Merge remote branch 'origin/7.8'
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "lp_perf.h"
35 #include "lp_setup_context.h"
36 #include "lp_rast.h"
37
38 #define NUM_CHANNELS 4
39
40
41 /**
42 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
43 */
44 static void constant_coef( struct lp_setup_context *setup,
45 struct lp_rast_triangle *tri,
46 unsigned slot,
47 const float value,
48 unsigned i )
49 {
50 tri->inputs.a0[slot][i] = value;
51 tri->inputs.dadx[slot][i] = 0.0f;
52 tri->inputs.dady[slot][i] = 0.0f;
53 }
54
55
56 /**
57 * Compute a0, dadx and dady for a linearly interpolated coefficient,
58 * for a triangle.
59 */
60 static void linear_coef( struct lp_setup_context *setup,
61 struct lp_rast_triangle *tri,
62 float oneoverarea,
63 unsigned slot,
64 const float (*v1)[4],
65 const float (*v2)[4],
66 const float (*v3)[4],
67 unsigned vert_attr,
68 unsigned i)
69 {
70 float a1 = v1[vert_attr][i];
71 float a2 = v2[vert_attr][i];
72 float a3 = v3[vert_attr][i];
73
74 float da12 = a1 - a2;
75 float da31 = a3 - a1;
76 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
77 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
78
79 tri->inputs.dadx[slot][i] = dadx;
80 tri->inputs.dady[slot][i] = dady;
81
82 /* calculate a0 as the value which would be sampled for the
83 * fragment at (0,0), taking into account that we want to sample at
84 * pixel centers, in other words (0.5, 0.5).
85 *
86 * this is neat but unfortunately not a good way to do things for
87 * triangles with very large values of dadx or dady as it will
88 * result in the subtraction and re-addition from a0 of a very
89 * large number, which means we'll end up loosing a lot of the
90 * fractional bits and precision from a0. the way to fix this is
91 * to define a0 as the sample at a pixel center somewhere near vmin
92 * instead - i'll switch to this later.
93 */
94 tri->inputs.a0[slot][i] = (a1 -
95 (dadx * (v1[0][0] - setup->pixel_offset) +
96 dady * (v1[0][1] - setup->pixel_offset)));
97 }
98
99
100 /**
101 * Compute a0, dadx and dady for a perspective-corrected interpolant,
102 * for a triangle.
103 * We basically multiply the vertex value by 1/w before computing
104 * the plane coefficients (a0, dadx, dady).
105 * Later, when we compute the value at a particular fragment position we'll
106 * divide the interpolated value by the interpolated W at that fragment.
107 */
108 static void perspective_coef( struct lp_setup_context *setup,
109 struct lp_rast_triangle *tri,
110 float oneoverarea,
111 unsigned slot,
112 const float (*v1)[4],
113 const float (*v2)[4],
114 const float (*v3)[4],
115 unsigned vert_attr,
116 unsigned i)
117 {
118 /* premultiply by 1/w (v[0][3] is always 1/w):
119 */
120 float a1 = v1[vert_attr][i] * v1[0][3];
121 float a2 = v2[vert_attr][i] * v2[0][3];
122 float a3 = v3[vert_attr][i] * v3[0][3];
123 float da12 = a1 - a2;
124 float da31 = a3 - a1;
125 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
126 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
127
128 tri->inputs.dadx[slot][i] = dadx;
129 tri->inputs.dady[slot][i] = dady;
130 tri->inputs.a0[slot][i] = (a1 -
131 (dadx * (v1[0][0] - setup->pixel_offset) +
132 dady * (v1[0][1] - setup->pixel_offset)));
133 }
134
135
136 /**
137 * Special coefficient setup for gl_FragCoord.
138 * X and Y are trivial
139 * Z and W are copied from position_coef which should have already been computed.
140 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
141 */
142 static void
143 setup_fragcoord_coef(struct lp_setup_context *setup,
144 struct lp_rast_triangle *tri,
145 float oneoverarea,
146 unsigned slot,
147 const float (*v1)[4],
148 const float (*v2)[4],
149 const float (*v3)[4])
150 {
151 /*X*/
152 tri->inputs.a0[slot][0] = 0.0;
153 tri->inputs.dadx[slot][0] = 1.0;
154 tri->inputs.dady[slot][0] = 0.0;
155 /*Y*/
156 tri->inputs.a0[slot][1] = 0.0;
157 tri->inputs.dadx[slot][1] = 0.0;
158 tri->inputs.dady[slot][1] = 1.0;
159 /*Z*/
160 linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 2);
161 /*W*/
162 linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 3);
163 }
164
165
166 /**
167 * Setup the fragment input attribute with the front-facing value.
168 * \param frontface is the triangle front facing?
169 */
170 static void setup_facing_coef( struct lp_setup_context *setup,
171 struct lp_rast_triangle *tri,
172 unsigned slot,
173 boolean frontface )
174 {
175 /* convert TRUE to 1.0 and FALSE to -1.0 */
176 constant_coef( setup, tri, slot, 2.0f * frontface - 1.0f, 0 );
177 constant_coef( setup, tri, slot, 0.0f, 1 ); /* wasted */
178 constant_coef( setup, tri, slot, 0.0f, 2 ); /* wasted */
179 constant_coef( setup, tri, slot, 0.0f, 3 ); /* wasted */
180 }
181
182
183 /**
184 * Compute the tri->coef[] array dadx, dady, a0 values.
185 */
186 static void setup_tri_coefficients( struct lp_setup_context *setup,
187 struct lp_rast_triangle *tri,
188 float oneoverarea,
189 const float (*v1)[4],
190 const float (*v2)[4],
191 const float (*v3)[4],
192 boolean frontface)
193 {
194 unsigned slot;
195
196 /* The internal position input is in slot zero:
197 */
198 setup_fragcoord_coef(setup, tri, oneoverarea, 0, v1, v2, v3);
199
200 /* setup interpolation for all the remaining attributes:
201 */
202 for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
203 unsigned vert_attr = setup->fs.input[slot].src_index;
204 unsigned i;
205
206 switch (setup->fs.input[slot].interp) {
207 case LP_INTERP_CONSTANT:
208 for (i = 0; i < NUM_CHANNELS; i++)
209 constant_coef(setup, tri, slot+1, v3[vert_attr][i], i);
210 break;
211
212 case LP_INTERP_LINEAR:
213 for (i = 0; i < NUM_CHANNELS; i++)
214 linear_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
215 break;
216
217 case LP_INTERP_PERSPECTIVE:
218 for (i = 0; i < NUM_CHANNELS; i++)
219 perspective_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
220 break;
221
222 case LP_INTERP_POSITION:
223 /* XXX: fix me - duplicates the values in slot zero.
224 */
225 setup_fragcoord_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3);
226 break;
227
228 case LP_INTERP_FACING:
229 setup_facing_coef(setup, tri, slot+1, frontface);
230 break;
231
232 default:
233 assert(0);
234 }
235 }
236 }
237
238
239
240 static INLINE int subpixel_snap( float a )
241 {
242 return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
243 }
244
245
246
247 /**
248 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
249 * immediately after it.
250 * The memory is allocated from the per-scene pool, not per-tile.
251 * \param tri_size returns number of bytes allocated
252 * \param nr_inputs number of fragment shader inputs
253 * \return pointer to triangle space
254 */
255 static INLINE struct lp_rast_triangle *
256 alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned *tri_size)
257 {
258 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
259 struct lp_rast_triangle *tri;
260 unsigned bytes;
261 char *inputs;
262
263 assert(sizeof(*tri) % 16 == 0);
264
265 bytes = sizeof(*tri) + (3 * input_array_sz);
266
267 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
268
269 inputs = (char *) (tri + 1);
270 tri->inputs.a0 = (float (*)[4]) inputs;
271 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
272 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
273
274 *tri_size = bytes;
275
276 return tri;
277 }
278
279
280 /**
281 * Print triangle vertex attribs (for debug).
282 */
283 static void
284 print_triangle(struct lp_setup_context *setup,
285 const float (*v1)[4],
286 const float (*v2)[4],
287 const float (*v3)[4])
288 {
289 uint i;
290
291 debug_printf("llvmpipe triangle\n");
292 for (i = 0; i < setup->fs.nr_inputs; i++) {
293 debug_printf(" v1[%d]: %f %f %f %f\n", i,
294 v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
295 }
296 for (i = 0; i < setup->fs.nr_inputs; i++) {
297 debug_printf(" v2[%d]: %f %f %f %f\n", i,
298 v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
299 }
300 for (i = 0; i < setup->fs.nr_inputs; i++) {
301 debug_printf(" v3[%d]: %f %f %f %f\n", i,
302 v3[i][0], v3[i][1], v3[i][2], v3[i][3]);
303 }
304 }
305
306
307 /**
308 * Do basic setup for triangle rasterization and determine which
309 * framebuffer tiles are touched. Put the triangle in the scene's
310 * bins for the tiles which we overlap.
311 */
312 static void
313 do_triangle_ccw(struct lp_setup_context *setup,
314 const float (*v1)[4],
315 const float (*v2)[4],
316 const float (*v3)[4],
317 boolean frontfacing )
318 {
319 /* x/y positions in fixed point */
320 const int x1 = subpixel_snap(v1[0][0] + 0.5 - setup->pixel_offset);
321 const int x2 = subpixel_snap(v2[0][0] + 0.5 - setup->pixel_offset);
322 const int x3 = subpixel_snap(v3[0][0] + 0.5 - setup->pixel_offset);
323 const int y1 = subpixel_snap(v1[0][1] + 0.5 - setup->pixel_offset);
324 const int y2 = subpixel_snap(v2[0][1] + 0.5 - setup->pixel_offset);
325 const int y3 = subpixel_snap(v3[0][1] + 0.5 - setup->pixel_offset);
326
327 struct lp_scene *scene = lp_setup_get_current_scene(setup);
328 struct lp_rast_triangle *tri;
329 int area;
330 float oneoverarea;
331 int minx, maxx, miny, maxy;
332 unsigned tri_bytes;
333
334 if (0)
335 print_triangle(setup, v1, v2, v3);
336
337 tri = alloc_triangle(scene, setup->fs.nr_inputs, &tri_bytes);
338
339 #ifdef DEBUG
340 tri->v[0][0] = v1[0][0];
341 tri->v[1][0] = v2[0][0];
342 tri->v[2][0] = v3[0][0];
343 tri->v[0][1] = v1[0][1];
344 tri->v[1][1] = v2[0][1];
345 tri->v[2][1] = v3[0][1];
346 #endif
347
348 tri->dx12 = x1 - x2;
349 tri->dx23 = x2 - x3;
350 tri->dx31 = x3 - x1;
351
352 tri->dy12 = y1 - y2;
353 tri->dy23 = y2 - y3;
354 tri->dy31 = y3 - y1;
355
356 area = (tri->dx12 * tri->dy31 - tri->dx31 * tri->dy12);
357
358 LP_COUNT(nr_tris);
359
360 /* Cull non-ccw and zero-sized triangles.
361 *
362 * XXX: subject to overflow??
363 */
364 if (area <= 0) {
365 lp_scene_putback_data( scene, tri_bytes );
366 LP_COUNT(nr_culled_tris);
367 return;
368 }
369
370 /* Bounding rectangle (in pixels) */
371 minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
372 maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
373 miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
374 maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
375
376 if (setup->scissor_test) {
377 minx = MAX2(minx, setup->scissor.current.minx);
378 maxx = MIN2(maxx, setup->scissor.current.maxx);
379 miny = MAX2(miny, setup->scissor.current.miny);
380 maxy = MIN2(maxy, setup->scissor.current.maxy);
381 }
382
383 if (miny == maxy ||
384 minx == maxx) {
385 lp_scene_putback_data( scene, tri_bytes );
386 LP_COUNT(nr_culled_tris);
387 return;
388 }
389
390 /*
391 */
392 oneoverarea = ((float)FIXED_ONE) / (float)area;
393
394 /* Setup parameter interpolants:
395 */
396 setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
397
398 tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
399
400 /* half-edge constants, will be interated over the whole render target.
401 */
402 tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
403 tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
404 tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
405
406 /* correct for top-left fill convention:
407 */
408 if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
409 if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
410 if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
411
412 tri->dy12 *= FIXED_ONE;
413 tri->dy23 *= FIXED_ONE;
414 tri->dy31 *= FIXED_ONE;
415
416 tri->dx12 *= FIXED_ONE;
417 tri->dx23 *= FIXED_ONE;
418 tri->dx31 *= FIXED_ONE;
419
420 /* find trivial reject offsets for each edge for a single-pixel
421 * sized block. These will be scaled up at each recursive level to
422 * match the active blocksize. Scaling in this way works best if
423 * the blocks are square.
424 */
425 tri->eo1 = 0;
426 if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
427 if (tri->dx12 > 0) tri->eo1 += tri->dx12;
428
429 tri->eo2 = 0;
430 if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
431 if (tri->dx23 > 0) tri->eo2 += tri->dx23;
432
433 tri->eo3 = 0;
434 if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
435 if (tri->dx31 > 0) tri->eo3 += tri->dx31;
436
437 /* Calculate trivial accept offsets from the above.
438 */
439 tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
440 tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
441 tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
442
443 /* Fill in the inputs.step[][] arrays.
444 * We've manually unrolled some loops here.
445 */
446 {
447 const int xstep1 = -tri->dy12;
448 const int xstep2 = -tri->dy23;
449 const int xstep3 = -tri->dy31;
450 const int ystep1 = tri->dx12;
451 const int ystep2 = tri->dx23;
452 const int ystep3 = tri->dx31;
453
454 #define SETUP_STEP(i, x, y) \
455 do { \
456 tri->inputs.step[0][i] = x * xstep1 + y * ystep1; \
457 tri->inputs.step[1][i] = x * xstep2 + y * ystep2; \
458 tri->inputs.step[2][i] = x * xstep3 + y * ystep3; \
459 } while (0)
460
461 SETUP_STEP(0, 0, 0);
462 SETUP_STEP(1, 1, 0);
463 SETUP_STEP(2, 0, 1);
464 SETUP_STEP(3, 1, 1);
465
466 SETUP_STEP(4, 2, 0);
467 SETUP_STEP(5, 3, 0);
468 SETUP_STEP(6, 2, 1);
469 SETUP_STEP(7, 3, 1);
470
471 SETUP_STEP(8, 0, 2);
472 SETUP_STEP(9, 1, 2);
473 SETUP_STEP(10, 0, 3);
474 SETUP_STEP(11, 1, 3);
475
476 SETUP_STEP(12, 2, 2);
477 SETUP_STEP(13, 3, 2);
478 SETUP_STEP(14, 2, 3);
479 SETUP_STEP(15, 3, 3);
480 #undef STEP
481 }
482
483 /*
484 * All fields of 'tri' are now set. The remaining code here is
485 * concerned with binning.
486 */
487
488 /* Convert to tile coordinates:
489 */
490 minx = minx / TILE_SIZE;
491 miny = miny / TILE_SIZE;
492 maxx = maxx / TILE_SIZE;
493 maxy = maxy / TILE_SIZE;
494
495 /*
496 * Clamp to framebuffer size
497 */
498 minx = MAX2(minx, 0);
499 miny = MAX2(miny, 0);
500 maxx = MIN2(maxx, scene->tiles_x - 1);
501 maxy = MIN2(maxy, scene->tiles_y - 1);
502
503 /* Determine which tile(s) intersect the triangle's bounding box
504 */
505 if (miny == maxy && minx == maxx)
506 {
507 /* Triangle is contained in a single tile:
508 */
509 lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
510 lp_rast_arg_triangle(tri) );
511 }
512 else
513 {
514 int c1 = (tri->c1 +
515 tri->dx12 * miny * TILE_SIZE -
516 tri->dy12 * minx * TILE_SIZE);
517 int c2 = (tri->c2 +
518 tri->dx23 * miny * TILE_SIZE -
519 tri->dy23 * minx * TILE_SIZE);
520 int c3 = (tri->c3 +
521 tri->dx31 * miny * TILE_SIZE -
522 tri->dy31 * minx * TILE_SIZE);
523
524 int ei1 = tri->ei1 << TILE_ORDER;
525 int ei2 = tri->ei2 << TILE_ORDER;
526 int ei3 = tri->ei3 << TILE_ORDER;
527
528 int eo1 = tri->eo1 << TILE_ORDER;
529 int eo2 = tri->eo2 << TILE_ORDER;
530 int eo3 = tri->eo3 << TILE_ORDER;
531
532 int xstep1 = -(tri->dy12 << TILE_ORDER);
533 int xstep2 = -(tri->dy23 << TILE_ORDER);
534 int xstep3 = -(tri->dy31 << TILE_ORDER);
535
536 int ystep1 = tri->dx12 << TILE_ORDER;
537 int ystep2 = tri->dx23 << TILE_ORDER;
538 int ystep3 = tri->dx31 << TILE_ORDER;
539 int x, y;
540
541
542 /* Test tile-sized blocks against the triangle.
543 * Discard blocks fully outside the tri. If the block is fully
544 * contained inside the tri, bin an lp_rast_shade_tile command.
545 * Else, bin a lp_rast_triangle command.
546 */
547 for (y = miny; y <= maxy; y++)
548 {
549 int cx1 = c1;
550 int cx2 = c2;
551 int cx3 = c3;
552 boolean in = FALSE; /* are we inside the triangle? */
553
554 for (x = minx; x <= maxx; x++)
555 {
556 if (cx1 + eo1 < 0 ||
557 cx2 + eo2 < 0 ||
558 cx3 + eo3 < 0)
559 {
560 /* do nothing */
561 LP_COUNT(nr_empty_64);
562 if (in)
563 break; /* exiting triangle, all done with this row */
564 }
565 else if (cx1 + ei1 > 0 &&
566 cx2 + ei2 > 0 &&
567 cx3 + ei3 > 0)
568 {
569 /* triangle covers the whole tile- shade whole tile */
570 LP_COUNT(nr_fully_covered_64);
571 in = TRUE;
572 if(setup->fs.current.opaque) {
573 lp_scene_bin_reset( scene, x, y );
574 lp_scene_bin_command( scene, x, y,
575 lp_rast_set_state,
576 lp_rast_arg_state(setup->fs.stored) );
577 }
578 lp_scene_bin_command( scene, x, y,
579 lp_rast_shade_tile,
580 lp_rast_arg_inputs(&tri->inputs) );
581 }
582 else
583 {
584 /* rasterizer/shade partial tile */
585 LP_COUNT(nr_partially_covered_64);
586 in = TRUE;
587 lp_scene_bin_command( scene, x, y,
588 lp_rast_triangle,
589 lp_rast_arg_triangle(tri) );
590 }
591
592 /* Iterate cx values across the region:
593 */
594 cx1 += xstep1;
595 cx2 += xstep2;
596 cx3 += xstep3;
597 }
598
599 /* Iterate c values down the region:
600 */
601 c1 += ystep1;
602 c2 += ystep2;
603 c3 += ystep3;
604 }
605 }
606 }
607
608
609 /**
610 * Draw triangle if it's CW, cull otherwise.
611 */
612 static void triangle_cw( struct lp_setup_context *setup,
613 const float (*v0)[4],
614 const float (*v1)[4],
615 const float (*v2)[4] )
616 {
617 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
618 }
619
620
621 /**
622 * Draw triangle if it's CCW, cull otherwise.
623 */
624 static void triangle_ccw( struct lp_setup_context *setup,
625 const float (*v0)[4],
626 const float (*v1)[4],
627 const float (*v2)[4] )
628 {
629 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
630 }
631
632
633
634 /**
635 * Draw triangle whether it's CW or CCW.
636 */
637 static void triangle_both( struct lp_setup_context *setup,
638 const float (*v0)[4],
639 const float (*v1)[4],
640 const float (*v2)[4] )
641 {
642 /* edge vectors e = v0 - v2, f = v1 - v2 */
643 const float ex = v0[0][0] - v2[0][0];
644 const float ey = v0[0][1] - v2[0][1];
645 const float fx = v1[0][0] - v2[0][0];
646 const float fy = v1[0][1] - v2[0][1];
647
648 /* det = cross(e,f).z */
649 if (ex * fy - ey * fx < 0.0f)
650 triangle_ccw( setup, v0, v1, v2 );
651 else
652 triangle_cw( setup, v0, v1, v2 );
653 }
654
655
656 static void triangle_nop( struct lp_setup_context *setup,
657 const float (*v0)[4],
658 const float (*v1)[4],
659 const float (*v2)[4] )
660 {
661 }
662
663
664 void
665 lp_setup_choose_triangle( struct lp_setup_context *setup )
666 {
667 switch (setup->cullmode) {
668 case PIPE_WINDING_NONE:
669 setup->triangle = triangle_both;
670 break;
671 case PIPE_WINDING_CCW:
672 setup->triangle = triangle_cw;
673 break;
674 case PIPE_WINDING_CW:
675 setup->triangle = triangle_ccw;
676 break;
677 default:
678 setup->triangle = triangle_nop;
679 break;
680 }
681 }