util: Move gallium's PIPE_FORMAT utils to /util/format/
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/format/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_aux_map.h"
102 #include "intel/common/gen_l3_config.h"
103 #include "intel/common/gen_sample_positions.h"
104 #include "iris_batch.h"
105 #include "iris_context.h"
106 #include "iris_defines.h"
107 #include "iris_pipe.h"
108 #include "iris_resource.h"
109
110 #include "iris_genx_macros.h"
111 #include "intel/common/gen_guardband.h"
112
113 static uint32_t
114 mocs(const struct iris_bo *bo, const struct isl_device *dev)
115 {
116 return bo && bo->external ? dev->mocs.external : dev->mocs.internal;
117 }
118
119 /**
120 * Statically assert that PIPE_* enums match the hardware packets.
121 * (As long as they match, we don't need to translate them.)
122 */
123 UNUSED static void pipe_asserts()
124 {
125 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
126
127 /* pipe_logicop happens to match the hardware. */
128 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
129 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
130 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
131 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
132 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
133 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
134 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
135 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
136 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
137 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
138 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
139 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
140 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
141 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
142 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
143 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
144
145 /* pipe_blend_func happens to match the hardware. */
146 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
165
166 /* pipe_blend_func happens to match the hardware. */
167 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
168 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
169 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
170 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
171 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
172
173 /* pipe_stencil_op happens to match the hardware. */
174 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
175 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
176 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
177 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
178 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
179 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
180 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
181 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
182
183 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
184 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
185 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
186 #undef PIPE_ASSERT
187 }
188
189 static unsigned
190 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
191 {
192 static const unsigned map[] = {
193 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
194 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
195 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
196 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
197 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
198 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
199 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
200 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
201 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
202 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
203 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
204 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
205 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
206 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
207 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
208 };
209
210 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
211 }
212
213 static unsigned
214 translate_compare_func(enum pipe_compare_func pipe_func)
215 {
216 static const unsigned map[] = {
217 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
218 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
219 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
220 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
221 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
222 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
223 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
224 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
225 };
226 return map[pipe_func];
227 }
228
229 static unsigned
230 translate_shadow_func(enum pipe_compare_func pipe_func)
231 {
232 /* Gallium specifies the result of shadow comparisons as:
233 *
234 * 1 if ref <op> texel,
235 * 0 otherwise.
236 *
237 * The hardware does:
238 *
239 * 0 if texel <op> ref,
240 * 1 otherwise.
241 *
242 * So we need to flip the operator and also negate.
243 */
244 static const unsigned map[] = {
245 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
246 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
247 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
248 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
249 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
250 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
251 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
252 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
253 };
254 return map[pipe_func];
255 }
256
257 static unsigned
258 translate_cull_mode(unsigned pipe_face)
259 {
260 static const unsigned map[4] = {
261 [PIPE_FACE_NONE] = CULLMODE_NONE,
262 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
263 [PIPE_FACE_BACK] = CULLMODE_BACK,
264 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
265 };
266 return map[pipe_face];
267 }
268
269 static unsigned
270 translate_fill_mode(unsigned pipe_polymode)
271 {
272 static const unsigned map[4] = {
273 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
274 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
275 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
276 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
277 };
278 return map[pipe_polymode];
279 }
280
281 static unsigned
282 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
283 {
284 static const unsigned map[] = {
285 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
286 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
287 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
288 };
289 return map[pipe_mip];
290 }
291
292 static uint32_t
293 translate_wrap(unsigned pipe_wrap)
294 {
295 static const unsigned map[] = {
296 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
297 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
298 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
299 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
300 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
301 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
302
303 /* These are unsupported. */
304 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
305 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
306 };
307 return map[pipe_wrap];
308 }
309
310 /**
311 * Allocate space for some indirect state.
312 *
313 * Return a pointer to the map (to fill it out) and a state ref (for
314 * referring to the state in GPU commands).
315 */
316 static void *
317 upload_state(struct u_upload_mgr *uploader,
318 struct iris_state_ref *ref,
319 unsigned size,
320 unsigned alignment)
321 {
322 void *p = NULL;
323 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
324 return p;
325 }
326
327 /**
328 * Stream out temporary/short-lived state.
329 *
330 * This allocates space, pins the BO, and includes the BO address in the
331 * returned offset (which works because all state lives in 32-bit memory
332 * zones).
333 */
334 static uint32_t *
335 stream_state(struct iris_batch *batch,
336 struct u_upload_mgr *uploader,
337 struct pipe_resource **out_res,
338 unsigned size,
339 unsigned alignment,
340 uint32_t *out_offset)
341 {
342 void *ptr = NULL;
343
344 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
345
346 struct iris_bo *bo = iris_resource_bo(*out_res);
347 iris_use_pinned_bo(batch, bo, false);
348
349 *out_offset += iris_bo_offset_from_base_address(bo);
350
351 iris_record_state_size(batch->state_sizes, *out_offset, size);
352
353 return ptr;
354 }
355
356 /**
357 * stream_state() + memcpy.
358 */
359 static uint32_t
360 emit_state(struct iris_batch *batch,
361 struct u_upload_mgr *uploader,
362 struct pipe_resource **out_res,
363 const void *data,
364 unsigned size,
365 unsigned alignment)
366 {
367 unsigned offset = 0;
368 uint32_t *map =
369 stream_state(batch, uploader, out_res, size, alignment, &offset);
370
371 if (map)
372 memcpy(map, data, size);
373
374 return offset;
375 }
376
377 /**
378 * Did field 'x' change between 'old_cso' and 'new_cso'?
379 *
380 * (If so, we may want to set some dirty flags.)
381 */
382 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
383 #define cso_changed_memcmp(x) \
384 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
385
386 static void
387 flush_before_state_base_change(struct iris_batch *batch)
388 {
389 /* Flush before emitting STATE_BASE_ADDRESS.
390 *
391 * This isn't documented anywhere in the PRM. However, it seems to be
392 * necessary prior to changing the surface state base adress. We've
393 * seen issues in Vulkan where we get GPU hangs when using multi-level
394 * command buffers which clear depth, reset state base address, and then
395 * go render stuff.
396 *
397 * Normally, in GL, we would trust the kernel to do sufficient stalls
398 * and flushes prior to executing our batch. However, it doesn't seem
399 * as if the kernel's flushing is always sufficient and we don't want to
400 * rely on it.
401 *
402 * We make this an end-of-pipe sync instead of a normal flush because we
403 * do not know the current status of the GPU. On Haswell at least,
404 * having a fast-clear operation in flight at the same time as a normal
405 * rendering operation can cause hangs. Since the kernel's flushing is
406 * insufficient, we need to ensure that any rendering operations from
407 * other processes are definitely complete before we try to do our own
408 * rendering. It's a bit of a big hammer but it appears to work.
409 */
410 iris_emit_end_of_pipe_sync(batch,
411 "change STATE_BASE_ADDRESS (flushes)",
412 PIPE_CONTROL_RENDER_TARGET_FLUSH |
413 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
414 PIPE_CONTROL_DATA_CACHE_FLUSH);
415 }
416
417 static void
418 flush_after_state_base_change(struct iris_batch *batch)
419 {
420 /* After re-setting the surface state base address, we have to do some
421 * cache flusing so that the sampler engine will pick up the new
422 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
423 * Shared Function > 3D Sampler > State > State Caching (page 96):
424 *
425 * Coherency with system memory in the state cache, like the texture
426 * cache is handled partially by software. It is expected that the
427 * command stream or shader will issue Cache Flush operation or
428 * Cache_Flush sampler message to ensure that the L1 cache remains
429 * coherent with system memory.
430 *
431 * [...]
432 *
433 * Whenever the value of the Dynamic_State_Base_Addr,
434 * Surface_State_Base_Addr are altered, the L1 state cache must be
435 * invalidated to ensure the new surface or sampler state is fetched
436 * from system memory.
437 *
438 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
439 * which, according the PIPE_CONTROL instruction documentation in the
440 * Broadwell PRM:
441 *
442 * Setting this bit is independent of any other bit in this packet.
443 * This bit controls the invalidation of the L1 and L2 state caches
444 * at the top of the pipe i.e. at the parsing time.
445 *
446 * Unfortunately, experimentation seems to indicate that state cache
447 * invalidation through a PIPE_CONTROL does nothing whatsoever in
448 * regards to surface state and binding tables. In stead, it seems that
449 * invalidating the texture cache is what is actually needed.
450 *
451 * XXX: As far as we have been able to determine through
452 * experimentation, shows that flush the texture cache appears to be
453 * sufficient. The theory here is that all of the sampling/rendering
454 * units cache the binding table in the texture cache. However, we have
455 * yet to be able to actually confirm this.
456 */
457 iris_emit_end_of_pipe_sync(batch,
458 "change STATE_BASE_ADDRESS (invalidates)",
459 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
460 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
461 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
462 }
463
464 static void
465 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
466 {
467 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
468 lri.RegisterOffset = reg;
469 lri.DataDWord = val;
470 }
471 }
472 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
473
474 static void
475 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
476 {
477 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
478 lrr.SourceRegisterAddress = src;
479 lrr.DestinationRegisterAddress = dst;
480 }
481 }
482
483 static void
484 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
485 uint32_t src)
486 {
487 _iris_emit_lrr(batch, dst, src);
488 }
489
490 static void
491 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
492 uint32_t src)
493 {
494 _iris_emit_lrr(batch, dst, src);
495 _iris_emit_lrr(batch, dst + 4, src + 4);
496 }
497
498 static void
499 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
500 uint32_t val)
501 {
502 _iris_emit_lri(batch, reg, val);
503 }
504
505 static void
506 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
507 uint64_t val)
508 {
509 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
510 _iris_emit_lri(batch, reg + 4, val >> 32);
511 }
512
513 /**
514 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
515 */
516 static void
517 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
518 struct iris_bo *bo, uint32_t offset)
519 {
520 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
521 lrm.RegisterAddress = reg;
522 lrm.MemoryAddress = ro_bo(bo, offset);
523 }
524 }
525
526 /**
527 * Load a 64-bit value from a buffer into a MMIO register via
528 * two MI_LOAD_REGISTER_MEM commands.
529 */
530 static void
531 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
532 struct iris_bo *bo, uint32_t offset)
533 {
534 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
535 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
536 }
537
538 static void
539 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
540 struct iris_bo *bo, uint32_t offset,
541 bool predicated)
542 {
543 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
544 srm.RegisterAddress = reg;
545 srm.MemoryAddress = rw_bo(bo, offset);
546 srm.PredicateEnable = predicated;
547 }
548 }
549
550 static void
551 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
552 struct iris_bo *bo, uint32_t offset,
553 bool predicated)
554 {
555 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
556 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
557 }
558
559 static void
560 iris_store_data_imm32(struct iris_batch *batch,
561 struct iris_bo *bo, uint32_t offset,
562 uint32_t imm)
563 {
564 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
565 sdi.Address = rw_bo(bo, offset);
566 sdi.ImmediateData = imm;
567 }
568 }
569
570 static void
571 iris_store_data_imm64(struct iris_batch *batch,
572 struct iris_bo *bo, uint32_t offset,
573 uint64_t imm)
574 {
575 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
576 * 2 in genxml but it's actually variable length and we need 5 DWords.
577 */
578 void *map = iris_get_command_space(batch, 4 * 5);
579 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
580 sdi.DWordLength = 5 - 2;
581 sdi.Address = rw_bo(bo, offset);
582 sdi.ImmediateData = imm;
583 }
584 }
585
586 static void
587 iris_copy_mem_mem(struct iris_batch *batch,
588 struct iris_bo *dst_bo, uint32_t dst_offset,
589 struct iris_bo *src_bo, uint32_t src_offset,
590 unsigned bytes)
591 {
592 /* MI_COPY_MEM_MEM operates on DWords. */
593 assert(bytes % 4 == 0);
594 assert(dst_offset % 4 == 0);
595 assert(src_offset % 4 == 0);
596
597 for (unsigned i = 0; i < bytes; i += 4) {
598 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
599 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
600 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
601 }
602 }
603 }
604
605 static void
606 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
607 {
608 #if GEN_GEN >= 8 && GEN_GEN < 10
609 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
610 *
611 * Software must clear the COLOR_CALC_STATE Valid field in
612 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
613 * with Pipeline Select set to GPGPU.
614 *
615 * The internal hardware docs recommend the same workaround for Gen9
616 * hardware too.
617 */
618 if (pipeline == GPGPU)
619 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
620 #endif
621
622
623 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
624 * PIPELINE_SELECT [DevBWR+]":
625 *
626 * "Project: DEVSNB+
627 *
628 * Software must ensure all the write caches are flushed through a
629 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
630 * command to invalidate read only caches prior to programming
631 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
632 */
633 iris_emit_pipe_control_flush(batch,
634 "workaround: PIPELINE_SELECT flushes (1/2)",
635 PIPE_CONTROL_RENDER_TARGET_FLUSH |
636 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
637 PIPE_CONTROL_DATA_CACHE_FLUSH |
638 PIPE_CONTROL_CS_STALL);
639
640 iris_emit_pipe_control_flush(batch,
641 "workaround: PIPELINE_SELECT flushes (2/2)",
642 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
643 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
644 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
645 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
646
647 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
648 #if GEN_GEN >= 9
649 sel.MaskBits = 3;
650 #endif
651 sel.PipelineSelection = pipeline;
652 }
653 }
654
655 UNUSED static void
656 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
657 {
658 #if GEN_GEN == 9
659 /* Project: DevGLK
660 *
661 * "This chicken bit works around a hardware issue with barrier
662 * logic encountered when switching between GPGPU and 3D pipelines.
663 * To workaround the issue, this mode bit should be set after a
664 * pipeline is selected."
665 */
666 uint32_t reg_val;
667 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
668 reg.GLKBarrierMode = value;
669 reg.GLKBarrierModeMask = 1;
670 }
671 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
672 #endif
673 }
674
675 static void
676 init_state_base_address(struct iris_batch *batch)
677 {
678 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
679 flush_before_state_base_change(batch);
680
681 /* We program most base addresses once at context initialization time.
682 * Each base address points at a 4GB memory zone, and never needs to
683 * change. See iris_bufmgr.h for a description of the memory zones.
684 *
685 * The one exception is Surface State Base Address, which needs to be
686 * updated occasionally. See iris_binder.c for the details there.
687 */
688 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
689 sba.GeneralStateMOCS = mocs;
690 sba.StatelessDataPortAccessMOCS = mocs;
691 sba.DynamicStateMOCS = mocs;
692 sba.IndirectObjectMOCS = mocs;
693 sba.InstructionMOCS = mocs;
694 sba.SurfaceStateMOCS = mocs;
695
696 sba.GeneralStateBaseAddressModifyEnable = true;
697 sba.DynamicStateBaseAddressModifyEnable = true;
698 sba.IndirectObjectBaseAddressModifyEnable = true;
699 sba.InstructionBaseAddressModifyEnable = true;
700 sba.GeneralStateBufferSizeModifyEnable = true;
701 sba.DynamicStateBufferSizeModifyEnable = true;
702 #if (GEN_GEN >= 9)
703 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
704 sba.BindlessSurfaceStateMOCS = mocs;
705 #endif
706 sba.IndirectObjectBufferSizeModifyEnable = true;
707 sba.InstructionBuffersizeModifyEnable = true;
708
709 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
710 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
711
712 sba.GeneralStateBufferSize = 0xfffff;
713 sba.IndirectObjectBufferSize = 0xfffff;
714 sba.InstructionBufferSize = 0xfffff;
715 sba.DynamicStateBufferSize = 0xfffff;
716 }
717
718 flush_after_state_base_change(batch);
719 }
720
721 static void
722 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
723 bool has_slm, bool wants_dc_cache)
724 {
725 uint32_t reg_val;
726
727 #if GEN_GEN >= 12
728 #define L3_ALLOCATION_REG GENX(L3ALLOC)
729 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
730 #else
731 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
732 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
733 #endif
734
735 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
736 #if GEN_GEN < 12
737 reg.SLMEnable = has_slm;
738 #endif
739 #if GEN_GEN == 11
740 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
741 * in L3CNTLREG register. The default setting of the bit is not the
742 * desirable behavior.
743 */
744 reg.ErrorDetectionBehaviorControl = true;
745 reg.UseFullWays = true;
746 #endif
747 reg.URBAllocation = cfg->n[GEN_L3P_URB];
748 reg.ROAllocation = cfg->n[GEN_L3P_RO];
749 reg.DCAllocation = cfg->n[GEN_L3P_DC];
750 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
751 }
752 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
753 }
754
755 static void
756 iris_emit_default_l3_config(struct iris_batch *batch,
757 const struct gen_device_info *devinfo,
758 bool compute)
759 {
760 bool wants_dc_cache = true;
761 bool has_slm = compute;
762 const struct gen_l3_weights w =
763 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
764 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
765 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
766 }
767
768 #if GEN_GEN == 9 || GEN_GEN == 10
769 static void
770 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
771 {
772 uint32_t reg_val;
773
774 /* A fixed function pipe flush is required before modifying this field */
775 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
776 : "disable preemption",
777 PIPE_CONTROL_RENDER_TARGET_FLUSH);
778
779 /* enable object level preemption */
780 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
781 reg.ReplayMode = enable;
782 reg.ReplayModeMask = true;
783 }
784 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
785 }
786 #endif
787
788 #if GEN_GEN == 11
789 static void
790 iris_upload_slice_hashing_state(struct iris_batch *batch)
791 {
792 const struct gen_device_info *devinfo = &batch->screen->devinfo;
793 int subslices_delta =
794 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
795 if (subslices_delta == 0)
796 return;
797
798 struct iris_context *ice = NULL;
799 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
800 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
801
802 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
803 uint32_t hash_address;
804 struct pipe_resource *tmp = NULL;
805 uint32_t *map =
806 stream_state(batch, ice->state.dynamic_uploader, &tmp,
807 size, 64, &hash_address);
808 pipe_resource_reference(&tmp, NULL);
809
810 struct GENX(SLICE_HASH_TABLE) table0 = {
811 .Entry = {
812 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
813 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
814 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
815 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
816 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
817 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
818 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
819 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
820 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
821 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
822 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
823 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
824 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
825 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
826 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
827 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
828 }
829 };
830
831 struct GENX(SLICE_HASH_TABLE) table1 = {
832 .Entry = {
833 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
834 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
835 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
836 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
837 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
838 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
839 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
840 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
841 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
842 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
843 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
844 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
845 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
846 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
847 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
848 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
849 }
850 };
851
852 const struct GENX(SLICE_HASH_TABLE) *table =
853 subslices_delta < 0 ? &table0 : &table1;
854 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
855
856 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
857 ptr.SliceHashStatePointerValid = true;
858 ptr.SliceHashTableStatePointer = hash_address;
859 }
860
861 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
862 mode.SliceHashingTableEnable = true;
863 }
864 }
865 #endif
866
867 static void
868 iris_alloc_push_constants(struct iris_batch *batch)
869 {
870 /* For now, we set a static partitioning of the push constant area,
871 * assuming that all stages could be in use.
872 *
873 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
874 * see if that improves performance by offering more space to
875 * the VS/FS when those aren't in use. Also, try dynamically
876 * enabling/disabling it like i965 does. This would be more
877 * stalls and may not actually help; we don't know yet.
878 */
879 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
880 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
881 alloc._3DCommandSubOpcode = 18 + i;
882 alloc.ConstantBufferOffset = 6 * i;
883 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
884 }
885 }
886 }
887
888 /**
889 * Upload the initial GPU state for a render context.
890 *
891 * This sets some invariant state that needs to be programmed a particular
892 * way, but we never actually change.
893 */
894 static void
895 iris_init_render_context(struct iris_batch *batch)
896 {
897 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
898 uint32_t reg_val;
899
900 emit_pipeline_select(batch, _3D);
901
902 iris_emit_default_l3_config(batch, devinfo, false);
903
904 init_state_base_address(batch);
905
906 #if GEN_GEN >= 9
907 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
908 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
909 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
910 }
911 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
912 #else
913 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
914 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
915 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
916 }
917 iris_emit_lri(batch, INSTPM, reg_val);
918 #endif
919
920 #if GEN_GEN == 9
921 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
922 reg.FloatBlendOptimizationEnable = true;
923 reg.FloatBlendOptimizationEnableMask = true;
924 reg.PartialResolveDisableInVC = true;
925 reg.PartialResolveDisableInVCMask = true;
926 }
927 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
928
929 if (devinfo->is_geminilake)
930 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
931 #endif
932
933 #if GEN_GEN == 11
934 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
935 reg.HeaderlessMessageforPreemptableContexts = 1;
936 reg.HeaderlessMessageforPreemptableContextsMask = 1;
937 }
938 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
939
940 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
941 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
942 reg.EnabledTexelOffsetPrecisionFix = 1;
943 reg.EnabledTexelOffsetPrecisionFixMask = 1;
944 }
945 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
946
947 /* Hardware specification recommends disabling repacking for the
948 * compatibility with decompression mechanism in display controller.
949 */
950 if (devinfo->disable_ccs_repack) {
951 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
952 reg.DisableRepackingforCompression = true;
953 reg.DisableRepackingforCompressionMask = true;
954 }
955 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
956 }
957
958 iris_upload_slice_hashing_state(batch);
959 #endif
960
961 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
962 * changing it dynamically. We set it to the maximum size here, and
963 * instead include the render target dimensions in the viewport, so
964 * viewport extents clipping takes care of pruning stray geometry.
965 */
966 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
967 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
968 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
969 }
970
971 /* Set the initial MSAA sample positions. */
972 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
973 GEN_SAMPLE_POS_1X(pat._1xSample);
974 GEN_SAMPLE_POS_2X(pat._2xSample);
975 GEN_SAMPLE_POS_4X(pat._4xSample);
976 GEN_SAMPLE_POS_8X(pat._8xSample);
977 #if GEN_GEN >= 9
978 GEN_SAMPLE_POS_16X(pat._16xSample);
979 #endif
980 }
981
982 /* Use the legacy AA line coverage computation. */
983 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
984
985 /* Disable chromakeying (it's for media) */
986 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
987
988 /* We want regular rendering, not special HiZ operations. */
989 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
990
991 /* No polygon stippling offsets are necessary. */
992 /* TODO: may need to set an offset for origin-UL framebuffers */
993 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
994
995 iris_alloc_push_constants(batch);
996
997 #if GEN_GEN == 10
998 /* Gen11+ is enabled for us by the kernel. */
999 iris_enable_obj_preemption(batch, true);
1000 #endif
1001 }
1002
1003 static void
1004 iris_init_compute_context(struct iris_batch *batch)
1005 {
1006 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
1007
1008 emit_pipeline_select(batch, GPGPU);
1009
1010 iris_emit_default_l3_config(batch, devinfo, true);
1011
1012 init_state_base_address(batch);
1013
1014 #if GEN_GEN == 9
1015 if (devinfo->is_geminilake)
1016 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1017 #endif
1018 }
1019
1020 struct iris_vertex_buffer_state {
1021 /** The VERTEX_BUFFER_STATE hardware structure. */
1022 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1023
1024 /** The resource to source vertex data from. */
1025 struct pipe_resource *resource;
1026
1027 int offset;
1028 };
1029
1030 struct iris_depth_buffer_state {
1031 /* Depth/HiZ/Stencil related hardware packets. */
1032 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1033 GENX(3DSTATE_STENCIL_BUFFER_length) +
1034 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1035 GENX(3DSTATE_CLEAR_PARAMS_length)];
1036 };
1037
1038 /**
1039 * Generation-specific context state (ice->state.genx->...).
1040 *
1041 * Most state can go in iris_context directly, but these encode hardware
1042 * packets which vary by generation.
1043 */
1044 struct iris_genx_state {
1045 struct iris_vertex_buffer_state vertex_buffers[33];
1046 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1047
1048 struct iris_depth_buffer_state depth_buffer;
1049
1050 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1051
1052 #if GEN_GEN == 8
1053 bool pma_fix_enabled;
1054 #endif
1055
1056 #if GEN_GEN == 9
1057 /* Is object level preemption enabled? */
1058 bool object_preemption;
1059 #endif
1060
1061 struct {
1062 #if GEN_GEN == 8
1063 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1064 #endif
1065 } shaders[MESA_SHADER_STAGES];
1066 };
1067
1068 /**
1069 * The pipe->set_blend_color() driver hook.
1070 *
1071 * This corresponds to our COLOR_CALC_STATE.
1072 */
1073 static void
1074 iris_set_blend_color(struct pipe_context *ctx,
1075 const struct pipe_blend_color *state)
1076 {
1077 struct iris_context *ice = (struct iris_context *) ctx;
1078
1079 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1080 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1081 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1082 }
1083
1084 /**
1085 * Gallium CSO for blend state (see pipe_blend_state).
1086 */
1087 struct iris_blend_state {
1088 /** Partial 3DSTATE_PS_BLEND */
1089 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1090
1091 /** Partial BLEND_STATE */
1092 uint32_t blend_state[GENX(BLEND_STATE_length) +
1093 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1094
1095 bool alpha_to_coverage; /* for shader key */
1096
1097 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1098 uint8_t blend_enables;
1099
1100 /** Bitfield of whether color writes are enabled for RT[i] */
1101 uint8_t color_write_enables;
1102
1103 /** Does RT[0] use dual color blending? */
1104 bool dual_color_blending;
1105 };
1106
1107 static enum pipe_blendfactor
1108 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1109 {
1110 if (alpha_to_one) {
1111 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1112 return PIPE_BLENDFACTOR_ONE;
1113
1114 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1115 return PIPE_BLENDFACTOR_ZERO;
1116 }
1117
1118 return f;
1119 }
1120
1121 /**
1122 * The pipe->create_blend_state() driver hook.
1123 *
1124 * Translates a pipe_blend_state into iris_blend_state.
1125 */
1126 static void *
1127 iris_create_blend_state(struct pipe_context *ctx,
1128 const struct pipe_blend_state *state)
1129 {
1130 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1131 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1132
1133 cso->blend_enables = 0;
1134 cso->color_write_enables = 0;
1135 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1136
1137 cso->alpha_to_coverage = state->alpha_to_coverage;
1138
1139 bool indep_alpha_blend = false;
1140
1141 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1142 const struct pipe_rt_blend_state *rt =
1143 &state->rt[state->independent_blend_enable ? i : 0];
1144
1145 enum pipe_blendfactor src_rgb =
1146 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1147 enum pipe_blendfactor src_alpha =
1148 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1149 enum pipe_blendfactor dst_rgb =
1150 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1151 enum pipe_blendfactor dst_alpha =
1152 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1153
1154 if (rt->rgb_func != rt->alpha_func ||
1155 src_rgb != src_alpha || dst_rgb != dst_alpha)
1156 indep_alpha_blend = true;
1157
1158 if (rt->blend_enable)
1159 cso->blend_enables |= 1u << i;
1160
1161 if (rt->colormask)
1162 cso->color_write_enables |= 1u << i;
1163
1164 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1165 be.LogicOpEnable = state->logicop_enable;
1166 be.LogicOpFunction = state->logicop_func;
1167
1168 be.PreBlendSourceOnlyClampEnable = false;
1169 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1170 be.PreBlendColorClampEnable = true;
1171 be.PostBlendColorClampEnable = true;
1172
1173 be.ColorBufferBlendEnable = rt->blend_enable;
1174
1175 be.ColorBlendFunction = rt->rgb_func;
1176 be.AlphaBlendFunction = rt->alpha_func;
1177 be.SourceBlendFactor = src_rgb;
1178 be.SourceAlphaBlendFactor = src_alpha;
1179 be.DestinationBlendFactor = dst_rgb;
1180 be.DestinationAlphaBlendFactor = dst_alpha;
1181
1182 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1183 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1184 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1185 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1186 }
1187 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1188 }
1189
1190 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1191 /* pb.HasWriteableRT is filled in at draw time.
1192 * pb.AlphaTestEnable is filled in at draw time.
1193 *
1194 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1195 * setting it when dual color blending without an appropriate shader.
1196 */
1197
1198 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1199 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1200
1201 pb.SourceBlendFactor =
1202 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1203 pb.SourceAlphaBlendFactor =
1204 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1205 pb.DestinationBlendFactor =
1206 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1207 pb.DestinationAlphaBlendFactor =
1208 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1209 }
1210
1211 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1212 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1213 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1214 bs.AlphaToOneEnable = state->alpha_to_one;
1215 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1216 bs.ColorDitherEnable = state->dither;
1217 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1218 }
1219
1220 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1221
1222 return cso;
1223 }
1224
1225 /**
1226 * The pipe->bind_blend_state() driver hook.
1227 *
1228 * Bind a blending CSO and flag related dirty bits.
1229 */
1230 static void
1231 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1232 {
1233 struct iris_context *ice = (struct iris_context *) ctx;
1234 struct iris_blend_state *cso = state;
1235
1236 ice->state.cso_blend = cso;
1237 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1238
1239 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1240 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1241 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1242 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1243
1244 if (GEN_GEN == 8)
1245 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1246 }
1247
1248 /**
1249 * Return true if the FS writes to any color outputs which are not disabled
1250 * via color masking.
1251 */
1252 static bool
1253 has_writeable_rt(const struct iris_blend_state *cso_blend,
1254 const struct shader_info *fs_info)
1255 {
1256 if (!fs_info)
1257 return false;
1258
1259 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1260
1261 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1262 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1263
1264 return cso_blend->color_write_enables & rt_outputs;
1265 }
1266
1267 /**
1268 * Gallium CSO for depth, stencil, and alpha testing state.
1269 */
1270 struct iris_depth_stencil_alpha_state {
1271 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1272 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1273
1274 #if GEN_GEN >= 12
1275 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1276 #endif
1277
1278 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1279 struct pipe_alpha_state alpha;
1280
1281 /** Outbound to resolve and cache set tracking. */
1282 bool depth_writes_enabled;
1283 bool stencil_writes_enabled;
1284
1285 /** Outbound to Gen8-9 PMA stall equations */
1286 bool depth_test_enabled;
1287 };
1288
1289 /**
1290 * The pipe->create_depth_stencil_alpha_state() driver hook.
1291 *
1292 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1293 * testing state since we need pieces of it in a variety of places.
1294 */
1295 static void *
1296 iris_create_zsa_state(struct pipe_context *ctx,
1297 const struct pipe_depth_stencil_alpha_state *state)
1298 {
1299 struct iris_depth_stencil_alpha_state *cso =
1300 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1301
1302 bool two_sided_stencil = state->stencil[1].enabled;
1303
1304 cso->alpha = state->alpha;
1305 cso->depth_writes_enabled = state->depth.writemask;
1306 cso->depth_test_enabled = state->depth.enabled;
1307 cso->stencil_writes_enabled =
1308 state->stencil[0].writemask != 0 ||
1309 (two_sided_stencil && state->stencil[1].writemask != 0);
1310
1311 /* The state tracker needs to optimize away EQUAL writes for us. */
1312 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1313
1314 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1315 wmds.StencilFailOp = state->stencil[0].fail_op;
1316 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1317 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1318 wmds.StencilTestFunction =
1319 translate_compare_func(state->stencil[0].func);
1320 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1321 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1322 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1323 wmds.BackfaceStencilTestFunction =
1324 translate_compare_func(state->stencil[1].func);
1325 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1326 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1327 wmds.StencilTestEnable = state->stencil[0].enabled;
1328 wmds.StencilBufferWriteEnable =
1329 state->stencil[0].writemask != 0 ||
1330 (two_sided_stencil && state->stencil[1].writemask != 0);
1331 wmds.DepthTestEnable = state->depth.enabled;
1332 wmds.DepthBufferWriteEnable = state->depth.writemask;
1333 wmds.StencilTestMask = state->stencil[0].valuemask;
1334 wmds.StencilWriteMask = state->stencil[0].writemask;
1335 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1336 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1337 /* wmds.[Backface]StencilReferenceValue are merged later */
1338 }
1339
1340 #if GEN_GEN >= 12
1341 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1342 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1343 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1344 depth_bounds.DepthBoundsTestEnable = state->depth.bounds_test;
1345 depth_bounds.DepthBoundsTestMinValue = state->depth.bounds_min;
1346 depth_bounds.DepthBoundsTestMaxValue = state->depth.bounds_max;
1347 }
1348 #endif
1349
1350 return cso;
1351 }
1352
1353 /**
1354 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1355 *
1356 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1357 */
1358 static void
1359 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1360 {
1361 struct iris_context *ice = (struct iris_context *) ctx;
1362 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1363 struct iris_depth_stencil_alpha_state *new_cso = state;
1364
1365 if (new_cso) {
1366 if (cso_changed(alpha.ref_value))
1367 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1368
1369 if (cso_changed(alpha.enabled))
1370 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1371
1372 if (cso_changed(alpha.func))
1373 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1374
1375 if (cso_changed(depth_writes_enabled))
1376 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1377
1378 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1379 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1380
1381 #if GEN_GEN >= 12
1382 if (cso_changed(depth_bounds))
1383 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
1384 #endif
1385 }
1386
1387 ice->state.cso_zsa = new_cso;
1388 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1389 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1390 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1391
1392 if (GEN_GEN == 8)
1393 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1394 }
1395
1396 #if GEN_GEN == 8
1397 static bool
1398 want_pma_fix(struct iris_context *ice)
1399 {
1400 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
1401 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
1402 const struct brw_wm_prog_data *wm_prog_data = (void *)
1403 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1404 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
1405 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
1406 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
1407
1408 /* In very specific combinations of state, we can instruct Gen8-9 hardware
1409 * to avoid stalling at the pixel mask array. The state equations are
1410 * documented in these places:
1411 *
1412 * - Gen8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
1413 * - Gen9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
1414 *
1415 * Both equations share some common elements:
1416 *
1417 * no_hiz_op =
1418 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1419 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1420 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1421 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
1422 *
1423 * killpixels =
1424 * 3DSTATE_WM::ForceKillPix != ForceOff &&
1425 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1426 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1427 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1428 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1429 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1430 *
1431 * (Technically the stencil PMA treats ForceKillPix differently,
1432 * but I think this is a documentation oversight, and we don't
1433 * ever use it in this way, so it doesn't matter).
1434 *
1435 * common_pma_fix =
1436 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
1437 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
1438 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1439 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1440 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
1441 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
1442 * no_hiz_op
1443 *
1444 * These are always true:
1445 *
1446 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
1447 * 3DSTATE_PS_EXTRA::PixelShaderValid
1448 *
1449 * Also, we never use the normal drawing path for HiZ ops; these are true:
1450 *
1451 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1452 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1453 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1454 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
1455 *
1456 * This happens sometimes:
1457 *
1458 * 3DSTATE_WM::ForceThreadDispatch != 1
1459 *
1460 * However, we choose to ignore it as it either agrees with the signal
1461 * (dispatch was already enabled, so nothing out of the ordinary), or
1462 * there are no framebuffer attachments (so no depth or HiZ anyway,
1463 * meaning the PMA signal will already be disabled).
1464 */
1465
1466 if (!cso_fb->zsbuf)
1467 return false;
1468
1469 struct iris_resource *zres, *sres;
1470 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
1471
1472 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1473 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1474 */
1475 if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
1476 return false;
1477
1478 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
1479 if (wm_prog_data->early_fragment_tests)
1480 return false;
1481
1482 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
1483 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1484 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1485 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1486 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1487 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1488 */
1489 bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
1490 cso_blend->alpha_to_coverage || cso_zsa->alpha.enabled;
1491
1492 /* The Gen8 depth PMA equation becomes:
1493 *
1494 * depth_writes =
1495 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
1496 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
1497 *
1498 * stencil_writes =
1499 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
1500 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
1501 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
1502 *
1503 * Z_PMA_OPT =
1504 * common_pma_fix &&
1505 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
1506 * ((killpixels && (depth_writes || stencil_writes)) ||
1507 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
1508 *
1509 */
1510 if (!cso_zsa->depth_test_enabled)
1511 return false;
1512
1513 return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
1514 (killpixels && (cso_zsa->depth_writes_enabled ||
1515 (sres && cso_zsa->stencil_writes_enabled)));
1516 }
1517 #endif
1518
1519 void
1520 genX(update_pma_fix)(struct iris_context *ice,
1521 struct iris_batch *batch,
1522 bool enable)
1523 {
1524 #if GEN_GEN == 8
1525 struct iris_genx_state *genx = ice->state.genx;
1526
1527 if (genx->pma_fix_enabled == enable)
1528 return;
1529
1530 genx->pma_fix_enabled = enable;
1531
1532 /* According to the Broadwell PIPE_CONTROL documentation, software should
1533 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
1534 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
1535 *
1536 * The Gen9 docs say to use a depth stall rather than a command streamer
1537 * stall. However, the hardware seems to violently disagree. A full
1538 * command streamer stall seems to be needed in both cases.
1539 */
1540 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1541 PIPE_CONTROL_CS_STALL |
1542 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1543 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1544
1545 uint32_t reg_val;
1546 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
1547 reg.NPPMAFixEnable = enable;
1548 reg.NPEarlyZFailsDisable = enable;
1549 reg.NPPMAFixEnableMask = true;
1550 reg.NPEarlyZFailsDisableMask = true;
1551 }
1552 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
1553
1554 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
1555 * Flush bits is often necessary. We do it regardless because it's easier.
1556 * The render cache flush is also necessary if stencil writes are enabled.
1557 *
1558 * Again, the Gen9 docs give a different set of flushes but the Broadwell
1559 * flushes seem to work just as well.
1560 */
1561 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1562 PIPE_CONTROL_DEPTH_STALL |
1563 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1564 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1565 #endif
1566 }
1567
1568 /**
1569 * Gallium CSO for rasterizer state.
1570 */
1571 struct iris_rasterizer_state {
1572 uint32_t sf[GENX(3DSTATE_SF_length)];
1573 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1574 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1575 uint32_t wm[GENX(3DSTATE_WM_length)];
1576 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1577
1578 uint8_t num_clip_plane_consts;
1579 bool clip_halfz; /* for CC_VIEWPORT */
1580 bool depth_clip_near; /* for CC_VIEWPORT */
1581 bool depth_clip_far; /* for CC_VIEWPORT */
1582 bool flatshade; /* for shader state */
1583 bool flatshade_first; /* for stream output */
1584 bool clamp_fragment_color; /* for shader state */
1585 bool light_twoside; /* for shader state */
1586 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1587 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1588 bool line_stipple_enable;
1589 bool poly_stipple_enable;
1590 bool multisample;
1591 bool force_persample_interp;
1592 bool conservative_rasterization;
1593 bool fill_mode_point_or_line;
1594 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1595 uint16_t sprite_coord_enable;
1596 };
1597
1598 static float
1599 get_line_width(const struct pipe_rasterizer_state *state)
1600 {
1601 float line_width = state->line_width;
1602
1603 /* From the OpenGL 4.4 spec:
1604 *
1605 * "The actual width of non-antialiased lines is determined by rounding
1606 * the supplied width to the nearest integer, then clamping it to the
1607 * implementation-dependent maximum non-antialiased line width."
1608 */
1609 if (!state->multisample && !state->line_smooth)
1610 line_width = roundf(state->line_width);
1611
1612 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1613 /* For 1 pixel line thickness or less, the general anti-aliasing
1614 * algorithm gives up, and a garbage line is generated. Setting a
1615 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1616 * (one-pixel-wide), non-antialiased lines.
1617 *
1618 * Lines rendered with zero Line Width are rasterized using the
1619 * "Grid Intersection Quantization" rules as specified by the
1620 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1621 */
1622 line_width = 0.0f;
1623 }
1624
1625 return line_width;
1626 }
1627
1628 /**
1629 * The pipe->create_rasterizer_state() driver hook.
1630 */
1631 static void *
1632 iris_create_rasterizer_state(struct pipe_context *ctx,
1633 const struct pipe_rasterizer_state *state)
1634 {
1635 struct iris_rasterizer_state *cso =
1636 malloc(sizeof(struct iris_rasterizer_state));
1637
1638 cso->multisample = state->multisample;
1639 cso->force_persample_interp = state->force_persample_interp;
1640 cso->clip_halfz = state->clip_halfz;
1641 cso->depth_clip_near = state->depth_clip_near;
1642 cso->depth_clip_far = state->depth_clip_far;
1643 cso->flatshade = state->flatshade;
1644 cso->flatshade_first = state->flatshade_first;
1645 cso->clamp_fragment_color = state->clamp_fragment_color;
1646 cso->light_twoside = state->light_twoside;
1647 cso->rasterizer_discard = state->rasterizer_discard;
1648 cso->half_pixel_center = state->half_pixel_center;
1649 cso->sprite_coord_mode = state->sprite_coord_mode;
1650 cso->sprite_coord_enable = state->sprite_coord_enable;
1651 cso->line_stipple_enable = state->line_stipple_enable;
1652 cso->poly_stipple_enable = state->poly_stipple_enable;
1653 cso->conservative_rasterization =
1654 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1655
1656 cso->fill_mode_point_or_line =
1657 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1658 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1659 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1660 state->fill_back == PIPE_POLYGON_MODE_POINT;
1661
1662 if (state->clip_plane_enable != 0)
1663 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1664 else
1665 cso->num_clip_plane_consts = 0;
1666
1667 float line_width = get_line_width(state);
1668
1669 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1670 sf.StatisticsEnable = true;
1671 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1672 sf.LineEndCapAntialiasingRegionWidth =
1673 state->line_smooth ? _10pixels : _05pixels;
1674 sf.LastPixelEnable = state->line_last_pixel;
1675 sf.LineWidth = line_width;
1676 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1677 !state->point_quad_rasterization;
1678 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1679 sf.PointWidth = state->point_size;
1680
1681 if (state->flatshade_first) {
1682 sf.TriangleFanProvokingVertexSelect = 1;
1683 } else {
1684 sf.TriangleStripListProvokingVertexSelect = 2;
1685 sf.TriangleFanProvokingVertexSelect = 2;
1686 sf.LineStripListProvokingVertexSelect = 1;
1687 }
1688 }
1689
1690 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1691 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1692 rr.CullMode = translate_cull_mode(state->cull_face);
1693 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1694 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1695 rr.DXMultisampleRasterizationEnable = state->multisample;
1696 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1697 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1698 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1699 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1700 rr.GlobalDepthOffsetScale = state->offset_scale;
1701 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1702 rr.SmoothPointEnable = state->point_smooth;
1703 rr.AntialiasingEnable = state->line_smooth;
1704 rr.ScissorRectangleEnable = state->scissor;
1705 #if GEN_GEN >= 9
1706 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1707 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1708 rr.ConservativeRasterizationEnable =
1709 cso->conservative_rasterization;
1710 #else
1711 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1712 #endif
1713 }
1714
1715 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1716 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1717 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1718 */
1719 cl.EarlyCullEnable = true;
1720 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1721 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1722 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1723 cl.GuardbandClipTestEnable = true;
1724 cl.ClipEnable = true;
1725 cl.MinimumPointWidth = 0.125;
1726 cl.MaximumPointWidth = 255.875;
1727
1728 if (state->flatshade_first) {
1729 cl.TriangleFanProvokingVertexSelect = 1;
1730 } else {
1731 cl.TriangleStripListProvokingVertexSelect = 2;
1732 cl.TriangleFanProvokingVertexSelect = 2;
1733 cl.LineStripListProvokingVertexSelect = 1;
1734 }
1735 }
1736
1737 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1738 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1739 * filled in at draw time from the FS program.
1740 */
1741 wm.LineAntialiasingRegionWidth = _10pixels;
1742 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1743 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1744 wm.LineStippleEnable = state->line_stipple_enable;
1745 wm.PolygonStippleEnable = state->poly_stipple_enable;
1746 }
1747
1748 /* Remap from 0..255 back to 1..256 */
1749 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1750
1751 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1752 if (state->line_stipple_enable) {
1753 line.LineStipplePattern = state->line_stipple_pattern;
1754 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1755 line.LineStippleRepeatCount = line_stipple_factor;
1756 }
1757 }
1758
1759 return cso;
1760 }
1761
1762 /**
1763 * The pipe->bind_rasterizer_state() driver hook.
1764 *
1765 * Bind a rasterizer CSO and flag related dirty bits.
1766 */
1767 static void
1768 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1769 {
1770 struct iris_context *ice = (struct iris_context *) ctx;
1771 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1772 struct iris_rasterizer_state *new_cso = state;
1773
1774 if (new_cso) {
1775 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1776 if (cso_changed_memcmp(line_stipple))
1777 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1778
1779 if (cso_changed(half_pixel_center))
1780 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1781
1782 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1783 ice->state.dirty |= IRIS_DIRTY_WM;
1784
1785 if (cso_changed(rasterizer_discard))
1786 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1787
1788 if (cso_changed(flatshade_first))
1789 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1790
1791 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1792 cso_changed(clip_halfz))
1793 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1794
1795 if (cso_changed(sprite_coord_enable) ||
1796 cso_changed(sprite_coord_mode) ||
1797 cso_changed(light_twoside))
1798 ice->state.dirty |= IRIS_DIRTY_SBE;
1799
1800 if (cso_changed(conservative_rasterization))
1801 ice->state.dirty |= IRIS_DIRTY_FS;
1802 }
1803
1804 ice->state.cso_rast = new_cso;
1805 ice->state.dirty |= IRIS_DIRTY_RASTER;
1806 ice->state.dirty |= IRIS_DIRTY_CLIP;
1807 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1808 }
1809
1810 /**
1811 * Return true if the given wrap mode requires the border color to exist.
1812 *
1813 * (We can skip uploading it if the sampler isn't going to use it.)
1814 */
1815 static bool
1816 wrap_mode_needs_border_color(unsigned wrap_mode)
1817 {
1818 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1819 }
1820
1821 /**
1822 * Gallium CSO for sampler state.
1823 */
1824 struct iris_sampler_state {
1825 union pipe_color_union border_color;
1826 bool needs_border_color;
1827
1828 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1829 };
1830
1831 /**
1832 * The pipe->create_sampler_state() driver hook.
1833 *
1834 * We fill out SAMPLER_STATE (except for the border color pointer), and
1835 * store that on the CPU. It doesn't make sense to upload it to a GPU
1836 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1837 * all bound sampler states to be in contiguous memor.
1838 */
1839 static void *
1840 iris_create_sampler_state(struct pipe_context *ctx,
1841 const struct pipe_sampler_state *state)
1842 {
1843 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1844
1845 if (!cso)
1846 return NULL;
1847
1848 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1849 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1850
1851 unsigned wrap_s = translate_wrap(state->wrap_s);
1852 unsigned wrap_t = translate_wrap(state->wrap_t);
1853 unsigned wrap_r = translate_wrap(state->wrap_r);
1854
1855 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1856
1857 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1858 wrap_mode_needs_border_color(wrap_t) ||
1859 wrap_mode_needs_border_color(wrap_r);
1860
1861 float min_lod = state->min_lod;
1862 unsigned mag_img_filter = state->mag_img_filter;
1863
1864 // XXX: explain this code ported from ilo...I don't get it at all...
1865 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1866 state->min_lod > 0.0f) {
1867 min_lod = 0.0f;
1868 mag_img_filter = state->min_img_filter;
1869 }
1870
1871 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1872 samp.TCXAddressControlMode = wrap_s;
1873 samp.TCYAddressControlMode = wrap_t;
1874 samp.TCZAddressControlMode = wrap_r;
1875 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1876 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1877 samp.MinModeFilter = state->min_img_filter;
1878 samp.MagModeFilter = mag_img_filter;
1879 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1880 samp.MaximumAnisotropy = RATIO21;
1881
1882 if (state->max_anisotropy >= 2) {
1883 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1884 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1885 samp.AnisotropicAlgorithm = EWAApproximation;
1886 }
1887
1888 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1889 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1890
1891 samp.MaximumAnisotropy =
1892 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1893 }
1894
1895 /* Set address rounding bits if not using nearest filtering. */
1896 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1897 samp.UAddressMinFilterRoundingEnable = true;
1898 samp.VAddressMinFilterRoundingEnable = true;
1899 samp.RAddressMinFilterRoundingEnable = true;
1900 }
1901
1902 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1903 samp.UAddressMagFilterRoundingEnable = true;
1904 samp.VAddressMagFilterRoundingEnable = true;
1905 samp.RAddressMagFilterRoundingEnable = true;
1906 }
1907
1908 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1909 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1910
1911 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1912
1913 samp.LODPreClampMode = CLAMP_MODE_OGL;
1914 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1915 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1916 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1917
1918 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1919 }
1920
1921 return cso;
1922 }
1923
1924 /**
1925 * The pipe->bind_sampler_states() driver hook.
1926 */
1927 static void
1928 iris_bind_sampler_states(struct pipe_context *ctx,
1929 enum pipe_shader_type p_stage,
1930 unsigned start, unsigned count,
1931 void **states)
1932 {
1933 struct iris_context *ice = (struct iris_context *) ctx;
1934 gl_shader_stage stage = stage_from_pipe(p_stage);
1935 struct iris_shader_state *shs = &ice->state.shaders[stage];
1936
1937 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1938
1939 bool dirty = false;
1940
1941 for (int i = 0; i < count; i++) {
1942 if (shs->samplers[start + i] != states[i]) {
1943 shs->samplers[start + i] = states[i];
1944 dirty = true;
1945 }
1946 }
1947
1948 if (dirty)
1949 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1950 }
1951
1952 /**
1953 * Upload the sampler states into a contiguous area of GPU memory, for
1954 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1955 *
1956 * Also fill out the border color state pointers.
1957 */
1958 static void
1959 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1960 {
1961 struct iris_shader_state *shs = &ice->state.shaders[stage];
1962 const struct shader_info *info = iris_get_shader_info(ice, stage);
1963
1964 /* We assume the state tracker will call pipe->bind_sampler_states()
1965 * if the program's number of textures changes.
1966 */
1967 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1968
1969 if (!count)
1970 return;
1971
1972 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1973 * in the dynamic state memory zone, so we can point to it via the
1974 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1975 */
1976 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1977 uint32_t *map =
1978 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1979 if (unlikely(!map))
1980 return;
1981
1982 struct pipe_resource *res = shs->sampler_table.res;
1983 shs->sampler_table.offset +=
1984 iris_bo_offset_from_base_address(iris_resource_bo(res));
1985
1986 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1987
1988 /* Make sure all land in the same BO */
1989 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1990
1991 ice->state.need_border_colors &= ~(1 << stage);
1992
1993 for (int i = 0; i < count; i++) {
1994 struct iris_sampler_state *state = shs->samplers[i];
1995 struct iris_sampler_view *tex = shs->textures[i];
1996
1997 if (!state) {
1998 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1999 } else if (!state->needs_border_color) {
2000 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
2001 } else {
2002 ice->state.need_border_colors |= 1 << stage;
2003
2004 /* We may need to swizzle the border color for format faking.
2005 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2006 * This means we need to move the border color's A channel into
2007 * the R or G channels so that those read swizzles will move it
2008 * back into A.
2009 */
2010 union pipe_color_union *color = &state->border_color;
2011 union pipe_color_union tmp;
2012 if (tex) {
2013 enum pipe_format internal_format = tex->res->internal_format;
2014
2015 if (util_format_is_alpha(internal_format)) {
2016 unsigned char swz[4] = {
2017 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2018 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2019 };
2020 util_format_apply_color_swizzle(&tmp, color, swz, true);
2021 color = &tmp;
2022 } else if (util_format_is_luminance_alpha(internal_format) &&
2023 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2024 unsigned char swz[4] = {
2025 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2026 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2027 };
2028 util_format_apply_color_swizzle(&tmp, color, swz, true);
2029 color = &tmp;
2030 }
2031 }
2032
2033 /* Stream out the border color and merge the pointer. */
2034 uint32_t offset = iris_upload_border_color(ice, color);
2035
2036 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2037 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2038 dyns.BorderColorPointer = offset;
2039 }
2040
2041 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2042 map[j] = state->sampler_state[j] | dynamic[j];
2043 }
2044
2045 map += GENX(SAMPLER_STATE_length);
2046 }
2047 }
2048
2049 static enum isl_channel_select
2050 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2051 {
2052 switch (swz) {
2053 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2054 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2055 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2056 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2057 case PIPE_SWIZZLE_1: return SCS_ONE;
2058 case PIPE_SWIZZLE_0: return SCS_ZERO;
2059 default: unreachable("invalid swizzle");
2060 }
2061 }
2062
2063 static void
2064 fill_buffer_surface_state(struct isl_device *isl_dev,
2065 struct iris_resource *res,
2066 void *map,
2067 enum isl_format format,
2068 struct isl_swizzle swizzle,
2069 unsigned offset,
2070 unsigned size)
2071 {
2072 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2073 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2074
2075 /* The ARB_texture_buffer_specification says:
2076 *
2077 * "The number of texels in the buffer texture's texel array is given by
2078 *
2079 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2080 *
2081 * where <buffer_size> is the size of the buffer object, in basic
2082 * machine units and <components> and <base_type> are the element count
2083 * and base data type for elements, as specified in Table X.1. The
2084 * number of texels in the texel array is then clamped to the
2085 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2086 *
2087 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2088 * so that when ISL divides by stride to obtain the number of texels, that
2089 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2090 */
2091 unsigned final_size =
2092 MIN3(size, res->bo->size - res->offset - offset,
2093 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2094
2095 isl_buffer_fill_state(isl_dev, map,
2096 .address = res->bo->gtt_offset + res->offset + offset,
2097 .size_B = final_size,
2098 .format = format,
2099 .swizzle = swizzle,
2100 .stride_B = cpp,
2101 .mocs = mocs(res->bo, isl_dev));
2102 }
2103
2104 #define SURFACE_STATE_ALIGNMENT 64
2105
2106 /**
2107 * Allocate several contiguous SURFACE_STATE structures, one for each
2108 * supported auxiliary surface mode.
2109 */
2110 static void *
2111 alloc_surface_states(struct u_upload_mgr *mgr,
2112 struct iris_state_ref *ref,
2113 unsigned aux_usages)
2114 {
2115 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2116
2117 /* If this changes, update this to explicitly align pointers */
2118 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2119
2120 assert(aux_usages != 0);
2121
2122 void *map =
2123 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
2124 SURFACE_STATE_ALIGNMENT);
2125
2126 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
2127
2128 return map;
2129 }
2130
2131 #if GEN_GEN == 8
2132 /**
2133 * Return an ISL surface for use with non-coherent render target reads.
2134 *
2135 * In a few complex cases, we can't use the SURFACE_STATE for normal render
2136 * target writes. We need to make a separate one for sampling which refers
2137 * to the single slice of the texture being read.
2138 */
2139 static void
2140 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
2141 struct iris_resource *res,
2142 enum pipe_texture_target target,
2143 struct isl_view *view,
2144 uint32_t *tile_x_sa,
2145 uint32_t *tile_y_sa,
2146 struct isl_surf *surf)
2147 {
2148
2149 *surf = res->surf;
2150
2151 const enum isl_dim_layout dim_layout =
2152 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
2153
2154 surf->dim = target_to_isl_surf_dim(target);
2155
2156 if (surf->dim_layout == dim_layout)
2157 return;
2158
2159 /* The layout of the specified texture target is not compatible with the
2160 * actual layout of the miptree structure in memory -- You're entering
2161 * dangerous territory, this can only possibly work if you only intended
2162 * to access a single level and slice of the texture, and the hardware
2163 * supports the tile offset feature in order to allow non-tile-aligned
2164 * base offsets, since we'll have to point the hardware to the first
2165 * texel of the level instead of relying on the usual base level/layer
2166 * controls.
2167 */
2168 assert(view->levels == 1 && view->array_len == 1);
2169 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
2170
2171 res->offset += iris_resource_get_tile_offsets(res, view->base_level,
2172 view->base_array_layer,
2173 tile_x_sa, tile_y_sa);
2174 const unsigned l = view->base_level;
2175
2176 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
2177 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
2178 minify(surf->logical_level0_px.height, l);
2179 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
2180 minify(surf->logical_level0_px.depth, l);
2181
2182 surf->logical_level0_px.array_len = 1;
2183 surf->levels = 1;
2184 surf->dim_layout = dim_layout;
2185
2186 view->base_level = 0;
2187 view->base_array_layer = 0;
2188 }
2189 #endif
2190
2191 static void
2192 fill_surface_state(struct isl_device *isl_dev,
2193 void *map,
2194 struct iris_resource *res,
2195 struct isl_surf *surf,
2196 struct isl_view *view,
2197 unsigned aux_usage,
2198 uint32_t tile_x_sa,
2199 uint32_t tile_y_sa)
2200 {
2201 struct isl_surf_fill_state_info f = {
2202 .surf = surf,
2203 .view = view,
2204 .mocs = mocs(res->bo, isl_dev),
2205 .address = res->bo->gtt_offset + res->offset,
2206 .x_offset_sa = tile_x_sa,
2207 .y_offset_sa = tile_y_sa,
2208 };
2209
2210 assert(!iris_resource_unfinished_aux_import(res));
2211
2212 if (aux_usage != ISL_AUX_USAGE_NONE) {
2213 f.aux_surf = &res->aux.surf;
2214 f.aux_usage = aux_usage;
2215 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
2216
2217 struct iris_bo *clear_bo = NULL;
2218 uint64_t clear_offset = 0;
2219 f.clear_color =
2220 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
2221 if (clear_bo) {
2222 f.clear_address = clear_bo->gtt_offset + clear_offset;
2223 f.use_clear_address = isl_dev->info->gen > 9;
2224 }
2225 }
2226
2227 isl_surf_fill_state_s(isl_dev, map, &f);
2228 }
2229
2230 /**
2231 * The pipe->create_sampler_view() driver hook.
2232 */
2233 static struct pipe_sampler_view *
2234 iris_create_sampler_view(struct pipe_context *ctx,
2235 struct pipe_resource *tex,
2236 const struct pipe_sampler_view *tmpl)
2237 {
2238 struct iris_context *ice = (struct iris_context *) ctx;
2239 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2240 const struct gen_device_info *devinfo = &screen->devinfo;
2241 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2242
2243 if (!isv)
2244 return NULL;
2245
2246 /* initialize base object */
2247 isv->base = *tmpl;
2248 isv->base.context = ctx;
2249 isv->base.texture = NULL;
2250 pipe_reference_init(&isv->base.reference, 1);
2251 pipe_resource_reference(&isv->base.texture, tex);
2252
2253 if (util_format_is_depth_or_stencil(tmpl->format)) {
2254 struct iris_resource *zres, *sres;
2255 const struct util_format_description *desc =
2256 util_format_description(tmpl->format);
2257
2258 iris_get_depth_stencil_resources(tex, &zres, &sres);
2259
2260 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
2261 }
2262
2263 isv->res = (struct iris_resource *) tex;
2264
2265 void *map = alloc_surface_states(ice->state.surface_uploader,
2266 &isv->surface_state,
2267 isv->res->aux.sampler_usages);
2268 if (!unlikely(map))
2269 return NULL;
2270
2271 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2272
2273 if (isv->base.target == PIPE_TEXTURE_CUBE ||
2274 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
2275 usage |= ISL_SURF_USAGE_CUBE_BIT;
2276
2277 const struct iris_format_info fmt =
2278 iris_format_for_usage(devinfo, tmpl->format, usage);
2279
2280 isv->clear_color = isv->res->aux.clear_color;
2281
2282 isv->view = (struct isl_view) {
2283 .format = fmt.fmt,
2284 .swizzle = (struct isl_swizzle) {
2285 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
2286 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
2287 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
2288 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2289 },
2290 .usage = usage,
2291 };
2292
2293 /* Fill out SURFACE_STATE for this view. */
2294 if (tmpl->target != PIPE_BUFFER) {
2295 isv->view.base_level = tmpl->u.tex.first_level;
2296 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2297 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
2298 isv->view.base_array_layer = tmpl->u.tex.first_layer;
2299 isv->view.array_len =
2300 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2301
2302 if (iris_resource_unfinished_aux_import(isv->res))
2303 iris_resource_finish_aux_import(&screen->base, isv->res);
2304
2305 unsigned aux_modes = isv->res->aux.sampler_usages;
2306 while (aux_modes) {
2307 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2308
2309 /* If we have a multisampled depth buffer, do not create a sampler
2310 * surface state with HiZ.
2311 */
2312 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
2313 &isv->view, aux_usage, 0, 0);
2314
2315 map += SURFACE_STATE_ALIGNMENT;
2316 }
2317 } else {
2318 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
2319 isv->view.format, isv->view.swizzle,
2320 tmpl->u.buf.offset, tmpl->u.buf.size);
2321 }
2322
2323 return &isv->base;
2324 }
2325
2326 static void
2327 iris_sampler_view_destroy(struct pipe_context *ctx,
2328 struct pipe_sampler_view *state)
2329 {
2330 struct iris_sampler_view *isv = (void *) state;
2331 pipe_resource_reference(&state->texture, NULL);
2332 pipe_resource_reference(&isv->surface_state.res, NULL);
2333 free(isv);
2334 }
2335
2336 /**
2337 * The pipe->create_surface() driver hook.
2338 *
2339 * In Gallium nomenclature, "surfaces" are a view of a resource that
2340 * can be bound as a render target or depth/stencil buffer.
2341 */
2342 static struct pipe_surface *
2343 iris_create_surface(struct pipe_context *ctx,
2344 struct pipe_resource *tex,
2345 const struct pipe_surface *tmpl)
2346 {
2347 struct iris_context *ice = (struct iris_context *) ctx;
2348 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2349 const struct gen_device_info *devinfo = &screen->devinfo;
2350
2351 isl_surf_usage_flags_t usage = 0;
2352 if (tmpl->writable)
2353 usage = ISL_SURF_USAGE_STORAGE_BIT;
2354 else if (util_format_is_depth_or_stencil(tmpl->format))
2355 usage = ISL_SURF_USAGE_DEPTH_BIT;
2356 else
2357 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2358
2359 const struct iris_format_info fmt =
2360 iris_format_for_usage(devinfo, tmpl->format, usage);
2361
2362 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2363 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2364 /* Framebuffer validation will reject this invalid case, but it
2365 * hasn't had the opportunity yet. In the meantime, we need to
2366 * avoid hitting ISL asserts about unsupported formats below.
2367 */
2368 return NULL;
2369 }
2370
2371 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2372 struct pipe_surface *psurf = &surf->base;
2373 struct iris_resource *res = (struct iris_resource *) tex;
2374
2375 if (!surf)
2376 return NULL;
2377
2378 pipe_reference_init(&psurf->reference, 1);
2379 pipe_resource_reference(&psurf->texture, tex);
2380 psurf->context = ctx;
2381 psurf->format = tmpl->format;
2382 psurf->width = tex->width0;
2383 psurf->height = tex->height0;
2384 psurf->texture = tex;
2385 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2386 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2387 psurf->u.tex.level = tmpl->u.tex.level;
2388
2389 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2390
2391 struct isl_view *view = &surf->view;
2392 *view = (struct isl_view) {
2393 .format = fmt.fmt,
2394 .base_level = tmpl->u.tex.level,
2395 .levels = 1,
2396 .base_array_layer = tmpl->u.tex.first_layer,
2397 .array_len = array_len,
2398 .swizzle = ISL_SWIZZLE_IDENTITY,
2399 .usage = usage,
2400 };
2401
2402 #if GEN_GEN == 8
2403 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2404 array_len == 1) ? PIPE_TEXTURE_2D :
2405 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2406 PIPE_TEXTURE_2D_ARRAY : tex->target;
2407
2408 struct isl_view *read_view = &surf->read_view;
2409 *read_view = (struct isl_view) {
2410 .format = fmt.fmt,
2411 .base_level = tmpl->u.tex.level,
2412 .levels = 1,
2413 .base_array_layer = tmpl->u.tex.first_layer,
2414 .array_len = array_len,
2415 .swizzle = ISL_SWIZZLE_IDENTITY,
2416 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2417 };
2418 #endif
2419
2420 surf->clear_color = res->aux.clear_color;
2421
2422 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2423 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2424 ISL_SURF_USAGE_STENCIL_BIT))
2425 return psurf;
2426
2427
2428 void *map = alloc_surface_states(ice->state.surface_uploader,
2429 &surf->surface_state,
2430 res->aux.possible_usages);
2431 if (!unlikely(map)) {
2432 pipe_resource_reference(&surf->surface_state.res, NULL);
2433 return NULL;
2434 }
2435
2436 #if GEN_GEN == 8
2437 void *map_read = alloc_surface_states(ice->state.surface_uploader,
2438 &surf->surface_state_read,
2439 res->aux.possible_usages);
2440 if (!unlikely(map_read)) {
2441 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2442 return NULL;
2443 }
2444 #endif
2445
2446 if (!isl_format_is_compressed(res->surf.format)) {
2447 if (iris_resource_unfinished_aux_import(res))
2448 iris_resource_finish_aux_import(&screen->base, res);
2449
2450 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2451 * auxiliary surface mode and return the pipe_surface.
2452 */
2453 unsigned aux_modes = res->aux.possible_usages;
2454 while (aux_modes) {
2455 #if GEN_GEN == 8
2456 uint32_t offset = res->offset;
2457 #endif
2458 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2459 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2460 view, aux_usage, 0, 0);
2461 map += SURFACE_STATE_ALIGNMENT;
2462
2463 #if GEN_GEN == 8
2464 struct isl_surf surf;
2465 uint32_t tile_x_sa = 0, tile_y_sa = 0;
2466 get_rt_read_isl_surf(devinfo, res, target, read_view,
2467 &tile_x_sa, &tile_y_sa, &surf);
2468 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2469 aux_usage, tile_x_sa, tile_y_sa);
2470 /* Restore offset because we change offset in case of handling
2471 * non_coherent fb fetch
2472 */
2473 res->offset = offset;
2474 map_read += SURFACE_STATE_ALIGNMENT;
2475 #endif
2476 }
2477
2478 return psurf;
2479 }
2480
2481 /* The resource has a compressed format, which is not renderable, but we
2482 * have a renderable view format. We must be attempting to upload blocks
2483 * of compressed data via an uncompressed view.
2484 *
2485 * In this case, we can assume there are no auxiliary buffers, a single
2486 * miplevel, and that the resource is single-sampled. Gallium may try
2487 * and create an uncompressed view with multiple layers, however.
2488 */
2489 assert(!isl_format_is_compressed(fmt.fmt));
2490 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2491 assert(res->surf.samples == 1);
2492 assert(view->levels == 1);
2493
2494 struct isl_surf isl_surf;
2495 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2496
2497 if (view->base_level > 0) {
2498 /* We can't rely on the hardware's miplevel selection with such
2499 * a substantial lie about the format, so we select a single image
2500 * using the Tile X/Y Offset fields. In this case, we can't handle
2501 * multiple array slices.
2502 *
2503 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2504 * hard-coded to align to exactly the block size of the compressed
2505 * texture. This means that, when reinterpreted as a non-compressed
2506 * texture, the tile offsets may be anything and we can't rely on
2507 * X/Y Offset.
2508 *
2509 * Return NULL to force the state tracker to take fallback paths.
2510 */
2511 if (view->array_len > 1 || GEN_GEN == 8)
2512 return NULL;
2513
2514 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2515 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2516 view->base_level,
2517 is_3d ? 0 : view->base_array_layer,
2518 is_3d ? view->base_array_layer : 0,
2519 &isl_surf,
2520 &offset_B, &tile_x_sa, &tile_y_sa);
2521
2522 /* We use address and tile offsets to access a single level/layer
2523 * as a subimage, so reset level/layer so it doesn't offset again.
2524 */
2525 view->base_array_layer = 0;
2526 view->base_level = 0;
2527 } else {
2528 /* Level 0 doesn't require tile offsets, and the hardware can find
2529 * array slices using QPitch even with the format override, so we
2530 * can allow layers in this case. Copy the original ISL surface.
2531 */
2532 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2533 }
2534
2535 /* Scale down the image dimensions by the block size. */
2536 const struct isl_format_layout *fmtl =
2537 isl_format_get_layout(res->surf.format);
2538 isl_surf.format = fmt.fmt;
2539 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2540 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2541 tile_x_sa /= fmtl->bw;
2542 tile_y_sa /= fmtl->bh;
2543
2544 psurf->width = isl_surf.logical_level0_px.width;
2545 psurf->height = isl_surf.logical_level0_px.height;
2546
2547 struct isl_surf_fill_state_info f = {
2548 .surf = &isl_surf,
2549 .view = view,
2550 .mocs = mocs(res->bo, &screen->isl_dev),
2551 .address = res->bo->gtt_offset + offset_B,
2552 .x_offset_sa = tile_x_sa,
2553 .y_offset_sa = tile_y_sa,
2554 };
2555
2556 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2557 return psurf;
2558 }
2559
2560 #if GEN_GEN < 9
2561 static void
2562 fill_default_image_param(struct brw_image_param *param)
2563 {
2564 memset(param, 0, sizeof(*param));
2565 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2566 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2567 * detailed explanation of these parameters.
2568 */
2569 param->swizzling[0] = 0xff;
2570 param->swizzling[1] = 0xff;
2571 }
2572
2573 static void
2574 fill_buffer_image_param(struct brw_image_param *param,
2575 enum pipe_format pfmt,
2576 unsigned size)
2577 {
2578 const unsigned cpp = util_format_get_blocksize(pfmt);
2579
2580 fill_default_image_param(param);
2581 param->size[0] = size / cpp;
2582 param->stride[0] = cpp;
2583 }
2584 #else
2585 #define isl_surf_fill_image_param(x, ...)
2586 #define fill_default_image_param(x, ...)
2587 #define fill_buffer_image_param(x, ...)
2588 #endif
2589
2590 /**
2591 * The pipe->set_shader_images() driver hook.
2592 */
2593 static void
2594 iris_set_shader_images(struct pipe_context *ctx,
2595 enum pipe_shader_type p_stage,
2596 unsigned start_slot, unsigned count,
2597 const struct pipe_image_view *p_images)
2598 {
2599 struct iris_context *ice = (struct iris_context *) ctx;
2600 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2601 const struct gen_device_info *devinfo = &screen->devinfo;
2602 gl_shader_stage stage = stage_from_pipe(p_stage);
2603 struct iris_shader_state *shs = &ice->state.shaders[stage];
2604 #if GEN_GEN == 8
2605 struct iris_genx_state *genx = ice->state.genx;
2606 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2607 #endif
2608
2609 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2610
2611 for (unsigned i = 0; i < count; i++) {
2612 struct iris_image_view *iv = &shs->image[start_slot + i];
2613
2614 if (p_images && p_images[i].resource) {
2615 const struct pipe_image_view *img = &p_images[i];
2616 struct iris_resource *res = (void *) img->resource;
2617
2618 void *map =
2619 alloc_surface_states(ice->state.surface_uploader,
2620 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2621 if (!unlikely(map))
2622 return;
2623
2624 util_copy_image_view(&iv->base, img);
2625
2626 shs->bound_image_views |= 1 << (start_slot + i);
2627
2628 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2629 res->bind_stages |= 1 << stage;
2630
2631 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2632 enum isl_format isl_fmt =
2633 iris_format_for_usage(devinfo, img->format, usage).fmt;
2634
2635 bool untyped_fallback = false;
2636
2637 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2638 /* On Gen8, try to use typed surfaces reads (which support a
2639 * limited number of formats), and if not possible, fall back
2640 * to untyped reads.
2641 */
2642 untyped_fallback = GEN_GEN == 8 &&
2643 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2644
2645 if (untyped_fallback)
2646 isl_fmt = ISL_FORMAT_RAW;
2647 else
2648 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2649 }
2650
2651 if (res->base.target != PIPE_BUFFER) {
2652 struct isl_view view = {
2653 .format = isl_fmt,
2654 .base_level = img->u.tex.level,
2655 .levels = 1,
2656 .base_array_layer = img->u.tex.first_layer,
2657 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2658 .swizzle = ISL_SWIZZLE_IDENTITY,
2659 .usage = usage,
2660 };
2661
2662 if (untyped_fallback) {
2663 fill_buffer_surface_state(&screen->isl_dev, res, map,
2664 isl_fmt, ISL_SWIZZLE_IDENTITY,
2665 0, res->bo->size);
2666 } else {
2667 /* Images don't support compression */
2668 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2669 while (aux_modes) {
2670 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2671
2672 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2673 &view, usage, 0, 0);
2674
2675 map += SURFACE_STATE_ALIGNMENT;
2676 }
2677 }
2678
2679 isl_surf_fill_image_param(&screen->isl_dev,
2680 &image_params[start_slot + i],
2681 &res->surf, &view);
2682 } else {
2683 util_range_add(&res->base, &res->valid_buffer_range, img->u.buf.offset,
2684 img->u.buf.offset + img->u.buf.size);
2685
2686 fill_buffer_surface_state(&screen->isl_dev, res, map,
2687 isl_fmt, ISL_SWIZZLE_IDENTITY,
2688 img->u.buf.offset, img->u.buf.size);
2689 fill_buffer_image_param(&image_params[start_slot + i],
2690 img->format, img->u.buf.size);
2691 }
2692 } else {
2693 pipe_resource_reference(&iv->base.resource, NULL);
2694 pipe_resource_reference(&iv->surface_state.res, NULL);
2695 fill_default_image_param(&image_params[start_slot + i]);
2696 }
2697 }
2698
2699 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2700 ice->state.dirty |=
2701 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2702 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2703
2704 /* Broadwell also needs brw_image_params re-uploaded */
2705 if (GEN_GEN < 9) {
2706 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2707 shs->sysvals_need_upload = true;
2708 }
2709 }
2710
2711
2712 /**
2713 * The pipe->set_sampler_views() driver hook.
2714 */
2715 static void
2716 iris_set_sampler_views(struct pipe_context *ctx,
2717 enum pipe_shader_type p_stage,
2718 unsigned start, unsigned count,
2719 struct pipe_sampler_view **views)
2720 {
2721 struct iris_context *ice = (struct iris_context *) ctx;
2722 gl_shader_stage stage = stage_from_pipe(p_stage);
2723 struct iris_shader_state *shs = &ice->state.shaders[stage];
2724
2725 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2726
2727 for (unsigned i = 0; i < count; i++) {
2728 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2729 pipe_sampler_view_reference((struct pipe_sampler_view **)
2730 &shs->textures[start + i], pview);
2731 struct iris_sampler_view *view = (void *) pview;
2732 if (view) {
2733 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2734 view->res->bind_stages |= 1 << stage;
2735
2736 shs->bound_sampler_views |= 1 << (start + i);
2737 }
2738 }
2739
2740 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2741 ice->state.dirty |=
2742 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2743 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2744 }
2745
2746 /**
2747 * The pipe->set_tess_state() driver hook.
2748 */
2749 static void
2750 iris_set_tess_state(struct pipe_context *ctx,
2751 const float default_outer_level[4],
2752 const float default_inner_level[2])
2753 {
2754 struct iris_context *ice = (struct iris_context *) ctx;
2755 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2756
2757 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2758 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2759
2760 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2761 shs->sysvals_need_upload = true;
2762 }
2763
2764 static void
2765 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2766 {
2767 struct iris_surface *surf = (void *) p_surf;
2768 pipe_resource_reference(&p_surf->texture, NULL);
2769 pipe_resource_reference(&surf->surface_state.res, NULL);
2770 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2771 free(surf);
2772 }
2773
2774 static void
2775 iris_set_clip_state(struct pipe_context *ctx,
2776 const struct pipe_clip_state *state)
2777 {
2778 struct iris_context *ice = (struct iris_context *) ctx;
2779 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2780 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2781 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2782
2783 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2784
2785 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2786 IRIS_DIRTY_CONSTANTS_TES;
2787 shs->sysvals_need_upload = true;
2788 gshs->sysvals_need_upload = true;
2789 tshs->sysvals_need_upload = true;
2790 }
2791
2792 /**
2793 * The pipe->set_polygon_stipple() driver hook.
2794 */
2795 static void
2796 iris_set_polygon_stipple(struct pipe_context *ctx,
2797 const struct pipe_poly_stipple *state)
2798 {
2799 struct iris_context *ice = (struct iris_context *) ctx;
2800 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2801 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2802 }
2803
2804 /**
2805 * The pipe->set_sample_mask() driver hook.
2806 */
2807 static void
2808 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2809 {
2810 struct iris_context *ice = (struct iris_context *) ctx;
2811
2812 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2813 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2814 */
2815 ice->state.sample_mask = sample_mask & 0xffff;
2816 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2817 }
2818
2819 /**
2820 * The pipe->set_scissor_states() driver hook.
2821 *
2822 * This corresponds to our SCISSOR_RECT state structures. It's an
2823 * exact match, so we just store them, and memcpy them out later.
2824 */
2825 static void
2826 iris_set_scissor_states(struct pipe_context *ctx,
2827 unsigned start_slot,
2828 unsigned num_scissors,
2829 const struct pipe_scissor_state *rects)
2830 {
2831 struct iris_context *ice = (struct iris_context *) ctx;
2832
2833 for (unsigned i = 0; i < num_scissors; i++) {
2834 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2835 /* If the scissor was out of bounds and got clamped to 0 width/height
2836 * at the bounds, the subtraction of 1 from maximums could produce a
2837 * negative number and thus not clip anything. Instead, just provide
2838 * a min > max scissor inside the bounds, which produces the expected
2839 * no rendering.
2840 */
2841 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2842 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2843 };
2844 } else {
2845 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2846 .minx = rects[i].minx, .miny = rects[i].miny,
2847 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2848 };
2849 }
2850 }
2851
2852 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2853 }
2854
2855 /**
2856 * The pipe->set_stencil_ref() driver hook.
2857 *
2858 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2859 */
2860 static void
2861 iris_set_stencil_ref(struct pipe_context *ctx,
2862 const struct pipe_stencil_ref *state)
2863 {
2864 struct iris_context *ice = (struct iris_context *) ctx;
2865 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2866 if (GEN_GEN == 8)
2867 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2868 else
2869 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2870 }
2871
2872 static float
2873 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2874 {
2875 return copysignf(state->scale[axis], sign) + state->translate[axis];
2876 }
2877
2878 /**
2879 * The pipe->set_viewport_states() driver hook.
2880 *
2881 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2882 * the guardband yet, as we need the framebuffer dimensions, but we can
2883 * at least fill out the rest.
2884 */
2885 static void
2886 iris_set_viewport_states(struct pipe_context *ctx,
2887 unsigned start_slot,
2888 unsigned count,
2889 const struct pipe_viewport_state *states)
2890 {
2891 struct iris_context *ice = (struct iris_context *) ctx;
2892
2893 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2894
2895 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2896
2897 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2898 !ice->state.cso_rast->depth_clip_far))
2899 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2900 }
2901
2902 /**
2903 * The pipe->set_framebuffer_state() driver hook.
2904 *
2905 * Sets the current draw FBO, including color render targets, depth,
2906 * and stencil buffers.
2907 */
2908 static void
2909 iris_set_framebuffer_state(struct pipe_context *ctx,
2910 const struct pipe_framebuffer_state *state)
2911 {
2912 struct iris_context *ice = (struct iris_context *) ctx;
2913 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2914 struct isl_device *isl_dev = &screen->isl_dev;
2915 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2916 struct iris_resource *zres;
2917 struct iris_resource *stencil_res;
2918
2919 unsigned samples = util_framebuffer_get_num_samples(state);
2920 unsigned layers = util_framebuffer_get_num_layers(state);
2921
2922 if (cso->samples != samples) {
2923 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2924
2925 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2926 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2927 ice->state.dirty |= IRIS_DIRTY_FS;
2928 }
2929
2930 if (cso->nr_cbufs != state->nr_cbufs) {
2931 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2932 }
2933
2934 if ((cso->layers == 0) != (layers == 0)) {
2935 ice->state.dirty |= IRIS_DIRTY_CLIP;
2936 }
2937
2938 if (cso->width != state->width || cso->height != state->height) {
2939 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2940 }
2941
2942 if (cso->zsbuf || state->zsbuf) {
2943 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2944 }
2945
2946 util_copy_framebuffer_state(cso, state);
2947 cso->samples = samples;
2948 cso->layers = layers;
2949
2950 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2951
2952 struct isl_view view = {
2953 .base_level = 0,
2954 .levels = 1,
2955 .base_array_layer = 0,
2956 .array_len = 1,
2957 .swizzle = ISL_SWIZZLE_IDENTITY,
2958 };
2959
2960 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2961
2962 if (cso->zsbuf) {
2963 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2964 &stencil_res);
2965
2966 view.base_level = cso->zsbuf->u.tex.level;
2967 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2968 view.array_len =
2969 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2970
2971 if (zres) {
2972 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2973
2974 info.depth_surf = &zres->surf;
2975 info.depth_address = zres->bo->gtt_offset + zres->offset;
2976 info.mocs = mocs(zres->bo, isl_dev);
2977
2978 view.format = zres->surf.format;
2979
2980 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2981 info.hiz_usage = zres->aux.usage;
2982 info.hiz_surf = &zres->aux.surf;
2983 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
2984 }
2985 }
2986
2987 if (stencil_res) {
2988 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2989 info.stencil_aux_usage = stencil_res->aux.usage;
2990 info.stencil_surf = &stencil_res->surf;
2991 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2992 if (!zres) {
2993 view.format = stencil_res->surf.format;
2994 info.mocs = mocs(stencil_res->bo, isl_dev);
2995 }
2996 }
2997 }
2998
2999 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
3000
3001 /* Make a null surface for unbound buffers */
3002 void *null_surf_map =
3003 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
3004 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3005 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3006 isl_extent3d(MAX2(cso->width, 1),
3007 MAX2(cso->height, 1),
3008 cso->layers ? cso->layers : 1));
3009 ice->state.null_fb.offset +=
3010 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3011
3012 /* Render target change */
3013 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
3014
3015 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3016
3017 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3018
3019 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3020
3021 if (GEN_GEN == 8)
3022 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3023 }
3024
3025 /**
3026 * The pipe->set_constant_buffer() driver hook.
3027 *
3028 * This uploads any constant data in user buffers, and references
3029 * any UBO resources containing constant data.
3030 */
3031 static void
3032 iris_set_constant_buffer(struct pipe_context *ctx,
3033 enum pipe_shader_type p_stage, unsigned index,
3034 const struct pipe_constant_buffer *input)
3035 {
3036 struct iris_context *ice = (struct iris_context *) ctx;
3037 gl_shader_stage stage = stage_from_pipe(p_stage);
3038 struct iris_shader_state *shs = &ice->state.shaders[stage];
3039 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3040
3041 /* TODO: Only do this if the buffer changes? */
3042 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3043
3044 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3045 shs->bound_cbufs |= 1u << index;
3046
3047 if (input->user_buffer) {
3048 void *map = NULL;
3049 pipe_resource_reference(&cbuf->buffer, NULL);
3050 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3051 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3052
3053 if (!cbuf->buffer) {
3054 /* Allocation was unsuccessful - just unbind */
3055 iris_set_constant_buffer(ctx, p_stage, index, NULL);
3056 return;
3057 }
3058
3059 assert(map);
3060 memcpy(map, input->user_buffer, input->buffer_size);
3061 } else if (input->buffer) {
3062 pipe_resource_reference(&cbuf->buffer, input->buffer);
3063
3064 cbuf->buffer_offset = input->buffer_offset;
3065 }
3066
3067 cbuf->buffer_size =
3068 MIN2(input->buffer_size,
3069 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
3070
3071 struct iris_resource *res = (void *) cbuf->buffer;
3072 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
3073 res->bind_stages |= 1 << stage;
3074 } else {
3075 shs->bound_cbufs &= ~(1u << index);
3076 pipe_resource_reference(&cbuf->buffer, NULL);
3077 }
3078
3079 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
3080 }
3081
3082 static void
3083 upload_sysvals(struct iris_context *ice,
3084 gl_shader_stage stage)
3085 {
3086 UNUSED struct iris_genx_state *genx = ice->state.genx;
3087 struct iris_shader_state *shs = &ice->state.shaders[stage];
3088
3089 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3090 if (!shader || shader->num_system_values == 0)
3091 return;
3092
3093 assert(shader->num_cbufs > 0);
3094
3095 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
3096 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
3097 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
3098 uint32_t *map = NULL;
3099
3100 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
3101 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
3102 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3103
3104 for (int i = 0; i < shader->num_system_values; i++) {
3105 uint32_t sysval = shader->system_values[i];
3106 uint32_t value = 0;
3107
3108 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
3109 #if GEN_GEN == 8
3110 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
3111 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
3112 struct brw_image_param *param =
3113 &genx->shaders[stage].image_param[img];
3114
3115 assert(offset < sizeof(struct brw_image_param));
3116 value = ((uint32_t *) param)[offset];
3117 #endif
3118 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
3119 value = 0;
3120 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
3121 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
3122 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
3123 value = fui(ice->state.clip_planes.ucp[plane][comp]);
3124 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
3125 if (stage == MESA_SHADER_TESS_CTRL) {
3126 value = ice->state.vertices_per_patch;
3127 } else {
3128 assert(stage == MESA_SHADER_TESS_EVAL);
3129 const struct shader_info *tcs_info =
3130 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
3131 if (tcs_info)
3132 value = tcs_info->tess.tcs_vertices_out;
3133 else
3134 value = ice->state.vertices_per_patch;
3135 }
3136 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
3137 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
3138 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
3139 value = fui(ice->state.default_outer_level[i]);
3140 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
3141 value = fui(ice->state.default_inner_level[0]);
3142 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
3143 value = fui(ice->state.default_inner_level[1]);
3144 } else {
3145 assert(!"unhandled system value");
3146 }
3147
3148 *map++ = value;
3149 }
3150
3151 cbuf->buffer_size = upload_size;
3152 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
3153 &shs->constbuf_surf_state[sysval_cbuf_index], false);
3154
3155 shs->sysvals_need_upload = false;
3156 }
3157
3158 /**
3159 * The pipe->set_shader_buffers() driver hook.
3160 *
3161 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
3162 * SURFACE_STATE here, as the buffer offset may change each time.
3163 */
3164 static void
3165 iris_set_shader_buffers(struct pipe_context *ctx,
3166 enum pipe_shader_type p_stage,
3167 unsigned start_slot, unsigned count,
3168 const struct pipe_shader_buffer *buffers,
3169 unsigned writable_bitmask)
3170 {
3171 struct iris_context *ice = (struct iris_context *) ctx;
3172 gl_shader_stage stage = stage_from_pipe(p_stage);
3173 struct iris_shader_state *shs = &ice->state.shaders[stage];
3174
3175 unsigned modified_bits = u_bit_consecutive(start_slot, count);
3176
3177 shs->bound_ssbos &= ~modified_bits;
3178 shs->writable_ssbos &= ~modified_bits;
3179 shs->writable_ssbos |= writable_bitmask << start_slot;
3180
3181 for (unsigned i = 0; i < count; i++) {
3182 if (buffers && buffers[i].buffer) {
3183 struct iris_resource *res = (void *) buffers[i].buffer;
3184 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
3185 struct iris_state_ref *surf_state =
3186 &shs->ssbo_surf_state[start_slot + i];
3187 pipe_resource_reference(&ssbo->buffer, &res->base);
3188 ssbo->buffer_offset = buffers[i].buffer_offset;
3189 ssbo->buffer_size =
3190 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
3191
3192 shs->bound_ssbos |= 1 << (start_slot + i);
3193
3194 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
3195
3196 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
3197 res->bind_stages |= 1 << stage;
3198
3199 util_range_add(&res->base, &res->valid_buffer_range, ssbo->buffer_offset,
3200 ssbo->buffer_offset + ssbo->buffer_size);
3201 } else {
3202 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
3203 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
3204 NULL);
3205 }
3206 }
3207
3208 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
3209 }
3210
3211 static void
3212 iris_delete_state(struct pipe_context *ctx, void *state)
3213 {
3214 free(state);
3215 }
3216
3217 /**
3218 * The pipe->set_vertex_buffers() driver hook.
3219 *
3220 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
3221 */
3222 static void
3223 iris_set_vertex_buffers(struct pipe_context *ctx,
3224 unsigned start_slot, unsigned count,
3225 const struct pipe_vertex_buffer *buffers)
3226 {
3227 struct iris_context *ice = (struct iris_context *) ctx;
3228 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3229 struct iris_genx_state *genx = ice->state.genx;
3230
3231 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
3232
3233 for (unsigned i = 0; i < count; i++) {
3234 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
3235 struct iris_vertex_buffer_state *state =
3236 &genx->vertex_buffers[start_slot + i];
3237
3238 if (!buffer) {
3239 pipe_resource_reference(&state->resource, NULL);
3240 continue;
3241 }
3242
3243 /* We may see user buffers that are NULL bindings. */
3244 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
3245
3246 pipe_resource_reference(&state->resource, buffer->buffer.resource);
3247 struct iris_resource *res = (void *) state->resource;
3248
3249 state->offset = (int) buffer->buffer_offset;
3250
3251 if (res) {
3252 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
3253 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
3254 }
3255
3256 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
3257 vb.VertexBufferIndex = start_slot + i;
3258 vb.AddressModifyEnable = true;
3259 vb.BufferPitch = buffer->stride;
3260 if (res) {
3261 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
3262 vb.BufferStartingAddress =
3263 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
3264 vb.MOCS = mocs(res->bo, &screen->isl_dev);
3265 } else {
3266 vb.NullVertexBuffer = true;
3267 }
3268 }
3269 }
3270
3271 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
3272 }
3273
3274 /**
3275 * Gallium CSO for vertex elements.
3276 */
3277 struct iris_vertex_element_state {
3278 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
3279 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
3280 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
3281 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
3282 unsigned count;
3283 };
3284
3285 /**
3286 * The pipe->create_vertex_elements() driver hook.
3287 *
3288 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
3289 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
3290 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
3291 * needed. In these cases we will need information available at draw time.
3292 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
3293 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
3294 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
3295 */
3296 static void *
3297 iris_create_vertex_elements(struct pipe_context *ctx,
3298 unsigned count,
3299 const struct pipe_vertex_element *state)
3300 {
3301 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3302 const struct gen_device_info *devinfo = &screen->devinfo;
3303 struct iris_vertex_element_state *cso =
3304 malloc(sizeof(struct iris_vertex_element_state));
3305
3306 cso->count = count;
3307
3308 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
3309 ve.DWordLength =
3310 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3311 }
3312
3313 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3314 uint32_t *vfi_pack_dest = cso->vf_instancing;
3315
3316 if (count == 0) {
3317 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3318 ve.Valid = true;
3319 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3320 ve.Component0Control = VFCOMP_STORE_0;
3321 ve.Component1Control = VFCOMP_STORE_0;
3322 ve.Component2Control = VFCOMP_STORE_0;
3323 ve.Component3Control = VFCOMP_STORE_1_FP;
3324 }
3325
3326 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3327 }
3328 }
3329
3330 for (int i = 0; i < count; i++) {
3331 const struct iris_format_info fmt =
3332 iris_format_for_usage(devinfo, state[i].src_format, 0);
3333 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3334 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3335
3336 switch (isl_format_get_num_channels(fmt.fmt)) {
3337 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3338 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3339 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3340 case 3:
3341 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3342 : VFCOMP_STORE_1_FP;
3343 break;
3344 }
3345 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3346 ve.EdgeFlagEnable = false;
3347 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3348 ve.Valid = true;
3349 ve.SourceElementOffset = state[i].src_offset;
3350 ve.SourceElementFormat = fmt.fmt;
3351 ve.Component0Control = comp[0];
3352 ve.Component1Control = comp[1];
3353 ve.Component2Control = comp[2];
3354 ve.Component3Control = comp[3];
3355 }
3356
3357 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3358 vi.VertexElementIndex = i;
3359 vi.InstancingEnable = state[i].instance_divisor > 0;
3360 vi.InstanceDataStepRate = state[i].instance_divisor;
3361 }
3362
3363 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3364 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3365 }
3366
3367 /* An alternative version of the last VE and VFI is stored so it
3368 * can be used at draw time in case Vertex Shader uses EdgeFlag
3369 */
3370 if (count) {
3371 const unsigned edgeflag_index = count - 1;
3372 const struct iris_format_info fmt =
3373 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3374 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3375 ve.EdgeFlagEnable = true ;
3376 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3377 ve.Valid = true;
3378 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3379 ve.SourceElementFormat = fmt.fmt;
3380 ve.Component0Control = VFCOMP_STORE_SRC;
3381 ve.Component1Control = VFCOMP_STORE_0;
3382 ve.Component2Control = VFCOMP_STORE_0;
3383 ve.Component3Control = VFCOMP_STORE_0;
3384 }
3385 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3386 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3387 * at draw time, as it should change if SGVs are emitted.
3388 */
3389 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3390 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3391 }
3392 }
3393
3394 return cso;
3395 }
3396
3397 /**
3398 * The pipe->bind_vertex_elements_state() driver hook.
3399 */
3400 static void
3401 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3402 {
3403 struct iris_context *ice = (struct iris_context *) ctx;
3404 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3405 struct iris_vertex_element_state *new_cso = state;
3406
3407 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3408 * we need to re-emit it to ensure we're overriding the right one.
3409 */
3410 if (new_cso && cso_changed(count))
3411 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3412
3413 ice->state.cso_vertex_elements = state;
3414 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3415 }
3416
3417 /**
3418 * The pipe->create_stream_output_target() driver hook.
3419 *
3420 * "Target" here refers to a destination buffer. We translate this into
3421 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3422 * know which buffer this represents, or whether we ought to zero the
3423 * write-offsets, or append. Those are handled in the set() hook.
3424 */
3425 static struct pipe_stream_output_target *
3426 iris_create_stream_output_target(struct pipe_context *ctx,
3427 struct pipe_resource *p_res,
3428 unsigned buffer_offset,
3429 unsigned buffer_size)
3430 {
3431 struct iris_resource *res = (void *) p_res;
3432 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3433 if (!cso)
3434 return NULL;
3435
3436 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3437
3438 pipe_reference_init(&cso->base.reference, 1);
3439 pipe_resource_reference(&cso->base.buffer, p_res);
3440 cso->base.buffer_offset = buffer_offset;
3441 cso->base.buffer_size = buffer_size;
3442 cso->base.context = ctx;
3443
3444 util_range_add(&res->base, &res->valid_buffer_range, buffer_offset,
3445 buffer_offset + buffer_size);
3446
3447 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3448
3449 return &cso->base;
3450 }
3451
3452 static void
3453 iris_stream_output_target_destroy(struct pipe_context *ctx,
3454 struct pipe_stream_output_target *state)
3455 {
3456 struct iris_stream_output_target *cso = (void *) state;
3457
3458 pipe_resource_reference(&cso->base.buffer, NULL);
3459 pipe_resource_reference(&cso->offset.res, NULL);
3460
3461 free(cso);
3462 }
3463
3464 /**
3465 * The pipe->set_stream_output_targets() driver hook.
3466 *
3467 * At this point, we know which targets are bound to a particular index,
3468 * and also whether we want to append or start over. We can finish the
3469 * 3DSTATE_SO_BUFFER packets we started earlier.
3470 */
3471 static void
3472 iris_set_stream_output_targets(struct pipe_context *ctx,
3473 unsigned num_targets,
3474 struct pipe_stream_output_target **targets,
3475 const unsigned *offsets)
3476 {
3477 struct iris_context *ice = (struct iris_context *) ctx;
3478 struct iris_genx_state *genx = ice->state.genx;
3479 uint32_t *so_buffers = genx->so_buffers;
3480 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3481
3482 const bool active = num_targets > 0;
3483 if (ice->state.streamout_active != active) {
3484 ice->state.streamout_active = active;
3485 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3486
3487 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3488 * it's a non-pipelined command. If we're switching streamout on, we
3489 * may have missed emitting it earlier, so do so now. (We're already
3490 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3491 */
3492 if (active) {
3493 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3494 } else {
3495 uint32_t flush = 0;
3496 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3497 struct iris_stream_output_target *tgt =
3498 (void *) ice->state.so_target[i];
3499 if (tgt) {
3500 struct iris_resource *res = (void *) tgt->base.buffer;
3501
3502 flush |= iris_flush_bits_for_history(res);
3503 iris_dirty_for_history(ice, res);
3504 }
3505 }
3506 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3507 "make streamout results visible", flush);
3508 }
3509 }
3510
3511 for (int i = 0; i < 4; i++) {
3512 pipe_so_target_reference(&ice->state.so_target[i],
3513 i < num_targets ? targets[i] : NULL);
3514 }
3515
3516 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3517 if (!active)
3518 return;
3519
3520 for (unsigned i = 0; i < 4; i++,
3521 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3522
3523 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3524 unsigned offset = offsets[i];
3525
3526 if (!tgt) {
3527 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3528 #if GEN_GEN < 12
3529 sob.SOBufferIndex = i;
3530 #else
3531 sob._3DCommandOpcode = 0;
3532 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3533 #endif
3534 }
3535 continue;
3536 }
3537
3538 struct iris_resource *res = (void *) tgt->base.buffer;
3539
3540 /* Note that offsets[i] will either be 0, causing us to zero
3541 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3542 * "continue appending at the existing offset."
3543 */
3544 assert(offset == 0 || offset == 0xFFFFFFFF);
3545
3546 /* We might be called by Begin (offset = 0), Pause, then Resume
3547 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3548 * will actually be sent to the GPU). In this case, we don't want
3549 * to append - we still want to do our initial zeroing.
3550 */
3551 if (!tgt->zeroed)
3552 offset = 0;
3553
3554 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3555 #if GEN_GEN < 12
3556 sob.SOBufferIndex = i;
3557 #else
3558 sob._3DCommandOpcode = 0;
3559 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3560 #endif
3561 sob.SurfaceBaseAddress =
3562 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3563 sob.SOBufferEnable = true;
3564 sob.StreamOffsetWriteEnable = true;
3565 sob.StreamOutputBufferOffsetAddressEnable = true;
3566 sob.MOCS = mocs(res->bo, &screen->isl_dev);
3567
3568 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3569 sob.StreamOffset = offset;
3570 sob.StreamOutputBufferOffsetAddress =
3571 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3572 tgt->offset.offset);
3573 }
3574 }
3575
3576 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3577 }
3578
3579 /**
3580 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3581 * 3DSTATE_STREAMOUT packets.
3582 *
3583 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3584 * hardware to record. We can create it entirely based on the shader, with
3585 * no dynamic state dependencies.
3586 *
3587 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3588 * state-based settings. We capture the shader-related ones here, and merge
3589 * the rest in at draw time.
3590 */
3591 static uint32_t *
3592 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3593 const struct brw_vue_map *vue_map)
3594 {
3595 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3596 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3597 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3598 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3599 int max_decls = 0;
3600 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3601
3602 memset(so_decl, 0, sizeof(so_decl));
3603
3604 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3605 * command feels strange -- each dword pair contains a SO_DECL per stream.
3606 */
3607 for (unsigned i = 0; i < info->num_outputs; i++) {
3608 const struct pipe_stream_output *output = &info->output[i];
3609 const int buffer = output->output_buffer;
3610 const int varying = output->register_index;
3611 const unsigned stream_id = output->stream;
3612 assert(stream_id < MAX_VERTEX_STREAMS);
3613
3614 buffer_mask[stream_id] |= 1 << buffer;
3615
3616 assert(vue_map->varying_to_slot[varying] >= 0);
3617
3618 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3619 * array. Instead, it simply increments DstOffset for the following
3620 * input by the number of components that should be skipped.
3621 *
3622 * Our hardware is unusual in that it requires us to program SO_DECLs
3623 * for fake "hole" components, rather than simply taking the offset
3624 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3625 * program as many size = 4 holes as we can, then a final hole to
3626 * accommodate the final 1, 2, or 3 remaining.
3627 */
3628 int skip_components = output->dst_offset - next_offset[buffer];
3629
3630 while (skip_components > 0) {
3631 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3632 .HoleFlag = 1,
3633 .OutputBufferSlot = output->output_buffer,
3634 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3635 };
3636 skip_components -= 4;
3637 }
3638
3639 next_offset[buffer] = output->dst_offset + output->num_components;
3640
3641 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3642 .OutputBufferSlot = output->output_buffer,
3643 .RegisterIndex = vue_map->varying_to_slot[varying],
3644 .ComponentMask =
3645 ((1 << output->num_components) - 1) << output->start_component,
3646 };
3647
3648 if (decls[stream_id] > max_decls)
3649 max_decls = decls[stream_id];
3650 }
3651
3652 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3653 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3654 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3655
3656 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3657 int urb_entry_read_offset = 0;
3658 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3659 urb_entry_read_offset;
3660
3661 /* We always read the whole vertex. This could be reduced at some
3662 * point by reading less and offsetting the register index in the
3663 * SO_DECLs.
3664 */
3665 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3666 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3667 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3668 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3669 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3670 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3671 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3672 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3673
3674 /* Set buffer pitches; 0 means unbound. */
3675 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3676 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3677 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3678 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3679 }
3680
3681 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3682 list.DWordLength = 3 + 2 * max_decls - 2;
3683 list.StreamtoBufferSelects0 = buffer_mask[0];
3684 list.StreamtoBufferSelects1 = buffer_mask[1];
3685 list.StreamtoBufferSelects2 = buffer_mask[2];
3686 list.StreamtoBufferSelects3 = buffer_mask[3];
3687 list.NumEntries0 = decls[0];
3688 list.NumEntries1 = decls[1];
3689 list.NumEntries2 = decls[2];
3690 list.NumEntries3 = decls[3];
3691 }
3692
3693 for (int i = 0; i < max_decls; i++) {
3694 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3695 entry.Stream0Decl = so_decl[0][i];
3696 entry.Stream1Decl = so_decl[1][i];
3697 entry.Stream2Decl = so_decl[2][i];
3698 entry.Stream3Decl = so_decl[3][i];
3699 }
3700 }
3701
3702 return map;
3703 }
3704
3705 static void
3706 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3707 const struct brw_vue_map *last_vue_map,
3708 bool two_sided_color,
3709 unsigned *out_offset,
3710 unsigned *out_length)
3711 {
3712 /* The compiler computes the first URB slot without considering COL/BFC
3713 * swizzling (because it doesn't know whether it's enabled), so we need
3714 * to do that here too. This may result in a smaller offset, which
3715 * should be safe.
3716 */
3717 const unsigned first_slot =
3718 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3719
3720 /* This becomes the URB read offset (counted in pairs of slots). */
3721 assert(first_slot % 2 == 0);
3722 *out_offset = first_slot / 2;
3723
3724 /* We need to adjust the inputs read to account for front/back color
3725 * swizzling, as it can make the URB length longer.
3726 */
3727 for (int c = 0; c <= 1; c++) {
3728 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3729 /* If two sided color is enabled, the fragment shader's gl_Color
3730 * (COL0) input comes from either the gl_FrontColor (COL0) or
3731 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3732 */
3733 if (two_sided_color)
3734 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3735
3736 /* If front color isn't written, we opt to give them back color
3737 * instead of an undefined value. Switch from COL to BFC.
3738 */
3739 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3740 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3741 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3742 }
3743 }
3744 }
3745
3746 /* Compute the minimum URB Read Length necessary for the FS inputs.
3747 *
3748 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3749 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3750 *
3751 * "This field should be set to the minimum length required to read the
3752 * maximum source attribute. The maximum source attribute is indicated
3753 * by the maximum value of the enabled Attribute # Source Attribute if
3754 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3755 * enable is not set.
3756 * read_length = ceiling((max_source_attr + 1) / 2)
3757 *
3758 * [errata] Corruption/Hang possible if length programmed larger than
3759 * recommended"
3760 *
3761 * Similar text exists for Ivy Bridge.
3762 *
3763 * We find the last URB slot that's actually read by the FS.
3764 */
3765 unsigned last_read_slot = last_vue_map->num_slots - 1;
3766 while (last_read_slot > first_slot && !(fs_input_slots &
3767 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3768 --last_read_slot;
3769
3770 /* The URB read length is the difference of the two, counted in pairs. */
3771 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3772 }
3773
3774 static void
3775 iris_emit_sbe_swiz(struct iris_batch *batch,
3776 const struct iris_context *ice,
3777 unsigned urb_read_offset,
3778 unsigned sprite_coord_enables)
3779 {
3780 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3781 const struct brw_wm_prog_data *wm_prog_data = (void *)
3782 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3783 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3784 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3785
3786 /* XXX: this should be generated when putting programs in place */
3787
3788 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3789 const int input_index = wm_prog_data->urb_setup[fs_attr];
3790 if (input_index < 0 || input_index >= 16)
3791 continue;
3792
3793 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3794 &attr_overrides[input_index];
3795 int slot = vue_map->varying_to_slot[fs_attr];
3796
3797 /* Viewport and Layer are stored in the VUE header. We need to override
3798 * them to zero if earlier stages didn't write them, as GL requires that
3799 * they read back as zero when not explicitly set.
3800 */
3801 switch (fs_attr) {
3802 case VARYING_SLOT_VIEWPORT:
3803 case VARYING_SLOT_LAYER:
3804 attr->ComponentOverrideX = true;
3805 attr->ComponentOverrideW = true;
3806 attr->ConstantSource = CONST_0000;
3807
3808 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3809 attr->ComponentOverrideY = true;
3810 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3811 attr->ComponentOverrideZ = true;
3812 continue;
3813
3814 case VARYING_SLOT_PRIMITIVE_ID:
3815 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3816 if (slot == -1) {
3817 attr->ComponentOverrideX = true;
3818 attr->ComponentOverrideY = true;
3819 attr->ComponentOverrideZ = true;
3820 attr->ComponentOverrideW = true;
3821 attr->ConstantSource = PRIM_ID;
3822 continue;
3823 }
3824
3825 default:
3826 break;
3827 }
3828
3829 if (sprite_coord_enables & (1 << input_index))
3830 continue;
3831
3832 /* If there was only a back color written but not front, use back
3833 * as the color instead of undefined.
3834 */
3835 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3836 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3837 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3838 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3839
3840 /* Not written by the previous stage - undefined. */
3841 if (slot == -1) {
3842 attr->ComponentOverrideX = true;
3843 attr->ComponentOverrideY = true;
3844 attr->ComponentOverrideZ = true;
3845 attr->ComponentOverrideW = true;
3846 attr->ConstantSource = CONST_0001_FLOAT;
3847 continue;
3848 }
3849
3850 /* Compute the location of the attribute relative to the read offset,
3851 * which is counted in 256-bit increments (two 128-bit VUE slots).
3852 */
3853 const int source_attr = slot - 2 * urb_read_offset;
3854 assert(source_attr >= 0 && source_attr <= 32);
3855 attr->SourceAttribute = source_attr;
3856
3857 /* If we are doing two-sided color, and the VUE slot following this one
3858 * represents a back-facing color, then we need to instruct the SF unit
3859 * to do back-facing swizzling.
3860 */
3861 if (cso_rast->light_twoside &&
3862 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3863 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3864 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3865 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3866 attr->SwizzleSelect = INPUTATTR_FACING;
3867 }
3868
3869 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3870 for (int i = 0; i < 16; i++)
3871 sbes.Attribute[i] = attr_overrides[i];
3872 }
3873 }
3874
3875 static unsigned
3876 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3877 const struct iris_rasterizer_state *cso)
3878 {
3879 unsigned overrides = 0;
3880
3881 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3882 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3883
3884 for (int i = 0; i < 8; i++) {
3885 if ((cso->sprite_coord_enable & (1 << i)) &&
3886 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3887 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3888 }
3889
3890 return overrides;
3891 }
3892
3893 static void
3894 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3895 {
3896 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3897 const struct brw_wm_prog_data *wm_prog_data = (void *)
3898 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3899 const struct shader_info *fs_info =
3900 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3901
3902 unsigned urb_read_offset, urb_read_length;
3903 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3904 ice->shaders.last_vue_map,
3905 cso_rast->light_twoside,
3906 &urb_read_offset, &urb_read_length);
3907
3908 unsigned sprite_coord_overrides =
3909 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3910
3911 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3912 sbe.AttributeSwizzleEnable = true;
3913 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3914 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3915 sbe.VertexURBEntryReadOffset = urb_read_offset;
3916 sbe.VertexURBEntryReadLength = urb_read_length;
3917 sbe.ForceVertexURBEntryReadOffset = true;
3918 sbe.ForceVertexURBEntryReadLength = true;
3919 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3920 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3921 #if GEN_GEN >= 9
3922 for (int i = 0; i < 32; i++) {
3923 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3924 }
3925 #endif
3926 }
3927
3928 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3929 }
3930
3931 /* ------------------------------------------------------------------- */
3932
3933 /**
3934 * Populate VS program key fields based on the current state.
3935 */
3936 static void
3937 iris_populate_vs_key(const struct iris_context *ice,
3938 const struct shader_info *info,
3939 gl_shader_stage last_stage,
3940 struct brw_vs_prog_key *key)
3941 {
3942 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3943
3944 if (info->clip_distance_array_size == 0 &&
3945 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3946 last_stage == MESA_SHADER_VERTEX)
3947 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3948 }
3949
3950 /**
3951 * Populate TCS program key fields based on the current state.
3952 */
3953 static void
3954 iris_populate_tcs_key(const struct iris_context *ice,
3955 struct brw_tcs_prog_key *key)
3956 {
3957 }
3958
3959 /**
3960 * Populate TES program key fields based on the current state.
3961 */
3962 static void
3963 iris_populate_tes_key(const struct iris_context *ice,
3964 const struct shader_info *info,
3965 gl_shader_stage last_stage,
3966 struct brw_tes_prog_key *key)
3967 {
3968 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3969
3970 if (info->clip_distance_array_size == 0 &&
3971 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3972 last_stage == MESA_SHADER_TESS_EVAL)
3973 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3974 }
3975
3976 /**
3977 * Populate GS program key fields based on the current state.
3978 */
3979 static void
3980 iris_populate_gs_key(const struct iris_context *ice,
3981 const struct shader_info *info,
3982 gl_shader_stage last_stage,
3983 struct brw_gs_prog_key *key)
3984 {
3985 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3986
3987 if (info->clip_distance_array_size == 0 &&
3988 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3989 last_stage == MESA_SHADER_GEOMETRY)
3990 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3991 }
3992
3993 /**
3994 * Populate FS program key fields based on the current state.
3995 */
3996 static void
3997 iris_populate_fs_key(const struct iris_context *ice,
3998 const struct shader_info *info,
3999 struct brw_wm_prog_key *key)
4000 {
4001 struct iris_screen *screen = (void *) ice->ctx.screen;
4002 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
4003 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
4004 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
4005 const struct iris_blend_state *blend = ice->state.cso_blend;
4006
4007 key->nr_color_regions = fb->nr_cbufs;
4008
4009 key->clamp_fragment_color = rast->clamp_fragment_color;
4010
4011 key->alpha_to_coverage = blend->alpha_to_coverage;
4012
4013 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
4014
4015 key->flat_shade = rast->flatshade &&
4016 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
4017
4018 key->persample_interp = rast->force_persample_interp;
4019 key->multisample_fbo = rast->multisample && fb->samples > 1;
4020
4021 key->coherent_fb_fetch = GEN_GEN >= 9;
4022
4023 key->force_dual_color_blend =
4024 screen->driconf.dual_color_blend_by_location &&
4025 (blend->blend_enables & 1) && blend->dual_color_blending;
4026
4027 /* TODO: Respect glHint for key->high_quality_derivatives */
4028 }
4029
4030 static void
4031 iris_populate_cs_key(const struct iris_context *ice,
4032 struct brw_cs_prog_key *key)
4033 {
4034 }
4035
4036 static uint64_t
4037 KSP(const struct iris_compiled_shader *shader)
4038 {
4039 struct iris_resource *res = (void *) shader->assembly.res;
4040 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
4041 }
4042
4043 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
4044 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
4045 * this WA on C0 stepping.
4046 *
4047 * TODO: Fill out SamplerCount for prefetching?
4048 */
4049
4050 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
4051 pkt.KernelStartPointer = KSP(shader); \
4052 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
4053 shader->bt.size_bytes / 4; \
4054 pkt.FloatingPointMode = prog_data->use_alt_mode; \
4055 \
4056 pkt.DispatchGRFStartRegisterForURBData = \
4057 prog_data->dispatch_grf_start_reg; \
4058 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
4059 pkt.prefix##URBEntryReadOffset = 0; \
4060 \
4061 pkt.StatisticsEnable = true; \
4062 pkt.Enable = true; \
4063 \
4064 if (prog_data->total_scratch) { \
4065 struct iris_bo *bo = \
4066 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
4067 uint32_t scratch_addr = bo->gtt_offset; \
4068 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
4069 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
4070 }
4071
4072 /**
4073 * Encode most of 3DSTATE_VS based on the compiled shader.
4074 */
4075 static void
4076 iris_store_vs_state(struct iris_context *ice,
4077 const struct gen_device_info *devinfo,
4078 struct iris_compiled_shader *shader)
4079 {
4080 struct brw_stage_prog_data *prog_data = shader->prog_data;
4081 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4082
4083 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
4084 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
4085 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
4086 vs.SIMD8DispatchEnable = true;
4087 vs.UserClipDistanceCullTestEnableBitmask =
4088 vue_prog_data->cull_distance_mask;
4089 }
4090 }
4091
4092 /**
4093 * Encode most of 3DSTATE_HS based on the compiled shader.
4094 */
4095 static void
4096 iris_store_tcs_state(struct iris_context *ice,
4097 const struct gen_device_info *devinfo,
4098 struct iris_compiled_shader *shader)
4099 {
4100 struct brw_stage_prog_data *prog_data = shader->prog_data;
4101 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4102 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
4103
4104 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
4105 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
4106
4107 hs.InstanceCount = tcs_prog_data->instances - 1;
4108 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4109 hs.IncludeVertexHandles = true;
4110
4111 #if GEN_GEN >= 9
4112 hs.DispatchMode = vue_prog_data->dispatch_mode;
4113 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4114 #endif
4115 }
4116 }
4117
4118 /**
4119 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
4120 */
4121 static void
4122 iris_store_tes_state(struct iris_context *ice,
4123 const struct gen_device_info *devinfo,
4124 struct iris_compiled_shader *shader)
4125 {
4126 struct brw_stage_prog_data *prog_data = shader->prog_data;
4127 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4128 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
4129
4130 uint32_t *te_state = (void *) shader->derived_data;
4131 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
4132
4133 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
4134 te.Partitioning = tes_prog_data->partitioning;
4135 te.OutputTopology = tes_prog_data->output_topology;
4136 te.TEDomain = tes_prog_data->domain;
4137 te.TEEnable = true;
4138 te.MaximumTessellationFactorOdd = 63.0;
4139 te.MaximumTessellationFactorNotOdd = 64.0;
4140 }
4141
4142 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
4143 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
4144
4145 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4146 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4147 ds.ComputeWCoordinateEnable =
4148 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4149
4150 ds.UserClipDistanceCullTestEnableBitmask =
4151 vue_prog_data->cull_distance_mask;
4152 }
4153
4154 }
4155
4156 /**
4157 * Encode most of 3DSTATE_GS based on the compiled shader.
4158 */
4159 static void
4160 iris_store_gs_state(struct iris_context *ice,
4161 const struct gen_device_info *devinfo,
4162 struct iris_compiled_shader *shader)
4163 {
4164 struct brw_stage_prog_data *prog_data = shader->prog_data;
4165 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4166 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
4167
4168 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
4169 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
4170
4171 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
4172 gs.OutputTopology = gs_prog_data->output_topology;
4173 gs.ControlDataHeaderSize =
4174 gs_prog_data->control_data_header_size_hwords;
4175 gs.InstanceControl = gs_prog_data->invocations - 1;
4176 gs.DispatchMode = DISPATCH_MODE_SIMD8;
4177 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
4178 gs.ControlDataFormat = gs_prog_data->control_data_format;
4179 gs.ReorderMode = TRAILING;
4180 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
4181 gs.MaximumNumberofThreads =
4182 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
4183 : (devinfo->max_gs_threads - 1);
4184
4185 if (gs_prog_data->static_vertex_count != -1) {
4186 gs.StaticOutput = true;
4187 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
4188 }
4189 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
4190
4191 gs.UserClipDistanceCullTestEnableBitmask =
4192 vue_prog_data->cull_distance_mask;
4193
4194 const int urb_entry_write_offset = 1;
4195 const uint32_t urb_entry_output_length =
4196 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
4197 urb_entry_write_offset;
4198
4199 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
4200 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
4201 }
4202 }
4203
4204 /**
4205 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
4206 */
4207 static void
4208 iris_store_fs_state(struct iris_context *ice,
4209 const struct gen_device_info *devinfo,
4210 struct iris_compiled_shader *shader)
4211 {
4212 struct brw_stage_prog_data *prog_data = shader->prog_data;
4213 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
4214
4215 uint32_t *ps_state = (void *) shader->derived_data;
4216 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
4217
4218 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4219 ps.VectorMaskEnable = true;
4220 // XXX: WABTPPrefetchDisable, see above, drop at C0
4221 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
4222 shader->bt.size_bytes / 4;
4223 ps.FloatingPointMode = prog_data->use_alt_mode;
4224 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
4225
4226 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
4227
4228 /* From the documentation for this packet:
4229 * "If the PS kernel does not need the Position XY Offsets to
4230 * compute a Position Value, then this field should be programmed
4231 * to POSOFFSET_NONE."
4232 *
4233 * "SW Recommendation: If the PS kernel needs the Position Offsets
4234 * to compute a Position XY value, this field should match Position
4235 * ZW Interpolation Mode to ensure a consistent position.xyzw
4236 * computation."
4237 *
4238 * We only require XY sample offsets. So, this recommendation doesn't
4239 * look useful at the moment. We might need this in future.
4240 */
4241 ps.PositionXYOffsetSelect =
4242 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
4243
4244 if (prog_data->total_scratch) {
4245 struct iris_bo *bo =
4246 iris_get_scratch_space(ice, prog_data->total_scratch,
4247 MESA_SHADER_FRAGMENT);
4248 uint32_t scratch_addr = bo->gtt_offset;
4249 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4250 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4251 }
4252 }
4253
4254 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4255 psx.PixelShaderValid = true;
4256 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
4257 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
4258 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
4259 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
4260 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
4261 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
4262 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
4263
4264 #if GEN_GEN >= 9
4265 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
4266 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
4267 #endif
4268 }
4269 }
4270
4271 /**
4272 * Compute the size of the derived data (shader command packets).
4273 *
4274 * This must match the data written by the iris_store_xs_state() functions.
4275 */
4276 static void
4277 iris_store_cs_state(struct iris_context *ice,
4278 const struct gen_device_info *devinfo,
4279 struct iris_compiled_shader *shader)
4280 {
4281 struct brw_stage_prog_data *prog_data = shader->prog_data;
4282 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
4283 void *map = shader->derived_data;
4284
4285 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
4286 desc.KernelStartPointer = KSP(shader);
4287 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4288 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
4289 desc.SharedLocalMemorySize =
4290 encode_slm_size(GEN_GEN, prog_data->total_shared);
4291 desc.BarrierEnable = cs_prog_data->uses_barrier;
4292 desc.CrossThreadConstantDataReadLength =
4293 cs_prog_data->push.cross_thread.regs;
4294 }
4295 }
4296
4297 static unsigned
4298 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
4299 {
4300 assert(cache_id <= IRIS_CACHE_BLORP);
4301
4302 static const unsigned dwords[] = {
4303 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
4304 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
4305 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
4306 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
4307 [IRIS_CACHE_FS] =
4308 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
4309 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
4310 [IRIS_CACHE_BLORP] = 0,
4311 };
4312
4313 return sizeof(uint32_t) * dwords[cache_id];
4314 }
4315
4316 /**
4317 * Create any state packets corresponding to the given shader stage
4318 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
4319 * This means that we can look up a program in the in-memory cache and
4320 * get most of the state packet without having to reconstruct it.
4321 */
4322 static void
4323 iris_store_derived_program_state(struct iris_context *ice,
4324 enum iris_program_cache_id cache_id,
4325 struct iris_compiled_shader *shader)
4326 {
4327 struct iris_screen *screen = (void *) ice->ctx.screen;
4328 const struct gen_device_info *devinfo = &screen->devinfo;
4329
4330 switch (cache_id) {
4331 case IRIS_CACHE_VS:
4332 iris_store_vs_state(ice, devinfo, shader);
4333 break;
4334 case IRIS_CACHE_TCS:
4335 iris_store_tcs_state(ice, devinfo, shader);
4336 break;
4337 case IRIS_CACHE_TES:
4338 iris_store_tes_state(ice, devinfo, shader);
4339 break;
4340 case IRIS_CACHE_GS:
4341 iris_store_gs_state(ice, devinfo, shader);
4342 break;
4343 case IRIS_CACHE_FS:
4344 iris_store_fs_state(ice, devinfo, shader);
4345 break;
4346 case IRIS_CACHE_CS:
4347 iris_store_cs_state(ice, devinfo, shader);
4348 case IRIS_CACHE_BLORP:
4349 break;
4350 default:
4351 break;
4352 }
4353 }
4354
4355 /* ------------------------------------------------------------------- */
4356
4357 static const uint32_t push_constant_opcodes[] = {
4358 [MESA_SHADER_VERTEX] = 21,
4359 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4360 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4361 [MESA_SHADER_GEOMETRY] = 22,
4362 [MESA_SHADER_FRAGMENT] = 23,
4363 [MESA_SHADER_COMPUTE] = 0,
4364 };
4365
4366 static uint32_t
4367 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4368 {
4369 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4370
4371 iris_use_pinned_bo(batch, state_bo, false);
4372
4373 return ice->state.unbound_tex.offset;
4374 }
4375
4376 static uint32_t
4377 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4378 {
4379 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4380 if (!ice->state.null_fb.res)
4381 return use_null_surface(batch, ice);
4382
4383 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4384
4385 iris_use_pinned_bo(batch, state_bo, false);
4386
4387 return ice->state.null_fb.offset;
4388 }
4389
4390 static uint32_t
4391 surf_state_offset_for_aux(struct iris_resource *res,
4392 unsigned aux_modes,
4393 enum isl_aux_usage aux_usage)
4394 {
4395 return SURFACE_STATE_ALIGNMENT *
4396 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4397 }
4398
4399 #if GEN_GEN == 9
4400 static void
4401 surf_state_update_clear_value(struct iris_batch *batch,
4402 struct iris_resource *res,
4403 struct iris_state_ref *state,
4404 unsigned aux_modes,
4405 enum isl_aux_usage aux_usage)
4406 {
4407 struct isl_device *isl_dev = &batch->screen->isl_dev;
4408 struct iris_bo *state_bo = iris_resource_bo(state->res);
4409 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4410 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4411 uint32_t clear_offset = offset_into_bo +
4412 isl_dev->ss.clear_value_offset +
4413 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4414 uint32_t *color = res->aux.clear_color.u32;
4415
4416 assert(isl_dev->ss.clear_value_size == 16);
4417
4418 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4419 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4420 PIPE_CONTROL_WRITE_IMMEDIATE,
4421 state_bo, clear_offset, color[0]);
4422 } else {
4423 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4424 PIPE_CONTROL_WRITE_IMMEDIATE,
4425 state_bo, clear_offset,
4426 (uint64_t) color[0] |
4427 (uint64_t) color[1] << 32);
4428 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4429 PIPE_CONTROL_WRITE_IMMEDIATE,
4430 state_bo, clear_offset + 8,
4431 (uint64_t) color[2] |
4432 (uint64_t) color[3] << 32);
4433 }
4434
4435 iris_emit_pipe_control_flush(batch,
4436 "update fast clear: state cache invalidate",
4437 PIPE_CONTROL_FLUSH_ENABLE |
4438 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4439 }
4440 #endif
4441
4442 static void
4443 update_clear_value(struct iris_context *ice,
4444 struct iris_batch *batch,
4445 struct iris_resource *res,
4446 struct iris_state_ref *state,
4447 unsigned all_aux_modes,
4448 struct isl_view *view)
4449 {
4450 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4451 UNUSED unsigned aux_modes = all_aux_modes;
4452
4453 /* We only need to update the clear color in the surface state for gen8 and
4454 * gen9. Newer gens can read it directly from the clear color state buffer.
4455 */
4456 #if GEN_GEN == 9
4457 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4458 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4459
4460 while (aux_modes) {
4461 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4462
4463 surf_state_update_clear_value(batch, res, state, all_aux_modes,
4464 aux_usage);
4465 }
4466 #elif GEN_GEN == 8
4467 pipe_resource_reference(&state->res, NULL);
4468
4469 void *map = alloc_surface_states(ice->state.surface_uploader,
4470 state, all_aux_modes);
4471 while (aux_modes) {
4472 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4473 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage, 0, 0);
4474 map += SURFACE_STATE_ALIGNMENT;
4475 }
4476 #endif
4477 }
4478
4479 /**
4480 * Add a surface to the validation list, as well as the buffer containing
4481 * the corresponding SURFACE_STATE.
4482 *
4483 * Returns the binding table entry (offset to SURFACE_STATE).
4484 */
4485 static uint32_t
4486 use_surface(struct iris_context *ice,
4487 struct iris_batch *batch,
4488 struct pipe_surface *p_surf,
4489 bool writeable,
4490 enum isl_aux_usage aux_usage,
4491 bool is_read_surface)
4492 {
4493 struct iris_surface *surf = (void *) p_surf;
4494 struct iris_resource *res = (void *) p_surf->texture;
4495 uint32_t offset = 0;
4496
4497 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4498 if (GEN_GEN == 8 && is_read_surface) {
4499 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.res), false);
4500 } else {
4501 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
4502 }
4503
4504 if (res->aux.bo) {
4505 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4506 if (res->aux.clear_color_bo)
4507 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4508
4509 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4510 sizeof(surf->clear_color)) != 0) {
4511 update_clear_value(ice, batch, res, &surf->surface_state,
4512 res->aux.possible_usages, &surf->view);
4513 if (GEN_GEN == 8) {
4514 update_clear_value(ice, batch, res, &surf->surface_state_read,
4515 res->aux.possible_usages, &surf->read_view);
4516 }
4517 surf->clear_color = res->aux.clear_color;
4518 }
4519 }
4520
4521 offset = (GEN_GEN == 8 && is_read_surface) ? surf->surface_state_read.offset
4522 : surf->surface_state.offset;
4523
4524 return offset +
4525 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4526 }
4527
4528 static uint32_t
4529 use_sampler_view(struct iris_context *ice,
4530 struct iris_batch *batch,
4531 struct iris_sampler_view *isv)
4532 {
4533 // XXX: ASTC hacks
4534 enum isl_aux_usage aux_usage =
4535 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
4536
4537 iris_use_pinned_bo(batch, isv->res->bo, false);
4538 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
4539
4540 if (isv->res->aux.bo) {
4541 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4542 if (isv->res->aux.clear_color_bo)
4543 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4544 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4545 sizeof(isv->clear_color)) != 0) {
4546 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4547 isv->res->aux.sampler_usages, &isv->view);
4548 isv->clear_color = isv->res->aux.clear_color;
4549 }
4550 }
4551
4552 return isv->surface_state.offset +
4553 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4554 aux_usage);
4555 }
4556
4557 static uint32_t
4558 use_ubo_ssbo(struct iris_batch *batch,
4559 struct iris_context *ice,
4560 struct pipe_shader_buffer *buf,
4561 struct iris_state_ref *surf_state,
4562 bool writable)
4563 {
4564 if (!buf->buffer || !surf_state->res)
4565 return use_null_surface(batch, ice);
4566
4567 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4568 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4569
4570 return surf_state->offset;
4571 }
4572
4573 static uint32_t
4574 use_image(struct iris_batch *batch, struct iris_context *ice,
4575 struct iris_shader_state *shs, int i)
4576 {
4577 struct iris_image_view *iv = &shs->image[i];
4578 struct iris_resource *res = (void *) iv->base.resource;
4579
4580 if (!res)
4581 return use_null_surface(batch, ice);
4582
4583 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4584
4585 iris_use_pinned_bo(batch, res->bo, write);
4586 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4587
4588 if (res->aux.bo)
4589 iris_use_pinned_bo(batch, res->aux.bo, write);
4590
4591 return iv->surface_state.offset;
4592 }
4593
4594 #define push_bt_entry(addr) \
4595 assert(addr >= binder_addr); \
4596 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4597 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4598
4599 #define bt_assert(section) \
4600 if (!pin_only && shader->bt.used_mask[section] != 0) \
4601 assert(shader->bt.offsets[section] == s);
4602
4603 /**
4604 * Populate the binding table for a given shader stage.
4605 *
4606 * This fills out the table of pointers to surfaces required by the shader,
4607 * and also adds those buffers to the validation list so the kernel can make
4608 * resident before running our batch.
4609 */
4610 static void
4611 iris_populate_binding_table(struct iris_context *ice,
4612 struct iris_batch *batch,
4613 gl_shader_stage stage,
4614 bool pin_only)
4615 {
4616 const struct iris_binder *binder = &ice->state.binder;
4617 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4618 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4619 if (!shader)
4620 return;
4621
4622 struct iris_binding_table *bt = &shader->bt;
4623 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4624 struct iris_shader_state *shs = &ice->state.shaders[stage];
4625 uint32_t binder_addr = binder->bo->gtt_offset;
4626
4627 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4628 int s = 0;
4629
4630 const struct shader_info *info = iris_get_shader_info(ice, stage);
4631 if (!info) {
4632 /* TCS passthrough doesn't need a binding table. */
4633 assert(stage == MESA_SHADER_TESS_CTRL);
4634 return;
4635 }
4636
4637 if (stage == MESA_SHADER_COMPUTE &&
4638 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4639 /* surface for gl_NumWorkGroups */
4640 struct iris_state_ref *grid_data = &ice->state.grid_size;
4641 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4642 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4643 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4644 push_bt_entry(grid_state->offset);
4645 }
4646
4647 if (stage == MESA_SHADER_FRAGMENT) {
4648 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4649 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4650 if (cso_fb->nr_cbufs) {
4651 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4652 uint32_t addr;
4653 if (cso_fb->cbufs[i]) {
4654 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4655 ice->state.draw_aux_usage[i], false);
4656 } else {
4657 addr = use_null_fb_surface(batch, ice);
4658 }
4659 push_bt_entry(addr);
4660 }
4661 } else if (GEN_GEN < 11) {
4662 uint32_t addr = use_null_fb_surface(batch, ice);
4663 push_bt_entry(addr);
4664 }
4665 }
4666
4667 #define foreach_surface_used(index, group) \
4668 bt_assert(group); \
4669 for (int index = 0; index < bt->sizes[group]; index++) \
4670 if (iris_group_index_to_bti(bt, group, index) != \
4671 IRIS_SURFACE_NOT_USED)
4672
4673 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4674 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4675 uint32_t addr;
4676 if (cso_fb->cbufs[i]) {
4677 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4678 true, ice->state.draw_aux_usage[i], true);
4679 push_bt_entry(addr);
4680 }
4681 }
4682
4683 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4684 struct iris_sampler_view *view = shs->textures[i];
4685 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4686 : use_null_surface(batch, ice);
4687 push_bt_entry(addr);
4688 }
4689
4690 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4691 uint32_t addr = use_image(batch, ice, shs, i);
4692 push_bt_entry(addr);
4693 }
4694
4695 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4696 uint32_t addr;
4697
4698 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4699 if (ish->const_data) {
4700 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4701 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4702 false);
4703 addr = ish->const_data_state.offset;
4704 } else {
4705 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4706 addr = use_null_surface(batch, ice);
4707 }
4708 } else {
4709 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4710 &shs->constbuf_surf_state[i], false);
4711 }
4712
4713 push_bt_entry(addr);
4714 }
4715
4716 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4717 uint32_t addr =
4718 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4719 shs->writable_ssbos & (1u << i));
4720 push_bt_entry(addr);
4721 }
4722
4723 #if 0
4724 /* XXX: YUV surfaces not implemented yet */
4725 bt_assert(plane_start[1], ...);
4726 bt_assert(plane_start[2], ...);
4727 #endif
4728 }
4729
4730 static void
4731 iris_use_optional_res(struct iris_batch *batch,
4732 struct pipe_resource *res,
4733 bool writeable)
4734 {
4735 if (res) {
4736 struct iris_bo *bo = iris_resource_bo(res);
4737 iris_use_pinned_bo(batch, bo, writeable);
4738 }
4739 }
4740
4741 static void
4742 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4743 struct pipe_surface *zsbuf,
4744 struct iris_depth_stencil_alpha_state *cso_zsa)
4745 {
4746 if (!zsbuf)
4747 return;
4748
4749 struct iris_resource *zres, *sres;
4750 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4751
4752 if (zres) {
4753 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4754 if (zres->aux.bo) {
4755 iris_use_pinned_bo(batch, zres->aux.bo,
4756 cso_zsa->depth_writes_enabled);
4757 }
4758 }
4759
4760 if (sres) {
4761 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4762 }
4763 }
4764
4765 /* ------------------------------------------------------------------- */
4766
4767 /**
4768 * Pin any BOs which were installed by a previous batch, and restored
4769 * via the hardware logical context mechanism.
4770 *
4771 * We don't need to re-emit all state every batch - the hardware context
4772 * mechanism will save and restore it for us. This includes pointers to
4773 * various BOs...which won't exist unless we ask the kernel to pin them
4774 * by adding them to the validation list.
4775 *
4776 * We can skip buffers if we've re-emitted those packets, as we're
4777 * overwriting those stale pointers with new ones, and don't actually
4778 * refer to the old BOs.
4779 */
4780 static void
4781 iris_restore_render_saved_bos(struct iris_context *ice,
4782 struct iris_batch *batch,
4783 const struct pipe_draw_info *draw)
4784 {
4785 struct iris_genx_state *genx = ice->state.genx;
4786
4787 const uint64_t clean = ~ice->state.dirty;
4788
4789 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4790 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4791 }
4792
4793 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4794 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4795 }
4796
4797 if (clean & IRIS_DIRTY_BLEND_STATE) {
4798 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4799 }
4800
4801 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4802 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4803 }
4804
4805 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4806 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4807 }
4808
4809 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4810 for (int i = 0; i < 4; i++) {
4811 struct iris_stream_output_target *tgt =
4812 (void *) ice->state.so_target[i];
4813 if (tgt) {
4814 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4815 true);
4816 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4817 true);
4818 }
4819 }
4820 }
4821
4822 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4823 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4824 continue;
4825
4826 struct iris_shader_state *shs = &ice->state.shaders[stage];
4827 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4828
4829 if (!shader)
4830 continue;
4831
4832 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4833
4834 for (int i = 0; i < 4; i++) {
4835 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4836
4837 if (range->length == 0)
4838 continue;
4839
4840 /* Range block is a binding table index, map back to UBO index. */
4841 unsigned block_index = iris_bti_to_group_index(
4842 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4843 assert(block_index != IRIS_SURFACE_NOT_USED);
4844
4845 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4846 struct iris_resource *res = (void *) cbuf->buffer;
4847
4848 if (res)
4849 iris_use_pinned_bo(batch, res->bo, false);
4850 else
4851 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4852 }
4853 }
4854
4855 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4856 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4857 /* Re-pin any buffers referred to by the binding table. */
4858 iris_populate_binding_table(ice, batch, stage, true);
4859 }
4860 }
4861
4862 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4863 struct iris_shader_state *shs = &ice->state.shaders[stage];
4864 struct pipe_resource *res = shs->sampler_table.res;
4865 if (res)
4866 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4867 }
4868
4869 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4870 if (clean & (IRIS_DIRTY_VS << stage)) {
4871 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4872
4873 if (shader) {
4874 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4875 iris_use_pinned_bo(batch, bo, false);
4876
4877 struct brw_stage_prog_data *prog_data = shader->prog_data;
4878
4879 if (prog_data->total_scratch > 0) {
4880 struct iris_bo *bo =
4881 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4882 iris_use_pinned_bo(batch, bo, true);
4883 }
4884 }
4885 }
4886 }
4887
4888 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4889 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4890 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4891 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4892 }
4893
4894 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4895
4896 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4897 uint64_t bound = ice->state.bound_vertex_buffers;
4898 while (bound) {
4899 const int i = u_bit_scan64(&bound);
4900 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4901 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4902 }
4903 }
4904 }
4905
4906 static void
4907 iris_restore_compute_saved_bos(struct iris_context *ice,
4908 struct iris_batch *batch,
4909 const struct pipe_grid_info *grid)
4910 {
4911 const uint64_t clean = ~ice->state.dirty;
4912
4913 const int stage = MESA_SHADER_COMPUTE;
4914 struct iris_shader_state *shs = &ice->state.shaders[stage];
4915
4916 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4917 /* Re-pin any buffers referred to by the binding table. */
4918 iris_populate_binding_table(ice, batch, stage, true);
4919 }
4920
4921 struct pipe_resource *sampler_res = shs->sampler_table.res;
4922 if (sampler_res)
4923 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4924
4925 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4926 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4927 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4928 (clean & IRIS_DIRTY_CS)) {
4929 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4930 }
4931
4932 if (clean & IRIS_DIRTY_CS) {
4933 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4934
4935 if (shader) {
4936 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4937 iris_use_pinned_bo(batch, bo, false);
4938
4939 struct iris_bo *curbe_bo =
4940 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4941 iris_use_pinned_bo(batch, curbe_bo, false);
4942
4943 struct brw_stage_prog_data *prog_data = shader->prog_data;
4944
4945 if (prog_data->total_scratch > 0) {
4946 struct iris_bo *bo =
4947 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4948 iris_use_pinned_bo(batch, bo, true);
4949 }
4950 }
4951 }
4952 }
4953
4954 /**
4955 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4956 */
4957 static void
4958 iris_update_surface_base_address(struct iris_batch *batch,
4959 struct iris_binder *binder)
4960 {
4961 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4962 return;
4963
4964 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
4965
4966 flush_before_state_base_change(batch);
4967
4968 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4969 sba.SurfaceStateBaseAddressModifyEnable = true;
4970 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4971
4972 /* The hardware appears to pay attention to the MOCS fields even
4973 * if you don't set the "Address Modify Enable" bit for the base.
4974 */
4975 sba.GeneralStateMOCS = mocs;
4976 sba.StatelessDataPortAccessMOCS = mocs;
4977 sba.DynamicStateMOCS = mocs;
4978 sba.IndirectObjectMOCS = mocs;
4979 sba.InstructionMOCS = mocs;
4980 sba.SurfaceStateMOCS = mocs;
4981 #if GEN_GEN >= 9
4982 sba.BindlessSurfaceStateMOCS = mocs;
4983 #endif
4984 }
4985
4986 flush_after_state_base_change(batch);
4987
4988 batch->last_surface_base_address = binder->bo->gtt_offset;
4989 }
4990
4991 static inline void
4992 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
4993 bool window_space_position, float *zmin, float *zmax)
4994 {
4995 if (window_space_position) {
4996 *zmin = 0.f;
4997 *zmax = 1.f;
4998 return;
4999 }
5000 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
5001 }
5002
5003 #if GEN_GEN >= 12
5004 void
5005 genX(emit_aux_map_state)(struct iris_batch *batch)
5006 {
5007 struct iris_screen *screen = batch->screen;
5008 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5009 if (!aux_map_ctx)
5010 return;
5011 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
5012 if (batch->last_aux_map_state != aux_map_state_num) {
5013 /* If the aux-map state number increased, then we need to rewrite the
5014 * register. Rewriting the register is used to both set the aux-map
5015 * translation table address, and also to invalidate any previously
5016 * cached translations.
5017 */
5018 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
5019 assert(base_addr != 0 && ALIGN(base_addr, 32 * 1024) == base_addr);
5020 iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
5021 base_addr);
5022 batch->last_aux_map_state = aux_map_state_num;
5023 }
5024 }
5025 #endif
5026
5027 static void
5028 iris_upload_dirty_render_state(struct iris_context *ice,
5029 struct iris_batch *batch,
5030 const struct pipe_draw_info *draw)
5031 {
5032 const uint64_t dirty = ice->state.dirty;
5033
5034 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
5035 return;
5036
5037 struct iris_genx_state *genx = ice->state.genx;
5038 struct iris_binder *binder = &ice->state.binder;
5039 struct brw_wm_prog_data *wm_prog_data = (void *)
5040 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
5041
5042 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
5043 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5044 uint32_t cc_vp_address;
5045
5046 /* XXX: could avoid streaming for depth_clip [0,1] case. */
5047 uint32_t *cc_vp_map =
5048 stream_state(batch, ice->state.dynamic_uploader,
5049 &ice->state.last_res.cc_vp,
5050 4 * ice->state.num_viewports *
5051 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
5052 for (int i = 0; i < ice->state.num_viewports; i++) {
5053 float zmin, zmax;
5054 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
5055 ice->state.window_space_position,
5056 &zmin, &zmax);
5057 if (cso_rast->depth_clip_near)
5058 zmin = 0.0;
5059 if (cso_rast->depth_clip_far)
5060 zmax = 1.0;
5061
5062 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
5063 ccv.MinimumDepth = zmin;
5064 ccv.MaximumDepth = zmax;
5065 }
5066
5067 cc_vp_map += GENX(CC_VIEWPORT_length);
5068 }
5069
5070 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
5071 ptr.CCViewportPointer = cc_vp_address;
5072 }
5073 }
5074
5075 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
5076 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5077 uint32_t sf_cl_vp_address;
5078 uint32_t *vp_map =
5079 stream_state(batch, ice->state.dynamic_uploader,
5080 &ice->state.last_res.sf_cl_vp,
5081 4 * ice->state.num_viewports *
5082 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
5083
5084 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
5085 const struct pipe_viewport_state *state = &ice->state.viewports[i];
5086 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
5087
5088 float vp_xmin = viewport_extent(state, 0, -1.0f);
5089 float vp_xmax = viewport_extent(state, 0, 1.0f);
5090 float vp_ymin = viewport_extent(state, 1, -1.0f);
5091 float vp_ymax = viewport_extent(state, 1, 1.0f);
5092
5093 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
5094 state->scale[0], state->scale[1],
5095 state->translate[0], state->translate[1],
5096 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
5097
5098 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
5099 vp.ViewportMatrixElementm00 = state->scale[0];
5100 vp.ViewportMatrixElementm11 = state->scale[1];
5101 vp.ViewportMatrixElementm22 = state->scale[2];
5102 vp.ViewportMatrixElementm30 = state->translate[0];
5103 vp.ViewportMatrixElementm31 = state->translate[1];
5104 vp.ViewportMatrixElementm32 = state->translate[2];
5105 vp.XMinClipGuardband = gb_xmin;
5106 vp.XMaxClipGuardband = gb_xmax;
5107 vp.YMinClipGuardband = gb_ymin;
5108 vp.YMaxClipGuardband = gb_ymax;
5109 vp.XMinViewPort = MAX2(vp_xmin, 0);
5110 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
5111 vp.YMinViewPort = MAX2(vp_ymin, 0);
5112 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
5113 }
5114
5115 vp_map += GENX(SF_CLIP_VIEWPORT_length);
5116 }
5117
5118 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
5119 ptr.SFClipViewportPointer = sf_cl_vp_address;
5120 }
5121 }
5122
5123 if (dirty & IRIS_DIRTY_URB) {
5124 unsigned size[4];
5125
5126 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5127 if (!ice->shaders.prog[i]) {
5128 size[i] = 1;
5129 } else {
5130 struct brw_vue_prog_data *vue_prog_data =
5131 (void *) ice->shaders.prog[i]->prog_data;
5132 size[i] = vue_prog_data->urb_entry_size;
5133 }
5134 assert(size[i] != 0);
5135 }
5136
5137 genX(emit_urb_setup)(ice, batch, size,
5138 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
5139 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
5140 }
5141
5142 if (dirty & IRIS_DIRTY_BLEND_STATE) {
5143 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5144 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5145 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5146 const int header_dwords = GENX(BLEND_STATE_length);
5147
5148 /* Always write at least one BLEND_STATE - the final RT message will
5149 * reference BLEND_STATE[0] even if there aren't color writes. There
5150 * may still be alpha testing, computed depth, and so on.
5151 */
5152 const int rt_dwords =
5153 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
5154
5155 uint32_t blend_offset;
5156 uint32_t *blend_map =
5157 stream_state(batch, ice->state.dynamic_uploader,
5158 &ice->state.last_res.blend,
5159 4 * (header_dwords + rt_dwords), 64, &blend_offset);
5160
5161 uint32_t blend_state_header;
5162 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
5163 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
5164 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
5165 }
5166
5167 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
5168 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
5169
5170 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
5171 ptr.BlendStatePointer = blend_offset;
5172 ptr.BlendStatePointerValid = true;
5173 }
5174 }
5175
5176 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
5177 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5178 #if GEN_GEN == 8
5179 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5180 #endif
5181 uint32_t cc_offset;
5182 void *cc_map =
5183 stream_state(batch, ice->state.dynamic_uploader,
5184 &ice->state.last_res.color_calc,
5185 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
5186 64, &cc_offset);
5187 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
5188 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
5189 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
5190 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
5191 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
5192 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
5193 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
5194 #if GEN_GEN == 8
5195 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
5196 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5197 #endif
5198 }
5199 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
5200 ptr.ColorCalcStatePointer = cc_offset;
5201 ptr.ColorCalcStatePointerValid = true;
5202 }
5203 }
5204
5205 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5206 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
5207 continue;
5208
5209 struct iris_shader_state *shs = &ice->state.shaders[stage];
5210 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5211
5212 if (!shader)
5213 continue;
5214
5215 if (shs->sysvals_need_upload)
5216 upload_sysvals(ice, stage);
5217
5218 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5219
5220 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
5221 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
5222 if (prog_data) {
5223 /* The Skylake PRM contains the following restriction:
5224 *
5225 * "The driver must ensure The following case does not occur
5226 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
5227 * buffer 3 read length equal to zero committed followed by a
5228 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
5229 * zero committed."
5230 *
5231 * To avoid this, we program the buffers in the highest slots.
5232 * This way, slot 0 is only used if slot 3 is also used.
5233 */
5234 int n = 3;
5235
5236 for (int i = 3; i >= 0; i--) {
5237 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5238
5239 if (range->length == 0)
5240 continue;
5241
5242 /* Range block is a binding table index, map back to UBO index. */
5243 unsigned block_index = iris_bti_to_group_index(
5244 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5245 assert(block_index != IRIS_SURFACE_NOT_USED);
5246
5247 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5248 struct iris_resource *res = (void *) cbuf->buffer;
5249
5250 assert(cbuf->buffer_offset % 32 == 0);
5251
5252 pkt.ConstantBody.ReadLength[n] = range->length;
5253 pkt.ConstantBody.Buffer[n] =
5254 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
5255 : ro_bo(batch->screen->workaround_bo, 0);
5256 n--;
5257 }
5258 }
5259 }
5260 }
5261
5262 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5263 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
5264 * in order to commit constants. TODO: Investigate "Disable Gather
5265 * at Set Shader" to go back to legacy mode...
5266 */
5267 if (dirty & ((IRIS_DIRTY_BINDINGS_VS |
5268 (GEN_GEN == 9 ? IRIS_DIRTY_CONSTANTS_VS : 0)) << stage)) {
5269 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
5270 ptr._3DCommandSubOpcode = 38 + stage;
5271 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
5272 }
5273 }
5274 }
5275
5276 if (GEN_GEN >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
5277 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
5278 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
5279
5280 /* The PIPE_CONTROL command description says:
5281 *
5282 * "Whenever a Binding Table Index (BTI) used by a Render Target
5283 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
5284 * Render Target Cache Flush by enabling this bit. When render target
5285 * flush is set due to new association of BTI, PS Scoreboard Stall bit
5286 * must be set in this packet."
5287 */
5288 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
5289 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
5290 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5291 PIPE_CONTROL_STALL_AT_SCOREBOARD);
5292 }
5293
5294 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5295 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
5296 iris_populate_binding_table(ice, batch, stage, false);
5297 }
5298 }
5299
5300 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5301 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
5302 !ice->shaders.prog[stage])
5303 continue;
5304
5305 iris_upload_sampler_states(ice, stage);
5306
5307 struct iris_shader_state *shs = &ice->state.shaders[stage];
5308 struct pipe_resource *res = shs->sampler_table.res;
5309 if (res)
5310 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
5311
5312 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
5313 ptr._3DCommandSubOpcode = 43 + stage;
5314 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
5315 }
5316 }
5317
5318 if (ice->state.need_border_colors)
5319 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5320
5321 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
5322 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
5323 ms.PixelLocation =
5324 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
5325 if (ice->state.framebuffer.samples > 0)
5326 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
5327 }
5328 }
5329
5330 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
5331 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
5332 ms.SampleMask = ice->state.sample_mask;
5333 }
5334 }
5335
5336 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5337 if (!(dirty & (IRIS_DIRTY_VS << stage)))
5338 continue;
5339
5340 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5341
5342 if (shader) {
5343 struct brw_stage_prog_data *prog_data = shader->prog_data;
5344 struct iris_resource *cache = (void *) shader->assembly.res;
5345 iris_use_pinned_bo(batch, cache->bo, false);
5346
5347 if (prog_data->total_scratch > 0) {
5348 struct iris_bo *bo =
5349 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5350 iris_use_pinned_bo(batch, bo, true);
5351 }
5352
5353 if (stage == MESA_SHADER_FRAGMENT) {
5354 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
5355 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5356
5357 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
5358 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5359 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
5360 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
5361 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
5362
5363 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
5364 *
5365 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5366 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5367 * mode."
5368 *
5369 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5370 */
5371 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5372 !wm_prog_data->persample_dispatch) {
5373 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5374 ps._32PixelDispatchEnable = false;
5375 }
5376
5377 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5378 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5379 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5380 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5381 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5382 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5383
5384 ps.KernelStartPointer0 = KSP(shader) +
5385 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5386 ps.KernelStartPointer1 = KSP(shader) +
5387 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5388 ps.KernelStartPointer2 = KSP(shader) +
5389 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5390 }
5391
5392 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5393 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5394 #if GEN_GEN >= 9
5395 if (!wm_prog_data->uses_sample_mask)
5396 psx.InputCoverageMaskState = ICMS_NONE;
5397 else if (wm_prog_data->post_depth_coverage)
5398 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5399 else if (wm_prog_data->inner_coverage &&
5400 cso->conservative_rasterization)
5401 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5402 else
5403 psx.InputCoverageMaskState = ICMS_NORMAL;
5404 #else
5405 psx.PixelShaderUsesInputCoverageMask =
5406 wm_prog_data->uses_sample_mask;
5407 #endif
5408 }
5409
5410 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5411 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5412 iris_emit_merge(batch, shader_ps, ps_state,
5413 GENX(3DSTATE_PS_length));
5414 iris_emit_merge(batch, shader_psx, psx_state,
5415 GENX(3DSTATE_PS_EXTRA_length));
5416 } else {
5417 iris_batch_emit(batch, shader->derived_data,
5418 iris_derived_program_state_size(stage));
5419 }
5420 } else {
5421 if (stage == MESA_SHADER_TESS_EVAL) {
5422 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5423 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5424 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5425 } else if (stage == MESA_SHADER_GEOMETRY) {
5426 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5427 }
5428 }
5429 }
5430
5431 if (ice->state.streamout_active) {
5432 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5433 iris_batch_emit(batch, genx->so_buffers,
5434 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5435 for (int i = 0; i < 4; i++) {
5436 struct iris_stream_output_target *tgt =
5437 (void *) ice->state.so_target[i];
5438 if (tgt) {
5439 tgt->zeroed = true;
5440 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5441 true);
5442 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5443 true);
5444 }
5445 }
5446 }
5447
5448 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5449 uint32_t *decl_list =
5450 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5451 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5452 }
5453
5454 if (dirty & IRIS_DIRTY_STREAMOUT) {
5455 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5456
5457 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5458 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5459 sol.SOFunctionEnable = true;
5460 sol.SOStatisticsEnable = true;
5461
5462 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5463 !ice->state.prims_generated_query_active;
5464 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5465 }
5466
5467 assert(ice->state.streamout);
5468
5469 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5470 GENX(3DSTATE_STREAMOUT_length));
5471 }
5472 } else {
5473 if (dirty & IRIS_DIRTY_STREAMOUT) {
5474 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5475 }
5476 }
5477
5478 if (dirty & IRIS_DIRTY_CLIP) {
5479 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5480 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5481
5482 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5483 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5484 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5485 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5486 : ice->state.prim_is_points_or_lines);
5487
5488 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5489 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5490 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5491 if (cso_rast->rasterizer_discard)
5492 cl.ClipMode = CLIPMODE_REJECT_ALL;
5493 else if (ice->state.window_space_position)
5494 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5495 else
5496 cl.ClipMode = CLIPMODE_NORMAL;
5497
5498 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5499 cl.ViewportXYClipTestEnable = !points_or_lines;
5500
5501 if (wm_prog_data->barycentric_interp_modes &
5502 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5503 cl.NonPerspectiveBarycentricEnable = true;
5504
5505 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
5506 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5507 }
5508 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5509 ARRAY_SIZE(cso_rast->clip));
5510 }
5511
5512 if (dirty & IRIS_DIRTY_RASTER) {
5513 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5514 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5515
5516 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5517 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5518 sf.ViewportTransformEnable = !ice->state.window_space_position;
5519 }
5520 iris_emit_merge(batch, cso->sf, dynamic_sf,
5521 ARRAY_SIZE(dynamic_sf));
5522 }
5523
5524 if (dirty & IRIS_DIRTY_WM) {
5525 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5526 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5527
5528 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5529 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5530
5531 wm.BarycentricInterpolationMode =
5532 wm_prog_data->barycentric_interp_modes;
5533
5534 if (wm_prog_data->early_fragment_tests)
5535 wm.EarlyDepthStencilControl = EDSC_PREPS;
5536 else if (wm_prog_data->has_side_effects)
5537 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5538
5539 /* We could skip this bit if color writes are enabled. */
5540 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5541 wm.ForceThreadDispatchEnable = ForceON;
5542 }
5543 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5544 }
5545
5546 if (dirty & IRIS_DIRTY_SBE) {
5547 iris_emit_sbe(batch, ice);
5548 }
5549
5550 if (dirty & IRIS_DIRTY_PS_BLEND) {
5551 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5552 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5553 const struct shader_info *fs_info =
5554 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5555
5556 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5557 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5558 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5559 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5560
5561 /* The dual source blending docs caution against using SRC1 factors
5562 * when the shader doesn't use a dual source render target write.
5563 * Empirically, this can lead to GPU hangs, and the results are
5564 * undefined anyway, so simply disable blending to avoid the hang.
5565 */
5566 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5567 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5568 }
5569
5570 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5571 ARRAY_SIZE(cso_blend->ps_blend));
5572 }
5573
5574 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5575 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5576 #if GEN_GEN >= 9
5577 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5578 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5579 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5580 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5581 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5582 }
5583 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5584 #else
5585 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5586 #endif
5587
5588 #if GEN_GEN >= 12
5589 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
5590 #endif
5591 }
5592
5593 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
5594 uint32_t scissor_offset =
5595 emit_state(batch, ice->state.dynamic_uploader,
5596 &ice->state.last_res.scissor,
5597 ice->state.scissors,
5598 sizeof(struct pipe_scissor_state) *
5599 ice->state.num_viewports, 32);
5600
5601 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
5602 ptr.ScissorRectPointer = scissor_offset;
5603 }
5604 }
5605
5606 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
5607 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
5608
5609 /* Do not emit the clear params yets. We need to update the clear value
5610 * first.
5611 */
5612 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
5613 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
5614 iris_batch_emit(batch, cso_z->packets, cso_z_size);
5615
5616 union isl_color_value clear_value = { .f32 = { 0, } };
5617
5618 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5619 if (cso_fb->zsbuf) {
5620 struct iris_resource *zres, *sres;
5621 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5622 &zres, &sres);
5623 if (zres && zres->aux.bo)
5624 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5625 }
5626
5627 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5628 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5629 clear.DepthClearValueValid = true;
5630 clear.DepthClearValue = clear_value.f32[0];
5631 }
5632 iris_batch_emit(batch, clear_params, clear_length);
5633 }
5634
5635 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5636 /* Listen for buffer changes, and also write enable changes. */
5637 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5638 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5639 }
5640
5641 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5642 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5643 for (int i = 0; i < 32; i++) {
5644 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5645 }
5646 }
5647 }
5648
5649 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5650 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5651 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5652 }
5653
5654 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5655 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5656 topo.PrimitiveTopologyType =
5657 translate_prim_type(draw->mode, draw->vertices_per_patch);
5658 }
5659 }
5660
5661 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5662 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5663 int dynamic_bound = ice->state.bound_vertex_buffers;
5664
5665 if (ice->state.vs_uses_draw_params) {
5666 assert(ice->draw.draw_params.res);
5667
5668 struct iris_vertex_buffer_state *state =
5669 &(ice->state.genx->vertex_buffers[count]);
5670 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
5671 struct iris_resource *res = (void *) state->resource;
5672
5673 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5674 vb.VertexBufferIndex = count;
5675 vb.AddressModifyEnable = true;
5676 vb.BufferPitch = 0;
5677 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
5678 vb.BufferStartingAddress =
5679 ro_bo(NULL, res->bo->gtt_offset +
5680 (int) ice->draw.draw_params.offset);
5681 vb.MOCS = mocs(res->bo, &batch->screen->isl_dev);
5682 }
5683 dynamic_bound |= 1ull << count;
5684 count++;
5685 }
5686
5687 if (ice->state.vs_uses_derived_draw_params) {
5688 struct iris_vertex_buffer_state *state =
5689 &(ice->state.genx->vertex_buffers[count]);
5690 pipe_resource_reference(&state->resource,
5691 ice->draw.derived_draw_params.res);
5692 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
5693
5694 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5695 vb.VertexBufferIndex = count;
5696 vb.AddressModifyEnable = true;
5697 vb.BufferPitch = 0;
5698 vb.BufferSize =
5699 res->bo->size - ice->draw.derived_draw_params.offset;
5700 vb.BufferStartingAddress =
5701 ro_bo(NULL, res->bo->gtt_offset +
5702 (int) ice->draw.derived_draw_params.offset);
5703 vb.MOCS = mocs(res->bo, &batch->screen->isl_dev);
5704 }
5705 dynamic_bound |= 1ull << count;
5706 count++;
5707 }
5708
5709 if (count) {
5710 /* The VF cache designers cut corners, and made the cache key's
5711 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5712 * 32 bits of the address. If you have two vertex buffers which get
5713 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5714 * you can get collisions (even within a single batch).
5715 *
5716 * So, we need to do a VF cache invalidate if the buffer for a VB
5717 * slot slot changes [48:32] address bits from the previous time.
5718 */
5719 unsigned flush_flags = 0;
5720
5721 uint64_t bound = dynamic_bound;
5722 while (bound) {
5723 const int i = u_bit_scan64(&bound);
5724 uint16_t high_bits = 0;
5725
5726 struct iris_resource *res =
5727 (void *) genx->vertex_buffers[i].resource;
5728 if (res) {
5729 iris_use_pinned_bo(batch, res->bo, false);
5730
5731 high_bits = res->bo->gtt_offset >> 32ull;
5732 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5733 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5734 PIPE_CONTROL_CS_STALL;
5735 ice->state.last_vbo_high_bits[i] = high_bits;
5736 }
5737 }
5738 }
5739
5740 if (flush_flags) {
5741 iris_emit_pipe_control_flush(batch,
5742 "workaround: VF cache 32-bit key [VB]",
5743 flush_flags);
5744 }
5745
5746 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5747
5748 uint32_t *map =
5749 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5750 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5751 vb.DWordLength = (vb_dwords * count + 1) - 2;
5752 }
5753 map += 1;
5754
5755 bound = dynamic_bound;
5756 while (bound) {
5757 const int i = u_bit_scan64(&bound);
5758 memcpy(map, genx->vertex_buffers[i].state,
5759 sizeof(uint32_t) * vb_dwords);
5760 map += vb_dwords;
5761 }
5762 }
5763 }
5764
5765 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5766 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5767 const unsigned entries = MAX2(cso->count, 1);
5768 if (!(ice->state.vs_needs_sgvs_element ||
5769 ice->state.vs_uses_derived_draw_params ||
5770 ice->state.vs_needs_edge_flag)) {
5771 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5772 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5773 } else {
5774 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5775 const unsigned dyn_count = cso->count +
5776 ice->state.vs_needs_sgvs_element +
5777 ice->state.vs_uses_derived_draw_params;
5778
5779 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5780 &dynamic_ves, ve) {
5781 ve.DWordLength =
5782 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5783 }
5784 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5785 (cso->count - ice->state.vs_needs_edge_flag) *
5786 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5787 uint32_t *ve_pack_dest =
5788 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5789 GENX(VERTEX_ELEMENT_STATE_length)];
5790
5791 if (ice->state.vs_needs_sgvs_element) {
5792 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5793 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5794 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5795 ve.Valid = true;
5796 ve.VertexBufferIndex =
5797 util_bitcount64(ice->state.bound_vertex_buffers);
5798 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5799 ve.Component0Control = base_ctrl;
5800 ve.Component1Control = base_ctrl;
5801 ve.Component2Control = VFCOMP_STORE_0;
5802 ve.Component3Control = VFCOMP_STORE_0;
5803 }
5804 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5805 }
5806 if (ice->state.vs_uses_derived_draw_params) {
5807 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5808 ve.Valid = true;
5809 ve.VertexBufferIndex =
5810 util_bitcount64(ice->state.bound_vertex_buffers) +
5811 ice->state.vs_uses_draw_params;
5812 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5813 ve.Component0Control = VFCOMP_STORE_SRC;
5814 ve.Component1Control = VFCOMP_STORE_SRC;
5815 ve.Component2Control = VFCOMP_STORE_0;
5816 ve.Component3Control = VFCOMP_STORE_0;
5817 }
5818 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5819 }
5820 if (ice->state.vs_needs_edge_flag) {
5821 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5822 ve_pack_dest[i] = cso->edgeflag_ve[i];
5823 }
5824
5825 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5826 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5827 }
5828
5829 if (!ice->state.vs_needs_edge_flag) {
5830 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5831 entries * GENX(3DSTATE_VF_INSTANCING_length));
5832 } else {
5833 assert(cso->count > 0);
5834 const unsigned edgeflag_index = cso->count - 1;
5835 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5836 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5837 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5838
5839 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5840 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5841 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5842 vi.VertexElementIndex = edgeflag_index +
5843 ice->state.vs_needs_sgvs_element +
5844 ice->state.vs_uses_derived_draw_params;
5845 }
5846 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5847 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5848
5849 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5850 entries * GENX(3DSTATE_VF_INSTANCING_length));
5851 }
5852 }
5853
5854 if (dirty & IRIS_DIRTY_VF_SGVS) {
5855 const struct brw_vs_prog_data *vs_prog_data = (void *)
5856 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5857 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5858
5859 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5860 if (vs_prog_data->uses_vertexid) {
5861 sgv.VertexIDEnable = true;
5862 sgv.VertexIDComponentNumber = 2;
5863 sgv.VertexIDElementOffset =
5864 cso->count - ice->state.vs_needs_edge_flag;
5865 }
5866
5867 if (vs_prog_data->uses_instanceid) {
5868 sgv.InstanceIDEnable = true;
5869 sgv.InstanceIDComponentNumber = 3;
5870 sgv.InstanceIDElementOffset =
5871 cso->count - ice->state.vs_needs_edge_flag;
5872 }
5873 }
5874 }
5875
5876 if (dirty & IRIS_DIRTY_VF) {
5877 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5878 if (draw->primitive_restart) {
5879 vf.IndexedDrawCutIndexEnable = true;
5880 vf.CutIndex = draw->restart_index;
5881 }
5882 }
5883 }
5884
5885 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5886 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5887 vf.StatisticsEnable = true;
5888 }
5889 }
5890
5891 #if GEN_GEN == 8
5892 if (dirty & IRIS_DIRTY_PMA_FIX) {
5893 bool enable = want_pma_fix(ice);
5894 genX(update_pma_fix)(ice, batch, enable);
5895 }
5896 #endif
5897
5898 if (ice->state.current_hash_scale != 1)
5899 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5900
5901 #if GEN_GEN >= 12
5902 genX(emit_aux_map_state)(batch);
5903 #endif
5904 }
5905
5906 static void
5907 iris_upload_render_state(struct iris_context *ice,
5908 struct iris_batch *batch,
5909 const struct pipe_draw_info *draw)
5910 {
5911 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5912
5913 /* Always pin the binder. If we're emitting new binding table pointers,
5914 * we need it. If not, we're probably inheriting old tables via the
5915 * context, and need it anyway. Since true zero-bindings cases are
5916 * practically non-existent, just pin it and avoid last_res tracking.
5917 */
5918 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5919
5920 if (!batch->contains_draw) {
5921 iris_restore_render_saved_bos(ice, batch, draw);
5922 batch->contains_draw = true;
5923 }
5924
5925 iris_upload_dirty_render_state(ice, batch, draw);
5926
5927 if (draw->index_size > 0) {
5928 unsigned offset;
5929
5930 if (draw->has_user_indices) {
5931 u_upload_data(ice->ctx.stream_uploader, 0,
5932 draw->count * draw->index_size, 4, draw->index.user,
5933 &offset, &ice->state.last_res.index_buffer);
5934 } else {
5935 struct iris_resource *res = (void *) draw->index.resource;
5936 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5937
5938 pipe_resource_reference(&ice->state.last_res.index_buffer,
5939 draw->index.resource);
5940 offset = 0;
5941 }
5942
5943 struct iris_genx_state *genx = ice->state.genx;
5944 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5945
5946 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5947 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5948 ib.IndexFormat = draw->index_size >> 1;
5949 ib.MOCS = mocs(bo, &batch->screen->isl_dev);
5950 ib.BufferSize = bo->size - offset;
5951 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5952 }
5953
5954 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5955 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5956 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5957 iris_use_pinned_bo(batch, bo, false);
5958 }
5959
5960 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5961 uint16_t high_bits = bo->gtt_offset >> 32ull;
5962 if (high_bits != ice->state.last_index_bo_high_bits) {
5963 iris_emit_pipe_control_flush(batch,
5964 "workaround: VF cache 32-bit key [IB]",
5965 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5966 PIPE_CONTROL_CS_STALL);
5967 ice->state.last_index_bo_high_bits = high_bits;
5968 }
5969 }
5970
5971 #define _3DPRIM_END_OFFSET 0x2420
5972 #define _3DPRIM_START_VERTEX 0x2430
5973 #define _3DPRIM_VERTEX_COUNT 0x2434
5974 #define _3DPRIM_INSTANCE_COUNT 0x2438
5975 #define _3DPRIM_START_INSTANCE 0x243C
5976 #define _3DPRIM_BASE_VERTEX 0x2440
5977
5978 if (draw->indirect) {
5979 if (draw->indirect->indirect_draw_count) {
5980 use_predicate = true;
5981
5982 struct iris_bo *draw_count_bo =
5983 iris_resource_bo(draw->indirect->indirect_draw_count);
5984 unsigned draw_count_offset =
5985 draw->indirect->indirect_draw_count_offset;
5986
5987 iris_emit_pipe_control_flush(batch,
5988 "ensure indirect draw buffer is flushed",
5989 PIPE_CONTROL_FLUSH_ENABLE);
5990
5991 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5992 struct gen_mi_builder b;
5993 gen_mi_builder_init(&b, batch);
5994
5995 /* comparison = draw id < draw count */
5996 struct gen_mi_value comparison =
5997 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
5998 gen_mi_mem32(ro_bo(draw_count_bo,
5999 draw_count_offset)));
6000
6001 /* predicate = comparison & conditional rendering predicate */
6002 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
6003 gen_mi_iand(&b, comparison,
6004 gen_mi_reg32(CS_GPR(15))));
6005 } else {
6006 uint32_t mi_predicate;
6007
6008 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
6009 iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
6010 /* Upload the current draw count from the draw parameters buffer
6011 * to MI_PREDICATE_SRC0.
6012 */
6013 iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
6014 draw_count_bo, draw_count_offset);
6015 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
6016 iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
6017
6018 if (draw->drawid == 0) {
6019 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
6020 MI_PREDICATE_COMBINEOP_SET |
6021 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6022 } else {
6023 /* While draw_index < draw_count the predicate's result will be
6024 * (draw_index == draw_count) ^ TRUE = TRUE
6025 * When draw_index == draw_count the result is
6026 * (TRUE) ^ TRUE = FALSE
6027 * After this all results will be:
6028 * (FALSE) ^ FALSE = FALSE
6029 */
6030 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
6031 MI_PREDICATE_COMBINEOP_XOR |
6032 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6033 }
6034 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
6035 }
6036 }
6037 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
6038 assert(bo);
6039
6040 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6041 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
6042 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
6043 }
6044 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6045 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
6046 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
6047 }
6048 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6049 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
6050 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
6051 }
6052 if (draw->index_size) {
6053 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6054 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
6055 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6056 }
6057 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6058 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6059 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
6060 }
6061 } else {
6062 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6063 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6064 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6065 }
6066 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
6067 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
6068 lri.DataDWord = 0;
6069 }
6070 }
6071 } else if (draw->count_from_stream_output) {
6072 struct iris_stream_output_target *so =
6073 (void *) draw->count_from_stream_output;
6074
6075 /* XXX: Replace with actual cache tracking */
6076 iris_emit_pipe_control_flush(batch,
6077 "draw count from stream output stall",
6078 PIPE_CONTROL_CS_STALL);
6079
6080 struct gen_mi_builder b;
6081 gen_mi_builder_init(&b, batch);
6082
6083 struct iris_address addr =
6084 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
6085 struct gen_mi_value offset =
6086 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
6087
6088 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
6089 gen_mi_udiv32_imm(&b, offset, so->stride));
6090
6091 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
6092 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
6093 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
6094 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
6095 }
6096
6097 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6098 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
6099 prim.PredicateEnable = use_predicate;
6100
6101 if (draw->indirect || draw->count_from_stream_output) {
6102 prim.IndirectParameterEnable = true;
6103 } else {
6104 prim.StartInstanceLocation = draw->start_instance;
6105 prim.InstanceCount = draw->instance_count;
6106 prim.VertexCountPerInstance = draw->count;
6107
6108 prim.StartVertexLocation = draw->start;
6109
6110 if (draw->index_size) {
6111 prim.BaseVertexLocation += draw->index_bias;
6112 } else {
6113 prim.StartVertexLocation += draw->index_bias;
6114 }
6115 }
6116 }
6117 }
6118
6119 static void
6120 iris_upload_compute_state(struct iris_context *ice,
6121 struct iris_batch *batch,
6122 const struct pipe_grid_info *grid)
6123 {
6124 const uint64_t dirty = ice->state.dirty;
6125 struct iris_screen *screen = batch->screen;
6126 const struct gen_device_info *devinfo = &screen->devinfo;
6127 struct iris_binder *binder = &ice->state.binder;
6128 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6129 struct iris_compiled_shader *shader =
6130 ice->shaders.prog[MESA_SHADER_COMPUTE];
6131 struct brw_stage_prog_data *prog_data = shader->prog_data;
6132 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
6133
6134 /* Always pin the binder. If we're emitting new binding table pointers,
6135 * we need it. If not, we're probably inheriting old tables via the
6136 * context, and need it anyway. Since true zero-bindings cases are
6137 * practically non-existent, just pin it and avoid last_res tracking.
6138 */
6139 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
6140
6141 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
6142 upload_sysvals(ice, MESA_SHADER_COMPUTE);
6143
6144 if (dirty & IRIS_DIRTY_BINDINGS_CS)
6145 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
6146
6147 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
6148 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
6149
6150 iris_use_optional_res(batch, shs->sampler_table.res, false);
6151 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
6152
6153 if (ice->state.need_border_colors)
6154 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
6155
6156 #if GEN_GEN >= 12
6157 genX(emit_aux_map_state)(batch);
6158 #endif
6159
6160 if (dirty & IRIS_DIRTY_CS) {
6161 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
6162 *
6163 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
6164 * the only bits that are changed are scoreboard related: Scoreboard
6165 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
6166 * these scoreboard related states, a MEDIA_STATE_FLUSH is
6167 * sufficient."
6168 */
6169 iris_emit_pipe_control_flush(batch,
6170 "workaround: stall before MEDIA_VFE_STATE",
6171 PIPE_CONTROL_CS_STALL);
6172
6173 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
6174 if (prog_data->total_scratch) {
6175 struct iris_bo *bo =
6176 iris_get_scratch_space(ice, prog_data->total_scratch,
6177 MESA_SHADER_COMPUTE);
6178 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
6179 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
6180 }
6181
6182 vfe.MaximumNumberofThreads =
6183 devinfo->max_cs_threads * screen->subslice_total - 1;
6184 #if GEN_GEN < 11
6185 vfe.ResetGatewayTimer =
6186 Resettingrelativetimerandlatchingtheglobaltimestamp;
6187 #endif
6188 #if GEN_GEN == 8
6189 vfe.BypassGatewayControl = true;
6190 #endif
6191 vfe.NumberofURBEntries = 2;
6192 vfe.URBEntryAllocationSize = 2;
6193
6194 vfe.CURBEAllocationSize =
6195 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
6196 cs_prog_data->push.cross_thread.regs, 2);
6197 }
6198 }
6199
6200 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
6201 if (dirty & IRIS_DIRTY_CS) {
6202 uint32_t curbe_data_offset = 0;
6203 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
6204 cs_prog_data->push.per_thread.dwords == 1 &&
6205 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
6206 uint32_t *curbe_data_map =
6207 stream_state(batch, ice->state.dynamic_uploader,
6208 &ice->state.last_res.cs_thread_ids,
6209 ALIGN(cs_prog_data->push.total.size, 64), 64,
6210 &curbe_data_offset);
6211 assert(curbe_data_map);
6212 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
6213 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
6214
6215 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
6216 curbe.CURBETotalDataLength =
6217 ALIGN(cs_prog_data->push.total.size, 64);
6218 curbe.CURBEDataStartAddress = curbe_data_offset;
6219 }
6220 }
6221
6222 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
6223 IRIS_DIRTY_BINDINGS_CS |
6224 IRIS_DIRTY_CONSTANTS_CS |
6225 IRIS_DIRTY_CS)) {
6226 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
6227
6228 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
6229 idd.SamplerStatePointer = shs->sampler_table.offset;
6230 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
6231 }
6232
6233 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
6234 desc[i] |= ((uint32_t *) shader->derived_data)[i];
6235
6236 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
6237 load.InterfaceDescriptorTotalLength =
6238 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
6239 load.InterfaceDescriptorDataStartAddress =
6240 emit_state(batch, ice->state.dynamic_uploader,
6241 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
6242 }
6243 }
6244
6245 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
6246 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
6247 uint32_t right_mask;
6248
6249 if (remainder > 0)
6250 right_mask = ~0u >> (32 - remainder);
6251 else
6252 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
6253
6254 #define GPGPU_DISPATCHDIMX 0x2500
6255 #define GPGPU_DISPATCHDIMY 0x2504
6256 #define GPGPU_DISPATCHDIMZ 0x2508
6257
6258 if (grid->indirect) {
6259 struct iris_state_ref *grid_size = &ice->state.grid_size;
6260 struct iris_bo *bo = iris_resource_bo(grid_size->res);
6261 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6262 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
6263 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
6264 }
6265 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6266 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
6267 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
6268 }
6269 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6270 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
6271 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
6272 }
6273 }
6274
6275 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
6276 ggw.IndirectParameterEnable = grid->indirect != NULL;
6277 ggw.SIMDSize = cs_prog_data->simd_size / 16;
6278 ggw.ThreadDepthCounterMaximum = 0;
6279 ggw.ThreadHeightCounterMaximum = 0;
6280 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
6281 ggw.ThreadGroupIDXDimension = grid->grid[0];
6282 ggw.ThreadGroupIDYDimension = grid->grid[1];
6283 ggw.ThreadGroupIDZDimension = grid->grid[2];
6284 ggw.RightExecutionMask = right_mask;
6285 ggw.BottomExecutionMask = 0xffffffff;
6286 }
6287
6288 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
6289
6290 if (!batch->contains_draw) {
6291 iris_restore_compute_saved_bos(ice, batch, grid);
6292 batch->contains_draw = true;
6293 }
6294 }
6295
6296 /**
6297 * State module teardown.
6298 */
6299 static void
6300 iris_destroy_state(struct iris_context *ice)
6301 {
6302 struct iris_genx_state *genx = ice->state.genx;
6303
6304 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
6305 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
6306
6307 /* Loop over all VBOs, including ones for draw parameters */
6308 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
6309 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
6310 }
6311
6312 free(ice->state.genx);
6313
6314 for (int i = 0; i < 4; i++) {
6315 pipe_so_target_reference(&ice->state.so_target[i], NULL);
6316 }
6317
6318 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
6319 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
6320 }
6321 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
6322
6323 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
6324 struct iris_shader_state *shs = &ice->state.shaders[stage];
6325 pipe_resource_reference(&shs->sampler_table.res, NULL);
6326 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
6327 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
6328 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
6329 }
6330 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
6331 pipe_resource_reference(&shs->image[i].base.resource, NULL);
6332 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
6333 }
6334 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
6335 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
6336 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
6337 }
6338 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
6339 pipe_sampler_view_reference((struct pipe_sampler_view **)
6340 &shs->textures[i], NULL);
6341 }
6342 }
6343
6344 pipe_resource_reference(&ice->state.grid_size.res, NULL);
6345 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
6346
6347 pipe_resource_reference(&ice->state.null_fb.res, NULL);
6348 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
6349
6350 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
6351 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
6352 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
6353 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
6354 pipe_resource_reference(&ice->state.last_res.blend, NULL);
6355 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
6356 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
6357 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
6358 }
6359
6360 /* ------------------------------------------------------------------- */
6361
6362 static void
6363 iris_rebind_buffer(struct iris_context *ice,
6364 struct iris_resource *res,
6365 uint64_t old_address)
6366 {
6367 struct pipe_context *ctx = &ice->ctx;
6368 struct iris_screen *screen = (void *) ctx->screen;
6369 struct iris_genx_state *genx = ice->state.genx;
6370
6371 assert(res->base.target == PIPE_BUFFER);
6372
6373 /* Buffers can't be framebuffer attachments, nor display related,
6374 * and we don't have upstream Clover support.
6375 */
6376 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
6377 PIPE_BIND_RENDER_TARGET |
6378 PIPE_BIND_BLENDABLE |
6379 PIPE_BIND_DISPLAY_TARGET |
6380 PIPE_BIND_CURSOR |
6381 PIPE_BIND_COMPUTE_RESOURCE |
6382 PIPE_BIND_GLOBAL)));
6383
6384 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6385 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6386 while (bound_vbs) {
6387 const int i = u_bit_scan64(&bound_vbs);
6388 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6389
6390 /* Update the CPU struct */
6391 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6392 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6393 uint64_t *addr = (uint64_t *) &state->state[1];
6394
6395 if (*addr == old_address + state->offset) {
6396 *addr = res->bo->gtt_offset + state->offset;
6397 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6398 }
6399 }
6400 }
6401
6402 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6403 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6404 *
6405 * There is also no need to handle these:
6406 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6407 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6408 */
6409
6410 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6411 /* XXX: be careful about resetting vs appending... */
6412 assert(false);
6413 }
6414
6415 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6416 struct iris_shader_state *shs = &ice->state.shaders[s];
6417 enum pipe_shader_type p_stage = stage_to_pipe(s);
6418
6419 if (!(res->bind_stages & (1 << s)))
6420 continue;
6421
6422 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6423 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6424 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6425 while (bound_cbufs) {
6426 const int i = u_bit_scan(&bound_cbufs);
6427 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6428 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6429
6430 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6431 pipe_resource_reference(&surf_state->res, NULL);
6432 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
6433 }
6434 }
6435 }
6436
6437 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6438 uint32_t bound_ssbos = shs->bound_ssbos;
6439 while (bound_ssbos) {
6440 const int i = u_bit_scan(&bound_ssbos);
6441 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6442
6443 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6444 struct pipe_shader_buffer buf = {
6445 .buffer = &res->base,
6446 .buffer_offset = ssbo->buffer_offset,
6447 .buffer_size = ssbo->buffer_size,
6448 };
6449 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6450 (shs->writable_ssbos >> i) & 1);
6451 }
6452 }
6453 }
6454
6455 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6456 uint32_t bound_sampler_views = shs->bound_sampler_views;
6457 while (bound_sampler_views) {
6458 const int i = u_bit_scan(&bound_sampler_views);
6459 struct iris_sampler_view *isv = shs->textures[i];
6460
6461 if (res->bo == iris_resource_bo(isv->base.texture)) {
6462 void *map = alloc_surface_states(ice->state.surface_uploader,
6463 &isv->surface_state,
6464 isv->res->aux.sampler_usages);
6465 assert(map);
6466 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
6467 isv->view.format, isv->view.swizzle,
6468 isv->base.u.buf.offset,
6469 isv->base.u.buf.size);
6470 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6471 }
6472 }
6473 }
6474
6475 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
6476 uint32_t bound_image_views = shs->bound_image_views;
6477 while (bound_image_views) {
6478 const int i = u_bit_scan(&bound_image_views);
6479 struct iris_image_view *iv = &shs->image[i];
6480
6481 if (res->bo == iris_resource_bo(iv->base.resource)) {
6482 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
6483 }
6484 }
6485 }
6486 }
6487 }
6488
6489 /* ------------------------------------------------------------------- */
6490
6491 static unsigned
6492 flags_to_post_sync_op(uint32_t flags)
6493 {
6494 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
6495 return WriteImmediateData;
6496
6497 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
6498 return WritePSDepthCount;
6499
6500 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
6501 return WriteTimestamp;
6502
6503 return 0;
6504 }
6505
6506 /**
6507 * Do the given flags have a Post Sync or LRI Post Sync operation?
6508 */
6509 static enum pipe_control_flags
6510 get_post_sync_flags(enum pipe_control_flags flags)
6511 {
6512 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6513 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6514 PIPE_CONTROL_WRITE_TIMESTAMP |
6515 PIPE_CONTROL_LRI_POST_SYNC_OP;
6516
6517 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6518 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6519 */
6520 assert(util_bitcount(flags) <= 1);
6521
6522 return flags;
6523 }
6524
6525 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6526
6527 /**
6528 * Emit a series of PIPE_CONTROL commands, taking into account any
6529 * workarounds necessary to actually accomplish the caller's request.
6530 *
6531 * Unless otherwise noted, spec quotations in this function come from:
6532 *
6533 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6534 * Restrictions for PIPE_CONTROL.
6535 *
6536 * You should not use this function directly. Use the helpers in
6537 * iris_pipe_control.c instead, which may split the pipe control further.
6538 */
6539 static void
6540 iris_emit_raw_pipe_control(struct iris_batch *batch,
6541 const char *reason,
6542 uint32_t flags,
6543 struct iris_bo *bo,
6544 uint32_t offset,
6545 uint64_t imm)
6546 {
6547 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6548 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6549 enum pipe_control_flags non_lri_post_sync_flags =
6550 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6551
6552 /* Recursive PIPE_CONTROL workarounds --------------------------------
6553 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6554 *
6555 * We do these first because we want to look at the original operation,
6556 * rather than any workarounds we set.
6557 */
6558 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6559 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6560 * lists several workarounds:
6561 *
6562 * "Project: SKL, KBL, BXT
6563 *
6564 * If the VF Cache Invalidation Enable is set to a 1 in a
6565 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6566 * sets to 0, with the VF Cache Invalidation Enable set to 0
6567 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6568 * Invalidation Enable set to a 1."
6569 */
6570 iris_emit_raw_pipe_control(batch,
6571 "workaround: recursive VF cache invalidate",
6572 0, NULL, 0, 0);
6573 }
6574
6575 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6576 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6577 *
6578 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6579 * programmed prior to programming a PIPECONTROL command with "LRI
6580 * Post Sync Operation" in GPGPU mode of operation (i.e when
6581 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6582 *
6583 * The same text exists a few rows below for Post Sync Op.
6584 */
6585 iris_emit_raw_pipe_control(batch,
6586 "workaround: CS stall before gpgpu post-sync",
6587 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6588 }
6589
6590 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6591 /* Cannonlake:
6592 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6593 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6594 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6595 */
6596 iris_emit_raw_pipe_control(batch,
6597 "workaround: PC flush before RT flush",
6598 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6599 }
6600
6601 /* "Flush Types" workarounds ---------------------------------------------
6602 * We do these now because they may add post-sync operations or CS stalls.
6603 */
6604
6605 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6606 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6607 *
6608 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6609 * 'Write PS Depth Count' or 'Write Timestamp'."
6610 */
6611 if (!bo) {
6612 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6613 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6614 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6615 bo = batch->screen->workaround_bo;
6616 }
6617 }
6618
6619 /* #1130 from Gen10 workarounds page:
6620 *
6621 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6622 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6623 * board stall if Render target cache flush is enabled."
6624 *
6625 * Applicable to CNL B0 and C0 steppings only.
6626 *
6627 * The wording here is unclear, and this workaround doesn't look anything
6628 * like the internal bug report recommendations, but leave it be for now...
6629 */
6630 if (GEN_GEN == 10) {
6631 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6632 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6633 } else if (flags & non_lri_post_sync_flags) {
6634 flags |= PIPE_CONTROL_DEPTH_STALL;
6635 }
6636 }
6637
6638 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6639 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6640 *
6641 * "This bit must be DISABLED for operations other than writing
6642 * PS_DEPTH_COUNT."
6643 *
6644 * This seems like nonsense. An Ivybridge workaround requires us to
6645 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6646 * operation. Gen8+ requires us to emit depth stalls and depth cache
6647 * flushes together. So, it's hard to imagine this means anything other
6648 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6649 *
6650 * We ignore the supposed restriction and do nothing.
6651 */
6652 }
6653
6654 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6655 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6656 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6657 *
6658 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6659 * PS_DEPTH_COUNT or TIMESTAMP queries."
6660 *
6661 * TODO: Implement end-of-pipe checking.
6662 */
6663 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6664 PIPE_CONTROL_WRITE_TIMESTAMP)));
6665 }
6666
6667 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6668 /* From the PIPE_CONTROL instruction table, bit 1:
6669 *
6670 * "This bit is ignored if Depth Stall Enable is set.
6671 * Further, the render cache is not flushed even if Write Cache
6672 * Flush Enable bit is set."
6673 *
6674 * We assert that the caller doesn't do this combination, to try and
6675 * prevent mistakes. It shouldn't hurt the GPU, though.
6676 *
6677 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6678 * and "Render Target Flush" combo is explicitly required for BTI
6679 * update workarounds.
6680 */
6681 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6682 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6683 }
6684
6685 /* PIPE_CONTROL page workarounds ------------------------------------- */
6686
6687 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6688 /* From the PIPE_CONTROL page itself:
6689 *
6690 * "IVB, HSW, BDW
6691 * Restriction: Pipe_control with CS-stall bit set must be issued
6692 * before a pipe-control command that has the State Cache
6693 * Invalidate bit set."
6694 */
6695 flags |= PIPE_CONTROL_CS_STALL;
6696 }
6697
6698 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6699 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6700 *
6701 * "Project: ALL
6702 * SW must always program Post-Sync Operation to "Write Immediate
6703 * Data" when Flush LLC is set."
6704 *
6705 * For now, we just require the caller to do it.
6706 */
6707 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6708 }
6709
6710 /* "Post-Sync Operation" workarounds -------------------------------- */
6711
6712 /* Project: All / Argument: Global Snapshot Count Reset [19]
6713 *
6714 * "This bit must not be exercised on any product.
6715 * Requires stall bit ([20] of DW1) set."
6716 *
6717 * We don't use this, so we just assert that it isn't used. The
6718 * PIPE_CONTROL instruction page indicates that they intended this
6719 * as a debug feature and don't think it is useful in production,
6720 * but it may actually be usable, should we ever want to.
6721 */
6722 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6723
6724 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6725 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6726 /* Project: All / Arguments:
6727 *
6728 * - Generic Media State Clear [16]
6729 * - Indirect State Pointers Disable [16]
6730 *
6731 * "Requires stall bit ([20] of DW1) set."
6732 *
6733 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6734 * State Clear) says:
6735 *
6736 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6737 * programmed prior to programming a PIPECONTROL command with "Media
6738 * State Clear" set in GPGPU mode of operation"
6739 *
6740 * This is a subset of the earlier rule, so there's nothing to do.
6741 */
6742 flags |= PIPE_CONTROL_CS_STALL;
6743 }
6744
6745 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6746 /* Project: All / Argument: Store Data Index
6747 *
6748 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6749 * than '0'."
6750 *
6751 * For now, we just assert that the caller does this. We might want to
6752 * automatically add a write to the workaround BO...
6753 */
6754 assert(non_lri_post_sync_flags != 0);
6755 }
6756
6757 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6758 /* Project: All / Argument: Sync GFDT
6759 *
6760 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6761 * than '0' or 0x2520[13] must be set."
6762 *
6763 * For now, we just assert that the caller does this.
6764 */
6765 assert(non_lri_post_sync_flags != 0);
6766 }
6767
6768 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6769 /* Project: IVB+ / Argument: TLB inv
6770 *
6771 * "Requires stall bit ([20] of DW1) set."
6772 *
6773 * Also, from the PIPE_CONTROL instruction table:
6774 *
6775 * "Project: SKL+
6776 * Post Sync Operation or CS stall must be set to ensure a TLB
6777 * invalidation occurs. Otherwise no cycle will occur to the TLB
6778 * cache to invalidate."
6779 *
6780 * This is not a subset of the earlier rule, so there's nothing to do.
6781 */
6782 flags |= PIPE_CONTROL_CS_STALL;
6783 }
6784
6785 if (GEN_GEN >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
6786 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
6787 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
6788 * Enable):
6789 *
6790 * Unified Cache (Tile Cache Disabled):
6791 *
6792 * When the Color and Depth (Z) streams are enabled to be cached in
6793 * the DC space of L2, Software must use "Render Target Cache Flush
6794 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
6795 * Flush" for getting the color and depth (Z) write data to be
6796 * globally observable. In this mode of operation it is not required
6797 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
6798 */
6799 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
6800 }
6801
6802 if (GEN_GEN == 9 && devinfo->gt == 4) {
6803 /* TODO: The big Skylake GT4 post sync op workaround */
6804 }
6805
6806 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6807
6808 if (IS_COMPUTE_PIPELINE(batch)) {
6809 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6810 /* Project: SKL+ / Argument: Tex Invalidate
6811 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6812 */
6813 flags |= PIPE_CONTROL_CS_STALL;
6814 }
6815
6816 if (GEN_GEN == 8 && (post_sync_flags ||
6817 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6818 PIPE_CONTROL_DEPTH_STALL |
6819 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6820 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6821 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6822 /* Project: BDW / Arguments:
6823 *
6824 * - LRI Post Sync Operation [23]
6825 * - Post Sync Op [15:14]
6826 * - Notify En [8]
6827 * - Depth Stall [13]
6828 * - Render Target Cache Flush [12]
6829 * - Depth Cache Flush [0]
6830 * - DC Flush Enable [5]
6831 *
6832 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6833 * Workloads."
6834 */
6835 flags |= PIPE_CONTROL_CS_STALL;
6836
6837 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6838 *
6839 * "Project: BDW
6840 * This bit must be always set when PIPE_CONTROL command is
6841 * programmed by GPGPU and MEDIA workloads, except for the cases
6842 * when only Read Only Cache Invalidation bits are set (State
6843 * Cache Invalidation Enable, Instruction cache Invalidation
6844 * Enable, Texture Cache Invalidation Enable, Constant Cache
6845 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6846 * need not implemented when FF_DOP_CG is disable via "Fixed
6847 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6848 *
6849 * It sounds like we could avoid CS stalls in some cases, but we
6850 * don't currently bother. This list isn't exactly the list above,
6851 * either...
6852 */
6853 }
6854 }
6855
6856 /* "Stall" workarounds ----------------------------------------------
6857 * These have to come after the earlier ones because we may have added
6858 * some additional CS stalls above.
6859 */
6860
6861 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6862 /* Project: PRE-SKL, VLV, CHV
6863 *
6864 * "[All Stepping][All SKUs]:
6865 *
6866 * One of the following must also be set:
6867 *
6868 * - Render Target Cache Flush Enable ([12] of DW1)
6869 * - Depth Cache Flush Enable ([0] of DW1)
6870 * - Stall at Pixel Scoreboard ([1] of DW1)
6871 * - Depth Stall ([13] of DW1)
6872 * - Post-Sync Operation ([13] of DW1)
6873 * - DC Flush Enable ([5] of DW1)"
6874 *
6875 * If we don't already have one of those bits set, we choose to add
6876 * "Stall at Pixel Scoreboard". Some of the other bits require a
6877 * CS stall as a workaround (see above), which would send us into
6878 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6879 * appears to be safe, so we choose that.
6880 */
6881 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6882 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6883 PIPE_CONTROL_WRITE_IMMEDIATE |
6884 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6885 PIPE_CONTROL_WRITE_TIMESTAMP |
6886 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6887 PIPE_CONTROL_DEPTH_STALL |
6888 PIPE_CONTROL_DATA_CACHE_FLUSH;
6889 if (!(flags & wa_bits))
6890 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6891 }
6892
6893 /* Emit --------------------------------------------------------------- */
6894
6895 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6896 fprintf(stderr,
6897 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6898 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6899 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6900 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6901 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6902 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6903 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6904 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6905 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6906 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6907 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6908 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6909 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6910 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6911 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6912 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6913 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6914 "SnapRes" : "",
6915 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6916 "ISPDis" : "",
6917 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6918 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6919 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6920 imm, reason);
6921 }
6922
6923 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6924 #if GEN_GEN >= 12
6925 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
6926 #endif
6927 pc.LRIPostSyncOperation = NoLRIOperation;
6928 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6929 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6930 pc.StoreDataIndex = 0;
6931 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6932 pc.GlobalSnapshotCountReset =
6933 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6934 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6935 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6936 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6937 pc.RenderTargetCacheFlushEnable =
6938 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6939 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6940 pc.StateCacheInvalidationEnable =
6941 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6942 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6943 pc.ConstantCacheInvalidationEnable =
6944 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6945 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6946 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6947 pc.InstructionCacheInvalidateEnable =
6948 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6949 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6950 pc.IndirectStatePointersDisable =
6951 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6952 pc.TextureCacheInvalidationEnable =
6953 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6954 pc.Address = rw_bo(bo, offset);
6955 pc.ImmediateData = imm;
6956 }
6957 }
6958
6959 void
6960 genX(emit_urb_setup)(struct iris_context *ice,
6961 struct iris_batch *batch,
6962 const unsigned size[4],
6963 bool tess_present, bool gs_present)
6964 {
6965 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6966 const unsigned push_size_kB = 32;
6967 unsigned entries[4];
6968 unsigned start[4];
6969
6970 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6971
6972 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6973 1024 * ice->shaders.urb_size,
6974 tess_present, gs_present,
6975 size, entries, start);
6976
6977 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6978 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6979 urb._3DCommandSubOpcode += i;
6980 urb.VSURBStartingAddress = start[i];
6981 urb.VSURBEntryAllocationSize = size[i] - 1;
6982 urb.VSNumberofURBEntries = entries[i];
6983 }
6984 }
6985 }
6986
6987 #if GEN_GEN == 9
6988 /**
6989 * Preemption on Gen9 has to be enabled or disabled in various cases.
6990 *
6991 * See these workarounds for preemption:
6992 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6993 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6994 * - WaDisableMidObjectPreemptionForLineLoop
6995 * - WA#0798
6996 *
6997 * We don't put this in the vtable because it's only used on Gen9.
6998 */
6999 void
7000 gen9_toggle_preemption(struct iris_context *ice,
7001 struct iris_batch *batch,
7002 const struct pipe_draw_info *draw)
7003 {
7004 struct iris_genx_state *genx = ice->state.genx;
7005 bool object_preemption = true;
7006
7007 /* WaDisableMidObjectPreemptionForGSLineStripAdj
7008 *
7009 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
7010 * and GS is enabled."
7011 */
7012 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
7013 ice->shaders.prog[MESA_SHADER_GEOMETRY])
7014 object_preemption = false;
7015
7016 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
7017 *
7018 * "TriFan miscompare in Execlist Preemption test. Cut index that is
7019 * on a previous context. End the previous, the resume another context
7020 * with a tri-fan or polygon, and the vertex count is corrupted. If we
7021 * prempt again we will cause corruption.
7022 *
7023 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
7024 */
7025 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
7026 object_preemption = false;
7027
7028 /* WaDisableMidObjectPreemptionForLineLoop
7029 *
7030 * "VF Stats Counters Missing a vertex when preemption enabled.
7031 *
7032 * WA: Disable mid-draw preemption when the draw uses a lineloop
7033 * topology."
7034 */
7035 if (draw->mode == PIPE_PRIM_LINE_LOOP)
7036 object_preemption = false;
7037
7038 /* WA#0798
7039 *
7040 * "VF is corrupting GAFS data when preempted on an instance boundary
7041 * and replayed with instancing enabled.
7042 *
7043 * WA: Disable preemption when using instanceing."
7044 */
7045 if (draw->instance_count > 1)
7046 object_preemption = false;
7047
7048 if (genx->object_preemption != object_preemption) {
7049 iris_enable_obj_preemption(batch, object_preemption);
7050 genx->object_preemption = object_preemption;
7051 }
7052 }
7053 #endif
7054
7055 static void
7056 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
7057 {
7058 struct iris_genx_state *genx = ice->state.genx;
7059
7060 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
7061 }
7062
7063 static void
7064 iris_emit_mi_report_perf_count(struct iris_batch *batch,
7065 struct iris_bo *bo,
7066 uint32_t offset_in_bytes,
7067 uint32_t report_id)
7068 {
7069 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
7070 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
7071 mi_rpc.ReportID = report_id;
7072 }
7073 }
7074
7075 /**
7076 * Update the pixel hashing modes that determine the balancing of PS threads
7077 * across subslices and slices.
7078 *
7079 * \param width Width bound of the rendering area (already scaled down if \p
7080 * scale is greater than 1).
7081 * \param height Height bound of the rendering area (already scaled down if \p
7082 * scale is greater than 1).
7083 * \param scale The number of framebuffer samples that could potentially be
7084 * affected by an individual channel of the PS thread. This is
7085 * typically one for single-sampled rendering, but for operations
7086 * like CCS resolves and fast clears a single PS invocation may
7087 * update a huge number of pixels, in which case a finer
7088 * balancing is desirable in order to maximally utilize the
7089 * bandwidth available. UINT_MAX can be used as shorthand for
7090 * "finest hashing mode available".
7091 */
7092 void
7093 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
7094 unsigned width, unsigned height, unsigned scale)
7095 {
7096 #if GEN_GEN == 9
7097 const struct gen_device_info *devinfo = &batch->screen->devinfo;
7098 const unsigned slice_hashing[] = {
7099 /* Because all Gen9 platforms with more than one slice require
7100 * three-way subslice hashing, a single "normal" 16x16 slice hashing
7101 * block is guaranteed to suffer from substantial imbalance, with one
7102 * subslice receiving twice as much work as the other two in the
7103 * slice.
7104 *
7105 * The performance impact of that would be particularly severe when
7106 * three-way hashing is also in use for slice balancing (which is the
7107 * case for all Gen9 GT4 platforms), because one of the slices
7108 * receives one every three 16x16 blocks in either direction, which
7109 * is roughly the periodicity of the underlying subslice imbalance
7110 * pattern ("roughly" because in reality the hardware's
7111 * implementation of three-way hashing doesn't do exact modulo 3
7112 * arithmetic, which somewhat decreases the magnitude of this effect
7113 * in practice). This leads to a systematic subslice imbalance
7114 * within that slice regardless of the size of the primitive. The
7115 * 32x32 hashing mode guarantees that the subslice imbalance within a
7116 * single slice hashing block is minimal, largely eliminating this
7117 * effect.
7118 */
7119 _32x32,
7120 /* Finest slice hashing mode available. */
7121 NORMAL
7122 };
7123 const unsigned subslice_hashing[] = {
7124 /* 16x16 would provide a slight cache locality benefit especially
7125 * visible in the sampler L1 cache efficiency of low-bandwidth
7126 * non-LLC platforms, but it comes at the cost of greater subslice
7127 * imbalance for primitives of dimensions approximately intermediate
7128 * between 16x4 and 16x16.
7129 */
7130 _16x4,
7131 /* Finest subslice hashing mode available. */
7132 _8x4
7133 };
7134 /* Dimensions of the smallest hashing block of a given hashing mode. If
7135 * the rendering area is smaller than this there can't possibly be any
7136 * benefit from switching to this mode, so we optimize out the
7137 * transition.
7138 */
7139 const unsigned min_size[][2] = {
7140 { 16, 4 },
7141 { 8, 4 }
7142 };
7143 const unsigned idx = scale > 1;
7144
7145 if (width > min_size[idx][0] || height > min_size[idx][1]) {
7146 uint32_t gt_mode;
7147
7148 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
7149 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
7150 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
7151 reg.SubsliceHashing = subslice_hashing[idx];
7152 reg.SubsliceHashingMask = -1;
7153 };
7154
7155 iris_emit_raw_pipe_control(batch,
7156 "workaround: CS stall before GT_MODE LRI",
7157 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7158 PIPE_CONTROL_CS_STALL,
7159 NULL, 0, 0);
7160
7161 iris_emit_lri(batch, GT_MODE, gt_mode);
7162
7163 ice->state.current_hash_scale = scale;
7164 }
7165 #endif
7166 }
7167
7168 void
7169 genX(init_state)(struct iris_context *ice)
7170 {
7171 struct pipe_context *ctx = &ice->ctx;
7172 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
7173
7174 ctx->create_blend_state = iris_create_blend_state;
7175 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
7176 ctx->create_rasterizer_state = iris_create_rasterizer_state;
7177 ctx->create_sampler_state = iris_create_sampler_state;
7178 ctx->create_sampler_view = iris_create_sampler_view;
7179 ctx->create_surface = iris_create_surface;
7180 ctx->create_vertex_elements_state = iris_create_vertex_elements;
7181 ctx->bind_blend_state = iris_bind_blend_state;
7182 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
7183 ctx->bind_sampler_states = iris_bind_sampler_states;
7184 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
7185 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
7186 ctx->delete_blend_state = iris_delete_state;
7187 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
7188 ctx->delete_rasterizer_state = iris_delete_state;
7189 ctx->delete_sampler_state = iris_delete_state;
7190 ctx->delete_vertex_elements_state = iris_delete_state;
7191 ctx->set_blend_color = iris_set_blend_color;
7192 ctx->set_clip_state = iris_set_clip_state;
7193 ctx->set_constant_buffer = iris_set_constant_buffer;
7194 ctx->set_shader_buffers = iris_set_shader_buffers;
7195 ctx->set_shader_images = iris_set_shader_images;
7196 ctx->set_sampler_views = iris_set_sampler_views;
7197 ctx->set_tess_state = iris_set_tess_state;
7198 ctx->set_framebuffer_state = iris_set_framebuffer_state;
7199 ctx->set_polygon_stipple = iris_set_polygon_stipple;
7200 ctx->set_sample_mask = iris_set_sample_mask;
7201 ctx->set_scissor_states = iris_set_scissor_states;
7202 ctx->set_stencil_ref = iris_set_stencil_ref;
7203 ctx->set_vertex_buffers = iris_set_vertex_buffers;
7204 ctx->set_viewport_states = iris_set_viewport_states;
7205 ctx->sampler_view_destroy = iris_sampler_view_destroy;
7206 ctx->surface_destroy = iris_surface_destroy;
7207 ctx->draw_vbo = iris_draw_vbo;
7208 ctx->launch_grid = iris_launch_grid;
7209 ctx->create_stream_output_target = iris_create_stream_output_target;
7210 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
7211 ctx->set_stream_output_targets = iris_set_stream_output_targets;
7212
7213 ice->vtbl.destroy_state = iris_destroy_state;
7214 ice->vtbl.init_render_context = iris_init_render_context;
7215 ice->vtbl.init_compute_context = iris_init_compute_context;
7216 ice->vtbl.upload_render_state = iris_upload_render_state;
7217 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
7218 ice->vtbl.upload_compute_state = iris_upload_compute_state;
7219 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
7220 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
7221 ice->vtbl.rebind_buffer = iris_rebind_buffer;
7222 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
7223 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
7224 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
7225 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
7226 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
7227 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
7228 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
7229 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
7230 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
7231 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
7232 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
7233 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
7234 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
7235 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
7236 ice->vtbl.populate_vs_key = iris_populate_vs_key;
7237 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
7238 ice->vtbl.populate_tes_key = iris_populate_tes_key;
7239 ice->vtbl.populate_gs_key = iris_populate_gs_key;
7240 ice->vtbl.populate_fs_key = iris_populate_fs_key;
7241 ice->vtbl.populate_cs_key = iris_populate_cs_key;
7242 ice->vtbl.mocs = mocs;
7243 ice->vtbl.lost_genx_state = iris_lost_genx_state;
7244
7245 ice->state.dirty = ~0ull;
7246
7247 ice->state.statistics_counters_enabled = true;
7248
7249 ice->state.sample_mask = 0xffff;
7250 ice->state.num_viewports = 1;
7251 ice->state.prim_mode = PIPE_PRIM_MAX;
7252 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
7253 ice->draw.derived_params.drawid = -1;
7254
7255 /* Make a 1x1x1 null surface for unbound textures */
7256 void *null_surf_map =
7257 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
7258 4 * GENX(RENDER_SURFACE_STATE_length), 64);
7259 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
7260 ice->state.unbound_tex.offset +=
7261 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
7262
7263 /* Default all scissor rectangles to be empty regions. */
7264 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
7265 ice->state.scissors[i] = (struct pipe_scissor_state) {
7266 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
7267 };
7268 }
7269 }