Merge branch 'lp-offset-twoside'
[mesa.git] / src / gallium / drivers / llvmpipe / lp_rast.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <limits.h>
29 #include "util/u_memory.h"
30 #include "util/u_math.h"
31 #include "util/u_rect.h"
32 #include "util/u_surface.h"
33 #include "util/u_pack_color.h"
34
35 #include "lp_scene_queue.h"
36 #include "lp_debug.h"
37 #include "lp_fence.h"
38 #include "lp_perf.h"
39 #include "lp_query.h"
40 #include "lp_rast.h"
41 #include "lp_rast_priv.h"
42 #include "lp_tile_soa.h"
43 #include "gallivm/lp_bld_debug.h"
44 #include "lp_scene.h"
45
46
47 #ifdef DEBUG
48 int jit_line = 0;
49 const struct lp_rast_state *jit_state = NULL;
50 #endif
51
52
53 /**
54 * Begin rasterizing a scene.
55 * Called once per scene by one thread.
56 */
57 static void
58 lp_rast_begin( struct lp_rasterizer *rast,
59 struct lp_scene *scene )
60 {
61
62 rast->curr_scene = scene;
63
64 LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__);
65
66 lp_scene_begin_rasterization( scene );
67 lp_scene_bin_iter_begin( scene );
68 }
69
70
71 static void
72 lp_rast_end( struct lp_rasterizer *rast )
73 {
74 lp_scene_end_rasterization( rast->curr_scene );
75
76 rast->curr_scene = NULL;
77
78 #ifdef DEBUG
79 if (0)
80 debug_printf("Post render scene: tile unswizzle: %u tile swizzle: %u\n",
81 lp_tile_unswizzle_count, lp_tile_swizzle_count);
82 #endif
83 }
84
85
86 /**
87 * Begining rasterization of a tile.
88 * \param x window X position of the tile, in pixels
89 * \param y window Y position of the tile, in pixels
90 */
91 static void
92 lp_rast_tile_begin(struct lp_rasterizer_task *task,
93 const struct cmd_bin *bin)
94 {
95 const struct lp_scene *scene = task->scene;
96 enum lp_texture_usage usage;
97
98 LP_DBG(DEBUG_RAST, "%s %d,%d\n", __FUNCTION__, bin->x, bin->y);
99
100 task->bin = bin;
101 task->x = bin->x * TILE_SIZE;
102 task->y = bin->y * TILE_SIZE;
103
104 /* reset pointers to color tile(s) */
105 memset(task->color_tiles, 0, sizeof(task->color_tiles));
106
107 /* get pointer to depth/stencil tile */
108 {
109 struct pipe_surface *zsbuf = task->scene->fb.zsbuf;
110 if (zsbuf) {
111 struct llvmpipe_resource *lpt = llvmpipe_resource(zsbuf->texture);
112
113 if (scene->has_depthstencil_clear)
114 usage = LP_TEX_USAGE_WRITE_ALL;
115 else
116 usage = LP_TEX_USAGE_READ_WRITE;
117
118 /* "prime" the tile: convert data from linear to tiled if necessary
119 * and update the tile's layout info.
120 */
121 (void) llvmpipe_get_texture_tile(lpt,
122 zsbuf->face + zsbuf->zslice,
123 zsbuf->level,
124 usage,
125 task->x,
126 task->y);
127 /* Get actual pointer to the tile data. Note that depth/stencil
128 * data is tiled differently than color data.
129 */
130 task->depth_tile = lp_rast_get_depth_block_pointer(task,
131 task->x,
132 task->y);
133
134 assert(task->depth_tile);
135 }
136 else {
137 task->depth_tile = NULL;
138 }
139 }
140 }
141
142
143 /**
144 * Clear the rasterizer's current color tile.
145 * This is a bin command called during bin processing.
146 */
147 static void
148 lp_rast_clear_color(struct lp_rasterizer_task *task,
149 const union lp_rast_cmd_arg arg)
150 {
151 const struct lp_scene *scene = task->scene;
152 const uint8_t *clear_color = arg.clear_color;
153
154 unsigned i;
155
156 LP_DBG(DEBUG_RAST, "%s 0x%x,0x%x,0x%x,0x%x\n", __FUNCTION__,
157 clear_color[0],
158 clear_color[1],
159 clear_color[2],
160 clear_color[3]);
161
162 if (clear_color[0] == clear_color[1] &&
163 clear_color[1] == clear_color[2] &&
164 clear_color[2] == clear_color[3]) {
165 /* clear to grayscale value {x, x, x, x} */
166 for (i = 0; i < scene->fb.nr_cbufs; i++) {
167 uint8_t *ptr =
168 lp_rast_get_color_tile_pointer(task, i, LP_TEX_USAGE_WRITE_ALL);
169 memset(ptr, clear_color[0], TILE_SIZE * TILE_SIZE * 4);
170 }
171 }
172 else {
173 /* Non-gray color.
174 * Note: if the swizzled tile layout changes (see TILE_PIXEL) this code
175 * will need to change. It'll be pretty obvious when clearing no longer
176 * works.
177 */
178 const unsigned chunk = TILE_SIZE / 4;
179 for (i = 0; i < scene->fb.nr_cbufs; i++) {
180 uint8_t *c =
181 lp_rast_get_color_tile_pointer(task, i, LP_TEX_USAGE_WRITE_ALL);
182 unsigned j;
183
184 for (j = 0; j < 4 * TILE_SIZE; j++) {
185 memset(c, clear_color[0], chunk);
186 c += chunk;
187 memset(c, clear_color[1], chunk);
188 c += chunk;
189 memset(c, clear_color[2], chunk);
190 c += chunk;
191 memset(c, clear_color[3], chunk);
192 c += chunk;
193 }
194 }
195 }
196
197 LP_COUNT(nr_color_tile_clear);
198 }
199
200
201
202
203
204
205 /**
206 * Clear the rasterizer's current z/stencil tile.
207 * This is a bin command called during bin processing.
208 */
209 static void
210 lp_rast_clear_zstencil(struct lp_rasterizer_task *task,
211 const union lp_rast_cmd_arg arg)
212 {
213 const struct lp_scene *scene = task->scene;
214 uint32_t clear_value = arg.clear_zstencil.value;
215 uint32_t clear_mask = arg.clear_zstencil.mask;
216 const unsigned height = TILE_SIZE / TILE_VECTOR_HEIGHT;
217 const unsigned width = TILE_SIZE * TILE_VECTOR_HEIGHT;
218 const unsigned block_size = scene->zsbuf.blocksize;
219 const unsigned dst_stride = scene->zsbuf.stride * TILE_VECTOR_HEIGHT;
220 uint8_t *dst;
221 unsigned i, j;
222
223 LP_DBG(DEBUG_RAST, "%s: value=0x%08x, mask=0x%08x\n",
224 __FUNCTION__, clear_value, clear_mask);
225
226 /*
227 * Clear the aera of the swizzled depth/depth buffer matching this tile, in
228 * stripes of TILE_VECTOR_HEIGHT x TILE_SIZE at a time.
229 *
230 * The swizzled depth format is such that the depths for
231 * TILE_VECTOR_HEIGHT x TILE_VECTOR_WIDTH pixels have consecutive offsets.
232 */
233
234 dst = task->depth_tile;
235
236 clear_value &= clear_mask;
237
238 switch (block_size) {
239 case 1:
240 assert(clear_mask == 0xff);
241 memset(dst, (uint8_t) clear_value, height * width);
242 break;
243 case 2:
244 if (clear_mask == 0xffff) {
245 for (i = 0; i < height; i++) {
246 uint16_t *row = (uint16_t *)dst;
247 for (j = 0; j < width; j++)
248 *row++ = (uint16_t) clear_value;
249 dst += dst_stride;
250 }
251 }
252 else {
253 for (i = 0; i < height; i++) {
254 uint16_t *row = (uint16_t *)dst;
255 for (j = 0; j < width; j++) {
256 uint16_t tmp = ~clear_mask & *row;
257 *row++ = clear_value | tmp;
258 }
259 dst += dst_stride;
260 }
261 }
262 break;
263 case 4:
264 if (clear_mask == 0xffffffff) {
265 for (i = 0; i < height; i++) {
266 uint32_t *row = (uint32_t *)dst;
267 for (j = 0; j < width; j++)
268 *row++ = clear_value;
269 dst += dst_stride;
270 }
271 }
272 else {
273 for (i = 0; i < height; i++) {
274 uint32_t *row = (uint32_t *)dst;
275 for (j = 0; j < width; j++) {
276 uint32_t tmp = ~clear_mask & *row;
277 *row++ = clear_value | tmp;
278 }
279 dst += dst_stride;
280 }
281 }
282 break;
283 default:
284 assert(0);
285 break;
286 }
287 }
288
289
290
291
292 /**
293 * Convert the color tile from tiled to linear layout.
294 * This is generally only done when we're flushing the scene just prior to
295 * SwapBuffers. If we didn't do this here, we'd have to convert the entire
296 * tiled color buffer to linear layout in the llvmpipe_texture_unmap()
297 * function. It's better to do it here to take advantage of
298 * threading/parallelism.
299 * This is a bin command which is stored in all bins.
300 */
301 static void
302 lp_rast_store_linear_color( struct lp_rasterizer_task *task )
303 {
304 const struct lp_scene *scene = task->scene;
305 unsigned buf;
306
307 for (buf = 0; buf < scene->fb.nr_cbufs; buf++) {
308 struct pipe_surface *cbuf = scene->fb.cbufs[buf];
309 const unsigned face_slice = cbuf->face + cbuf->zslice;
310 const unsigned level = cbuf->level;
311 struct llvmpipe_resource *lpt = llvmpipe_resource(cbuf->texture);
312
313 if (!task->color_tiles[buf])
314 continue;
315
316 llvmpipe_unswizzle_cbuf_tile(lpt,
317 face_slice,
318 level,
319 task->x, task->y,
320 task->color_tiles[buf]);
321 }
322 }
323
324
325
326 /**
327 * Run the shader on all blocks in a tile. This is used when a tile is
328 * completely contained inside a triangle.
329 * This is a bin command called during bin processing.
330 */
331 static void
332 lp_rast_shade_tile(struct lp_rasterizer_task *task,
333 const union lp_rast_cmd_arg arg)
334 {
335 const struct lp_scene *scene = task->scene;
336 const struct lp_rast_shader_inputs *inputs = arg.shade_tile;
337 const struct lp_rast_state *state = task->state;
338 struct lp_fragment_shader_variant *variant = state->variant;
339 const unsigned tile_x = task->x, tile_y = task->y;
340 unsigned x, y;
341
342 if (inputs->disable) {
343 /* This command was partially binned and has been disabled */
344 return;
345 }
346
347 LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__);
348
349 /* render the whole 64x64 tile in 4x4 chunks */
350 for (y = 0; y < TILE_SIZE; y += 4){
351 for (x = 0; x < TILE_SIZE; x += 4) {
352 uint8_t *color[PIPE_MAX_COLOR_BUFS];
353 uint32_t *depth;
354 unsigned i;
355
356 /* color buffer */
357 for (i = 0; i < scene->fb.nr_cbufs; i++)
358 color[i] = lp_rast_get_color_block_pointer(task, i,
359 tile_x + x, tile_y + y);
360
361 /* depth buffer */
362 depth = lp_rast_get_depth_block_pointer(task, tile_x + x, tile_y + y);
363
364 /* run shader on 4x4 block */
365 BEGIN_JIT_CALL(state);
366 variant->jit_function[RAST_WHOLE]( &state->jit_context,
367 tile_x + x, tile_y + y,
368 inputs->frontfacing,
369 GET_A0(inputs),
370 GET_DADX(inputs),
371 GET_DADY(inputs),
372 color,
373 depth,
374 0xffff,
375 &task->vis_counter);
376 END_JIT_CALL();
377 }
378 }
379 }
380
381
382 /**
383 * Run the shader on all blocks in a tile. This is used when a tile is
384 * completely contained inside a triangle, and the shader is opaque.
385 * This is a bin command called during bin processing.
386 */
387 static void
388 lp_rast_shade_tile_opaque(struct lp_rasterizer_task *task,
389 const union lp_rast_cmd_arg arg)
390 {
391 const struct lp_scene *scene = task->scene;
392 unsigned i;
393
394 LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__);
395
396 /* this will prevent converting the layout from tiled to linear */
397 for (i = 0; i < scene->fb.nr_cbufs; i++) {
398 (void)lp_rast_get_color_tile_pointer(task, i, LP_TEX_USAGE_WRITE_ALL);
399 }
400
401 lp_rast_shade_tile(task, arg);
402 }
403
404
405 /**
406 * Compute shading for a 4x4 block of pixels inside a triangle.
407 * This is a bin command called during bin processing.
408 * \param x X position of quad in window coords
409 * \param y Y position of quad in window coords
410 */
411 void
412 lp_rast_shade_quads_mask(struct lp_rasterizer_task *task,
413 const struct lp_rast_shader_inputs *inputs,
414 unsigned x, unsigned y,
415 unsigned mask)
416 {
417 const struct lp_rast_state *state = task->state;
418 struct lp_fragment_shader_variant *variant = state->variant;
419 const struct lp_scene *scene = task->scene;
420 uint8_t *color[PIPE_MAX_COLOR_BUFS];
421 void *depth;
422 unsigned i;
423
424 assert(state);
425
426 /* Sanity checks */
427 assert(x % TILE_VECTOR_WIDTH == 0);
428 assert(y % TILE_VECTOR_HEIGHT == 0);
429
430 assert((x % 4) == 0);
431 assert((y % 4) == 0);
432
433 /* color buffer */
434 for (i = 0; i < scene->fb.nr_cbufs; i++) {
435 color[i] = lp_rast_get_color_block_pointer(task, i, x, y);
436 assert(lp_check_alignment(color[i], 16));
437 }
438
439 /* depth buffer */
440 depth = lp_rast_get_depth_block_pointer(task, x, y);
441
442
443 assert(lp_check_alignment(state->jit_context.blend_color, 16));
444
445 /* run shader on 4x4 block */
446 BEGIN_JIT_CALL(state);
447 variant->jit_function[RAST_EDGE_TEST](&state->jit_context,
448 x, y,
449 inputs->frontfacing,
450 GET_A0(inputs),
451 GET_DADX(inputs),
452 GET_DADY(inputs),
453 color,
454 depth,
455 mask,
456 &task->vis_counter);
457 END_JIT_CALL();
458 }
459
460
461
462 /**
463 * Begin a new occlusion query.
464 * This is a bin command put in all bins.
465 * Called per thread.
466 */
467 static void
468 lp_rast_begin_query(struct lp_rasterizer_task *task,
469 const union lp_rast_cmd_arg arg)
470 {
471 struct llvmpipe_query *pq = arg.query_obj;
472
473 assert(task->query == NULL);
474 task->vis_counter = 0;
475 task->query = pq;
476 }
477
478
479 /**
480 * End the current occlusion query.
481 * This is a bin command put in all bins.
482 * Called per thread.
483 */
484 static void
485 lp_rast_end_query(struct lp_rasterizer_task *task,
486 const union lp_rast_cmd_arg arg)
487 {
488 assert(task->query);
489 if (task->query) {
490 task->query->count[task->thread_index] += task->vis_counter;
491 task->query = NULL;
492 }
493 }
494
495
496 void
497 lp_rast_set_state(struct lp_rasterizer_task *task,
498 const union lp_rast_cmd_arg arg)
499 {
500 task->state = arg.state;
501 }
502
503
504
505 /**
506 * Set top row and left column of the tile's pixels to white. For debugging.
507 */
508 static void
509 outline_tile(uint8_t *tile)
510 {
511 const uint8_t val = 0xff;
512 unsigned i;
513
514 for (i = 0; i < TILE_SIZE; i++) {
515 TILE_PIXEL(tile, i, 0, 0) = val;
516 TILE_PIXEL(tile, i, 0, 1) = val;
517 TILE_PIXEL(tile, i, 0, 2) = val;
518 TILE_PIXEL(tile, i, 0, 3) = val;
519
520 TILE_PIXEL(tile, 0, i, 0) = val;
521 TILE_PIXEL(tile, 0, i, 1) = val;
522 TILE_PIXEL(tile, 0, i, 2) = val;
523 TILE_PIXEL(tile, 0, i, 3) = val;
524 }
525 }
526
527
528 /**
529 * Draw grid of gray lines at 16-pixel intervals across the tile to
530 * show the sub-tile boundaries. For debugging.
531 */
532 static void
533 outline_subtiles(uint8_t *tile)
534 {
535 const uint8_t val = 0x80;
536 const unsigned step = 16;
537 unsigned i, j;
538
539 for (i = 0; i < TILE_SIZE; i += step) {
540 for (j = 0; j < TILE_SIZE; j++) {
541 TILE_PIXEL(tile, i, j, 0) = val;
542 TILE_PIXEL(tile, i, j, 1) = val;
543 TILE_PIXEL(tile, i, j, 2) = val;
544 TILE_PIXEL(tile, i, j, 3) = val;
545
546 TILE_PIXEL(tile, j, i, 0) = val;
547 TILE_PIXEL(tile, j, i, 1) = val;
548 TILE_PIXEL(tile, j, i, 2) = val;
549 TILE_PIXEL(tile, j, i, 3) = val;
550 }
551 }
552
553 outline_tile(tile);
554 }
555
556
557
558 /**
559 * Called when we're done writing to a color tile.
560 */
561 static void
562 lp_rast_tile_end(struct lp_rasterizer_task *task)
563 {
564 #ifdef DEBUG
565 if (LP_DEBUG & (DEBUG_SHOW_SUBTILES | DEBUG_SHOW_TILES)) {
566 const struct lp_scene *scene = task->scene;
567 unsigned buf;
568
569 for (buf = 0; buf < scene->fb.nr_cbufs; buf++) {
570 uint8_t *color = lp_rast_get_color_block_pointer(task, buf,
571 task->x, task->y);
572
573 if (LP_DEBUG & DEBUG_SHOW_SUBTILES)
574 outline_subtiles(color);
575 else if (LP_DEBUG & DEBUG_SHOW_TILES)
576 outline_tile(color);
577 }
578 }
579 #else
580 (void) outline_subtiles;
581 #endif
582
583 lp_rast_store_linear_color(task);
584
585 if (task->query) {
586 union lp_rast_cmd_arg dummy = {0};
587 lp_rast_end_query(task, dummy);
588 }
589
590 /* debug */
591 memset(task->color_tiles, 0, sizeof(task->color_tiles));
592 task->depth_tile = NULL;
593
594 task->bin = NULL;
595 }
596
597 static lp_rast_cmd_func dispatch[LP_RAST_OP_MAX] =
598 {
599 lp_rast_clear_color,
600 lp_rast_clear_zstencil,
601 lp_rast_triangle_1,
602 lp_rast_triangle_2,
603 lp_rast_triangle_3,
604 lp_rast_triangle_4,
605 lp_rast_triangle_5,
606 lp_rast_triangle_6,
607 lp_rast_triangle_7,
608 lp_rast_triangle_8,
609 lp_rast_triangle_3_4,
610 lp_rast_triangle_3_16,
611 lp_rast_triangle_4_16,
612 lp_rast_shade_tile,
613 lp_rast_shade_tile_opaque,
614 lp_rast_begin_query,
615 lp_rast_end_query,
616 lp_rast_set_state,
617 };
618
619
620 static void
621 do_rasterize_bin(struct lp_rasterizer_task *task,
622 const struct cmd_bin *bin)
623 {
624 const struct cmd_block *block;
625 unsigned k;
626
627 if (0)
628 lp_debug_bin(bin);
629
630 for (block = bin->head; block; block = block->next) {
631 for (k = 0; k < block->count; k++) {
632 dispatch[block->cmd[k]]( task, block->arg[k] );
633 }
634 }
635 }
636
637
638
639 /**
640 * Rasterize commands for a single bin.
641 * \param x, y position of the bin's tile in the framebuffer
642 * Must be called between lp_rast_begin() and lp_rast_end().
643 * Called per thread.
644 */
645 static void
646 rasterize_bin(struct lp_rasterizer_task *task,
647 const struct cmd_bin *bin )
648 {
649 lp_rast_tile_begin( task, bin );
650
651 do_rasterize_bin(task, bin);
652
653 lp_rast_tile_end(task);
654
655
656 /* Debug/Perf flags:
657 */
658 if (bin->head->count == 1) {
659 if (bin->head->cmd[0] == LP_RAST_OP_SHADE_TILE_OPAQUE)
660 LP_COUNT(nr_pure_shade_opaque_64);
661 else if (bin->head->cmd[0] == LP_RAST_OP_SHADE_TILE)
662 LP_COUNT(nr_pure_shade_64);
663 }
664 }
665
666
667 /* An empty bin is one that just loads the contents of the tile and
668 * stores them again unchanged. This typically happens when bins have
669 * been flushed for some reason in the middle of a frame, or when
670 * incremental updates are being made to a render target.
671 *
672 * Try to avoid doing pointless work in this case.
673 */
674 static boolean
675 is_empty_bin( const struct cmd_bin *bin )
676 {
677 return bin->head == NULL;
678 }
679
680
681 /**
682 * Rasterize/execute all bins within a scene.
683 * Called per thread.
684 */
685 static void
686 rasterize_scene(struct lp_rasterizer_task *task,
687 struct lp_scene *scene)
688 {
689 task->scene = scene;
690 /* loop over scene bins, rasterize each */
691 #if 0
692 {
693 unsigned i, j;
694 for (i = 0; i < scene->tiles_x; i++) {
695 for (j = 0; j < scene->tiles_y; j++) {
696 struct cmd_bin *bin = lp_scene_get_bin(scene, i, j);
697 rasterize_bin(task, bin, i, j);
698 }
699 }
700 }
701 #else
702 {
703 struct cmd_bin *bin;
704
705 assert(scene);
706 while ((bin = lp_scene_bin_iter_next(scene))) {
707 if (!is_empty_bin( bin ))
708 rasterize_bin(task, bin);
709 }
710 }
711 #endif
712
713 if (scene->fence) {
714 lp_fence_signal(scene->fence);
715 }
716
717 task->scene = NULL;
718 }
719
720
721 /**
722 * Called by setup module when it has something for us to render.
723 */
724 void
725 lp_rast_queue_scene( struct lp_rasterizer *rast,
726 struct lp_scene *scene)
727 {
728 LP_DBG(DEBUG_SETUP, "%s\n", __FUNCTION__);
729
730 if (rast->num_threads == 0) {
731 /* no threading */
732
733 lp_rast_begin( rast, scene );
734
735 rasterize_scene( &rast->tasks[0], scene );
736
737 lp_rast_end( rast );
738
739 rast->curr_scene = NULL;
740 }
741 else {
742 /* threaded rendering! */
743 unsigned i;
744
745 lp_scene_enqueue( rast->full_scenes, scene );
746
747 /* signal the threads that there's work to do */
748 for (i = 0; i < rast->num_threads; i++) {
749 pipe_semaphore_signal(&rast->tasks[i].work_ready);
750 }
751 }
752
753 LP_DBG(DEBUG_SETUP, "%s done \n", __FUNCTION__);
754 }
755
756
757 void
758 lp_rast_finish( struct lp_rasterizer *rast )
759 {
760 if (rast->num_threads == 0) {
761 /* nothing to do */
762 }
763 else {
764 int i;
765
766 /* wait for work to complete */
767 for (i = 0; i < rast->num_threads; i++) {
768 pipe_semaphore_wait(&rast->tasks[i].work_done);
769 }
770 }
771 }
772
773
774 /**
775 * This is the thread's main entrypoint.
776 * It's a simple loop:
777 * 1. wait for work
778 * 2. do work
779 * 3. signal that we're done
780 */
781 static PIPE_THREAD_ROUTINE( thread_func, init_data )
782 {
783 struct lp_rasterizer_task *task = (struct lp_rasterizer_task *) init_data;
784 struct lp_rasterizer *rast = task->rast;
785 boolean debug = false;
786
787 while (1) {
788 /* wait for work */
789 if (debug)
790 debug_printf("thread %d waiting for work\n", task->thread_index);
791 pipe_semaphore_wait(&task->work_ready);
792
793 if (rast->exit_flag)
794 break;
795
796 if (task->thread_index == 0) {
797 /* thread[0]:
798 * - get next scene to rasterize
799 * - map the framebuffer surfaces
800 */
801 lp_rast_begin( rast,
802 lp_scene_dequeue( rast->full_scenes, TRUE ) );
803 }
804
805 /* Wait for all threads to get here so that threads[1+] don't
806 * get a null rast->curr_scene pointer.
807 */
808 pipe_barrier_wait( &rast->barrier );
809
810 /* do work */
811 if (debug)
812 debug_printf("thread %d doing work\n", task->thread_index);
813
814 rasterize_scene(task,
815 rast->curr_scene);
816
817 /* wait for all threads to finish with this scene */
818 pipe_barrier_wait( &rast->barrier );
819
820 /* XXX: shouldn't be necessary:
821 */
822 if (task->thread_index == 0) {
823 lp_rast_end( rast );
824 }
825
826 /* signal done with work */
827 if (debug)
828 debug_printf("thread %d done working\n", task->thread_index);
829
830 pipe_semaphore_signal(&task->work_done);
831 }
832
833 return NULL;
834 }
835
836
837 /**
838 * Initialize semaphores and spawn the threads.
839 */
840 static void
841 create_rast_threads(struct lp_rasterizer *rast)
842 {
843 unsigned i;
844
845 /* NOTE: if num_threads is zero, we won't use any threads */
846 for (i = 0; i < rast->num_threads; i++) {
847 pipe_semaphore_init(&rast->tasks[i].work_ready, 0);
848 pipe_semaphore_init(&rast->tasks[i].work_done, 0);
849 rast->threads[i] = pipe_thread_create(thread_func,
850 (void *) &rast->tasks[i]);
851 }
852 }
853
854
855
856 /**
857 * Create new lp_rasterizer. If num_threads is zero, don't create any
858 * new threads, do rendering synchronously.
859 * \param num_threads number of rasterizer threads to create
860 */
861 struct lp_rasterizer *
862 lp_rast_create( unsigned num_threads )
863 {
864 struct lp_rasterizer *rast;
865 unsigned i;
866
867 rast = CALLOC_STRUCT(lp_rasterizer);
868 if(!rast)
869 return NULL;
870
871 rast->full_scenes = lp_scene_queue_create();
872
873 for (i = 0; i < Elements(rast->tasks); i++) {
874 struct lp_rasterizer_task *task = &rast->tasks[i];
875 task->rast = rast;
876 task->thread_index = i;
877 }
878
879 rast->num_threads = num_threads;
880
881 create_rast_threads(rast);
882
883 /* for synchronizing rasterization threads */
884 pipe_barrier_init( &rast->barrier, rast->num_threads );
885
886 memset(lp_swizzled_cbuf, 0, sizeof lp_swizzled_cbuf);
887
888 memset(lp_dummy_tile, 0, sizeof lp_dummy_tile);
889
890 return rast;
891 }
892
893
894 /* Shutdown:
895 */
896 void lp_rast_destroy( struct lp_rasterizer *rast )
897 {
898 unsigned i;
899
900 /* Set exit_flag and signal each thread's work_ready semaphore.
901 * Each thread will be woken up, notice that the exit_flag is set and
902 * break out of its main loop. The thread will then exit.
903 */
904 rast->exit_flag = TRUE;
905 for (i = 0; i < rast->num_threads; i++) {
906 pipe_semaphore_signal(&rast->tasks[i].work_ready);
907 }
908
909 /* Wait for threads to terminate before cleaning up per-thread data */
910 for (i = 0; i < rast->num_threads; i++) {
911 pipe_thread_wait(rast->threads[i]);
912 }
913
914 /* Clean up per-thread data */
915 for (i = 0; i < rast->num_threads; i++) {
916 pipe_semaphore_destroy(&rast->tasks[i].work_ready);
917 pipe_semaphore_destroy(&rast->tasks[i].work_done);
918 }
919
920 /* for synchronizing rasterization threads */
921 pipe_barrier_destroy( &rast->barrier );
922
923 lp_scene_queue_destroy(rast->full_scenes);
924
925 FREE(rast);
926 }
927
928
929 /** Return number of rasterization threads */
930 unsigned
931 lp_rast_get_num_threads( struct lp_rasterizer *rast )
932 {
933 return rast->num_threads;
934 }
935
936