil_res;
3032
3033 unsigned samples = util_framebuffer_get_num_samples(state);
3034 unsigned layers = util_framebuffer_get_num_layers(state);
3035
3036 if (cso->samples != samples) {
3037 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
3038
3039 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
3040 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
3041 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
3042 }
3043
3044 if (cso->nr_cbufs != state->nr_cbufs) {
3045 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
3046 }
3047
3048 if ((cso->layers == 0) != (layers == 0)) {
3049 ice->state.dirty |= IRIS_DIRTY_CLIP;
3050 }
3051
3052 if (cso->width != state->width || cso->height != state->height) {
3053 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3054 }
3055
3056 if (cso->zsbuf || state->zsbuf) {
3057 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
3058 }
3059
3060 util_copy_framebuffer_state(cso, state);
3061 cso->samples = samples;
3062 cso->layers = layers;
3063
3064 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3065
3066 struct isl_view view = {
3067 .base_level = 0,
3068 .levels = 1,
3069 .base_array_layer = 0,
3070 .array_len = 1,
3071 .swizzle = ISL_SWIZZLE_IDENTITY,
3072 };
3073
3074 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
3075
3076 if (cso->zsbuf) {
3077 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
3078 &stencil_res);
3079
3080 view.base_level = cso->zsbuf->u.tex.level;
3081 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
3082 view.array_len =
3083 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
3084
3085 if (zres) {
3086 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
3087
3088 info.depth_surf = &zres->surf;
3089 info.depth_address = zres->bo->gtt_offset + zres->offset;
3090 info.mocs = iris_mocs(zres->bo, isl_dev);
3091
3092 view.format = zres->surf.format;
3093
3094 if (iris_resource_level_has_hiz(zres, view.base_level)) {
3095 info.hiz_usage = zres->aux.usage;
3096 info.hiz_surf = &zres->aux.surf;
3097 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
3098 }
3099 }
3100
3101 if (stencil_res) {
3102 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
3103 info.stencil_aux_usage = stencil_res->aux.usage;
3104 info.stencil_surf = &stencil_res->surf;
3105 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
3106 if (!zres) {
3107 view.format = stencil_res->surf.format;
3108 info.mocs = iris_mocs(stencil_res->bo, isl_dev);
3109 }
3110 }
3111 }
3112
3113 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
3114
3115 /* Make a null surface for unbound buffers */
3116 void *null_surf_map =
3117 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
3118 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3119 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3120 isl_extent3d(MAX2(cso->width, 1),
3121 MAX2(cso->height, 1),
3122 cso->layers ? cso->layers : 1));
3123 ice->state.null_fb.offset +=
3124 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3125
3126 /* Render target change */
3127 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
3128
3129 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3130
3131 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3132
3133 ice->state.stage_dirty |=
3134 ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3135
3136 if (GEN_GEN == 8)
3137 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3138 }
3139
3140 /**
3141 * The pipe->set_constant_buffer() driver hook.
3142 *
3143 * This uploads any constant data in user buffers, and references
3144 * any UBO resources containing constant data.
3145 */
3146 static void
3147 iris_set_constant_buffer(struct pipe_context *ctx,
3148 enum pipe_shader_type p_stage, unsigned index,
3149 const struct pipe_constant_buffer *input)
3150 {
3151 struct iris_context *ice = (struct iris_context *) ctx;
3152 gl_shader_stage stage = stage_from_pipe(p_stage);
3153 struct iris_shader_state *shs = &ice->state.shaders[stage];
3154 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3155
3156 /* TODO: Only do this if the buffer changes? */
3157 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3158
3159 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3160 shs->bound_cbufs |= 1u << index;
3161
3162 if (input->user_buffer) {
3163 void *map = NULL;
3164 pipe_resource_reference(&cbuf->buffer, NULL);
3165 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3166 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3167
3168 if (!cbuf->buffer) {
3169 /* Allocation was unsuccessful - just unbind */
3170 iris_set_constant_buffer(ctx, p_stage, index, NULL);
3171 return;
3172 }
3173
3174 assert(map);
3175 memcpy(map, input->user_buffer, input->buffer_size);
3176 } else if (input->buffer) {
3177 pipe_resource_reference(&cbuf->buffer, input->buffer);
3178
3179 cbuf->buffer_offset = input->buffer_offset;
3180 }
3181
3182 cbuf->buffer_size =
3183 MIN2(input->buffer_size,
3184 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
3185
3186 struct iris_resource *res = (void *) cbuf->buffer;
3187 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
3188 res->bind_stages |= 1 << stage;
3189 } else {
3190 shs->bound_cbufs &= ~(1u << index);
3191 pipe_resource_reference(&cbuf->buffer, NULL);
3192 }
3193
3194 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
3195 }
3196
3197 static void
3198 upload_sysvals(struct iris_context *ice,
3199 gl_shader_stage stage)
3200 {
3201 UNUSED struct iris_genx_state *genx = ice->state.genx;
3202 struct iris_shader_state *shs = &ice->state.shaders[stage];
3203
3204 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3205 if (!shader || shader->num_system_values == 0)
3206 return;
3207
3208 assert(shader->num_cbufs > 0);
3209
3210 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
3211 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
3212 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
3213 uint32_t *map = NULL;
3214
3215 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
3216 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
3217 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3218
3219 for (int i = 0; i < shader->num_system_values; i++) {
3220 uint32_t sysval = shader->system_values[i];
3221 uint32_t value = 0;
3222
3223 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
3224 #if GEN_GEN == 8
3225 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
3226 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
3227 struct brw_image_param *param =
3228 &genx->shaders[stage].image_param[img];
3229
3230 assert(offset < sizeof(struct brw_image_param));
3231 value = ((uint32_t *) param)[offset];
3232 #endif
3233 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
3234 value = 0;
3235 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
3236 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
3237 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
3238 value = fui(ice->state.clip_planes.ucp[plane][comp]);
3239 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
3240 if (stage == MESA_SHADER_TESS_CTRL) {
3241 value = ice->state.vertices_per_patch;
3242 } else {
3243 assert(stage == MESA_SHADER_TESS_EVAL);
3244 const struct shader_info *tcs_info =
3245 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
3246 if (tcs_info)
3247 value = tcs_info->tess.tcs_vertices_out;
3248 else
3249 value = ice->state.vertices_per_patch;
3250 }
3251 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
3252 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
3253 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
3254 value = fui(ice->state.default_outer_level[i]);
3255 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
3256 value = fui(ice->state.default_inner_level[0]);
3257 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
3258 value = fui(ice->state.default_inner_level[1]);
3259 } else if (sysval >= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X &&
3260 sysval <= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z) {
3261 unsigned i = sysval - BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X;
3262 value = ice->state.last_block[i];
3263 } else {
3264 assert(!"unhandled system value");
3265 }
3266
3267 *map++ = value;
3268 }
3269
3270 cbuf->buffer_size = upload_size;
3271 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
3272 &shs->constbuf_surf_state[sysval_cbuf_index], false);
3273
3274 shs->sysvals_need_upload = false;
3275 }
3276
3277 /**
3278 * The pipe->set_shader_buffers() driver hook.
3279 *
3280 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
3281 * SURFACE_STATE here, as the buffer offset may change each time.
3282 */
3283 static void
3284 iris_set_shader_buffers(struct pipe_context *ctx,
3285 enum pipe_shader_type p_stage,
3286 unsigned start_slot, unsigned count,
3287 const struct pipe_shader_buffer *buffers,
3288 unsigned writable_bitmask)
3289 {
3290 struct iris_context *ice = (struct iris_context *) ctx;
3291 gl_shader_stage stage = stage_from_pipe(p_stage);
3292 struct iris_shader_state *shs = &ice->state.shaders[stage];
3293
3294 unsigned modified_bits = u_bit_consecutive(start_slot, count);
3295
3296 shs->bound_ssbos &= ~modified_bits;
3297 shs->writable_ssbos &= ~modified_bits;
3298 shs->writable_ssbos |= writable_bitmask << start_slot;
3299
3300 for (unsigned i = 0; i < count; i++) {
3301 if (buffers && buffers[i].buffer) {
3302 struct iris_resource *res = (void *) buffers[i].buffer;
3303 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
3304 struct iris_state_ref *surf_state =
3305 &shs->ssbo_surf_state[start_slot + i];
3306 pipe_resource_reference(&ssbo->buffer, &res->base);
3307 ssbo->buffer_offset = buffers[i].buffer_offset;
3308 ssbo->buffer_size =
3309 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
3310
3311 shs->bound_ssbos |= 1 << (start_slot + i);
3312
3313 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
3314
3315 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
3316 res->bind_stages |= 1 << stage;
3317
3318 util_range_add(&res->base, &res->valid_buffer_range, ssbo->buffer_offset,
3319 ssbo->buffer_offset + ssbo->buffer_size);
3320 } else {
3321 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
3322 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
3323 NULL);
3324 }
3325 }
3326
3327 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
3328 }
3329
3330 static void
3331 iris_delete_state(struct pipe_context *ctx, void *state)
3332 {
3333 free(state);
3334 }
3335
3336 /**
3337 * The pipe->set_vertex_buffers() driver hook.
3338 *
3339 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
3340 */
3341 static void
3342 iris_set_vertex_buffers(struct pipe_context *ctx,
3343 unsigned start_slot, unsigned count,
3344 const struct pipe_vertex_buffer *buffers)
3345 {
3346 struct iris_context *ice = (struct iris_context *) ctx;
3347 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3348 struct iris_genx_state *genx = ice->state.genx;
3349
3350 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
3351
3352 for (unsigned i = 0; i < count; i++) {
3353 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
3354 struct iris_vertex_buffer_state *state =
3355 &genx->vertex_buffers[start_slot + i];
3356
3357 if (!buffer) {
3358 pipe_resource_reference(&state->resource, NULL);
3359 continue;
3360 }
3361
3362 /* We may see user buffers that are NULL bindings. */
3363 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
3364
3365 pipe_resource_reference(&state->resource, buffer->buffer.resource);
3366 struct iris_resource *res = (void *) state->resource;
3367
3368 state->offset = (int) buffer->buffer_offset;
3369
3370 if (res) {
3371 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
3372 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
3373 }
3374
3375 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
3376 vb.VertexBufferIndex = start_slot + i;
3377 vb.AddressModifyEnable = true;
3378 vb.BufferPitch = buffer->stride;
3379 if (res) {
3380 vb.BufferSize = res->base.width0 - (int) buffer->buffer_offset;
3381 vb.BufferStartingAddress =
3382 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
3383 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev);
3384 } else {
3385 vb.NullVertexBuffer = true;
3386 }
3387 }
3388 }
3389
3390 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
3391 }
3392
3393 /**
3394 * Gallium CSO for vertex elements.
3395 */
3396 struct iris_vertex_element_state {
3397 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
3398 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
3399 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
3400 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
3401 unsigned count;
3402 };
3403
3404 /**
3405 * The pipe->create_vertex_elements() driver hook.
3406 *
3407 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
3408 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
3409 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
3410 * needed. In these cases we will need information available at draw time.
3411 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
3412 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
3413 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
3414 */
3415 static void *
3416 iris_create_vertex_elements(struct pipe_context *ctx,
3417 unsigned count,
3418 const struct pipe_vertex_element *state)
3419 {
3420 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3421 const struct gen_device_info *devinfo = &screen->devinfo;
3422 struct iris_vertex_element_state *cso =
3423 malloc(sizeof(struct iris_vertex_element_state));
3424
3425 cso->count = count;
3426
3427 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
3428 ve.DWordLength =
3429 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3430 }
3431
3432 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3433 uint32_t *vfi_pack_dest = cso->vf_instancing;
3434
3435 if (count == 0) {
3436 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3437 ve.Valid = true;
3438 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3439 ve.Component0Control = VFCOMP_STORE_0;
3440 ve.Component1Control = VFCOMP_STORE_0;
3441 ve.Component2Control = VFCOMP_STORE_0;
3442 ve.Component3Control = VFCOMP_STORE_1_FP;
3443 }
3444
3445 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3446 }
3447 }
3448
3449 for (int i = 0; i < count; i++) {
3450 const struct iris_format_info fmt =
3451 iris_format_for_usage(devinfo, state[i].src_format, 0);
3452 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3453 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3454
3455 switch (isl_format_get_num_channels(fmt.fmt)) {
3456 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3457 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3458 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3459 case 3:
3460 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3461 : VFCOMP_STORE_1_FP;
3462 break;
3463 }
3464 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3465 ve.EdgeFlagEnable = false;
3466 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3467 ve.Valid = true;
3468 ve.SourceElementOffset = state[i].src_offset;
3469 ve.SourceElementFormat = fmt.fmt;
3470 ve.Component0Control = comp[0];
3471 ve.Component1Control = comp[1];
3472 ve.Component2Control = comp[2];
3473 ve.Component3Control = comp[3];
3474 }
3475
3476 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3477 vi.VertexElementIndex = i;
3478 vi.InstancingEnable = state[i].instance_divisor > 0;
3479 vi.InstanceDataStepRate = state[i].instance_divisor;
3480 }
3481
3482 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3483 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3484 }
3485
3486 /* An alternative version of the last VE and VFI is stored so it
3487 * can be used at draw time in case Vertex Shader uses EdgeFlag
3488 */
3489 if (count) {
3490 const unsigned edgeflag_index = count - 1;
3491 const struct iris_format_info fmt =
3492 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3493 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3494 ve.EdgeFlagEnable = true ;
3495 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3496 ve.Valid = true;
3497 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3498 ve.SourceElementFormat = fmt.fmt;
3499 ve.Component0Control = VFCOMP_STORE_SRC;
3500 ve.Component1Control = VFCOMP_STORE_0;
3501 ve.Component2Control = VFCOMP_STORE_0;
3502 ve.Component3Control = VFCOMP_STORE_0;
3503 }
3504 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3505 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3506 * at draw time, as it should change if SGVs are emitted.
3507 */
3508 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3509 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3510 }
3511 }
3512
3513 return cso;
3514 }
3515
3516 /**
3517 * The pipe->bind_vertex_elements_state() driver hook.
3518 */
3519 static void
3520 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3521 {
3522 struct iris_context *ice = (struct iris_context *) ctx;
3523 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3524 struct iris_vertex_element_state *new_cso = state;
3525
3526 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3527 * we need to re-emit it to ensure we're overriding the right one.
3528 */
3529 if (new_cso && cso_changed(count))
3530 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3531
3532 ice->state.cso_vertex_elements = state;
3533 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3534 }
3535
3536 /**
3537 * The pipe->create_stream_output_target() driver hook.
3538 *
3539 * "Target" here refers to a destination buffer. We translate this into
3540 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3541 * know which buffer this represents, or whether we ought to zero the
3542 * write-offsets, or append. Those are handled in the set() hook.
3543 */
3544 static struct pipe_stream_output_target *
3545 iris_create_stream_output_target(struct pipe_context *ctx,
3546 struct pipe_resource *p_res,
3547 unsigned buffer_offset,
3548 unsigned buffer_size)
3549 {
3550 struct iris_resource *res = (void *) p_res;
3551 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3552 if (!cso)
3553 return NULL;
3554
3555 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3556
3557 pipe_reference_init(&cso->base.reference, 1);
3558 pipe_resource_reference(&cso->base.buffer, p_res);
3559 cso->base.buffer_offset = buffer_offset;
3560 cso->base.buffer_size = buffer_size;
3561 cso->base.context = ctx;
3562
3563 util_range_add(&res->base, &res->valid_buffer_range, buffer_offset,
3564 buffer_offset + buffer_size);
3565
3566 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3567
3568 return &cso->base;
3569 }
3570
3571 static void
3572 iris_stream_output_target_destroy(struct pipe_context *ctx,
3573 struct pipe_stream_output_target *state)
3574 {
3575 struct iris_stream_output_target *cso = (void *) state;
3576
3577 pipe_resource_reference(&cso->base.buffer, NULL);
3578 pipe_resource_reference(&cso->offset.res, NULL);
3579
3580 free(cso);
3581 }
3582
3583 /**
3584 * The pipe->set_stream_output_targets() driver hook.
3585 *
3586 * At this point, we know which targets are bound to a particular index,
3587 * and also whether we want to append or start over. We can finish the
3588 * 3DSTATE_SO_BUFFER packets we started earlier.
3589 */
3590 static void
3591 iris_set_stream_output_targets(struct pipe_context *ctx,
3592 unsigned num_targets,
3593 struct pipe_stream_output_target **targets,
3594 const unsigned *offsets)
3595 {
3596 struct iris_context *ice = (struct iris_context *) ctx;
3597 struct iris_genx_state *genx = ice->state.genx;
3598 uint32_t *so_buffers = genx->so_buffers;
3599 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3600
3601 const bool active = num_targets > 0;
3602 if (ice->state.streamout_active != active) {
3603 ice->state.streamout_active = active;
3604 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3605
3606 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3607 * it's a non-pipelined command. If we're switching streamout on, we
3608 * may have missed emitting it earlier, so do so now. (We're already
3609 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3610 */
3611 if (active) {
3612 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3613 } else {
3614 uint32_t flush = 0;
3615 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3616 struct iris_stream_output_target *tgt =
3617 (void *) ice->state.so_target[i];
3618 if (tgt) {
3619 struct iris_resource *res = (void *) tgt->base.buffer;
3620
3621 flush |= iris_flush_bits_for_history(res);
3622 iris_dirty_for_history(ice, res);
3623 }
3624 }
3625 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3626 "make streamout results visible", flush);
3627 }
3628 }
3629
3630 for (int i = 0; i < 4; i++) {
3631 pipe_so_target_reference(&ice->state.so_target[i],
3632 i < num_targets ? targets[i] : NULL);
3633 }
3634
3635 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3636 if (!active)
3637 return;
3638
3639 for (unsigned i = 0; i < 4; i++,
3640 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3641
3642 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3643 unsigned offset = offsets[i];
3644
3645 if (!tgt) {
3646 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3647 #if GEN_GEN < 12
3648 sob.SOBufferIndex = i;
3649 #else
3650 sob._3DCommandOpcode = 0;
3651 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3652 #endif
3653 }
3654 continue;
3655 }
3656
3657 struct iris_resource *res = (void *) tgt->base.buffer;
3658
3659 /* Note that offsets[i] will either be 0, causing us to zero
3660 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3661 * "continue appending at the existing offset."
3662 */
3663 assert(offset == 0 || offset == 0xFFFFFFFF);
3664
3665 /* We might be called by Begin (offset = 0), Pause, then Resume
3666 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3667 * will actually be sent to the GPU). In this case, we don't want
3668 * to append - we still want to do our initial zeroing.
3669 */
3670 if (!tgt->zeroed)
3671 offset = 0;
3672
3673 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3674 #if GEN_GEN < 12
3675 sob.SOBufferIndex = i;
3676 #else
3677 sob._3DCommandOpcode = 0;
3678 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3679 #endif
3680 sob.SurfaceBaseAddress =
3681 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset,
3682 IRIS_DOMAIN_OTHER_WRITE);
3683 sob.SOBufferEnable = true;
3684 sob.StreamOffsetWriteEnable = true;
3685 sob.StreamOutputBufferOffsetAddressEnable = true;
3686 sob.MOCS = iris_mocs(res->bo, &screen->isl_dev);
3687
3688 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3689 sob.StreamOffset = offset;
3690 sob.StreamOutputBufferOffsetAddress =
3691 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3692 tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
3693 }
3694 }
3695
3696 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3697 }
3698
3699 /**
3700 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3701 * 3DSTATE_STREAMOUT packets.
3702 *
3703 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3704 * hardware to record. We can create it entirely based on the shader, with
3705 * no dynamic state dependencies.
3706 *
3707 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3708 * state-based settings. We capture the shader-related ones here, and merge
3709 * the rest in at draw time.
3710 */
3711 static uint32_t *
3712 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3713 const struct brw_vue_map *vue_map)
3714 {
3715 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3716 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3717 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3718 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3719 int max_decls = 0;
3720 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3721
3722 memset(so_decl, 0, sizeof(so_decl));
3723
3724 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3725 * command feels strange -- each dword pair contains a SO_DECL per stream.
3726 */
3727 for (unsigned i = 0; i < info->num_outputs; i++) {
3728 const struct pipe_stream_output *output = &info->output[i];
3729 const int buffer = output->output_buffer;
3730 const int varying = output->register_index;
3731 const unsigned stream_id = output->stream;
3732 assert(stream_id < MAX_VERTEX_STREAMS);
3733
3734 buffer_mask[stream_id] |= 1 << buffer;
3735
3736 assert(vue_map->varying_to_slot[varying] >= 0);
3737
3738 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3739 * array. Instead, it simply increments DstOffset for the following
3740 * input by the number of components that should be skipped.
3741 *
3742 * Our hardware is unusual in that it requires us to program SO_DECLs
3743 * for fake "hole" components, rather than simply taking the offset
3744 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3745 * program as many size = 4 holes as we can, then a final hole to
3746 * accommodate the final 1, 2, or 3 remaining.
3747 */
3748 int skip_components = output->dst_offset - next_offset[buffer];
3749
3750 while (skip_components > 0) {
3751 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3752 .HoleFlag = 1,
3753 .OutputBufferSlot = output->output_buffer,
3754 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3755 };
3756 skip_components -= 4;
3757 }
3758
3759 next_offset[buffer] = output->dst_offset + output->num_components;
3760
3761 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3762 .OutputBufferSlot = output->output_buffer,
3763 .RegisterIndex = vue_map->varying_to_slot[varying],
3764 .ComponentMask =
3765 ((1 << output->num_components) - 1) << output->start_component,
3766 };
3767
3768 if (decls[stream_id] > max_decls)
3769 max_decls = decls[stream_id];
3770 }
3771
3772 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3773 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3774 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3775
3776 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3777 int urb_entry_read_offset = 0;
3778 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3779 urb_entry_read_offset;
3780
3781 /* We always read the whole vertex. This could be reduced at some
3782 * point by reading less and offsetting the register index in the
3783 * SO_DECLs.
3784 */
3785 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3786 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3787 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3788 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3789 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3790 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3791 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3792 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3793
3794 /* Set buffer pitches; 0 means unbound. */
3795 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3796 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3797 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3798 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3799 }
3800
3801 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3802 list.DWordLength = 3 + 2 * max_decls - 2;
3803 list.StreamtoBufferSelects0 = buffer_mask[0];
3804 list.StreamtoBufferSelects1 = buffer_mask[1];
3805 list.StreamtoBufferSelects2 = buffer_mask[2];
3806 list.StreamtoBufferSelects3 = buffer_mask[3];
3807 list.NumEntries0 = decls[0];
3808 list.NumEntries1 = decls[1];
3809 list.NumEntries2 = decls[2];
3810 list.NumEntries3 = decls[3];
3811 }
3812
3813 for (int i = 0; i < max_decls; i++) {
3814 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3815 entry.Stream0Decl = so_decl[0][i];
3816 entry.Stream1Decl = so_decl[1][i];
3817 entry.Stream2Decl = so_decl[2][i];
3818 entry.Stream3Decl = so_decl[3][i];
3819 }
3820 }
3821
3822 return map;
3823 }
3824
3825 static void
3826 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3827 const struct brw_vue_map *last_vue_map,
3828 bool two_sided_color,
3829 unsigned *out_offset,
3830 unsigned *out_length)
3831 {
3832 /* The compiler computes the first URB slot without considering COL/BFC
3833 * swizzling (because it doesn't know whether it's enabled), so we need
3834 * to do that here too. This may result in a smaller offset, which
3835 * should be safe.
3836 */
3837 const unsigned first_slot =
3838 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3839
3840 /* This becomes the URB read offset (counted in pairs of slots). */
3841 assert(first_slot % 2 == 0);
3842 *out_offset = first_slot / 2;
3843
3844 /* We need to adjust the inputs read to account for front/back color
3845 * swizzling, as it can make the URB length longer.
3846 */
3847 for (int c = 0; c <= 1; c++) {
3848 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3849 /* If two sided color is enabled, the fragment shader's gl_Color
3850 * (COL0) input comes from either the gl_FrontColor (COL0) or
3851 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3852 */
3853 if (two_sided_color)
3854 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3855
3856 /* If front color isn't written, we opt to give them back color
3857 * instead of an undefined value. Switch from COL to BFC.
3858 */
3859 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3860 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3861 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3862 }
3863 }
3864 }
3865
3866 /* Compute the minimum URB Read Length necessary for the FS inputs.
3867 *
3868 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3869 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3870 *
3871 * "This field should be set to the minimum length required to read the
3872 * maximum source attribute. The maximum source attribute is indicated
3873 * by the maximum value of the enabled Attribute # Source Attribute if
3874 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3875 * enable is not set.
3876 * read_length = ceiling((max_source_attr + 1) / 2)
3877 *
3878 * [errata] Corruption/Hang possible if length programmed larger than
3879 * recommended"
3880 *
3881 * Similar text exists for Ivy Bridge.
3882 *
3883 * We find the last URB slot that's actually read by the FS.
3884 */
3885 unsigned last_read_slot = last_vue_map->num_slots - 1;
3886 while (last_read_slot > first_slot && !(fs_input_slots &
3887 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3888 --last_read_slot;
3889
3890 /* The URB read length is the difference of the two, counted in pairs. */
3891 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3892 }
3893
3894 static void
3895 iris_emit_sbe_swiz(struct iris_batch *batch,
3896 const struct iris_context *ice,
3897 unsigned urb_read_offset,
3898 unsigned sprite_coord_enables)
3899 {
3900 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3901 const struct brw_wm_prog_data *wm_prog_data = (void *)
3902 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3903 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3904 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3905
3906 /* XXX: this should be generated when putting programs in place */
3907
3908 for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
3909 const uint8_t fs_attr = wm_prog_data->urb_setup_attribs[idx];
3910 const int input_index = wm_prog_data->urb_setup[fs_attr];
3911 if (input_index < 0 || input_index >= 16)
3912 continue;
3913
3914 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3915 &attr_overrides[input_index];
3916 int slot = vue_map->varying_to_slot[fs_attr];
3917
3918 /* Viewport and Layer are stored in the VUE header. We need to override
3919 * them to zero if earlier stages didn't write them, as GL requires that
3920 * they read back as zero when not explicitly set.
3921 */
3922 switch (fs_attr) {
3923 case VARYING_SLOT_VIEWPORT:
3924 case VARYING_SLOT_LAYER:
3925 attr->ComponentOverrideX = true;
3926 attr->ComponentOverrideW = true;
3927 attr->ConstantSource = CONST_0000;
3928
3929 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3930 attr->ComponentOverrideY = true;
3931 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3932 attr->ComponentOverrideZ = true;
3933 continue;
3934
3935 case VARYING_SLOT_PRIMITIVE_ID:
3936 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3937 if (slot == -1) {
3938 attr->ComponentOverrideX = true;
3939 attr->ComponentOverrideY = true;
3940 attr->ComponentOverrideZ = true;
3941 attr->ComponentOverrideW = true;
3942 attr->ConstantSource = PRIM_ID;
3943 continue;
3944 }
3945
3946 default:
3947 break;
3948 }
3949
3950 if (sprite_coord_enables & (1 << input_index))
3951 continue;
3952
3953 /* If there was only a back color written but not front, use back
3954 * as the color instead of undefined.
3955 */
3956 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3957 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3958 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3959 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3960
3961 /* Not written by the previous stage - undefined. */
3962 if (slot == -1) {
3963 attr->ComponentOverrideX = true;
3964 attr->ComponentOverrideY = true;
3965 attr->ComponentOverrideZ = true;
3966 attr->ComponentOverrideW = true;
3967 attr->ConstantSource = CONST_0001_FLOAT;
3968 continue;
3969 }
3970
3971 /* Compute the location of the attribute relative to the read offset,
3972 * which is counted in 256-bit increments (two 128-bit VUE slots).
3973 */
3974 const int source_attr = slot - 2 * urb_read_offset;
3975 assert(source_attr >= 0 && source_attr <= 32);
3976 attr->SourceAttribute = source_attr;
3977
3978 /* If we are doing two-sided color, and the VUE slot following this one
3979 * represents a back-facing color, then we need to instruct the SF unit
3980 * to do back-facing swizzling.
3981 */
3982 if (cso_rast->light_twoside &&
3983 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3984 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3985 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3986 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3987 attr->SwizzleSelect = INPUTATTR_FACING;
3988 }
3989
3990 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3991 for (int i = 0; i < 16; i++)
3992 sbes.Attribute[i] = attr_overrides[i];
3993 }
3994 }
3995
3996 static unsigned
3997 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3998 const struct iris_rasterizer_state *cso)
3999 {
4000 unsigned overrides = 0;
4001
4002 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
4003 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
4004
4005 for (int i = 0; i < 8; i++) {
4006 if ((cso->sprite_coord_enable & (1 << i)) &&
4007 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
4008 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
4009 }
4010
4011 return overrides;
4012 }
4013
4014 static void
4015 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
4016 {
4017 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4018 const struct brw_wm_prog_data *wm_prog_data = (void *)
4019 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4020 const struct shader_info *fs_info =
4021 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4022
4023 unsigned urb_read_offset, urb_read_length;
4024 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
4025 ice->shaders.last_vue_map,
4026 cso_rast->light_twoside,
4027 &urb_read_offset, &urb_read_length);
4028
4029 unsigned sprite_coord_overrides =
4030 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
4031
4032 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
4033 sbe.AttributeSwizzleEnable = true;
4034 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
4035 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
4036 sbe.VertexURBEntryReadOffset = urb_read_offset;
4037 sbe.VertexURBEntryReadLength = urb_read_length;
4038 sbe.ForceVertexURBEntryReadOffset = true;
4039 sbe.ForceVertexURBEntryReadLength = true;
4040 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
4041 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
4042 #if GEN_GEN >= 9
4043 for (int i = 0; i < 32; i++) {
4044 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
4045 }
4046 #endif
4047 }
4048
4049 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
4050 }
4051
4052 /* ------------------------------------------------------------------- */
4053
4054 /**
4055 * Populate VS program key fields based on the current state.
4056 */
4057 static void
4058 iris_populate_vs_key(const struct iris_context *ice,
4059 const struct shader_info *info,
4060 gl_shader_stage last_stage,
4061 struct iris_vs_prog_key *key)
4062 {
4063 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4064
4065 if (info->clip_distance_array_size == 0 &&
4066 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4067 last_stage == MESA_SHADER_VERTEX)
4068 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4069 }
4070
4071 /**
4072 * Populate TCS program key fields based on the current state.
4073 */
4074 static void
4075 iris_populate_tcs_key(const struct iris_context *ice,
4076 struct iris_tcs_prog_key *key)
4077 {
4078 }
4079
4080 /**
4081 * Populate TES program key fields based on the current state.
4082 */
4083 static void
4084 iris_populate_tes_key(const struct iris_context *ice,
4085 const struct shader_info *info,
4086 gl_shader_stage last_stage,
4087 struct iris_tes_prog_key *key)
4088 {
4089 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4090
4091 if (info->clip_distance_array_size == 0 &&
4092 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4093 last_stage == MESA_SHADER_TESS_EVAL)
4094 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4095 }
4096
4097 /**
4098 * Populate GS program key fields based on the current state.
4099 */
4100 static void
4101 iris_populate_gs_key(const struct iris_context *ice,
4102 const struct shader_info *info,
4103 gl_shader_stage last_stage,
4104 struct iris_gs_prog_key *key)
4105 {
4106 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4107
4108 if (info->clip_distance_array_size == 0 &&
4109 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4110 last_stage == MESA_SHADER_GEOMETRY)
4111 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4112 }
4113
4114 /**
4115 * Populate FS program key fields based on the current state.
4116 */
4117 static void
4118 iris_populate_fs_key(const struct iris_context *ice,
4119 const struct shader_info *info,
4120 struct iris_fs_prog_key *key)
4121 {
4122 struct iris_screen *screen = (void *) ice->ctx.screen;
4123 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
4124 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
4125 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
4126 const struct iris_blend_state *blend = ice->state.cso_blend;
4127
4128 key->nr_color_regions = fb->nr_cbufs;
4129
4130 key->clamp_fragment_color = rast->clamp_fragment_color;
4131
4132 key->alpha_to_coverage = blend->alpha_to_coverage;
4133
4134 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
4135
4136 key->flat_shade = rast->flatshade &&
4137 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
4138
4139 key->persample_interp = rast->force_persample_interp;
4140 key->multisample_fbo = rast->multisample && fb->samples > 1;
4141
4142 key->coherent_fb_fetch = GEN_GEN >= 9;
4143
4144 key->force_dual_color_blend =
4145 screen->driconf.dual_color_blend_by_location &&
4146 (blend->blend_enables & 1) && blend->dual_color_blending;
4147
4148 /* TODO: Respect glHint for key->high_quality_derivatives */
4149 }
4150
4151 static void
4152 iris_populate_cs_key(const struct iris_context *ice,
4153 struct iris_cs_prog_key *key)
4154 {
4155 }
4156
4157 static uint64_t
4158 KSP(const struct iris_compiled_shader *shader)
4159 {
4160 struct iris_resource *res = (void *) shader->assembly.res;
4161 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
4162 }
4163
4164 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
4165 pkt.KernelStartPointer = KSP(shader); \
4166 pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
4167 pkt.FloatingPointMode = prog_data->use_alt_mode; \
4168 \
4169 pkt.DispatchGRFStartRegisterForURBData = \
4170 prog_data->dispatch_grf_start_reg; \
4171 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
4172 pkt.prefix##URBEntryReadOffset = 0; \
4173 \
4174 pkt.StatisticsEnable = true; \
4175 pkt.Enable = true; \
4176 \
4177 if (prog_data->total_scratch) { \
4178 struct iris_bo *bo = \
4179 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
4180 uint32_t scratch_addr = bo->gtt_offset; \
4181 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
4182 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr, \
4183 IRIS_DOMAIN_NONE); \
4184 }
4185
4186 /**
4187 * Encode most of 3DSTATE_VS based on the compiled shader.
4188 */
4189 static void
4190 iris_store_vs_state(struct iris_context *ice,
4191 const struct gen_device_info *devinfo,
4192 struct iris_compiled_shader *shader)
4193 {
4194 struct brw_stage_prog_data *prog_data = shader->prog_data;
4195 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4196
4197 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
4198 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
4199 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
4200 vs.SIMD8DispatchEnable = true;
4201 vs.UserClipDistanceCullTestEnableBitmask =
4202 vue_prog_data->cull_distance_mask;
4203 }
4204 }
4205
4206 /**
4207 * Encode most of 3DSTATE_HS based on the compiled shader.
4208 */
4209 static void
4210 iris_store_tcs_state(struct iris_context *ice,
4211 const struct gen_device_info *devinfo,
4212 struct iris_compiled_shader *shader)
4213 {
4214 struct brw_stage_prog_data *prog_data = shader->prog_data;
4215 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4216 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
4217
4218 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
4219 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
4220
4221 #if GEN_GEN >= 12
4222 /* GEN:BUG:1604578095:
4223 *
4224 * Hang occurs when the number of max threads is less than 2 times
4225 * the number of instance count. The number of max threads must be
4226 * more than 2 times the number of instance count.
4227 */
4228 assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
4229 hs.DispatchGRFStartRegisterForURBData = prog_data->dispatch_grf_start_reg & 0x1f;
4230 hs.DispatchGRFStartRegisterForURBData5 = prog_data->dispatch_grf_start_reg >> 5;
4231 #endif
4232
4233 hs.InstanceCount = tcs_prog_data->instances - 1;
4234 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4235 hs.IncludeVertexHandles = true;
4236
4237 #if GEN_GEN == 12
4238 /* Patch Count threshold specifies the maximum number of patches that
4239 * will be accumulated before a thread dispatch is forced.
4240 */
4241 hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
4242 #endif
4243
4244 #if GEN_GEN >= 9
4245 hs.DispatchMode = vue_prog_data->dispatch_mode;
4246 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4247 #endif
4248 }
4249 }
4250
4251 /**
4252 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
4253 */
4254 static void
4255 iris_store_tes_state(struct iris_context *ice,
4256 const struct gen_device_info *devinfo,
4257 struct iris_compiled_shader *shader)
4258 {
4259 struct brw_stage_prog_data *prog_data = shader->prog_data;
4260 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4261 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
4262
4263 uint32_t *te_state = (void *) shader->derived_data;
4264 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
4265
4266 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
4267 te.Partitioning = tes_prog_data->partitioning;
4268 te.OutputTopology = tes_prog_data->output_topology;
4269 te.TEDomain = tes_prog_data->domain;
4270 te.TEEnable = true;
4271 te.MaximumTessellationFactorOdd = 63.0;
4272 te.MaximumTessellationFactorNotOdd = 64.0;
4273 }
4274
4275 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
4276 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
4277
4278 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4279 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4280 ds.ComputeWCoordinateEnable =
4281 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4282
4283 ds.UserClipDistanceCullTestEnableBitmask =
4284 vue_prog_data->cull_distance_mask;
4285 }
4286
4287 }
4288
4289 /**
4290 * Encode most of 3DSTATE_GS based on the compiled shader.
4291 */
4292 static void
4293 iris_store_gs_state(struct iris_context *ice,
4294 const struct gen_device_info *devinfo,
4295 struct iris_compiled_shader *shader)
4296 {
4297 struct brw_stage_prog_data *prog_data = shader->prog_data;
4298 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4299 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
4300
4301 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
4302 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
4303
4304 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
4305 gs.OutputTopology = gs_prog_data->output_topology;
4306 gs.ControlDataHeaderSize =
4307 gs_prog_data->control_data_header_size_hwords;
4308 gs.InstanceControl = gs_prog_data->invocations - 1;
4309 gs.DispatchMode = DISPATCH_MODE_SIMD8;
4310 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
4311 gs.ControlDataFormat = gs_prog_data->control_data_format;
4312 gs.ReorderMode = TRAILING;
4313 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
4314 gs.MaximumNumberofThreads =
4315 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
4316 : (devinfo->max_gs_threads - 1);
4317
4318 if (gs_prog_data->static_vertex_count != -1) {
4319 gs.StaticOutput = true;
4320 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
4321 }
4322 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
4323
4324 gs.UserClipDistanceCullTestEnableBitmask =
4325 vue_prog_data->cull_distance_mask;
4326
4327 const int urb_entry_write_offset = 1;
4328 const uint32_t urb_entry_output_length =
4329 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
4330 urb_entry_write_offset;
4331
4332 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
4333 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
4334 }
4335 }
4336
4337 /**
4338 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
4339 */
4340 static void
4341 iris_store_fs_state(struct iris_context *ice,
4342 const struct gen_device_info *devinfo,
4343 struct iris_compiled_shader *shader)
4344 {
4345 struct brw_stage_prog_data *prog_data = shader->prog_data;
4346 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
4347
4348 uint32_t *ps_state = (void *) shader->derived_data;
4349 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
4350
4351 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4352 ps.VectorMaskEnable = true;
4353 ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
4354 ps.FloatingPointMode = prog_data->use_alt_mode;
4355 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
4356
4357 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
4358
4359 /* From the documentation for this packet:
4360 * "If the PS kernel does not need the Position XY Offsets to
4361 * compute a Position Value, then this field should be programmed
4362 * to POSOFFSET_NONE."
4363 *
4364 * "SW Recommendation: If the PS kernel needs the Position Offsets
4365 * to compute a Position XY value, this field should match Position
4366 * ZW Interpolation Mode to ensure a consistent position.xyzw
4367 * computation."
4368 *
4369 * We only require XY sample offsets. So, this recommendation doesn't
4370 * look useful at the moment. We might need this in future.
4371 */
4372 ps.PositionXYOffsetSelect =
4373 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
4374
4375 if (prog_data->total_scratch) {
4376 struct iris_bo *bo =
4377 iris_get_scratch_space(ice, prog_data->total_scratch,
4378 MESA_SHADER_FRAGMENT);
4379 uint32_t scratch_addr = bo->gtt_offset;
4380 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4381 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr,
4382 IRIS_DOMAIN_NONE);
4383 }
4384 }
4385
4386 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4387 psx.PixelShaderValid = true;
4388 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
4389 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
4390 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
4391 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
4392 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
4393 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
4394 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
4395
4396 #if GEN_GEN >= 9
4397 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
4398 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
4399 #endif
4400 }
4401 }
4402
4403 /**
4404 * Compute the size of the derived data (shader command packets).
4405 *
4406 * This must match the data written by the iris_store_xs_state() functions.
4407 */
4408 static void
4409 iris_store_cs_state(struct iris_context *ice,
4410 const struct gen_device_info *devinfo,
4411 struct iris_compiled_shader *shader)
4412 {
4413 struct brw_stage_prog_data *prog_data = shader->prog_data;
4414 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
4415 void *map = shader->derived_data;
4416
4417 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
4418 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4419 desc.SharedLocalMemorySize =
4420 encode_slm_size(GEN_GEN, prog_data->total_shared);
4421 desc.BarrierEnable = cs_prog_data->uses_barrier;
4422 desc.CrossThreadConstantDataReadLength =
4423 cs_prog_data->push.cross_thread.regs;
4424 #if GEN_GEN >= 12
4425 /* TODO: Check if we are missing workarounds and enable mid-thread
4426 * preemption.
4427 *
4428 * We still have issues with mid-thread preemption (it was already
4429 * disabled by the kernel on gen11, due to missing workarounds). It's
4430 * possible that we are just missing some workarounds, and could enable
4431 * it later, but for now let's disable it to fix a GPU in compute in Car
4432 * Chase (and possibly more).
4433 */
4434 desc.ThreadPreemptionDisable = true;
4435 #endif
4436 }
4437 }
4438
4439 static unsigned
4440 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
4441 {
4442 assert(cache_id <= IRIS_CACHE_BLORP);
4443
4444 static const unsigned dwords[] = {
4445 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
4446 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
4447 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
4448 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
4449 [IRIS_CACHE_FS] =
4450 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
4451 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
4452 [IRIS_CACHE_BLORP] = 0,
4453 };
4454
4455 return sizeof(uint32_t) * dwords[cache_id];
4456 }
4457
4458 /**
4459 * Create any state packets corresponding to the given shader stage
4460 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
4461 * This means that we can look up a program in the in-memory cache and
4462 * get most of the state packet without having to reconstruct it.
4463 */
4464 static void
4465 iris_store_derived_program_state(struct iris_context *ice,
4466 enum iris_program_cache_id cache_id,
4467 struct iris_compiled_shader *shader)
4468 {
4469 struct iris_screen *screen = (void *) ice->ctx.screen;
4470 const struct gen_device_info *devinfo = &screen->devinfo;
4471
4472 switch (cache_id) {
4473 case IRIS_CACHE_VS:
4474 iris_store_vs_state(ice, devinfo, shader);
4475 break;
4476 case IRIS_CACHE_TCS:
4477 iris_store_tcs_state(ice, devinfo, shader);
4478 break;
4479 case IRIS_CACHE_TES:
4480 iris_store_tes_state(ice, devinfo, shader);
4481 break;
4482 case IRIS_CACHE_GS:
4483 iris_store_gs_state(ice, devinfo, shader);
4484 break;
4485 case IRIS_CACHE_FS:
4486 iris_store_fs_state(ice, devinfo, shader);
4487 break;
4488 case IRIS_CACHE_CS:
4489 iris_store_cs_state(ice, devinfo, shader);
4490 case IRIS_CACHE_BLORP:
4491 break;
4492 default:
4493 break;
4494 }
4495 }
4496
4497 /* ------------------------------------------------------------------- */
4498
4499 static const uint32_t push_constant_opcodes[] = {
4500 [MESA_SHADER_VERTEX] = 21,
4501 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4502 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4503 [MESA_SHADER_GEOMETRY] = 22,
4504 [MESA_SHADER_FRAGMENT] = 23,
4505 [MESA_SHADER_COMPUTE] = 0,
4506 };
4507
4508 static uint32_t
4509 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4510 {
4511 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4512
4513 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
4514
4515 return ice->state.unbound_tex.offset;
4516 }
4517
4518 static uint32_t
4519 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4520 {
4521 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4522 if (!ice->state.null_fb.res)
4523 return use_null_surface(batch, ice);
4524
4525 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4526
4527 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
4528
4529 return ice->state.null_fb.offset;
4530 }
4531
4532 static uint32_t
4533 surf_state_offset_for_aux(struct iris_resource *res,
4534 unsigned aux_modes,
4535 enum isl_aux_usage aux_usage)
4536 {
4537 assert(aux_modes & (1 << aux_usage));
4538 return SURFACE_STATE_ALIGNMENT *
4539 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4540 }
4541
4542 #if GEN_GEN == 9
4543 static void
4544 surf_state_update_clear_value(struct iris_batch *batch,
4545 struct iris_resource *res,
4546 struct iris_state_ref *state,
4547 unsigned aux_modes,
4548 enum isl_aux_usage aux_usage)
4549 {
4550 struct isl_device *isl_dev = &batch->screen->isl_dev;
4551 struct iris_bo *state_bo = iris_resource_bo(state->res);
4552 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4553 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4554 uint32_t clear_offset = offset_into_bo +
4555 isl_dev->ss.clear_value_offset +
4556 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4557 uint32_t *color = res->aux.clear_color.u32;
4558
4559 assert(isl_dev->ss.clear_value_size == 16);
4560
4561 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4562 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4563 PIPE_CONTROL_WRITE_IMMEDIATE,
4564 state_bo, clear_offset, color[0]);
4565 } else {
4566 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4567 PIPE_CONTROL_WRITE_IMMEDIATE,
4568 state_bo, clear_offset,
4569 (uint64_t) color[0] |
4570 (uint64_t) color[1] << 32);
4571 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4572 PIPE_CONTROL_WRITE_IMMEDIATE,
4573 state_bo, clear_offset + 8,
4574 (uint64_t) color[2] |
4575 (uint64_t) color[3] << 32);
4576 }
4577
4578 iris_emit_pipe_control_flush(batch,
4579 "update fast clear: state cache invalidate",
4580 PIPE_CONTROL_FLUSH_ENABLE |
4581 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4582 }
4583 #endif
4584
4585 static void
4586 update_clear_value(struct iris_context *ice,
4587 struct iris_batch *batch,
4588 struct iris_resource *res,
4589 struct iris_surface_state *surf_state,
4590 unsigned all_aux_modes,
4591 struct isl_view *view)
4592 {
4593 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4594 UNUSED unsigned aux_modes = all_aux_modes;
4595
4596 /* We only need to update the clear color in the surface state for gen8 and
4597 * gen9. Newer gens can read it directly from the clear color state buffer.
4598 */
4599 #if GEN_GEN == 9
4600 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4601 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4602
4603 while (aux_modes) {
4604 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4605
4606 surf_state_update_clear_value(batch, res, &surf_state->ref,
4607 all_aux_modes, aux_usage);
4608 }
4609 #elif GEN_GEN == 8
4610 /* TODO: Could update rather than re-filling */
4611 alloc_surface_states(surf_state, all_aux_modes);
4612
4613 void *map = surf_state->cpu;
4614
4615 while (aux_modes) {
4616 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4617 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage,
4618 0, 0, 0);
4619 map += SURFACE_STATE_ALIGNMENT;
4620 }
4621
4622 upload_surface_states(ice->state.surface_uploader, surf_state);
4623 #endif
4624 }
4625
4626 /**
4627 * Add a surface to the validation list, as well as the buffer containing
4628 * the corresponding SURFACE_STATE.
4629 *
4630 * Returns the binding table entry (offset to SURFACE_STATE).
4631 */
4632 static uint32_t
4633 use_surface(struct iris_context *ice,
4634 struct iris_batch *batch,
4635 struct pipe_surface *p_surf,
4636 bool writeable,
4637 enum isl_aux_usage aux_usage,
4638 bool is_read_surface,
4639 enum iris_domain access)
4640 {
4641 struct iris_surface *surf = (void *) p_surf;
4642 struct iris_resource *res = (void *) p_surf->texture;
4643 uint32_t offset = 0;
4644
4645 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture),
4646 writeable, access);
4647 if (GEN_GEN == 8 && is_read_surface) {
4648 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.ref.res), false,
4649 IRIS_DOMAIN_NONE);
4650 } else {
4651 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.ref.res), false,
4652 IRIS_DOMAIN_NONE);
4653 }
4654
4655 if (res->aux.bo) {
4656 iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
4657 if (res->aux.clear_color_bo)
4658 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
4659
4660 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4661 sizeof(surf->clear_color)) != 0) {
4662 update_clear_value(ice, batch, res, &surf->surface_state,
4663 res->aux.possible_usages, &surf->view);
4664 if (GEN_GEN == 8) {
4665 update_clear_value(ice, batch, res, &surf->surface_state_read,
4666 res->aux.possible_usages, &surf->read_view);
4667 }
4668 surf->clear_color = res->aux.clear_color;
4669 }
4670 }
4671
4672 offset = (GEN_GEN == 8 && is_read_surface)
4673 ? surf->surface_state_read.ref.offset
4674 : surf->surface_state.ref.offset;
4675
4676 return offset +
4677 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4678 }
4679
4680 static uint32_t
4681 use_sampler_view(struct iris_context *ice,
4682 struct iris_batch *batch,
4683 struct iris_sampler_view *isv)
4684 {
4685 enum isl_aux_usage aux_usage =
4686 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format);
4687
4688 iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_OTHER_READ);
4689 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.ref.res), false,
4690 IRIS_DOMAIN_NONE);
4691
4692 if (isv->res->aux.bo) {
4693 iris_use_pinned_bo(batch, isv->res->aux.bo,
4694 false, IRIS_DOMAIN_OTHER_READ);
4695 if (isv->res->aux.clear_color_bo)
4696 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
4697 false, IRIS_DOMAIN_OTHER_READ);
4698 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4699 sizeof(isv->clear_color)) != 0) {
4700 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4701 isv->res->aux.sampler_usages, &isv->view);
4702 isv->clear_color = isv->res->aux.clear_color;
4703 }
4704 }
4705
4706 return isv->surface_state.ref.offset +
4707 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4708 aux_usage);
4709 }
4710
4711 static uint32_t
4712 use_ubo_ssbo(struct iris_batch *batch,
4713 struct iris_context *ice,
4714 struct pipe_shader_buffer *buf,
4715 struct iris_state_ref *surf_state,
4716 bool writable, enum iris_domain access)
4717 {
4718 if (!buf->buffer || !surf_state->res)
4719 return use_null_surface(batch, ice);
4720
4721 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
4722 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
4723 IRIS_DOMAIN_NONE);
4724
4725 return surf_state->offset;
4726 }
4727
4728 static uint32_t
4729 use_image(struct iris_batch *batch, struct iris_context *ice,
4730 struct iris_shader_state *shs, const struct shader_info *info,
4731 int i)
4732 {
4733 struct iris_image_view *iv = &shs->image[i];
4734 struct iris_resource *res = (void *) iv->base.resource;
4735
4736 if (!res)
4737 return use_null_surface(batch, ice);
4738
4739 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4740
4741 iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
4742 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.ref.res),
4743 false, IRIS_DOMAIN_NONE);
4744
4745 if (res->aux.bo)
4746 iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
4747
4748 enum isl_aux_usage aux_usage =
4749 iris_image_view_aux_usage(ice, &iv->base, info);
4750
4751 return iv->surface_state.ref.offset +
4752 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4753 }
4754
4755 #define push_bt_entry(addr) \
4756 assert(addr >= binder_addr); \
4757 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4758 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4759
4760 #define bt_assert(section) \
4761 if (!pin_only && shader->bt.used_mask[section] != 0) \
4762 assert(shader->bt.offsets[section] == s);
4763
4764 /**
4765 * Populate the binding table for a given shader stage.
4766 *
4767 * This fills out the table of pointers to surfaces required by the shader,
4768 * and also adds those buffers to the validation list so the kernel can make
4769 * resident before running our batch.
4770 */
4771 static void
4772 iris_populate_binding_table(struct iris_context *ice,
4773 struct iris_batch *batch,
4774 gl_shader_stage stage,
4775 bool pin_only)
4776 {
4777 const struct iris_binder *binder = &ice->state.binder;
4778 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4779 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4780 if (!shader)
4781 return;
4782
4783 struct iris_binding_table *bt = &shader->bt;
4784 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4785 struct iris_shader_state *shs = &ice->state.shaders[stage];
4786 uint32_t binder_addr = binder->bo->gtt_offset;
4787
4788 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4789 int s = 0;
4790
4791 const struct shader_info *info = iris_get_shader_info(ice, stage);
4792 if (!info) {
4793 /* TCS passthrough doesn't need a binding table. */
4794 assert(stage == MESA_SHADER_TESS_CTRL);
4795 return;
4796 }
4797
4798 if (stage == MESA_SHADER_COMPUTE &&
4799 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4800 /* surface for gl_NumWorkGroups */
4801 struct iris_state_ref *grid_data = &ice->state.grid_size;
4802 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4803 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
4804 IRIS_DOMAIN_OTHER_READ);
4805 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
4806 IRIS_DOMAIN_NONE);
4807 push_bt_entry(grid_state->offset);
4808 }
4809
4810 if (stage == MESA_SHADER_FRAGMENT) {
4811 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4812 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4813 if (cso_fb->nr_cbufs) {
4814 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4815 uint32_t addr;
4816 if (cso_fb->cbufs[i]) {
4817 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4818 ice->state.draw_aux_usage[i], false,
4819 IRIS_DOMAIN_RENDER_WRITE);
4820 } else {
4821 addr = use_null_fb_surface(batch, ice);
4822 }
4823 push_bt_entry(addr);
4824 }
4825 } else if (GEN_GEN < 11) {
4826 uint32_t addr = use_null_fb_surface(batch, ice);
4827 push_bt_entry(addr);
4828 }
4829 }
4830
4831 #define foreach_surface_used(index, group) \
4832 bt_assert(group); \
4833 for (int index = 0; index < bt->sizes[group]; index++) \
4834 if (iris_group_index_to_bti(bt, group, index) != \
4835 IRIS_SURFACE_NOT_USED)
4836
4837 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4838 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4839 uint32_t addr;
4840 if (cso_fb->cbufs[i]) {
4841 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4842 false, ice->state.draw_aux_usage[i], true,
4843 IRIS_DOMAIN_OTHER_READ);
4844 push_bt_entry(addr);
4845 }
4846 }
4847
4848 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4849 struct iris_sampler_view *view = shs->textures[i];
4850 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4851 : use_null_surface(batch, ice);
4852 push_bt_entry(addr);
4853 }
4854
4855 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4856 uint32_t addr = use_image(batch, ice, shs, info, i);
4857 push_bt_entry(addr);
4858 }
4859
4860 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4861 uint32_t addr;
4862
4863 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4864 if (ish->const_data) {
4865 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false,
4866 IRIS_DOMAIN_OTHER_READ);
4867 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4868 false, IRIS_DOMAIN_NONE);
4869 addr = ish->const_data_state.offset;
4870 } else {
4871 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4872 addr = use_null_surface(batch, ice);
4873 }
4874 } else {
4875 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4876 &shs->constbuf_surf_state[i], false,
4877 IRIS_DOMAIN_OTHER_READ);
4878 }
4879
4880 push_bt_entry(addr);
4881 }
4882
4883 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4884 uint32_t addr =
4885 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4886 shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
4887 push_bt_entry(addr);
4888 }
4889
4890 #if 0
4891 /* XXX: YUV surfaces not implemented yet */
4892 bt_assert(plane_start[1], ...);
4893 bt_assert(plane_start[2], ...);
4894 #endif
4895 }
4896
4897 static void
4898 iris_use_optional_res(struct iris_batch *batch,
4899 struct pipe_resource *res,
4900 bool writeable,
4901 enum iris_domain access)
4902 {
4903 if (res) {
4904 struct iris_bo *bo = iris_resource_bo(res);
4905 iris_use_pinned_bo(batch, bo, writeable, access);
4906 }
4907 }
4908
4909 static void
4910 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4911 struct pipe_surface *zsbuf,
4912 struct iris_depth_stencil_alpha_state *cso_zsa)
4913 {
4914 if (!zsbuf)
4915 return;
4916
4917 struct iris_resource *zres, *sres;
4918 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4919
4920 if (zres) {
4921 const enum iris_domain access = cso_zsa->depth_writes_enabled ?
4922 IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
4923 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
4924 access);
4925 if (zres->aux.bo) {
4926 iris_use_pinned_bo(batch, zres->aux.bo,
4927 cso_zsa->depth_writes_enabled, access);
4928 }
4929 }
4930
4931 if (sres) {
4932 const enum iris_domain access = cso_zsa->stencil_writes_enabled ?
4933 IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
4934 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
4935 access);
4936 }
4937 }
4938
4939 /* ------------------------------------------------------------------- */
4940
4941 /**
4942 * Pin any BOs which were installed by a previous batch, and restored
4943 * via the hardware logical context mechanism.
4944 *
4945 * We don't need to re-emit all state every batch - the hardware context
4946 * mechanism will save and restore it for us. This includes pointers to
4947 * various BOs...which won't exist unless we ask the kernel to pin them
4948 * by adding them to the validation list.
4949 *
4950 * We can skip buffers if we've re-emitted those packets, as we're
4951 * overwriting those stale pointers with new ones, and don't actually
4952 * refer to the old BOs.
4953 */
4954 static void
4955 iris_restore_render_saved_bos(struct iris_context *ice,
4956 struct iris_batch *batch,
4957 const struct pipe_draw_info *draw)
4958 {
4959 struct iris_genx_state *genx = ice->state.genx;
4960
4961 const uint64_t clean = ~ice->state.dirty;
4962 const uint64_t stage_clean = ~ice->state.stage_dirty;
4963
4964 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4965 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
4966 IRIS_DOMAIN_NONE);
4967 }
4968
4969 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4970 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
4971 IRIS_DOMAIN_NONE);
4972 }
4973
4974 if (clean & IRIS_DIRTY_BLEND_STATE) {
4975 iris_use_optional_res(batch, ice->state.last_res.blend, false,
4976 IRIS_DOMAIN_NONE);
4977 }
4978
4979 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4980 iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
4981 IRIS_DOMAIN_NONE);
4982 }
4983
4984 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4985 iris_use_optional_res(batch, ice->state.last_res.scissor, false,
4986 IRIS_DOMAIN_NONE);
4987 }
4988
4989 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4990 for (int i = 0; i < 4; i++) {
4991 struct iris_stream_output_target *tgt =
4992 (void *) ice->state.so_target[i];
4993 if (tgt) {
4994 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4995 true, IRIS_DOMAIN_OTHER_WRITE);
4996 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4997 true, IRIS_DOMAIN_OTHER_WRITE);
4998 }
4999 }
5000 }
5001
5002 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5003 if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
5004 continue;
5005
5006 struct iris_shader_state *shs = &ice->state.shaders[stage];
5007 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5008
5009 if (!shader)
5010 continue;
5011
5012 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5013
5014 for (int i = 0; i < 4; i++) {
5015 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5016
5017 if (range->length == 0)
5018 continue;
5019
5020 /* Range block is a binding table index, map back to UBO index. */
5021 unsigned block_index = iris_bti_to_group_index(
5022 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5023 assert(block_index != IRIS_SURFACE_NOT_USED);
5024
5025 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5026 struct iris_resource *res = (void *) cbuf->buffer;
5027
5028 if (res)
5029 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
5030 else
5031 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
5032 IRIS_DOMAIN_OTHER_READ);
5033 }
5034 }
5035
5036 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5037 if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
5038 /* Re-pin any buffers referred to by the binding table. */
5039 iris_populate_binding_table(ice, batch, stage, true);
5040 }
5041 }
5042
5043 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5044 struct iris_shader_state *shs = &ice->state.shaders[stage];
5045 struct pipe_resource *res = shs->sampler_table.res;
5046 if (res)
5047 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5048 IRIS_DOMAIN_NONE);
5049 }
5050
5051 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5052 if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
5053 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5054
5055 if (shader) {
5056 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5057 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
5058
5059 struct brw_stage_prog_data *prog_data = shader->prog_data;
5060
5061 if (prog_data->total_scratch > 0) {
5062 struct iris_bo *bo =
5063 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5064 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5065 }
5066 }
5067 }
5068 }
5069
5070 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
5071 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5072 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5073 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5074 }
5075
5076 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
5077 IRIS_DOMAIN_OTHER_READ);
5078
5079 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
5080 uint64_t bound = ice->state.bound_vertex_buffers;
5081 while (bound) {
5082 const int i = u_bit_scan64(&bound);
5083 struct pipe_resource *res = genx->vertex_buffers[i].resource;
5084 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5085 IRIS_DOMAIN_OTHER_READ);
5086 }
5087 }
5088 }
5089
5090 static void
5091 iris_restore_compute_saved_bos(struct iris_context *ice,
5092 struct iris_batch *batch,
5093 const struct pipe_grid_info *grid)
5094 {
5095 const uint64_t stage_clean = ~ice->state.stage_dirty;
5096
5097 const int stage = MESA_SHADER_COMPUTE;
5098 struct iris_shader_state *shs = &ice->state.shaders[stage];
5099
5100 if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
5101 /* Re-pin any buffers referred to by the binding table. */
5102 iris_populate_binding_table(ice, batch, stage, true);
5103 }
5104
5105 struct pipe_resource *sampler_res = shs->sampler_table.res;
5106 if (sampler_res)
5107 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
5108 IRIS_DOMAIN_NONE);
5109
5110 if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
5111 (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
5112 (stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
5113 (stage_clean & IRIS_STAGE_DIRTY_CS)) {
5114 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
5115 IRIS_DOMAIN_NONE);
5116 }
5117
5118 if (stage_clean & IRIS_STAGE_DIRTY_CS) {
5119 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5120
5121 if (shader) {
5122 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5123 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
5124
5125 struct iris_bo *curbe_bo =
5126 iris_resource_bo(ice->state.last_res.cs_thread_ids);
5127 iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
5128
5129 struct brw_stage_prog_data *prog_data = shader->prog_data;
5130
5131 if (prog_data->total_scratch > 0) {
5132 struct iris_bo *bo =
5133 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5134 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5135 }
5136 }
5137 }
5138 }
5139
5140 /**
5141 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
5142 */
5143 static void
5144 iris_update_surface_base_address(struct iris_batch *batch,
5145 struct iris_binder *binder)
5146 {
5147 if (batch->last_surface_base_address == binder->bo->gtt_offset)
5148 return;
5149
5150 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
5151
5152 iris_batch_sync_region_start(batch);
5153
5154 flush_before_state_base_change(batch);
5155
5156 #if GEN_GEN == 12
5157 /* GEN:BUG:1607854226:
5158 *
5159 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
5160 * mode by putting the pipeline temporarily in 3D mode..
5161 */
5162 if (batch->name == IRIS_BATCH_COMPUTE)
5163 emit_pipeline_select(batch, _3D);
5164 #endif
5165
5166 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
5167 sba.SurfaceStateBaseAddressModifyEnable = true;
5168 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
5169
5170 /* The hardware appears to pay attention to the MOCS fields even
5171 * if you don't set the "Address Modify Enable" bit for the base.
5172 */
5173 sba.GeneralStateMOCS = mocs;
5174 sba.StatelessDataPortAccessMOCS = mocs;
5175 sba.DynamicStateMOCS = mocs;
5176 sba.IndirectObjectMOCS = mocs;
5177 sba.InstructionMOCS = mocs;
5178 sba.SurfaceStateMOCS = mocs;
5179 #if GEN_GEN >= 9
5180 sba.BindlessSurfaceStateMOCS = mocs;
5181 #endif
5182 }
5183
5184 #if GEN_GEN == 12
5185 /* GEN:BUG:1607854226:
5186 *
5187 * Put the pipeline back into compute mode.
5188 */
5189 if (batch->name == IRIS_BATCH_COMPUTE)
5190 emit_pipeline_select(batch, GPGPU);
5191 #endif
5192
5193 flush_after_state_base_change(batch);
5194 iris_batch_sync_region_end(batch);
5195
5196 batch->last_surface_base_address = binder->bo->gtt_offset;
5197 }
5198
5199 static inline void
5200 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
5201 bool window_space_position, float *zmin, float *zmax)
5202 {
5203 if (window_space_position) {
5204 *zmin = 0.f;
5205 *zmax = 1.f;
5206 return;
5207 }
5208 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
5209 }
5210
5211 #if GEN_GEN >= 12
5212 void
5213 genX(invalidate_aux_map_state)(struct iris_batch *batch)
5214 {
5215 struct iris_screen *screen = batch->screen;
5216 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5217 if (!aux_map_ctx)
5218 return;
5219 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
5220 if (batch->last_aux_map_state != aux_map_state_num) {
5221 /* HSD 1209978178: docs say that before programming the aux table:
5222 *
5223 * "Driver must ensure that the engine is IDLE but ensure it doesn't
5224 * add extra flushes in the case it knows that the engine is already
5225 * IDLE."
5226 *
5227 * An end of pipe sync is needed here, otherwise we see GPU hangs in
5228 * dEQP-GLES31.functional.copy_image.* tests.
5229 */
5230 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
5231 PIPE_CONTROL_CS_STALL);
5232
5233 /* If the aux-map state number increased, then we need to rewrite the
5234 * register. Rewriting the register is used to both set the aux-map
5235 * translation table address, and also to invalidate any previously
5236 * cached translations.
5237 */
5238 iris_load_register_imm32(batch, GENX(GFX_CCS_AUX_INV_num), 1);
5239 batch->last_aux_map_state = aux_map_state_num;
5240 }
5241 }
5242
5243 static void
5244 init_aux_map_state(struct iris_batch *batch)
5245 {
5246 struct iris_screen *screen = batch->screen;
5247 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5248 if (!aux_map_ctx)
5249 return;
5250
5251 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
5252 assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
5253 iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
5254 base_addr);
5255 }
5256 #endif
5257
5258 struct push_bos {
5259 struct {
5260 struct iris_address addr;
5261 uint32_t length;
5262 } buffers[4];
5263 int buffer_count;
5264 uint32_t max_length;
5265 };
5266
5267 static void
5268 setup_constant_buffers(struct iris_context *ice,
5269 struct iris_batch *batch,
5270 int stage,
5271 struct push_bos *push_bos)
5272 {
5273 struct iris_shader_state *shs = &ice->state.shaders[stage];
5274 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5275 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5276
5277 uint32_t push_range_sum = 0;
5278
5279 int n = 0;
5280 for (int i = 0; i < 4; i++) {
5281 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5282
5283 if (range->length == 0)
5284 continue;
5285
5286 push_range_sum += range->length;
5287
5288 if (range->length > push_bos->max_length)
5289 push_bos->max_length = range->length;
5290
5291 /* Range block is a binding table index, map back to UBO index. */
5292 unsigned block_index = iris_bti_to_group_index(
5293 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5294 assert(block_index != IRIS_SURFACE_NOT_USED);
5295
5296 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5297 struct iris_resource *res = (void *) cbuf->buffer;
5298
5299 assert(cbuf->buffer_offset % 32 == 0);
5300
5301 push_bos->buffers[n].length = range->length;
5302 push_bos->buffers[n].addr =
5303 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
5304 : batch->screen->workaround_address;
5305 n++;
5306 }
5307
5308 /* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
5309 *
5310 * "The sum of all four read length fields must be less than or
5311 * equal to the size of 64."
5312 */
5313 assert(push_range_sum <= 64);
5314
5315 push_bos->buffer_count = n;
5316 }
5317
5318 static void
5319 emit_push_constant_packets(struct iris_context *ice,
5320 struct iris_batch *batch,
5321 int stage,
5322 const struct push_bos *push_bos)
5323 {
5324 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
5325 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5326 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5327
5328 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
5329 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
5330 #if GEN_GEN >= 12
5331 pkt.MOCS = isl_dev->mocs.internal;
5332 #endif
5333 if (prog_data) {
5334 /* The Skylake PRM contains the following restriction:
5335 *
5336 * "The driver must ensure The following case does not occur
5337 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
5338 * buffer 3 read length equal to zero committed followed by a
5339 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
5340 * zero committed."
5341 *
5342 * To avoid this, we program the buffers in the highest slots.
5343 * This way, slot 0 is only used if slot 3 is also used.
5344 */
5345 int n = push_bos->buffer_count;
5346 assert(n <= 4);
5347 const unsigned shift = 4 - n;
5348 for (int i = 0; i < n; i++) {
5349 pkt.ConstantBody.ReadLength[i + shift] =
5350 push_bos->buffers[i].length;
5351 pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
5352 }
5353 }
5354 }
5355 }
5356
5357 #if GEN_GEN >= 12
5358 static void
5359 emit_push_constant_packet_all(struct iris_context *ice,
5360 struct iris_batch *batch,
5361 uint32_t shader_mask,
5362 const struct push_bos *push_bos)
5363 {
5364 struct isl_device *isl_dev = &batch->screen->isl_dev;
5365
5366 if (!push_bos) {
5367 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
5368 pc.ShaderUpdateEnable = shader_mask;
5369 }
5370 return;
5371 }
5372
5373 const uint32_t n = push_bos->buffer_count;
5374 const uint32_t max_pointers = 4;
5375 const uint32_t num_dwords = 2 + 2 * n;
5376 uint32_t const_all[2 + 2 * max_pointers];
5377 uint32_t *dw = &const_all[0];
5378
5379 assert(n <= max_pointers);
5380 iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
5381 all.DWordLength = num_dwords - 2;
5382 all.MOCS = isl_dev->mocs.internal;
5383 all.ShaderUpdateEnable = shader_mask;
5384 all.PointerBufferMask = (1 << n) - 1;
5385 }
5386 dw += 2;
5387
5388 for (int i = 0; i < n; i++) {
5389 _iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
5390 dw + i * 2, data) {
5391 data.PointerToConstantBuffer = push_bos->buffers[i].addr;
5392 data.ConstantBufferReadLength = push_bos->buffers[i].length;
5393 }
5394 }
5395 iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
5396 }
5397 #endif
5398
5399 static void
5400 iris_upload_dirty_render_state(struct iris_context *ice,
5401 struct iris_batch *batch,
5402 const struct pipe_draw_info *draw)
5403 {
5404 const uint64_t dirty = ice->state.dirty;
5405 const uint64_t stage_dirty = ice->state.stage_dirty;
5406
5407 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
5408 !(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
5409 return;
5410
5411 struct iris_genx_state *genx = ice->state.genx;
5412 struct iris_binder *binder = &ice->state.binder;
5413 struct brw_wm_prog_data *wm_prog_data = (void *)
5414 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
5415
5416 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
5417 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5418 uint32_t cc_vp_address;
5419
5420 /* XXX: could avoid streaming for depth_clip [0,1] case. */
5421 uint32_t *cc_vp_map =
5422 stream_state(batch, ice->state.dynamic_uploader,
5423 &ice->state.last_res.cc_vp,
5424 4 * ice->state.num_viewports *
5425 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
5426 for (int i = 0; i < ice->state.num_viewports; i++) {
5427 float zmin, zmax;
5428 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
5429 ice->state.window_space_position,
5430 &zmin, &zmax);
5431 if (cso_rast->depth_clip_near)
5432 zmin = 0.0;
5433 if (cso_rast->depth_clip_far)
5434 zmax = 1.0;
5435
5436 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
5437 ccv.MinimumDepth = zmin;
5438 ccv.MaximumDepth = zmax;
5439 }
5440
5441 cc_vp_map += GENX(CC_VIEWPORT_length);
5442 }
5443
5444 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
5445 ptr.CCViewportPointer = cc_vp_address;
5446 }
5447 }
5448
5449 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
5450 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5451 uint32_t sf_cl_vp_address;
5452 uint32_t *vp_map =
5453 stream_state(batch, ice->state.dynamic_uploader,
5454 &ice->state.last_res.sf_cl_vp,
5455 4 * ice->state.num_viewports *
5456 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
5457
5458 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
5459 const struct pipe_viewport_state *state = &ice->state.viewports[i];
5460 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
5461
5462 float vp_xmin = viewport_extent(state, 0, -1.0f);
5463 float vp_xmax = viewport_extent(state, 0, 1.0f);
5464 float vp_ymin = viewport_extent(state, 1, -1.0f);
5465 float vp_ymax = viewport_extent(state, 1, 1.0f);
5466
5467 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
5468 state->scale[0], state->scale[1],
5469 state->translate[0], state->translate[1],
5470 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
5471
5472 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
5473 vp.ViewportMatrixElementm00 = state->scale[0];
5474 vp.ViewportMatrixElementm11 = state->scale[1];
5475 vp.ViewportMatrixElementm22 = state->scale[2];
5476 vp.ViewportMatrixElementm30 = state->translate[0];
5477 vp.ViewportMatrixElementm31 = state->translate[1];
5478 vp.ViewportMatrixElementm32 = state->translate[2];
5479 vp.XMinClipGuardband = gb_xmin;
5480 vp.XMaxClipGuardband = gb_xmax;
5481 vp.YMinClipGuardband = gb_ymin;
5482 vp.YMaxClipGuardband = gb_ymax;
5483 vp.XMinViewPort = MAX2(vp_xmin, 0);
5484 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
5485 vp.YMinViewPort = MAX2(vp_ymin, 0);
5486 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
5487 }
5488
5489 vp_map += GENX(SF_CLIP_VIEWPORT_length);
5490 }
5491
5492 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
5493 ptr.SFClipViewportPointer = sf_cl_vp_address;
5494 }
5495 }
5496
5497 if (dirty & IRIS_DIRTY_URB) {
5498 unsigned size[4];
5499
5500 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5501 if (!ice->shaders.prog[i]) {
5502 size[i] = 1;
5503 } else {
5504 struct brw_vue_prog_data *vue_prog_data =
5505 (void *) ice->shaders.prog[i]->prog_data;
5506 size[i] = vue_prog_data->urb_entry_size;
5507 }
5508 assert(size[i] != 0);
5509 }
5510
5511 unsigned entries[4], start[4];
5512 gen_get_urb_config(&batch->screen->devinfo,
5513 batch->screen->l3_config_3d,
5514 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
5515 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
5516 size, entries, start,
5517 &ice->state.urb_deref_block_size);
5518
5519 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5520 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
5521 urb._3DCommandSubOpcode += i;
5522 urb.VSURBStartingAddress = start[i];
5523 urb.VSURBEntryAllocationSize = size[i] - 1;
5524 urb.VSNumberofURBEntries = entries[i];
5525 }
5526 }
5527 }
5528
5529 if (dirty & IRIS_DIRTY_BLEND_STATE) {
5530 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5531 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5532 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5533 const int header_dwords = GENX(BLEND_STATE_length);
5534
5535 /* Always write at least one BLEND_STATE - the final RT message will
5536 * reference BLEND_STATE[0] even if there aren't color writes. There
5537 * may still be alpha testing, computed depth, and so on.
5538 */
5539 const int rt_dwords =
5540 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
5541
5542 uint32_t blend_offset;
5543 uint32_t *blend_map =
5544 stream_state(batch, ice->state.dynamic_uploader,
5545 &ice->state.last_res.blend,
5546 4 * (header_dwords + rt_dwords), 64, &blend_offset);
5547
5548 uint32_t blend_state_header;
5549 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
5550 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
5551 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
5552 }
5553
5554 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
5555 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
5556
5557 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
5558 ptr.BlendStatePointer = blend_offset;
5559 ptr.BlendStatePointerValid = true;
5560 }
5561 }
5562
5563 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
5564 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5565 #if GEN_GEN == 8
5566 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5567 #endif
5568 uint32_t cc_offset;
5569 void *cc_map =
5570 stream_state(batch, ice->state.dynamic_uploader,
5571 &ice->state.last_res.color_calc,
5572 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
5573 64, &cc_offset);
5574 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
5575 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
5576 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
5577 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
5578 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
5579 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
5580 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
5581 #if GEN_GEN == 8
5582 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
5583 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5584 #endif
5585 }
5586 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
5587 ptr.ColorCalcStatePointer = cc_offset;
5588 ptr.ColorCalcStatePointerValid = true;
5589 }
5590 }
5591
5592 /* GEN:BUG:1604061319
5593 *
5594 * 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
5595 *
5596 * Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
5597 * any stage has a dirty binding table.
5598 */
5599 const bool emit_const_wa = GEN_GEN >= 11 &&
5600 ((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
5601 (stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS));
5602
5603 #if GEN_GEN >= 12
5604 uint32_t nobuffer_stages = 0;
5605 #endif
5606
5607 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5608 if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
5609 !emit_const_wa)
5610 continue;
5611
5612 struct iris_shader_state *shs = &ice->state.shaders[stage];
5613 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5614
5615 if (!shader)
5616 continue;
5617
5618 if (shs->sysvals_need_upload)
5619 upload_sysvals(ice, stage);
5620
5621 struct push_bos push_bos = {};
5622 setup_constant_buffers(ice, batch, stage, &push_bos);
5623
5624 #if GEN_GEN >= 12
5625 /* If this stage doesn't have any push constants, emit it later in a
5626 * single CONSTANT_ALL packet with all the other stages.
5627 */
5628 if (push_bos.buffer_count == 0) {
5629 nobuffer_stages |= 1 << stage;
5630 continue;
5631 }
5632
5633 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
5634 * contains only 5 bits, so we can only use it for buffers smaller than
5635 * 32.
5636 */
5637 if (push_bos.max_length < 32) {
5638 emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
5639 continue;
5640 }
5641 #endif
5642 emit_push_constant_packets(ice, batch, stage, &push_bos);
5643 }
5644
5645 #if GEN_GEN >= 12
5646 if (nobuffer_stages)
5647 emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
5648 #endif
5649
5650 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5651 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
5652 * in order to commit constants. TODO: Investigate "Disable Gather
5653 * at Set Shader" to go back to legacy mode...
5654 */
5655 if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
5656 (GEN_GEN == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
5657 << stage)) {
5658 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
5659 ptr._3DCommandSubOpcode = 38 + stage;
5660 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
5661 }
5662 }
5663 }
5664
5665 if (GEN_GEN >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
5666 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
5667 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
5668
5669 /* The PIPE_CONTROL command description says:
5670 *
5671 * "Whenever a Binding Table Index (BTI) used by a Render Target
5672 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
5673 * Render Target Cache Flush by enabling this bit. When render target
5674 * flush is set due to new association of BTI, PS Scoreboard Stall bit
5675 * must be set in this packet."
5676 */
5677 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
5678 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
5679 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5680 PIPE_CONTROL_STALL_AT_SCOREBOARD);
5681 }
5682
5683 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5684 if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
5685 iris_populate_binding_table(ice, batch, stage, false);
5686 }
5687 }
5688
5689 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5690 if (!(stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage)) ||
5691 !ice->shaders.prog[stage])
5692 continue;
5693
5694 iris_upload_sampler_states(ice, stage);
5695
5696 struct iris_shader_state *shs = &ice->state.shaders[stage];
5697 struct pipe_resource *res = shs->sampler_table.res;
5698 if (res)
5699 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5700 IRIS_DOMAIN_NONE);
5701
5702 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
5703 ptr._3DCommandSubOpcode = 43 + stage;
5704 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
5705 }
5706 }
5707
5708 if (ice->state.need_border_colors)
5709 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
5710 IRIS_DOMAIN_NONE);
5711
5712 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
5713 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
5714 ms.PixelLocation =
5715 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
5716 if (ice->state.framebuffer.samples > 0)
5717 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
5718 }
5719 }
5720
5721 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
5722 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
5723 ms.SampleMask = ice->state.sample_mask;
5724 }
5725 }
5726
5727 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5728 if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
5729 continue;
5730
5731 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5732
5733 if (shader) {
5734 struct brw_stage_prog_data *prog_data = shader->prog_data;
5735 struct iris_resource *cache = (void *) shader->assembly.res;
5736 iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
5737
5738 if (prog_data->total_scratch > 0) {
5739 struct iris_bo *bo =
5740 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5741 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5742 }
5743
5744 if (stage == MESA_SHADER_FRAGMENT) {
5745 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
5746 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5747
5748 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
5749 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5750 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
5751 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
5752 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
5753
5754 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
5755 *
5756 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5757 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5758 * mode."
5759 *
5760 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5761 */
5762 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5763 !wm_prog_data->persample_dispatch) {
5764 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5765 ps._32PixelDispatchEnable = false;
5766 }
5767
5768 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5769 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5770 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5771 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5772 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5773 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5774
5775 ps.KernelStartPointer0 = KSP(shader) +
5776 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5777 ps.KernelStartPointer1 = KSP(shader) +
5778 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5779 ps.KernelStartPointer2 = KSP(shader) +
5780 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5781 }
5782
5783 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5784 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5785 #if GEN_GEN >= 9
5786 if (!wm_prog_data->uses_sample_mask)
5787 psx.InputCoverageMaskState = ICMS_NONE;
5788 else if (wm_prog_data->post_depth_coverage)
5789 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5790 else if (wm_prog_data->inner_coverage &&
5791 cso->conservative_rasterization)
5792 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5793 else
5794 psx.InputCoverageMaskState = ICMS_NORMAL;
5795 #else
5796 psx.PixelShaderUsesInputCoverageMask =
5797 wm_prog_data->uses_sample_mask;
5798 #endif
5799 }
5800
5801 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5802 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5803 iris_emit_merge(batch, shader_ps, ps_state,
5804 GENX(3DSTATE_PS_length));
5805 iris_emit_merge(batch, shader_psx, psx_state,
5806 GENX(3DSTATE_PS_EXTRA_length));
5807 } else {
5808 iris_batch_emit(batch, shader->derived_data,
5809 iris_derived_program_state_size(stage));
5810 }
5811 } else {
5812 if (stage == MESA_SHADER_TESS_EVAL) {
5813 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5814 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5815 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5816 } else if (stage == MESA_SHADER_GEOMETRY) {
5817 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5818 }
5819 }
5820 }
5821
5822 if (ice->state.streamout_active) {
5823 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5824 iris_batch_emit(batch, genx->so_buffers,
5825 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5826 for (int i = 0; i < 4; i++) {
5827 struct iris_stream_output_target *tgt =
5828 (void *) ice->state.so_target[i];
5829 if (tgt) {
5830 tgt->zeroed = true;
5831 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5832 true, IRIS_DOMAIN_OTHER_WRITE);
5833 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5834 true, IRIS_DOMAIN_OTHER_WRITE);
5835 }
5836 }
5837 }
5838
5839 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5840 uint32_t *decl_list =
5841 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5842 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5843 }
5844
5845 if (dirty & IRIS_DIRTY_STREAMOUT) {
5846 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5847
5848 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5849 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5850 sol.SOFunctionEnable = true;
5851 sol.SOStatisticsEnable = true;
5852
5853 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5854 !ice->state.prims_generated_query_active;
5855 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5856 }
5857
5858 assert(ice->state.streamout);
5859
5860 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5861 GENX(3DSTATE_STREAMOUT_length));
5862 }
5863 } else {
5864 if (dirty & IRIS_DIRTY_STREAMOUT) {
5865 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5866 }
5867 }
5868
5869 if (dirty & IRIS_DIRTY_CLIP) {
5870 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5871 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5872
5873 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5874 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5875 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5876 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5877 : ice->state.prim_is_points_or_lines);
5878
5879 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5880 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5881 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5882 if (cso_rast->rasterizer_discard)
5883 cl.ClipMode = CLIPMODE_REJECT_ALL;
5884 else if (ice->state.window_space_position)
5885 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5886 else
5887 cl.ClipMode = CLIPMODE_NORMAL;
5888
5889 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5890 cl.ViewportXYClipTestEnable = !points_or_lines;
5891
5892 if (wm_prog_data->barycentric_interp_modes &
5893 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5894 cl.NonPerspectiveBarycentricEnable = true;
5895
5896 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
5897 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5898 }
5899 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5900 ARRAY_SIZE(cso_rast->clip));
5901 }
5902
5903 if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
5904 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5905 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5906
5907 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5908 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5909 sf.ViewportTransformEnable = !ice->state.window_space_position;
5910
5911 #if GEN_GEN >= 12
5912 sf.DerefBlockSize = ice->state.urb_deref_block_size;
5913 #endif
5914 }
5915 iris_emit_merge(batch, cso->sf, dynamic_sf,
5916 ARRAY_SIZE(dynamic_sf));
5917 }
5918
5919 if (dirty & IRIS_DIRTY_WM) {
5920 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5921 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5922
5923 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5924 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5925
5926 wm.BarycentricInterpolationMode =
5927 wm_prog_data->barycentric_interp_modes;
5928
5929 if (wm_prog_data->early_fragment_tests)
5930 wm.EarlyDepthStencilControl = EDSC_PREPS;
5931 else if (wm_prog_data->has_side_effects)
5932 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5933
5934 /* We could skip this bit if color writes are enabled. */
5935 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5936 wm.ForceThreadDispatchEnable = ForceON;
5937 }
5938 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5939 }
5940
5941 if (dirty & IRIS_DIRTY_SBE) {
5942 iris_emit_sbe(batch, ice);
5943 }
5944
5945 if (dirty & IRIS_DIRTY_PS_BLEND) {
5946 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5947 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5948 const struct shader_info *fs_info =
5949 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5950
5951 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5952 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5953 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5954 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5955
5956 /* The dual source blending docs caution against using SRC1 factors
5957 * when the shader doesn't use a dual source render target write.
5958 * Empirically, this can lead to GPU hangs, and the results are
5959 * undefined anyway, so simply disable blending to avoid the hang.
5960 */
5961 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5962 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5963 }
5964
5965 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5966 ARRAY_SIZE(cso_blend->ps_blend));
5967 }
5968
5969 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5970 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5971 #if GEN_GEN >= 9 && GEN_GEN < 12
5972 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5973 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5974 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5975 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5976 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5977 }
5978 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5979 #else
5980 /* Use modify disable fields which allow us to emit packets
5981 * directly instead of merging them later.
5982 */
5983 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5984 #endif
5985
5986 #if GEN_GEN >= 12
5987 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
5988 #endif
5989 }
5990
5991 if (dirty & IRIS_DIRTY_STENCIL_REF) {
5992 #if GEN_GEN >= 12
5993 /* Use modify disable fields which allow us to emit packets
5994 * directly instead of merging them later.
5995 */
5996 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5997 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5998 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5999 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
6000 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
6001 wmds.StencilTestMaskModifyDisable = true;
6002 wmds.StencilWriteMaskModifyDisable = true;
6003 wmds.StencilStateModifyDisable = true;
6004 wmds.DepthStateModifyDisable = true;
6005 }
6006 iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
6007 #endif
6008 }
6009
6010 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
6011 uint32_t scissor_offset =
6012 emit_state(batch, ice->state.dynamic_uploader,
6013 &ice->state.last_res.scissor,
6014 ice->state.scissors,
6015 sizeof(struct pipe_scissor_state) *
6016 ice->state.num_viewports, 32);
6017
6018 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
6019 ptr.ScissorRectPointer = scissor_offset;
6020 }
6021 }
6022
6023 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
6024 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
6025
6026 /* Do not emit the clear params yets. We need to update the clear value
6027 * first.
6028 */
6029 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
6030 uint32_t cso_z_size = batch->screen->isl_dev.ds.size - clear_length;;
6031
6032 #if GEN_GEN == 12
6033 /* GEN:BUG:14010455700
6034 *
6035 * ISL will change some CHICKEN registers depending on the depth surface
6036 * format, along with emitting the depth and stencil packets. In that
6037 * case, we want to do a depth flush and stall, so the pipeline is not
6038 * using these settings while we change the registers.
6039 */
6040 iris_emit_end_of_pipe_sync(batch,
6041 "Workaround: Stop pipeline for 14010455700",
6042 PIPE_CONTROL_DEPTH_STALL |
6043 PIPE_CONTROL_DEPTH_CACHE_FLUSH);
6044 #endif
6045
6046 iris_batch_emit(batch, cso_z->packets, cso_z_size);
6047 if (GEN_GEN >= 12) {
6048 /* GEN:BUG:1408224581
6049 *
6050 * Workaround: Gen12LP Astep only An additional pipe control with
6051 * post-sync = store dword operation would be required.( w/a is to
6052 * have an additional pipe control after the stencil state whenever
6053 * the surface state bits of this state is changing).
6054 */
6055 iris_emit_pipe_control_write(batch, "WA for stencil state",
6056 PIPE_CONTROL_WRITE_IMMEDIATE,
6057 batch->screen->workaround_address.bo,
6058 batch->screen->workaround_address.offset, 0);
6059 }
6060
6061 union isl_color_value clear_value = { .f32 = { 0, } };
6062
6063 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6064 if (cso_fb->zsbuf) {
6065 struct iris_resource *zres, *sres;
6066 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
6067 &zres, &sres);
6068 if (zres && zres->aux.bo)
6069 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
6070 }
6071
6072 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
6073 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
6074 clear.DepthClearValueValid = true;
6075 clear.DepthClearValue = clear_value.f32[0];
6076 }
6077 iris_batch_emit(batch, clear_params, clear_length);
6078 }
6079
6080 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
6081 /* Listen for buffer changes, and also write enable changes. */
6082 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6083 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
6084 }
6085
6086 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
6087 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
6088 for (int i = 0; i < 32; i++) {
6089 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
6090 }
6091 }
6092 }
6093
6094 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
6095 struct iris_rasterizer_state *cso = ice->state.cso_rast;
6096 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
6097 }
6098
6099 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
6100 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
6101 topo.PrimitiveTopologyType =
6102 translate_prim_type(draw->mode, draw->vertices_per_patch);
6103 }
6104 }
6105
6106 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
6107 int count = util_bitcount64(ice->state.bound_vertex_buffers);
6108 uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
6109
6110 if (ice->state.vs_uses_draw_params) {
6111 assert(ice->draw.draw_params.res);
6112
6113 struct iris_vertex_buffer_state *state =
6114 &(ice->state.genx->vertex_buffers[count]);
6115 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
6116 struct iris_resource *res = (void *) state->resource;
6117
6118 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
6119 vb.VertexBufferIndex = count;
6120 vb.AddressModifyEnable = true;
6121 vb.BufferPitch = 0;
6122 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
6123 vb.BufferStartingAddress =
6124 ro_bo(NULL, res->bo->gtt_offset +
6125 (int) ice->draw.draw_params.offset);
6126 vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev);
6127 }
6128 dynamic_bound |= 1ull << count;
6129 count++;
6130 }
6131
6132 if (ice->state.vs_uses_derived_draw_params) {
6133 struct iris_vertex_buffer_state *state =
6134 &(ice->state.genx->vertex_buffers[count]);
6135 pipe_resource_reference(&state->resource,
6136 ice->draw.derived_draw_params.res);
6137 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
6138
6139 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
6140 vb.VertexBufferIndex = count;
6141 vb.AddressModifyEnable = true;
6142 vb.BufferPitch = 0;
6143 vb.BufferSize =
6144 res->bo->size - ice->draw.derived_draw_params.offset;
6145 vb.BufferStartingAddress =
6146 ro_bo(NULL, res->bo->gtt_offset +
6147 (int) ice->draw.derived_draw_params.offset);
6148 vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev);
6149 }
6150 dynamic_bound |= 1ull << count;
6151 count++;
6152 }
6153
6154 if (count) {
6155 #if GEN_GEN >= 11
6156 /* Gen11+ doesn't need the cache workaround below */
6157 uint64_t bound = dynamic_bound;
6158 while (bound) {
6159 const int i = u_bit_scan64(&bound);
6160 iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
6161 false, IRIS_DOMAIN_OTHER_READ);
6162 }
6163 #else
6164 /* The VF cache designers cut corners, and made the cache key's
6165 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
6166 * 32 bits of the address. If you have two vertex buffers which get
6167 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
6168 * you can get collisions (even within a single batch).
6169 *
6170 * So, we need to do a VF cache invalidate if the buffer for a VB
6171 * slot slot changes [48:32] address bits from the previous time.
6172 */
6173 unsigned flush_flags = 0;
6174
6175 uint64_t bound = dynamic_bound;
6176 while (bound) {
6177 const int i = u_bit_scan64(&bound);
6178 uint16_t high_bits = 0;
6179
6180 struct iris_resource *res =
6181 (void *) genx->vertex_buffers[i].resource;
6182 if (res) {
6183 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
6184
6185 high_bits = res->bo->gtt_offset >> 32ull;
6186 if (high_bits != ice->state.last_vbo_high_bits[i]) {
6187 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
6188 PIPE_CONTROL_CS_STALL;
6189 ice->state.last_vbo_high_bits[i] = high_bits;
6190 }
6191 }
6192 }
6193
6194 if (flush_flags) {
6195 iris_emit_pipe_control_flush(batch,
6196 "workaround: VF cache 32-bit key [VB]",
6197 flush_flags);
6198 }
6199 #endif
6200
6201 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
6202
6203 uint32_t *map =
6204 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
6205 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
6206 vb.DWordLength = (vb_dwords * count + 1) - 2;
6207 }
6208 map += 1;
6209
6210 bound = dynamic_bound;
6211 while (bound) {
6212 const int i = u_bit_scan64(&bound);
6213 memcpy(map, genx->vertex_buffers[i].state,
6214 sizeof(uint32_t) * vb_dwords);
6215 map += vb_dwords;
6216 }
6217 }
6218 }
6219
6220 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
6221 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
6222 const unsigned entries = MAX2(cso->count, 1);
6223 if (!(ice->state.vs_needs_sgvs_element ||
6224 ice->state.vs_uses_derived_draw_params ||
6225 ice->state.vs_needs_edge_flag)) {
6226 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
6227 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
6228 } else {
6229 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
6230 const unsigned dyn_count = cso->count +
6231 ice->state.vs_needs_sgvs_element +
6232 ice->state.vs_uses_derived_draw_params;
6233
6234 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
6235 &dynamic_ves, ve) {
6236 ve.DWordLength =
6237 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
6238 }
6239 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
6240 (cso->count - ice->state.vs_needs_edge_flag) *
6241 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
6242 uint32_t *ve_pack_dest =
6243 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
6244 GENX(VERTEX_ELEMENT_STATE_length)];
6245
6246 if (ice->state.vs_needs_sgvs_element) {
6247 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
6248 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
6249 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6250 ve.Valid = true;
6251 ve.VertexBufferIndex =
6252 util_bitcount64(ice->state.bound_vertex_buffers);
6253 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
6254 ve.Component0Control = base_ctrl;
6255 ve.Component1Control = base_ctrl;
6256 ve.Component2Control = VFCOMP_STORE_0;
6257 ve.Component3Control = VFCOMP_STORE_0;
6258 }
6259 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6260 }
6261 if (ice->state.vs_uses_derived_draw_params) {
6262 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6263 ve.Valid = true;
6264 ve.VertexBufferIndex =
6265 util_bitcount64(ice->state.bound_vertex_buffers) +
6266 ice->state.vs_uses_draw_params;
6267 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
6268 ve.Component0Control = VFCOMP_STORE_SRC;
6269 ve.Component1Control = VFCOMP_STORE_SRC;
6270 ve.Component2Control = VFCOMP_STORE_0;
6271 ve.Component3Control = VFCOMP_STORE_0;
6272 }
6273 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6274 }
6275 if (ice->state.vs_needs_edge_flag) {
6276 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
6277 ve_pack_dest[i] = cso->edgeflag_ve[i];
6278 }
6279
6280 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
6281 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
6282 }
6283
6284 if (!ice->state.vs_needs_edge_flag) {
6285 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
6286 entries * GENX(3DSTATE_VF_INSTANCING_length));
6287 } else {
6288 assert(cso->count > 0);
6289 const unsigned edgeflag_index = cso->count - 1;
6290 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
6291 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
6292 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
6293
6294 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
6295 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
6296 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
6297 vi.VertexElementIndex = edgeflag_index +
6298 ice->state.vs_needs_sgvs_element +
6299 ice->state.vs_uses_derived_draw_params;
6300 }
6301 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
6302 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
6303
6304 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
6305 entries * GENX(3DSTATE_VF_INSTANCING_length));
6306 }
6307 }
6308
6309 if (dirty & IRIS_DIRTY_VF_SGVS) {
6310 const struct brw_vs_prog_data *vs_prog_data = (void *)
6311 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
6312 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
6313
6314 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
6315 if (vs_prog_data->uses_vertexid) {
6316 sgv.VertexIDEnable = true;
6317 sgv.VertexIDComponentNumber = 2;
6318 sgv.VertexIDElementOffset =
6319 cso->count - ice->state.vs_needs_edge_flag;
6320 }
6321
6322 if (vs_prog_data->uses_instanceid) {
6323 sgv.InstanceIDEnable = true;
6324 sgv.InstanceIDComponentNumber = 3;
6325 sgv.InstanceIDElementOffset =
6326 cso->count - ice->state.vs_needs_edge_flag;
6327 }
6328 }
6329 }
6330
6331 if (dirty & IRIS_DIRTY_VF) {
6332 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
6333 if (draw->primitive_restart) {
6334 vf.IndexedDrawCutIndexEnable = true;
6335 vf.CutIndex = draw->restart_index;
6336 }
6337 }
6338 }
6339
6340 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
6341 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
6342 vf.StatisticsEnable = true;
6343 }
6344 }
6345
6346 #if GEN_GEN == 8
6347 if (dirty & IRIS_DIRTY_PMA_FIX) {
6348 bool enable = want_pma_fix(ice);
6349 genX(update_pma_fix)(ice, batch, enable);
6350 }
6351 #endif
6352
6353 if (ice->state.current_hash_scale != 1)
6354 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
6355
6356 #if GEN_GEN >= 12
6357 genX(invalidate_aux_map_state)(batch);
6358 #endif
6359 }
6360
6361 static void
6362 iris_upload_render_state(struct iris_context *ice,
6363 struct iris_batch *batch,
6364 const struct pipe_draw_info *draw)
6365 {
6366 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
6367
6368 iris_batch_sync_region_start(batch);
6369
6370 /* Always pin the binder. If we're emitting new binding table pointers,
6371 * we need it. If not, we're probably inheriting old tables via the
6372 * context, and need it anyway. Since true zero-bindings cases are
6373 * practically non-existent, just pin it and avoid last_res tracking.
6374 */
6375 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
6376 IRIS_DOMAIN_NONE);
6377
6378 if (!batch->contains_draw_with_next_seqno) {
6379 iris_restore_render_saved_bos(ice, batch, draw);
6380 batch->contains_draw_with_next_seqno = batch->contains_draw = true;
6381 }
6382
6383 iris_upload_dirty_render_state(ice, batch, draw);
6384
6385 if (draw->index_size > 0) {
6386 unsigned offset;
6387
6388 if (draw->has_user_indices) {
6389 u_upload_data(ice->ctx.stream_uploader, 0,
6390 draw->count * draw->index_size, 4, draw->index.user,
6391 &offset, &ice->state.last_res.index_buffer);
6392 } else {
6393 struct iris_resource *res = (void *) draw->index.resource;
6394 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
6395
6396 pipe_resource_reference(&ice->state.last_res.index_buffer,
6397 draw->index.resource);
6398 offset = 0;
6399 }
6400
6401 struct iris_genx_state *genx = ice->state.genx;
6402 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
6403
6404 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
6405 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
6406 ib.IndexFormat = draw->index_size >> 1;
6407 ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev);
6408 ib.BufferSize = bo->size - offset;
6409 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
6410 }
6411
6412 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
6413 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
6414 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
6415 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_OTHER_READ);
6416 }
6417
6418 #if GEN_GEN < 11
6419 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
6420 uint16_t high_bits = bo->gtt_offset >> 32ull;
6421 if (high_bits != ice->state.last_index_bo_high_bits) {
6422 iris_emit_pipe_control_flush(batch,
6423 "workaround: VF cache 32-bit key [IB]",
6424 PIPE_CONTROL_VF_CACHE_INVALIDATE |
6425 PIPE_CONTROL_CS_STALL);
6426 ice->state.last_index_bo_high_bits = high_bits;
6427 }
6428 #endif
6429 }
6430
6431 #define _3DPRIM_END_OFFSET 0x2420
6432 #define _3DPRIM_START_VERTEX 0x2430
6433 #define _3DPRIM_VERTEX_COUNT 0x2434
6434 #define _3DPRIM_INSTANCE_COUNT 0x2438
6435 #define _3DPRIM_START_INSTANCE 0x243C
6436 #define _3DPRIM_BASE_VERTEX 0x2440
6437
6438 if (draw->indirect) {
6439 if (draw->indirect->indirect_draw_count) {
6440 use_predicate = true;
6441
6442 struct iris_bo *draw_count_bo =
6443 iris_resource_bo(draw->indirect->indirect_draw_count);
6444 unsigned draw_count_offset =
6445 draw->indirect->indirect_draw_count_offset;
6446
6447 iris_emit_pipe_control_flush(batch,
6448 "ensure indirect draw buffer is flushed",
6449 PIPE_CONTROL_FLUSH_ENABLE);
6450
6451 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
6452 struct gen_mi_builder b;
6453 gen_mi_builder_init(&b, batch);
6454
6455 /* comparison = draw id < draw count */
6456 struct gen_mi_value comparison =
6457 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
6458 gen_mi_mem32(ro_bo(draw_count_bo,
6459 draw_count_offset)));
6460
6461 /* predicate = comparison & conditional rendering predicate */
6462 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
6463 gen_mi_iand(&b, comparison,
6464 gen_mi_reg32(CS_GPR(15))));
6465 } else {
6466 uint32_t mi_predicate;
6467
6468 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
6469 iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
6470 /* Upload the current draw count from the draw parameters buffer
6471 * to MI_PREDICATE_SRC0.
6472 */
6473 iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
6474 draw_count_bo, draw_count_offset);
6475 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
6476 iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
6477
6478 if (draw->drawid == 0) {
6479 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
6480 MI_PREDICATE_COMBINEOP_SET |
6481 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6482 } else {
6483 /* While draw_index < draw_count the predicate's result will be
6484 * (draw_index == draw_count) ^ TRUE = TRUE
6485 * When draw_index == draw_count the result is
6486 * (TRUE) ^ TRUE = FALSE
6487 * After this all results will be:
6488 * (FALSE) ^ FALSE = FALSE
6489 */
6490 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
6491 MI_PREDICATE_COMBINEOP_XOR |
6492 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6493 }
6494 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
6495 }
6496 }
6497 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
6498 assert(bo);
6499
6500 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6501 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
6502 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
6503 }
6504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6505 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
6506 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
6507 }
6508 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6509 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
6510 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
6511 }
6512 if (draw->index_size) {
6513 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6514 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
6515 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6516 }
6517 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6518 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6519 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
6520 }
6521 } else {
6522 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6523 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6524 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6525 }
6526 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
6527 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
6528 lri.DataDWord = 0;
6529 }
6530 }
6531 } else if (draw->count_from_stream_output) {
6532 struct iris_stream_output_target *so =
6533 (void *) draw->count_from_stream_output;
6534
6535 /* XXX: Replace with actual cache tracking */
6536 iris_emit_pipe_control_flush(batch,
6537 "draw count from stream output stall",
6538 PIPE_CONTROL_CS_STALL);
6539
6540 struct gen_mi_builder b;
6541 gen_mi_builder_init(&b, batch);
6542
6543 struct iris_address addr =
6544 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
6545 struct gen_mi_value offset =
6546 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
6547
6548 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
6549 gen_mi_udiv32_imm(&b, offset, so->stride));
6550
6551 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
6552 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
6553 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
6554 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
6555 }
6556
6557 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6558 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
6559 prim.PredicateEnable = use_predicate;
6560
6561 if (draw->indirect || draw->count_from_stream_output) {
6562 prim.IndirectParameterEnable = true;
6563 } else {
6564 prim.StartInstanceLocation = draw->start_instance;
6565 prim.InstanceCount = draw->instance_count;
6566 prim.VertexCountPerInstance = draw->count;
6567
6568 prim.StartVertexLocation = draw->start;
6569
6570 if (draw->index_size) {
6571 prim.BaseVertexLocation += draw->index_bias;
6572 } else {
6573 prim.StartVertexLocation += draw->index_bias;
6574 }
6575 }
6576 }
6577
6578 iris_batch_sync_region_end(batch);
6579 }
6580
6581 static void
6582 iris_load_indirect_location(struct iris_context *ice,
6583 struct iris_batch *batch,
6584 const struct pipe_grid_info *grid)
6585 {
6586 #define GPGPU_DISPATCHDIMX 0x2500
6587 #define GPGPU_DISPATCHDIMY 0x2504
6588 #define GPGPU_DISPATCHDIMZ 0x2508
6589
6590 assert(grid->indirect);
6591
6592 struct iris_state_ref *grid_size = &ice->state.grid_size;
6593 struct iris_bo *bo = iris_resource_bo(grid_size->res);
6594 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6595 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
6596 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
6597 }
6598 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6599 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
6600 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
6601 }
6602 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6603 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
6604 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
6605 }
6606 }
6607
6608 static void
6609 iris_upload_gpgpu_walker(struct iris_context *ice,
6610 struct iris_batch *batch,
6611 const struct pipe_grid_info *grid)
6612 {
6613 const uint64_t stage_dirty = ice->state.stage_dirty;
6614 struct iris_screen *screen = batch->screen;
6615 const struct gen_device_info *devinfo = &screen->devinfo;
6616 struct iris_binder *binder = &ice->state.binder;
6617 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6618 struct iris_compiled_shader *shader =
6619 ice->shaders.prog[MESA_SHADER_COMPUTE];
6620 struct brw_stage_prog_data *prog_data = shader->prog_data;
6621 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
6622 const uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
6623 const unsigned simd_size =
6624 brw_cs_simd_size_for_group_size(devinfo, cs_prog_data, group_size);
6625 const unsigned threads = DIV_ROUND_UP(group_size, simd_size);
6626
6627
6628 if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
6629 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
6630 *
6631 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
6632 * the only bits that are changed are scoreboard related: Scoreboard
6633 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
6634 * these scoreboard related states, a MEDIA_STATE_FLUSH is
6635 * sufficient."
6636 */
6637 iris_emit_pipe_control_flush(batch,
6638 "workaround: stall before MEDIA_VFE_STATE",
6639 PIPE_CONTROL_CS_STALL);
6640
6641 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
6642 if (prog_data->total_scratch) {
6643 struct iris_bo *bo =
6644 iris_get_scratch_space(ice, prog_data->total_scratch,
6645 MESA_SHADER_COMPUTE);
6646 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
6647 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0, IRIS_DOMAIN_NONE);
6648 }
6649
6650 vfe.MaximumNumberofThreads =
6651 devinfo->max_cs_threads * screen->subslice_total - 1;
6652 #if GEN_GEN < 11
6653 vfe.ResetGatewayTimer =
6654 Resettingrelativetimerandlatchingtheglobaltimestamp;
6655 #endif
6656 #if GEN_GEN == 8
6657 vfe.BypassGatewayControl = true;
6658 #endif
6659 vfe.NumberofURBEntries = 2;
6660 vfe.URBEntryAllocationSize = 2;
6661
6662 vfe.CURBEAllocationSize =
6663 ALIGN(cs_prog_data->push.per_thread.regs * threads +
6664 cs_prog_data->push.cross_thread.regs, 2);
6665 }
6666 }
6667
6668 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
6669 if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
6670 uint32_t curbe_data_offset = 0;
6671 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
6672 cs_prog_data->push.per_thread.dwords == 1 &&
6673 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
6674 const unsigned push_const_size =
6675 brw_cs_push_const_total_size(cs_prog_data, threads);
6676 uint32_t *curbe_data_map =
6677 stream_state(batch, ice->state.dynamic_uploader,
6678 &ice->state.last_res.cs_thread_ids,
6679 ALIGN(push_const_size, 64), 64,
6680 &curbe_data_offset);
6681 assert(curbe_data_map);
6682 memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64));
6683 iris_fill_cs_push_const_buffer(cs_prog_data, threads, curbe_data_map);
6684
6685 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
6686 curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
6687 curbe.CURBEDataStartAddress = curbe_data_offset;
6688 }
6689 }
6690
6691 if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
6692 IRIS_STAGE_DIRTY_BINDINGS_CS |
6693 IRIS_STAGE_DIRTY_CONSTANTS_CS |
6694 IRIS_STAGE_DIRTY_CS)) {
6695 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
6696
6697 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
6698 idd.KernelStartPointer =
6699 KSP(shader) + brw_cs_prog_data_prog_offset(cs_prog_data, simd_size);
6700 idd.SamplerStatePointer = shs->sampler_table.offset;
6701 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
6702 idd.NumberofThreadsinGPGPUThreadGroup = threads;
6703 }
6704
6705 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
6706 desc[i] |= ((uint32_t *) shader->derived_data)[i];
6707
6708 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
6709 load.InterfaceDescriptorTotalLength =
6710 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
6711 load.InterfaceDescriptorDataStartAddress =
6712 emit_state(batch, ice->state.dynamic_uploader,
6713 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
6714 }
6715 }
6716
6717 if (grid->indirect)
6718 iris_load_indirect_location(ice, batch, grid);
6719
6720 const uint32_t right_mask = brw_cs_right_mask(group_size, simd_size);
6721
6722 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
6723 ggw.IndirectParameterEnable = grid->indirect != NULL;
6724 ggw.SIMDSize = simd_size / 16;
6725 ggw.ThreadDepthCounterMaximum = 0;
6726 ggw.ThreadHeightCounterMaximum = 0;
6727 ggw.ThreadWidthCounterMaximum = threads - 1;
6728 ggw.ThreadGroupIDXDimension = grid->grid[0];
6729 ggw.ThreadGroupIDYDimension = grid->grid[1];
6730 ggw.ThreadGroupIDZDimension = grid->grid[2];
6731 ggw.RightExecutionMask = right_mask;
6732 ggw.BottomExecutionMask = 0xffffffff;
6733 }
6734
6735 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
6736 }
6737
6738 static void
6739 iris_upload_compute_state(struct iris_context *ice,
6740 struct iris_batch *batch,
6741 const struct pipe_grid_info *grid)
6742 {
6743 const uint64_t stage_dirty = ice->state.stage_dirty;
6744 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6745 struct iris_compiled_shader *shader =
6746 ice->shaders.prog[MESA_SHADER_COMPUTE];
6747
6748 iris_batch_sync_region_start(batch);
6749
6750 /* Always pin the binder. If we're emitting new binding table pointers,
6751 * we need it. If not, we're probably inheriting old tables via the
6752 * context, and need it anyway. Since true zero-bindings cases are
6753 * practically non-existent, just pin it and avoid last_res tracking.
6754 */
6755 iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
6756
6757 if ((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
6758 shs->sysvals_need_upload)
6759 upload_sysvals(ice, MESA_SHADER_COMPUTE);
6760
6761 if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
6762 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
6763
6764 if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
6765 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
6766
6767 iris_use_optional_res(batch, shs->sampler_table.res, false,
6768 IRIS_DOMAIN_NONE);
6769 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
6770 IRIS_DOMAIN_NONE);
6771
6772 if (ice->state.need_border_colors)
6773 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
6774 IRIS_DOMAIN_NONE);
6775
6776 #if GEN_GEN >= 12
6777 genX(invalidate_aux_map_state)(batch);
6778 #endif
6779
6780 iris_upload_gpgpu_walker(ice, batch, grid);
6781
6782 if (!batch->contains_draw_with_next_seqno) {
6783 iris_restore_compute_saved_bos(ice, batch, grid);
6784 batch->contains_draw_with_next_seqno = batch->contains_draw = true;
6785 }
6786
6787 iris_batch_sync_region_end(batch);
6788 }
6789
6790 /**
6791 * State module teardown.
6792 */
6793 static void
6794 iris_destroy_state(struct iris_context *ice)
6795 {
6796 struct iris_genx_state *genx = ice->state.genx;
6797
6798 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
6799 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
6800
6801 /* Loop over all VBOs, including ones for draw parameters */
6802 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
6803 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
6804 }
6805
6806 free(ice->state.genx);
6807
6808 for (int i = 0; i < 4; i++) {
6809 pipe_so_target_reference(&ice->state.so_target[i], NULL);
6810 }
6811
6812 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
6813 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
6814 }
6815 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
6816
6817 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
6818 struct iris_shader_state *shs = &ice->state.shaders[stage];
6819 pipe_resource_reference(&shs->sampler_table.res, NULL);
6820 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
6821 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
6822 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
6823 }
6824 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
6825 pipe_resource_reference(&shs->image[i].base.resource, NULL);
6826 pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
6827 free(shs->image[i].surface_state.cpu);
6828 }
6829 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
6830 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
6831 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
6832 }
6833 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
6834 pipe_sampler_view_reference((struct pipe_sampler_view **)
6835 &shs->textures[i], NULL);
6836 }
6837 }
6838
6839 pipe_resource_reference(&ice->state.grid_size.res, NULL);
6840 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
6841
6842 pipe_resource_reference(&ice->state.null_fb.res, NULL);
6843 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
6844
6845 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
6846 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
6847 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
6848 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
6849 pipe_resource_reference(&ice->state.last_res.blend, NULL);
6850 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
6851 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
6852 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
6853 }
6854
6855 /* ------------------------------------------------------------------- */
6856
6857 static void
6858 iris_rebind_buffer(struct iris_context *ice,
6859 struct iris_resource *res)
6860 {
6861 struct pipe_context *ctx = &ice->ctx;
6862 struct iris_genx_state *genx = ice->state.genx;
6863
6864 assert(res->base.target == PIPE_BUFFER);
6865
6866 /* Buffers can't be framebuffer attachments, nor display related,
6867 * and we don't have upstream Clover support.
6868 */
6869 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
6870 PIPE_BIND_RENDER_TARGET |
6871 PIPE_BIND_BLENDABLE |
6872 PIPE_BIND_DISPLAY_TARGET |
6873 PIPE_BIND_CURSOR |
6874 PIPE_BIND_COMPUTE_RESOURCE |
6875 PIPE_BIND_GLOBAL)));
6876
6877 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6878 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6879 while (bound_vbs) {
6880 const int i = u_bit_scan64(&bound_vbs);
6881 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6882
6883 /* Update the CPU struct */
6884 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6885 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6886 uint64_t *addr = (uint64_t *) &state->state[1];
6887 struct iris_bo *bo = iris_resource_bo(state->resource);
6888
6889 if (*addr != bo->gtt_offset + state->offset) {
6890 *addr = bo->gtt_offset + state->offset;
6891 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6892 }
6893 }
6894 }
6895
6896 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6897 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6898 *
6899 * There is also no need to handle these:
6900 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6901 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6902 */
6903
6904 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6905 /* XXX: be careful about resetting vs appending... */
6906 assert(false);
6907 }
6908
6909 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6910 struct iris_shader_state *shs = &ice->state.shaders[s];
6911 enum pipe_shader_type p_stage = stage_to_pipe(s);
6912
6913 if (!(res->bind_stages & (1 << s)))
6914 continue;
6915
6916 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6917 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6918 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6919 while (bound_cbufs) {
6920 const int i = u_bit_scan(&bound_cbufs);
6921 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6922 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6923
6924 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6925 pipe_resource_reference(&surf_state->res, NULL);
6926 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
6927 }
6928 }
6929 }
6930
6931 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6932 uint32_t bound_ssbos = shs->bound_ssbos;
6933 while (bound_ssbos) {
6934 const int i = u_bit_scan(&bound_ssbos);
6935 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6936
6937 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6938 struct pipe_shader_buffer buf = {
6939 .buffer = &res->base,
6940 .buffer_offset = ssbo->buffer_offset,
6941 .buffer_size = ssbo->buffer_size,
6942 };
6943 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6944 (shs->writable_ssbos >> i) & 1);
6945 }
6946 }
6947 }
6948
6949 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6950 uint32_t bound_sampler_views = shs->bound_sampler_views;
6951 while (bound_sampler_views) {
6952 const int i = u_bit_scan(&bound_sampler_views);
6953 struct iris_sampler_view *isv = shs->textures[i];
6954 struct iris_bo *bo = isv->res->bo;
6955
6956 if (update_surface_state_addrs(ice->state.surface_uploader,
6957 &isv->surface_state, bo)) {
6958 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
6959 }
6960 }
6961 }
6962
6963 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
6964 uint32_t bound_image_views = shs->bound_image_views;
6965 while (bound_image_views) {
6966 const int i = u_bit_scan(&bound_image_views);
6967 struct iris_image_view *iv = &shs->image[i];
6968 struct iris_bo *bo = iris_resource_bo(iv->base.resource);
6969
6970 if (update_surface_state_addrs(ice->state.surface_uploader,
6971 &iv->surface_state, bo)) {
6972 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
6973 }
6974 }
6975 }
6976 }
6977 }
6978
6979 /* ------------------------------------------------------------------- */
6980
6981 /**
6982 * Introduce a batch synchronization boundary, and update its cache coherency
6983 * status to reflect the execution of a PIPE_CONTROL command with the
6984 * specified flags.
6985 */
6986 static void
6987 batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
6988 {
6989 iris_batch_sync_boundary(batch);
6990
6991 if ((flags & PIPE_CONTROL_CS_STALL)) {
6992 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
6993 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
6994
6995 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
6996 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
6997
6998 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
6999 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
7000
7001 if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
7002 PIPE_CONTROL_STALL_AT_SCOREBOARD)))
7003 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
7004 }
7005
7006 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
7007 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
7008
7009 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
7010 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
7011
7012 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
7013 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
7014
7015 if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) &&
7016 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
7017 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_READ);
7018 }
7019
7020 static unsigned
7021 flags_to_post_sync_op(uint32_t flags)
7022 {
7023 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
7024 return WriteImmediateData;
7025
7026 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
7027 return WritePSDepthCount;
7028
7029 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
7030 return WriteTimestamp;
7031
7032 return 0;
7033 }
7034
7035 /**
7036 * Do the given flags have a Post Sync or LRI Post Sync operation?
7037 */
7038 static enum pipe_control_flags
7039 get_post_sync_flags(enum pipe_control_flags flags)
7040 {
7041 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
7042 PIPE_CONTROL_WRITE_DEPTH_COUNT |
7043 PIPE_CONTROL_WRITE_TIMESTAMP |
7044 PIPE_CONTROL_LRI_POST_SYNC_OP;
7045
7046 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
7047 * "LRI Post Sync Operation". So more than one bit set would be illegal.
7048 */
7049 assert(util_bitcount(flags) <= 1);
7050
7051 return flags;
7052 }
7053
7054 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
7055
7056 /**
7057 * Emit a series of PIPE_CONTROL commands, taking into account any
7058 * workarounds necessary to actually accomplish the caller's request.
7059 *
7060 * Unless otherwise noted, spec quotations in this function come from:
7061 *
7062 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
7063 * Restrictions for PIPE_CONTROL.
7064 *
7065 * You should not use this function directly. Use the helpers in
7066 * iris_pipe_control.c instead, which may split the pipe control further.
7067 */
7068 static void
7069 iris_emit_raw_pipe_control(struct iris_batch *batch,
7070 const char *reason,
7071 uint32_t flags,
7072 struct iris_bo *bo,
7073 uint32_t offset,
7074 uint64_t imm)
7075 {
7076 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
7077 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
7078 enum pipe_control_flags non_lri_post_sync_flags =
7079 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
7080
7081 /* Recursive PIPE_CONTROL workarounds --------------------------------
7082 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
7083 *
7084 * We do these first because we want to look at the original operation,
7085 * rather than any workarounds we set.
7086 */
7087 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
7088 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
7089 * lists several workarounds:
7090 *
7091 * "Project: SKL, KBL, BXT
7092 *
7093 * If the VF Cache Invalidation Enable is set to a 1 in a
7094 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
7095 * sets to 0, with the VF Cache Invalidation Enable set to 0
7096 * needs to be sent prior to the PIPE_CONTROL with VF Cache
7097 * Invalidation Enable set to a 1."
7098 */
7099 iris_emit_raw_pipe_control(batch,
7100 "workaround: recursive VF cache invalidate",
7101 0, NULL, 0, 0);
7102 }
7103
7104 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
7105 * invalidates the instruction cache
7106 */
7107 if (GEN_GEN == 12 && (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE)) {
7108 iris_emit_raw_pipe_control(batch,
7109 "workaround: CS stall before instruction "
7110 "cache invalidate",
7111 PIPE_CONTROL_CS_STALL |
7112 PIPE_CONTROL_STALL_AT_SCOREBOARD, bo, offset,
7113 imm);
7114 }
7115
7116 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0*/)) &&
7117 IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
7118 /* Project: SKL / Argument: LRI Post Sync Operation [23]
7119 *
7120 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
7121 * programmed prior to programming a PIPECONTROL command with "LRI
7122 * Post Sync Operation" in GPGPU mode of operation (i.e when
7123 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
7124 *
7125 * The same text exists a few rows below for Post Sync Op.
7126 *
7127 * On Gen12 this is GEN:BUG:1607156449.
7128 */
7129 iris_emit_raw_pipe_control(batch,
7130 "workaround: CS stall before gpgpu post-sync",
7131 PIPE_CONTROL_CS_STALL, bo, offset, imm);
7132 }
7133
7134 /* "Flush Types" workarounds ---------------------------------------------
7135 * We do these now because they may add post-sync operations or CS stalls.
7136 */
7137
7138 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
7139 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
7140 *
7141 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
7142 * 'Write PS Depth Count' or 'Write Timestamp'."
7143 */
7144 if (!bo) {
7145 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7146 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7147 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7148 bo = batch->screen->workaround_address.bo;
7149 offset = batch->screen->workaround_address.offset;
7150 }
7151 }
7152
7153 if (flags & PIPE_CONTROL_DEPTH_STALL) {
7154 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
7155 *
7156 * "This bit must be DISABLED for operations other than writing
7157 * PS_DEPTH_COUNT."
7158 *
7159 * This seems like nonsense. An Ivybridge workaround requires us to
7160 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
7161 * operation. Gen8+ requires us to emit depth stalls and depth cache
7162 * flushes together. So, it's hard to imagine this means anything other
7163 * than "we originally intended this to be used for PS_DEPTH_COUNT".
7164 *
7165 * We ignore the supposed restriction and do nothing.
7166 */
7167 }
7168
7169 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
7170 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
7171 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
7172 *
7173 * "This bit must be DISABLED for End-of-pipe (Read) fences,
7174 * PS_DEPTH_COUNT or TIMESTAMP queries."
7175 *
7176 * TODO: Implement end-of-pipe checking.
7177 */
7178 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
7179 PIPE_CONTROL_WRITE_TIMESTAMP)));
7180 }
7181
7182 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
7183 /* From the PIPE_CONTROL instruction table, bit 1:
7184 *
7185 * "This bit is ignored if Depth Stall Enable is set.
7186 * Further, the render cache is not flushed even if Write Cache
7187 * Flush Enable bit is set."
7188 *
7189 * We assert that the caller doesn't do this combination, to try and
7190 * prevent mistakes. It shouldn't hurt the GPU, though.
7191 *
7192 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
7193 * and "Render Target Flush" combo is explicitly required for BTI
7194 * update workarounds.
7195 */
7196 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
7197 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
7198 }
7199
7200 /* PIPE_CONTROL page workarounds ------------------------------------- */
7201
7202 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
7203 /* From the PIPE_CONTROL page itself:
7204 *
7205 * "IVB, HSW, BDW
7206 * Restriction: Pipe_control with CS-stall bit set must be issued
7207 * before a pipe-control command that has the State Cache
7208 * Invalidate bit set."
7209 */
7210 flags |= PIPE_CONTROL_CS_STALL;
7211 }
7212
7213 if (flags & PIPE_CONTROL_FLUSH_LLC) {
7214 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
7215 *
7216 * "Project: ALL
7217 * SW must always program Post-Sync Operation to "Write Immediate
7218 * Data" when Flush LLC is set."
7219 *
7220 * For now, we just require the caller to do it.
7221 */
7222 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
7223 }
7224
7225 /* "Post-Sync Operation" workarounds -------------------------------- */
7226
7227 /* Project: All / Argument: Global Snapshot Count Reset [19]
7228 *
7229 * "This bit must not be exercised on any product.
7230 * Requires stall bit ([20] of DW1) set."
7231 *
7232 * We don't use this, so we just assert that it isn't used. The
7233 * PIPE_CONTROL instruction page indicates that they intended this
7234 * as a debug feature and don't think it is useful in production,
7235 * but it may actually be usable, should we ever want to.
7236 */
7237 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
7238
7239 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
7240 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
7241 /* Project: All / Arguments:
7242 *
7243 * - Generic Media State Clear [16]
7244 * - Indirect State Pointers Disable [16]
7245 *
7246 * "Requires stall bit ([20] of DW1) set."
7247 *
7248 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
7249 * State Clear) says:
7250 *
7251 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
7252 * programmed prior to programming a PIPECONTROL command with "Media
7253 * State Clear" set in GPGPU mode of operation"
7254 *
7255 * This is a subset of the earlier rule, so there's nothing to do.
7256 */
7257 flags |= PIPE_CONTROL_CS_STALL;
7258 }
7259
7260 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
7261 /* Project: All / Argument: Store Data Index
7262 *
7263 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
7264 * than '0'."
7265 *
7266 * For now, we just assert that the caller does this. We might want to
7267 * automatically add a write to the workaround BO...
7268 */
7269 assert(non_lri_post_sync_flags != 0);
7270 }
7271
7272 if (flags & PIPE_CONTROL_SYNC_GFDT) {
7273 /* Project: All / Argument: Sync GFDT
7274 *
7275 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
7276 * than '0' or 0x2520[13] must be set."
7277 *
7278 * For now, we just assert that the caller does this.
7279 */
7280 assert(non_lri_post_sync_flags != 0);
7281 }
7282
7283 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
7284 /* Project: IVB+ / Argument: TLB inv
7285 *
7286 * "Requires stall bit ([20] of DW1) set."
7287 *
7288 * Also, from the PIPE_CONTROL instruction table:
7289 *
7290 * "Project: SKL+
7291 * Post Sync Operation or CS stall must be set to ensure a TLB
7292 * invalidation occurs. Otherwise no cycle will occur to the TLB
7293 * cache to invalidate."
7294 *
7295 * This is not a subset of the earlier rule, so there's nothing to do.
7296 */
7297 flags |= PIPE_CONTROL_CS_STALL;
7298 }
7299
7300 if (GEN_GEN >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
7301 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
7302 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
7303 * Enable):
7304 *
7305 * Unified Cache (Tile Cache Disabled):
7306 *
7307 * When the Color and Depth (Z) streams are enabled to be cached in
7308 * the DC space of L2, Software must use "Render Target Cache Flush
7309 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
7310 * Flush" for getting the color and depth (Z) write data to be
7311 * globally observable. In this mode of operation it is not required
7312 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
7313 */
7314 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
7315 }
7316
7317 if (GEN_GEN == 9 && devinfo->gt == 4) {
7318 /* TODO: The big Skylake GT4 post sync op workaround */
7319 }
7320
7321 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
7322
7323 if (IS_COMPUTE_PIPELINE(batch)) {
7324 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
7325 /* Project: SKL+ / Argument: Tex Invalidate
7326 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
7327 */
7328 flags |= PIPE_CONTROL_CS_STALL;
7329 }
7330
7331 if (GEN_GEN == 8 && (post_sync_flags ||
7332 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
7333 PIPE_CONTROL_DEPTH_STALL |
7334 PIPE_CONTROL_RENDER_TARGET_FLUSH |
7335 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
7336 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
7337 /* Project: BDW / Arguments:
7338 *
7339 * - LRI Post Sync Operation [23]
7340 * - Post Sync Op [15:14]
7341 * - Notify En [8]
7342 * - Depth Stall [13]
7343 * - Render Target Cache Flush [12]
7344 * - Depth Cache Flush [0]
7345 * - DC Flush Enable [5]
7346 *
7347 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
7348 * Workloads."
7349 */
7350 flags |= PIPE_CONTROL_CS_STALL;
7351
7352 /* Also, from the PIPE_CONTROL instruction table, bit 20:
7353 *
7354 * "Project: BDW
7355 * This bit must be always set when PIPE_CONTROL command is
7356 * programmed by GPGPU and MEDIA workloads, except for the cases
7357 * when only Read Only Cache Invalidation bits are set (State
7358 * Cache Invalidation Enable, Instruction cache Invalidation
7359 * Enable, Texture Cache Invalidation Enable, Constant Cache
7360 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
7361 * need not implemented when FF_DOP_CG is disable via "Fixed
7362 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
7363 *
7364 * It sounds like we could avoid CS stalls in some cases, but we
7365 * don't currently bother. This list isn't exactly the list above,
7366 * either...
7367 */
7368 }
7369 }
7370
7371 /* "Stall" workarounds ----------------------------------------------
7372 * These have to come after the earlier ones because we may have added
7373 * some additional CS stalls above.
7374 */
7375
7376 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
7377 /* Project: PRE-SKL, VLV, CHV
7378 *
7379 * "[All Stepping][All SKUs]:
7380 *
7381 * One of the following must also be set:
7382 *
7383 * - Render Target Cache Flush Enable ([12] of DW1)
7384 * - Depth Cache Flush Enable ([0] of DW1)
7385 * - Stall at Pixel Scoreboard ([1] of DW1)
7386 * - Depth Stall ([13] of DW1)
7387 * - Post-Sync Operation ([13] of DW1)
7388 * - DC Flush Enable ([5] of DW1)"
7389 *
7390 * If we don't already have one of those bits set, we choose to add
7391 * "Stall at Pixel Scoreboard". Some of the other bits require a
7392 * CS stall as a workaround (see above), which would send us into
7393 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
7394 * appears to be safe, so we choose that.
7395 */
7396 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
7397 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
7398 PIPE_CONTROL_WRITE_IMMEDIATE |
7399 PIPE_CONTROL_WRITE_DEPTH_COUNT |
7400 PIPE_CONTROL_WRITE_TIMESTAMP |
7401 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7402 PIPE_CONTROL_DEPTH_STALL |
7403 PIPE_CONTROL_DATA_CACHE_FLUSH;
7404 if (!(flags & wa_bits))
7405 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
7406 }
7407
7408 if (GEN_GEN >= 12 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
7409 /* GEN:BUG:1409600907:
7410 *
7411 * "PIPE_CONTROL with Depth Stall Enable bit must be set
7412 * with any PIPE_CONTROL with Depth Flush Enable bit set.
7413 */
7414 flags |= PIPE_CONTROL_DEPTH_STALL;
7415 }
7416
7417 /* Emit --------------------------------------------------------------- */
7418
7419 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
7420 fprintf(stderr,
7421 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
7422 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
7423 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
7424 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
7425 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
7426 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
7427 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
7428 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
7429 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
7430 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
7431 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
7432 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
7433 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
7434 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
7435 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
7436 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
7437 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
7438 "SnapRes" : "",
7439 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
7440 "ISPDis" : "",
7441 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
7442 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
7443 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
7444 (flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
7445 imm, reason);
7446 }
7447
7448 batch_mark_sync_for_pipe_control(batch, flags);
7449 iris_batch_sync_region_start(batch);
7450
7451 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
7452 #if GEN_GEN >= 12
7453 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
7454 #endif
7455 #if GEN_GEN >= 11
7456 pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
7457 #endif
7458 pc.LRIPostSyncOperation = NoLRIOperation;
7459 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
7460 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
7461 pc.StoreDataIndex = 0;
7462 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
7463 pc.GlobalSnapshotCountReset =
7464 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
7465 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
7466 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
7467 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
7468 pc.RenderTargetCacheFlushEnable =
7469 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
7470 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
7471 pc.StateCacheInvalidationEnable =
7472 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
7473 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
7474 pc.ConstantCacheInvalidationEnable =
7475 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
7476 pc.PostSyncOperation = flags_to_post_sync_op(flags);
7477 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
7478 pc.InstructionCacheInvalidateEnable =
7479 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
7480 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
7481 pc.IndirectStatePointersDisable =
7482 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
7483 pc.TextureCacheInvalidationEnable =
7484 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
7485 pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
7486 pc.ImmediateData = imm;
7487 }
7488
7489 iris_batch_sync_region_end(batch);
7490 }
7491
7492 #if GEN_GEN == 9
7493 /**
7494 * Preemption on Gen9 has to be enabled or disabled in various cases.
7495 *
7496 * See these workarounds for preemption:
7497 * - WaDisableMidObjectPreemptionForGSLineStripAdj
7498 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
7499 * - WaDisableMidObjectPreemptionForLineLoop
7500 * - WA#0798
7501 *
7502 * We don't put this in the vtable because it's only used on Gen9.
7503 */
7504 void
7505 gen9_toggle_preemption(struct iris_context *ice,
7506 struct iris_batch *batch,
7507 const struct pipe_draw_info *draw)
7508 {
7509 struct iris_genx_state *genx = ice->state.genx;
7510 bool object_preemption = true;
7511
7512 /* WaDisableMidObjectPreemptionForGSLineStripAdj
7513 *
7514 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
7515 * and GS is enabled."
7516 */
7517 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
7518 ice->shaders.prog[MESA_SHADER_GEOMETRY])
7519 object_preemption = false;
7520
7521 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
7522 *
7523 * "TriFan miscompare in Execlist Preemption test. Cut index that is
7524 * on a previous context. End the previous, the resume another context
7525 * with a tri-fan or polygon, and the vertex count is corrupted. If we
7526 * prempt again we will cause corruption.
7527 *
7528 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
7529 */
7530 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
7531 object_preemption = false;
7532
7533 /* WaDisableMidObjectPreemptionForLineLoop
7534 *
7535 * "VF Stats Counters Missing a vertex when preemption enabled.
7536 *
7537 * WA: Disable mid-draw preemption when the draw uses a lineloop
7538 * topology."
7539 */
7540 if (draw->mode == PIPE_PRIM_LINE_LOOP)
7541 object_preemption = false;
7542
7543 /* WA#0798
7544 *
7545 * "VF is corrupting GAFS data when preempted on an instance boundary
7546 * and replayed with instancing enabled.
7547 *
7548 * WA: Disable preemption when using instanceing."
7549 */
7550 if (draw->instance_count > 1)
7551 object_preemption = false;
7552
7553 if (genx->object_preemption != object_preemption) {
7554 iris_enable_obj_preemption(batch, object_preemption);
7555 genx->object_preemption = object_preemption;
7556 }
7557 }
7558 #endif
7559
7560 static void
7561 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
7562 {
7563 struct iris_genx_state *genx = ice->state.genx;
7564
7565 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
7566 }
7567
7568 static void
7569 iris_emit_mi_report_perf_count(struct iris_batch *batch,
7570 struct iris_bo *bo,
7571 uint32_t offset_in_bytes,
7572 uint32_t report_id)
7573 {
7574 iris_batch_sync_region_start(batch);
7575 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
7576 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
7577 IRIS_DOMAIN_OTHER_WRITE);
7578 mi_rpc.ReportID = report_id;
7579 }
7580 iris_batch_sync_region_end(batch);
7581 }
7582
7583 /**
7584 * Update the pixel hashing modes that determine the balancing of PS threads
7585 * across subslices and slices.
7586 *
7587 * \param width Width bound of the rendering area (already scaled down if \p
7588 * scale is greater than 1).
7589 * \param height Height bound of the rendering area (already scaled down if \p
7590 * scale is greater than 1).
7591 * \param scale The number of framebuffer samples that could potentially be
7592 * affected by an individual channel of the PS thread. This is
7593 * typically one for single-sampled rendering, but for operations
7594 * like CCS resolves and fast clears a single PS invocation may
7595 * update a huge number of pixels, in which case a finer
7596 * balancing is desirable in order to maximally utilize the
7597 * bandwidth available. UINT_MAX can be used as shorthand for
7598 * "finest hashing mode available".
7599 */
7600 void
7601 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
7602 unsigned width, unsigned height, unsigned scale)
7603 {
7604 #if GEN_GEN == 9
7605 const struct gen_device_info *devinfo = &batch->screen->devinfo;
7606 const unsigned slice_hashing[] = {
7607 /* Because all Gen9 platforms with more than one slice require
7608 * three-way subslice hashing, a single "normal" 16x16 slice hashing
7609 * block is guaranteed to suffer from substantial imbalance, with one
7610 * subslice receiving twice as much work as the other two in the
7611 * slice.
7612 *
7613 * The performance impact of that would be particularly severe when
7614 * three-way hashing is also in use for slice balancing (which is the
7615 * case for all Gen9 GT4 platforms), because one of the slices
7616 * receives one every three 16x16 blocks in either direction, which
7617 * is roughly the periodicity of the underlying subslice imbalance
7618 * pattern ("roughly" because in reality the hardware's
7619 * implementation of three-way hashing doesn't do exact modulo 3
7620 * arithmetic, which somewhat decreases the magnitude of this effect
7621 * in practice). This leads to a systematic subslice imbalance
7622 * within that slice regardless of the size of the primitive. The
7623 * 32x32 hashing mode guarantees that the subslice imbalance within a
7624 * single slice hashing block is minimal, largely eliminating this
7625 * effect.
7626 */
7627 _32x32,
7628 /* Finest slice hashing mode available. */
7629 NORMAL
7630 };
7631 const unsigned subslice_hashing[] = {
7632 /* 16x16 would provide a slight cache locality benefit especially
7633 * visible in the sampler L1 cache efficiency of low-bandwidth
7634 * non-LLC platforms, but it comes at the cost of greater subslice
7635 * imbalance for primitives of dimensions approximately intermediate
7636 * between 16x4 and 16x16.
7637 */
7638 _16x4,
7639 /* Finest subslice hashing mode available. */
7640 _8x4
7641 };
7642 /* Dimensions of the smallest hashing block of a given hashing mode. If
7643 * the rendering area is smaller than this there can't possibly be any
7644 * benefit from switching to this mode, so we optimize out the
7645 * transition.
7646 */
7647 const unsigned min_size[][2] = {
7648 { 16, 4 },
7649 { 8, 4 }
7650 };
7651 const unsigned idx = scale > 1;
7652
7653 if (width > min_size[idx][0] || height > min_size[idx][1]) {
7654 uint32_t gt_mode;
7655
7656 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
7657 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
7658 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
7659 reg.SubsliceHashing = subslice_hashing[idx];
7660 reg.SubsliceHashingMask = -1;
7661 };
7662
7663 iris_emit_raw_pipe_control(batch,
7664 "workaround: CS stall before GT_MODE LRI",
7665 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7666 PIPE_CONTROL_CS_STALL,
7667 NULL, 0, 0);
7668
7669 iris_emit_lri(batch, GT_MODE, gt_mode);
7670
7671 ice->state.current_hash_scale = scale;
7672 }
7673 #endif
7674 }
7675
7676 static void
7677 iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
7678 {
7679 struct iris_context *ice = (struct iris_context *) ctx;
7680
7681 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
7682 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
7683 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
7684 }
7685
7686 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
7687 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
7688 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
7689 }
7690 }
7691
7692 void
7693 genX(init_state)(struct iris_context *ice)
7694 {
7695 struct pipe_context *ctx = &ice->ctx;
7696 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
7697
7698 ctx->create_blend_state = iris_create_blend_state;
7699 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
7700 ctx->create_rasterizer_state = iris_create_rasterizer_state;
7701 ctx->create_sampler_state = iris_create_sampler_state;
7702 ctx->create_sampler_view = iris_create_sampler_view;
7703 ctx->create_surface = iris_create_surface;
7704 ctx->create_vertex_elements_state = iris_create_vertex_elements;
7705 ctx->bind_blend_state = iris_bind_blend_state;
7706 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
7707 ctx->bind_sampler_states = iris_bind_sampler_states;
7708 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
7709 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
7710 ctx->delete_blend_state = iris_delete_state;
7711 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
7712 ctx->delete_rasterizer_state = iris_delete_state;
7713 ctx->delete_sampler_state = iris_delete_state;
7714 ctx->delete_vertex_elements_state = iris_delete_state;
7715 ctx->set_blend_color = iris_set_blend_color;
7716 ctx->set_clip_state = iris_set_clip_state;
7717 ctx->set_constant_buffer = iris_set_constant_buffer;
7718 ctx->set_shader_buffers = iris_set_shader_buffers;
7719 ctx->set_shader_images = iris_set_shader_images;
7720 ctx->set_sampler_views = iris_set_sampler_views;
7721 ctx->set_compute_resources = iris_set_compute_resources;
7722 ctx->set_tess_state = iris_set_tess_state;
7723 ctx->set_framebuffer_state = iris_set_framebuffer_state;
7724 ctx->set_polygon_stipple = iris_set_polygon_stipple;
7725 ctx->set_sample_mask = iris_set_sample_mask;
7726 ctx->set_scissor_states = iris_set_scissor_states;
7727 ctx->set_stencil_ref = iris_set_stencil_ref;
7728 ctx->set_vertex_buffers = iris_set_vertex_buffers;
7729 ctx->set_viewport_states = iris_set_viewport_states;
7730 ctx->sampler_view_destroy = iris_sampler_view_destroy;
7731 ctx->surface_destroy = iris_surface_destroy;
7732 ctx->draw_vbo = iris_draw_vbo;
7733 ctx->launch_grid = iris_launch_grid;
7734 ctx->create_stream_output_target = iris_create_stream_output_target;
7735 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
7736 ctx->set_stream_output_targets = iris_set_stream_output_targets;
7737 ctx->set_frontend_noop = iris_set_frontend_noop;
7738
7739 screen->vtbl.destroy_state = iris_destroy_state;
7740 screen->vtbl.init_render_context = iris_init_render_context;
7741 screen->vtbl.init_compute_context = iris_init_compute_context;
7742 screen->vtbl.upload_render_state = iris_upload_render_state;
7743 screen->vtbl.update_surface_base_address = iris_update_surface_base_address;
7744 screen->vtbl.upload_compute_state = iris_upload_compute_state;
7745 screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
7746 screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
7747 screen->vtbl.rebind_buffer = iris_rebind_buffer;
7748 screen->vtbl.load_register_reg32 = iris_load_register_reg32;
7749 screen->vtbl.load_register_reg64 = iris_load_register_reg64;
7750 screen->vtbl.load_register_imm32 = iris_load_register_imm32;
7751 screen->vtbl.load_register_imm64 = iris_load_register_imm64;
7752 screen->vtbl.load_register_mem32 = iris_load_register_mem32;
7753 screen->vtbl.load_register_mem64 = iris_load_register_mem64;
7754 screen->vtbl.store_register_mem32 = iris_store_register_mem32;
7755 screen->vtbl.store_register_mem64 = iris_store_register_mem64;
7756 screen->vtbl.store_data_imm32 = iris_store_data_imm32;
7757 screen->vtbl.store_data_imm64 = iris_store_data_imm64;
7758 screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
7759 screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
7760 screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
7761 screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
7762 screen->vtbl.populate_vs_key = iris_populate_vs_key;
7763 screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
7764 screen->vtbl.populate_tes_key = iris_populate_tes_key;
7765 screen->vtbl.populate_gs_key = iris_populate_gs_key;
7766 screen->vtbl.populate_fs_key = iris_populate_fs_key;
7767 screen->vtbl.populate_cs_key = iris_populate_cs_key;
7768 screen->vtbl.lost_genx_state = iris_lost_genx_state;
7769
7770 ice->state.dirty = ~0ull;
7771 ice->state.stage_dirty = ~0ull;
7772
7773 ice->state.statistics_counters_enabled = true;
7774
7775 ice->state.sample_mask = 0xffff;
7776 ice->state.num_viewports = 1;
7777 ice->state.prim_mode = PIPE_PRIM_MAX;
7778 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
7779 ice->draw.derived_params.drawid = -1;
7780
7781 /* Make a 1x1x1 null surface for unbound textures */
7782 void *null_surf_map =
7783 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
7784 4 * GENX(RENDER_SURFACE_STATE_length), 64);
7785 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
7786 ice->state.unbound_tex.offset +=
7787 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
7788
7789 /* Default all scissor rectangles to be empty regions. */
7790 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
7791 ice->state.scissors[i] = (struct pipe_scissor_state) {
7792 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
7793 };
7794 }
7795 }