scons: Set the default windows platform to be windows userspace.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_buffer.h"
87 #include "lp_setup.h"
88 #include "lp_state.h"
89 #include "lp_tex_sample.h"
90 #include "lp_debug.h"
91
92
93 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
94 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
95
96
97 /*
98 * Derive from the quad's upper left scalar coordinates the coordinates for
99 * all other quad pixels
100 */
101 static void
102 generate_pos0(LLVMBuilderRef builder,
103 LLVMValueRef x,
104 LLVMValueRef y,
105 LLVMValueRef *x0,
106 LLVMValueRef *y0)
107 {
108 LLVMTypeRef int_elem_type = LLVMInt32Type();
109 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
110 LLVMTypeRef elem_type = LLVMFloatType();
111 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
112 LLVMValueRef x_offsets[QUAD_SIZE];
113 LLVMValueRef y_offsets[QUAD_SIZE];
114 unsigned i;
115
116 x = lp_build_broadcast(builder, int_vec_type, x);
117 y = lp_build_broadcast(builder, int_vec_type, y);
118
119 for(i = 0; i < QUAD_SIZE; ++i) {
120 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
121 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
122 }
123
124 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
125 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
126
127 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
128 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
129 }
130
131
132 /**
133 * Generate the depth test.
134 */
135 static void
136 generate_depth(LLVMBuilderRef builder,
137 const struct lp_fragment_shader_variant_key *key,
138 struct lp_type src_type,
139 struct lp_build_mask_context *mask,
140 LLVMValueRef src,
141 LLVMValueRef dst_ptr)
142 {
143 const struct util_format_description *format_desc;
144 struct lp_type dst_type;
145
146 if(!key->depth.enabled)
147 return;
148
149 format_desc = util_format_description(key->zsbuf_format);
150 assert(format_desc);
151
152 /* Pick the depth type. */
153 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
154
155 /* FIXME: Cope with a depth test type with a different bit width. */
156 assert(dst_type.width == src_type.width);
157 assert(dst_type.length == src_type.length);
158
159 #if 1
160 src = lp_build_clamped_float_to_unsigned_norm(builder,
161 src_type,
162 dst_type.width,
163 src);
164 #else
165 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
166 #endif
167
168 lp_build_depth_test(builder,
169 &key->depth,
170 dst_type,
171 format_desc,
172 mask,
173 src,
174 dst_ptr);
175 }
176
177
178 /**
179 * Generate the code to do inside/outside triangle testing for the
180 * four pixels in a 2x2 quad. This will set the four elements of the
181 * quad mask vector to 0 or ~0.
182 * \param i which quad of the quad group to test, in [0,3]
183 */
184 static void
185 generate_tri_edge_mask(LLVMBuilderRef builder,
186 unsigned i,
187 LLVMValueRef *mask, /* ivec4, out */
188 LLVMValueRef c0, /* int32 */
189 LLVMValueRef c1, /* int32 */
190 LLVMValueRef c2, /* int32 */
191 LLVMValueRef step0_ptr, /* ivec4 */
192 LLVMValueRef step1_ptr, /* ivec4 */
193 LLVMValueRef step2_ptr) /* ivec4 */
194 {
195 /*
196 c0_vec = splat(c0)
197 c1_vec = splat(c1)
198 c2_vec = splat(c2)
199 m0_vec = step0_ptr[i] > c0_vec
200 m1_vec = step1_ptr[i] > c1_vec
201 m2_vec = step2_ptr[i] > c2_vec
202 mask = m0_vec & m1_vec & m2_vec
203 */
204 struct lp_type i32_type;
205 LLVMTypeRef i32vec4_type;
206
207 LLVMValueRef index;
208 LLVMValueRef c0_vec, c1_vec, c2_vec;
209 LLVMValueRef step0_vec, step1_vec, step2_vec;
210 LLVMValueRef m0_vec, m1_vec, m2_vec;
211 LLVMValueRef m;
212
213 assert(i < 4);
214
215 /* int32 vector type */
216 memset(&i32_type, 0, sizeof i32_type);
217 i32_type.floating = FALSE; /* values are integers */
218 i32_type.sign = TRUE; /* values are signed */
219 i32_type.norm = FALSE; /* values are not normalized */
220 i32_type.width = 32; /* 32-bit int values */
221 i32_type.length = 4; /* 4 elements per vector */
222
223 i32vec4_type = lp_build_int32_vec4_type();
224
225 /* c0_vec = {c0, c0, c0, c0}
226 * Note that we emit this code four times but LLVM optimizes away
227 * three instances of it.
228 */
229 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
230 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
231 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
232
233 lp_build_name(c0_vec, "edgeconst0vec");
234 lp_build_name(c1_vec, "edgeconst1vec");
235 lp_build_name(c2_vec, "edgeconst2vec");
236
237 index = LLVMConstInt(LLVMInt32Type(), i, 0);
238 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
239 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
240 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
241
242 lp_build_name(step0_vec, "step0vec");
243 lp_build_name(step1_vec, "step1vec");
244 lp_build_name(step2_vec, "step2vec");
245
246 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
247 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
248 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
249
250 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
251 m = LLVMBuildAnd(builder, m, m2_vec, "");
252
253 lp_build_name(m, "inoutmaskvec");
254
255 *mask = m;
256
257 /*
258 * if mask = {0,0,0,0} skip quad
259 */
260 }
261
262
263 /**
264 * Generate the fragment shader, depth/stencil test, and alpha tests.
265 * \param i which quad in the tile, in range [0,3]
266 */
267 static void
268 generate_fs(struct llvmpipe_context *lp,
269 struct lp_fragment_shader *shader,
270 const struct lp_fragment_shader_variant_key *key,
271 LLVMBuilderRef builder,
272 struct lp_type type,
273 LLVMValueRef context_ptr,
274 unsigned i,
275 const struct lp_build_interp_soa_context *interp,
276 struct lp_build_sampler_soa *sampler,
277 LLVMValueRef *pmask,
278 LLVMValueRef *color,
279 LLVMValueRef depth_ptr,
280 LLVMValueRef c0,
281 LLVMValueRef c1,
282 LLVMValueRef c2,
283 LLVMValueRef step0_ptr,
284 LLVMValueRef step1_ptr,
285 LLVMValueRef step2_ptr)
286 {
287 const struct tgsi_token *tokens = shader->base.tokens;
288 LLVMTypeRef elem_type;
289 LLVMTypeRef vec_type;
290 LLVMTypeRef int_vec_type;
291 LLVMValueRef consts_ptr;
292 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
293 LLVMValueRef z = interp->pos[2];
294 struct lp_build_flow_context *flow;
295 struct lp_build_mask_context mask;
296 boolean early_depth_test;
297 unsigned attrib;
298 unsigned chan;
299
300 assert(i < 4);
301
302 elem_type = lp_build_elem_type(type);
303 vec_type = lp_build_vec_type(type);
304 int_vec_type = lp_build_int_vec_type(type);
305
306 consts_ptr = lp_jit_context_constants(builder, context_ptr);
307
308 flow = lp_build_flow_create(builder);
309
310 memset(outputs, 0, sizeof outputs);
311
312 lp_build_flow_scope_begin(flow);
313
314 /* Declare the color and z variables */
315 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
316 color[chan] = LLVMGetUndef(vec_type);
317 lp_build_flow_scope_declare(flow, &color[chan]);
318 }
319 lp_build_flow_scope_declare(flow, &z);
320
321 /* do triangle edge testing */
322 generate_tri_edge_mask(builder, i, pmask,
323 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
324
325 /* 'mask' will control execution based on quad's pixel alive/killed state */
326 lp_build_mask_begin(&mask, flow, type, *pmask);
327
328
329 early_depth_test =
330 key->depth.enabled &&
331 !key->alpha.enabled &&
332 !shader->info.uses_kill &&
333 !shader->info.writes_z;
334
335 if(early_depth_test)
336 generate_depth(builder, key,
337 type, &mask,
338 z, depth_ptr);
339
340 lp_build_tgsi_soa(builder, tokens, type, &mask,
341 consts_ptr, interp->pos, interp->inputs,
342 outputs, sampler);
343
344 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
345 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
346 if(outputs[attrib][chan]) {
347 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
348
349 switch (shader->info.output_semantic_name[attrib]) {
350 case TGSI_SEMANTIC_COLOR:
351 {
352 unsigned cbuf = shader->info.output_semantic_index[attrib];
353
354 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
355
356 /* Alpha test */
357 /* XXX: should the alpha reference value be passed separately? */
358 if(cbuf == 0 && chan == 3) {
359 LLVMValueRef alpha = outputs[attrib][chan];
360 LLVMValueRef alpha_ref_value;
361 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
362 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
363 lp_build_alpha_test(builder, &key->alpha, type,
364 &mask, alpha, alpha_ref_value);
365 }
366
367 if(cbuf == 0)
368 color[chan] = outputs[attrib][chan];
369
370 break;
371 }
372
373 case TGSI_SEMANTIC_POSITION:
374 if(chan == 2)
375 z = outputs[attrib][chan];
376 break;
377 }
378 }
379 }
380 }
381
382 if(!early_depth_test)
383 generate_depth(builder, key,
384 type, &mask,
385 z, depth_ptr);
386
387 lp_build_mask_end(&mask);
388
389 lp_build_flow_scope_end(flow);
390
391 lp_build_flow_destroy(flow);
392
393 *pmask = mask.value;
394
395 }
396
397
398 /**
399 * Generate color blending and color output.
400 */
401 static void
402 generate_blend(const struct pipe_blend_state *blend,
403 LLVMBuilderRef builder,
404 struct lp_type type,
405 LLVMValueRef context_ptr,
406 LLVMValueRef mask,
407 LLVMValueRef *src,
408 LLVMValueRef dst_ptr)
409 {
410 struct lp_build_context bld;
411 struct lp_build_flow_context *flow;
412 struct lp_build_mask_context mask_ctx;
413 LLVMTypeRef vec_type;
414 LLVMTypeRef int_vec_type;
415 LLVMValueRef const_ptr;
416 LLVMValueRef con[4];
417 LLVMValueRef dst[4];
418 LLVMValueRef res[4];
419 unsigned chan;
420
421 lp_build_context_init(&bld, builder, type);
422
423 flow = lp_build_flow_create(builder);
424 lp_build_mask_begin(&mask_ctx, flow, type, mask);
425
426 vec_type = lp_build_vec_type(type);
427 int_vec_type = lp_build_int_vec_type(type);
428
429 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
430 const_ptr = LLVMBuildBitCast(builder, const_ptr,
431 LLVMPointerType(vec_type, 0), "");
432
433 for(chan = 0; chan < 4; ++chan) {
434 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
435 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
436
437 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
438
439 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
440 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
441 }
442
443 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
444
445 for(chan = 0; chan < 4; ++chan) {
446 if(blend->colormask & (1 << chan)) {
447 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
448 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
449 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
450 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
451 }
452 }
453
454 lp_build_mask_end(&mask_ctx);
455 lp_build_flow_destroy(flow);
456 }
457
458
459 /**
460 * Generate the runtime callable function for the whole fragment pipeline.
461 * Note that the function which we generate operates on a block of 16
462 * pixels at at time. The block contains 2x2 quads. Each quad contains
463 * 2x2 pixels.
464 */
465 static struct lp_fragment_shader_variant *
466 generate_fragment(struct llvmpipe_context *lp,
467 struct lp_fragment_shader *shader,
468 const struct lp_fragment_shader_variant_key *key)
469 {
470 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
471 struct lp_fragment_shader_variant *variant;
472 struct lp_type fs_type;
473 struct lp_type blend_type;
474 LLVMTypeRef fs_elem_type;
475 LLVMTypeRef fs_vec_type;
476 LLVMTypeRef fs_int_vec_type;
477 LLVMTypeRef blend_vec_type;
478 LLVMTypeRef blend_int_vec_type;
479 LLVMTypeRef arg_types[14];
480 LLVMTypeRef func_type;
481 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
482 LLVMValueRef context_ptr;
483 LLVMValueRef x;
484 LLVMValueRef y;
485 LLVMValueRef a0_ptr;
486 LLVMValueRef dadx_ptr;
487 LLVMValueRef dady_ptr;
488 LLVMValueRef color_ptr;
489 LLVMValueRef depth_ptr;
490 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
491 LLVMBasicBlockRef block;
492 LLVMBuilderRef builder;
493 LLVMValueRef x0;
494 LLVMValueRef y0;
495 struct lp_build_sampler_soa *sampler;
496 struct lp_build_interp_soa_context interp;
497 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
498 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
499 LLVMValueRef blend_mask;
500 LLVMValueRef blend_in_color[NUM_CHANNELS];
501 unsigned num_fs;
502 unsigned i;
503 unsigned chan;
504
505 if (LP_DEBUG & DEBUG_JIT) {
506 tgsi_dump(shader->base.tokens, 0);
507 if(key->depth.enabled) {
508 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
509 debug_printf("depth.writemask = %u\n", key->depth.writemask);
510 }
511 if(key->alpha.enabled) {
512 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
513 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
514 }
515 if(key->blend.logicop_enable) {
516 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
517 }
518 else if(key->blend.blend_enable) {
519 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
520 debug_printf("blend.rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
521 debug_printf("blend.rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
522 debug_printf("blend.alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
523 debug_printf("blend.alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
524 debug_printf("blend.alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
525 }
526 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
527 }
528
529 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
530 if(!variant)
531 return NULL;
532
533 variant->shader = shader;
534 memcpy(&variant->key, key, sizeof *key);
535
536 /* TODO: actually pick these based on the fs and color buffer
537 * characteristics. */
538
539 memset(&fs_type, 0, sizeof fs_type);
540 fs_type.floating = TRUE; /* floating point values */
541 fs_type.sign = TRUE; /* values are signed */
542 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
543 fs_type.width = 32; /* 32-bit float */
544 fs_type.length = 4; /* 4 elements per vector */
545 num_fs = 4; /* number of quads per block */
546
547 memset(&blend_type, 0, sizeof blend_type);
548 blend_type.floating = FALSE; /* values are integers */
549 blend_type.sign = FALSE; /* values are unsigned */
550 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
551 blend_type.width = 8; /* 8-bit ubyte values */
552 blend_type.length = 16; /* 16 elements per vector */
553
554 /*
555 * Generate the function prototype. Any change here must be reflected in
556 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
557 */
558
559 fs_elem_type = lp_build_elem_type(fs_type);
560 fs_vec_type = lp_build_vec_type(fs_type);
561 fs_int_vec_type = lp_build_int_vec_type(fs_type);
562
563 blend_vec_type = lp_build_vec_type(blend_type);
564 blend_int_vec_type = lp_build_int_vec_type(blend_type);
565
566 arg_types[0] = screen->context_ptr_type; /* context */
567 arg_types[1] = LLVMInt32Type(); /* x */
568 arg_types[2] = LLVMInt32Type(); /* y */
569 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
570 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
571 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
572 arg_types[6] = LLVMPointerType(blend_vec_type, 0); /* color */
573 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
574 arg_types[8] = LLVMInt32Type(); /* c0 */
575 arg_types[9] = LLVMInt32Type(); /* c1 */
576 arg_types[10] = LLVMInt32Type(); /* c2 */
577 /* Note: the step arrays are built as int32[16] but we interpret
578 * them here as int32_vec4[4].
579 */
580 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
581 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
582 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
583
584 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
585
586 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
587 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
588 for(i = 0; i < Elements(arg_types); ++i)
589 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
590 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
591
592 context_ptr = LLVMGetParam(variant->function, 0);
593 x = LLVMGetParam(variant->function, 1);
594 y = LLVMGetParam(variant->function, 2);
595 a0_ptr = LLVMGetParam(variant->function, 3);
596 dadx_ptr = LLVMGetParam(variant->function, 4);
597 dady_ptr = LLVMGetParam(variant->function, 5);
598 color_ptr = LLVMGetParam(variant->function, 6);
599 depth_ptr = LLVMGetParam(variant->function, 7);
600 c0 = LLVMGetParam(variant->function, 8);
601 c1 = LLVMGetParam(variant->function, 9);
602 c2 = LLVMGetParam(variant->function, 10);
603 step0_ptr = LLVMGetParam(variant->function, 11);
604 step1_ptr = LLVMGetParam(variant->function, 12);
605 step2_ptr = LLVMGetParam(variant->function, 13);
606
607 lp_build_name(context_ptr, "context");
608 lp_build_name(x, "x");
609 lp_build_name(y, "y");
610 lp_build_name(a0_ptr, "a0");
611 lp_build_name(dadx_ptr, "dadx");
612 lp_build_name(dady_ptr, "dady");
613 lp_build_name(color_ptr, "color");
614 lp_build_name(depth_ptr, "depth");
615 lp_build_name(c0, "c0");
616 lp_build_name(c1, "c1");
617 lp_build_name(c2, "c2");
618 lp_build_name(step0_ptr, "step0");
619 lp_build_name(step1_ptr, "step1");
620 lp_build_name(step2_ptr, "step2");
621
622 /*
623 * Function body
624 */
625
626 block = LLVMAppendBasicBlock(variant->function, "entry");
627 builder = LLVMCreateBuilder();
628 LLVMPositionBuilderAtEnd(builder, block);
629
630 generate_pos0(builder, x, y, &x0, &y0);
631
632 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
633 a0_ptr, dadx_ptr, dady_ptr,
634 x0, y0);
635
636 /* code generated texture sampling */
637 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
638
639 /* loop over quads in the block */
640 for(i = 0; i < num_fs; ++i) {
641 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
642 LLVMValueRef out_color[NUM_CHANNELS];
643 LLVMValueRef depth_ptr_i;
644
645 if(i != 0)
646 lp_build_interp_soa_update(&interp, i);
647
648 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
649
650 generate_fs(lp, shader, key,
651 builder,
652 fs_type,
653 context_ptr,
654 i,
655 &interp,
656 sampler,
657 &fs_mask[i], /* output */
658 out_color,
659 depth_ptr_i,
660 c0, c1, c2,
661 step0_ptr, step1_ptr, step2_ptr);
662
663 for(chan = 0; chan < NUM_CHANNELS; ++chan)
664 fs_out_color[chan][i] = out_color[chan];
665 }
666
667 sampler->destroy(sampler);
668
669 /*
670 * Convert the fs's output color and mask to fit to the blending type.
671 */
672
673 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
674 lp_build_conv(builder, fs_type, blend_type,
675 fs_out_color[chan], num_fs,
676 &blend_in_color[chan], 1);
677 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
678
679 }
680
681 lp_build_conv_mask(builder, fs_type, blend_type,
682 fs_mask, num_fs,
683 &blend_mask, 1);
684
685 /*
686 * Blending.
687 */
688
689 generate_blend(&key->blend,
690 builder,
691 blend_type,
692 context_ptr,
693 blend_mask,
694 blend_in_color,
695 color_ptr);
696
697 LLVMBuildRetVoid(builder);
698
699 LLVMDisposeBuilder(builder);
700
701 /*
702 * Translate the LLVM IR into machine code.
703 */
704
705 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
706 LLVMDumpValue(variant->function);
707 abort();
708 }
709
710 LLVMRunFunctionPassManager(screen->pass, variant->function);
711
712 if (LP_DEBUG & DEBUG_JIT) {
713 LLVMDumpValue(variant->function);
714 debug_printf("\n");
715 }
716
717 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
718
719 if (LP_DEBUG & DEBUG_ASM)
720 lp_disassemble(variant->jit_function);
721
722 variant->next = shader->variants;
723 shader->variants = variant;
724
725 return variant;
726 }
727
728
729 void *
730 llvmpipe_create_fs_state(struct pipe_context *pipe,
731 const struct pipe_shader_state *templ)
732 {
733 struct lp_fragment_shader *shader;
734
735 shader = CALLOC_STRUCT(lp_fragment_shader);
736 if (!shader)
737 return NULL;
738
739 /* get/save the summary info for this shader */
740 tgsi_scan_shader(templ->tokens, &shader->info);
741
742 /* we need to keep a local copy of the tokens */
743 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
744
745 return shader;
746 }
747
748
749 void
750 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
751 {
752 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
753
754 llvmpipe->fs = (struct lp_fragment_shader *) fs;
755
756 llvmpipe->dirty |= LP_NEW_FS;
757 }
758
759
760 void
761 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
762 {
763 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
764 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
765 struct lp_fragment_shader *shader = fs;
766 struct lp_fragment_shader_variant *variant;
767
768 assert(fs != llvmpipe->fs);
769
770 variant = shader->variants;
771 while(variant) {
772 struct lp_fragment_shader_variant *next = variant->next;
773
774 if(variant->function) {
775 if(variant->jit_function)
776 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
777 LLVMDeleteFunction(variant->function);
778 }
779
780 FREE(variant);
781
782 variant = next;
783 }
784
785 FREE((void *) shader->base.tokens);
786 FREE(shader);
787 }
788
789
790
791 void
792 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
793 uint shader, uint index,
794 const struct pipe_constant_buffer *constants)
795 {
796 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
797 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
798 unsigned size = buffer ? buffer->size : 0;
799 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
800
801 assert(shader < PIPE_SHADER_TYPES);
802 assert(index == 0);
803
804 if(llvmpipe->constants[shader].buffer == buffer)
805 return;
806
807 if(shader == PIPE_SHADER_VERTEX)
808 draw_flush(llvmpipe->draw);
809
810 /* note: reference counting */
811 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
812
813 if(shader == PIPE_SHADER_VERTEX) {
814 draw_set_mapped_constant_buffer(llvmpipe->draw, data, size);
815 }
816
817 llvmpipe->dirty |= LP_NEW_CONSTANTS;
818 }
819
820
821 /**
822 * We need to generate several variants of the fragment pipeline to match
823 * all the combinations of the contributing state atoms.
824 *
825 * TODO: there is actually no reason to tie this to context state -- the
826 * generated code could be cached globally in the screen.
827 */
828 static void
829 make_variant_key(struct llvmpipe_context *lp,
830 struct lp_fragment_shader *shader,
831 struct lp_fragment_shader_variant_key *key)
832 {
833 unsigned i;
834
835 memset(key, 0, sizeof *key);
836
837 if(lp->framebuffer.zsbuf &&
838 lp->depth_stencil->depth.enabled) {
839 key->zsbuf_format = lp->framebuffer.zsbuf->format;
840 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
841 }
842
843 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
844 if(key->alpha.enabled)
845 key->alpha.func = lp->depth_stencil->alpha.func;
846 /* alpha.ref_value is passed in jit_context */
847
848 if(lp->framebuffer.cbufs[0]) {
849 const struct util_format_description *format_desc;
850 unsigned chan;
851
852 memcpy(&key->blend, lp->blend, sizeof key->blend);
853
854 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
855 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
856 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
857
858 /* mask out color channels not present in the color buffer */
859 for(chan = 0; chan < 4; ++chan) {
860 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
861 if(swizzle > 4)
862 key->blend.colormask &= ~(1 << chan);
863 }
864 }
865
866 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
867 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
868 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
869 }
870
871
872 void
873 llvmpipe_update_fs(struct llvmpipe_context *lp)
874 {
875 struct lp_fragment_shader *shader = lp->fs;
876 struct lp_fragment_shader_variant_key key;
877 struct lp_fragment_shader_variant *variant;
878
879 make_variant_key(lp, shader, &key);
880
881 variant = shader->variants;
882 while(variant) {
883 if(memcmp(&variant->key, &key, sizeof key) == 0)
884 break;
885
886 variant = variant->next;
887 }
888
889 if(!variant)
890 variant = generate_fragment(lp, shader, &key);
891
892 shader->current = variant;
893
894 lp_setup_set_fs_function(lp->setup,
895 shader->current->jit_function);
896 }