Merge branch 'master' into gallium-sampler-view
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test (stencil TBI)
41 * - blending
42 *
43 * This file has only the glue to assembly the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_format.h"
68 #include "util/u_dump.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_depth.h"
81 #include "gallivm/lp_bld_interp.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_alpha.h"
84 #include "gallivm/lp_bld_blend.h"
85 #include "gallivm/lp_bld_swizzle.h"
86 #include "gallivm/lp_bld_flow.h"
87 #include "gallivm/lp_bld_debug.h"
88 #include "lp_buffer.h"
89 #include "lp_context.h"
90 #include "lp_debug.h"
91 #include "lp_perf.h"
92 #include "lp_screen.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96
97
98 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
99 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
100
101
102 /*
103 * Derive from the quad's upper left scalar coordinates the coordinates for
104 * all other quad pixels
105 */
106 static void
107 generate_pos0(LLVMBuilderRef builder,
108 LLVMValueRef x,
109 LLVMValueRef y,
110 LLVMValueRef *x0,
111 LLVMValueRef *y0)
112 {
113 LLVMTypeRef int_elem_type = LLVMInt32Type();
114 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
115 LLVMTypeRef elem_type = LLVMFloatType();
116 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
117 LLVMValueRef x_offsets[QUAD_SIZE];
118 LLVMValueRef y_offsets[QUAD_SIZE];
119 unsigned i;
120
121 x = lp_build_broadcast(builder, int_vec_type, x);
122 y = lp_build_broadcast(builder, int_vec_type, y);
123
124 for(i = 0; i < QUAD_SIZE; ++i) {
125 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
126 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
127 }
128
129 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
130 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
131
132 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
133 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
134 }
135
136
137 /**
138 * Generate the depth test.
139 */
140 static void
141 generate_depth(LLVMBuilderRef builder,
142 const struct lp_fragment_shader_variant_key *key,
143 struct lp_type src_type,
144 struct lp_build_mask_context *mask,
145 LLVMValueRef src,
146 LLVMValueRef dst_ptr)
147 {
148 const struct util_format_description *format_desc;
149 struct lp_type dst_type;
150
151 if(!key->depth.enabled)
152 return;
153
154 format_desc = util_format_description(key->zsbuf_format);
155 assert(format_desc);
156
157 /*
158 * Depths are expected to be between 0 and 1, even if they are stored in
159 * floats. Setting these bits here will ensure that the lp_build_conv() call
160 * below won't try to unnecessarily clamp the incoming values.
161 */
162 if(src_type.floating) {
163 src_type.sign = FALSE;
164 src_type.norm = TRUE;
165 }
166 else {
167 assert(!src_type.sign);
168 assert(src_type.norm);
169 }
170
171 /* Pick the depth type. */
172 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
173
174 /* FIXME: Cope with a depth test type with a different bit width. */
175 assert(dst_type.width == src_type.width);
176 assert(dst_type.length == src_type.length);
177
178 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
179
180 dst_ptr = LLVMBuildBitCast(builder,
181 dst_ptr,
182 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
183
184 lp_build_depth_test(builder,
185 &key->depth,
186 dst_type,
187 format_desc,
188 mask,
189 src,
190 dst_ptr);
191 }
192
193
194 /**
195 * Generate the code to do inside/outside triangle testing for the
196 * four pixels in a 2x2 quad. This will set the four elements of the
197 * quad mask vector to 0 or ~0.
198 * \param i which quad of the quad group to test, in [0,3]
199 */
200 static void
201 generate_tri_edge_mask(LLVMBuilderRef builder,
202 unsigned i,
203 LLVMValueRef *mask, /* ivec4, out */
204 LLVMValueRef c0, /* int32 */
205 LLVMValueRef c1, /* int32 */
206 LLVMValueRef c2, /* int32 */
207 LLVMValueRef step0_ptr, /* ivec4 */
208 LLVMValueRef step1_ptr, /* ivec4 */
209 LLVMValueRef step2_ptr) /* ivec4 */
210 {
211 #define OPTIMIZE_IN_OUT_TEST 0
212 #if OPTIMIZE_IN_OUT_TEST
213 struct lp_build_if_state ifctx;
214 LLVMValueRef not_draw_all;
215 #endif
216 struct lp_build_flow_context *flow;
217 struct lp_type i32_type;
218 LLVMTypeRef i32vec4_type, mask_type;
219 LLVMValueRef c0_vec, c1_vec, c2_vec;
220 LLVMValueRef in_out_mask;
221
222 assert(i < 4);
223
224 /* int32 vector type */
225 memset(&i32_type, 0, sizeof i32_type);
226 i32_type.floating = FALSE; /* values are integers */
227 i32_type.sign = TRUE; /* values are signed */
228 i32_type.norm = FALSE; /* values are not normalized */
229 i32_type.width = 32; /* 32-bit int values */
230 i32_type.length = 4; /* 4 elements per vector */
231
232 i32vec4_type = lp_build_int32_vec4_type();
233
234 mask_type = LLVMIntType(32 * 4);
235
236 /*
237 * Use a conditional here to do detailed pixel in/out testing.
238 * We only have to do this if c0 != INT_MIN.
239 */
240 flow = lp_build_flow_create(builder);
241 lp_build_flow_scope_begin(flow);
242
243 {
244 #if OPTIMIZE_IN_OUT_TEST
245 /* not_draw_all = (c0 != INT_MIN) */
246 not_draw_all = LLVMBuildICmp(builder,
247 LLVMIntNE,
248 c0,
249 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
250 "");
251
252 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
253
254
255 lp_build_flow_scope_declare(flow, &in_out_mask);
256
257 /* if (not_draw_all) {... */
258 lp_build_if(&ifctx, flow, builder, not_draw_all);
259 #endif
260 {
261 LLVMValueRef step0_vec, step1_vec, step2_vec;
262 LLVMValueRef m0_vec, m1_vec, m2_vec;
263 LLVMValueRef index, m;
264
265 /* c0_vec = {c0, c0, c0, c0}
266 * Note that we emit this code four times but LLVM optimizes away
267 * three instances of it.
268 */
269 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
270 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
271 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
272 lp_build_name(c0_vec, "edgeconst0vec");
273 lp_build_name(c1_vec, "edgeconst1vec");
274 lp_build_name(c2_vec, "edgeconst2vec");
275
276 /* load step0vec, step1, step2 vec from memory */
277 index = LLVMConstInt(LLVMInt32Type(), i, 0);
278 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
279 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
280 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
281 lp_build_name(step0_vec, "step0vec");
282 lp_build_name(step1_vec, "step1vec");
283 lp_build_name(step2_vec, "step2vec");
284
285 /* m0_vec = step0_ptr[i] > c0_vec */
286 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
287 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
288 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
289
290 /* in_out_mask = m0_vec & m1_vec & m2_vec */
291 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
292 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
293 lp_build_name(in_out_mask, "inoutmaskvec");
294 }
295 #if OPTIMIZE_IN_OUT_TEST
296 lp_build_endif(&ifctx);
297 #endif
298
299 }
300 lp_build_flow_scope_end(flow);
301 lp_build_flow_destroy(flow);
302
303 /* This is the initial alive/dead pixel mask for a quad of four pixels.
304 * It's an int[4] vector with each word set to 0 or ~0.
305 * Words will get cleared when pixels faile the Z test, etc.
306 */
307 *mask = in_out_mask;
308 }
309
310
311 static LLVMValueRef
312 generate_scissor_test(LLVMBuilderRef builder,
313 LLVMValueRef context_ptr,
314 const struct lp_build_interp_soa_context *interp,
315 struct lp_type type)
316 {
317 LLVMTypeRef vec_type = lp_build_vec_type(type);
318 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
319 LLVMValueRef xmin, ymin, xmax, ymax;
320 LLVMValueRef m0, m1, m2, m3, m;
321
322 /* xpos, ypos contain the window coords for the four pixels in the quad */
323 assert(xpos);
324 assert(ypos);
325
326 /* get the current scissor bounds, convert to vectors */
327 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
328 xmin = lp_build_broadcast(builder, vec_type, xmin);
329
330 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
331 ymin = lp_build_broadcast(builder, vec_type, ymin);
332
333 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
334 xmax = lp_build_broadcast(builder, vec_type, xmax);
335
336 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
337 ymax = lp_build_broadcast(builder, vec_type, ymax);
338
339 /* compare the fragment's position coordinates against the scissor bounds */
340 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
341 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
342 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
343 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
344
345 /* AND all the masks together */
346 m = LLVMBuildAnd(builder, m0, m1, "");
347 m = LLVMBuildAnd(builder, m, m2, "");
348 m = LLVMBuildAnd(builder, m, m3, "");
349
350 lp_build_name(m, "scissormask");
351
352 return m;
353 }
354
355
356 static LLVMValueRef
357 build_int32_vec_const(int value)
358 {
359 struct lp_type i32_type;
360
361 memset(&i32_type, 0, sizeof i32_type);
362 i32_type.floating = FALSE; /* values are integers */
363 i32_type.sign = TRUE; /* values are signed */
364 i32_type.norm = FALSE; /* values are not normalized */
365 i32_type.width = 32; /* 32-bit int values */
366 i32_type.length = 4; /* 4 elements per vector */
367 return lp_build_int_const_scalar(i32_type, value);
368 }
369
370
371
372 /**
373 * Generate the fragment shader, depth/stencil test, and alpha tests.
374 * \param i which quad in the tile, in range [0,3]
375 * \param do_tri_test if 1, do triangle edge in/out testing
376 */
377 static void
378 generate_fs(struct llvmpipe_context *lp,
379 struct lp_fragment_shader *shader,
380 const struct lp_fragment_shader_variant_key *key,
381 LLVMBuilderRef builder,
382 struct lp_type type,
383 LLVMValueRef context_ptr,
384 unsigned i,
385 const struct lp_build_interp_soa_context *interp,
386 struct lp_build_sampler_soa *sampler,
387 LLVMValueRef *pmask,
388 LLVMValueRef (*color)[4],
389 LLVMValueRef depth_ptr,
390 unsigned do_tri_test,
391 LLVMValueRef c0,
392 LLVMValueRef c1,
393 LLVMValueRef c2,
394 LLVMValueRef step0_ptr,
395 LLVMValueRef step1_ptr,
396 LLVMValueRef step2_ptr)
397 {
398 const struct tgsi_token *tokens = shader->base.tokens;
399 LLVMTypeRef elem_type;
400 LLVMTypeRef vec_type;
401 LLVMTypeRef int_vec_type;
402 LLVMValueRef consts_ptr;
403 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
404 LLVMValueRef z = interp->pos[2];
405 struct lp_build_flow_context *flow;
406 struct lp_build_mask_context mask;
407 boolean early_depth_test;
408 unsigned attrib;
409 unsigned chan;
410 unsigned cbuf;
411
412 assert(i < 4);
413
414 elem_type = lp_build_elem_type(type);
415 vec_type = lp_build_vec_type(type);
416 int_vec_type = lp_build_int_vec_type(type);
417
418 consts_ptr = lp_jit_context_constants(builder, context_ptr);
419
420 flow = lp_build_flow_create(builder);
421
422 memset(outputs, 0, sizeof outputs);
423
424 lp_build_flow_scope_begin(flow);
425
426 /* Declare the color and z variables */
427 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
428 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
429 color[cbuf][chan] = LLVMGetUndef(vec_type);
430 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
431 }
432 }
433 lp_build_flow_scope_declare(flow, &z);
434
435 /* do triangle edge testing */
436 if (do_tri_test) {
437 generate_tri_edge_mask(builder, i, pmask,
438 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
439 }
440 else {
441 *pmask = build_int32_vec_const(~0);
442 }
443
444 /* 'mask' will control execution based on quad's pixel alive/killed state */
445 lp_build_mask_begin(&mask, flow, type, *pmask);
446
447 if (key->scissor) {
448 LLVMValueRef smask =
449 generate_scissor_test(builder, context_ptr, interp, type);
450 lp_build_mask_update(&mask, smask);
451 }
452
453 early_depth_test =
454 key->depth.enabled &&
455 !key->alpha.enabled &&
456 !shader->info.uses_kill &&
457 !shader->info.writes_z;
458
459 if(early_depth_test)
460 generate_depth(builder, key,
461 type, &mask,
462 z, depth_ptr);
463
464 lp_build_tgsi_soa(builder, tokens, type, &mask,
465 consts_ptr, interp->pos, interp->inputs,
466 outputs, sampler);
467
468 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
469 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
470 if(outputs[attrib][chan]) {
471 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
472 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
473
474 switch (shader->info.output_semantic_name[attrib]) {
475 case TGSI_SEMANTIC_COLOR:
476 {
477 unsigned cbuf = shader->info.output_semantic_index[attrib];
478
479 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
480
481 /* Alpha test */
482 /* XXX: should the alpha reference value be passed separately? */
483 /* XXX: should only test the final assignment to alpha */
484 if(cbuf == 0 && chan == 3) {
485 LLVMValueRef alpha = out;
486 LLVMValueRef alpha_ref_value;
487 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
488 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
489 lp_build_alpha_test(builder, &key->alpha, type,
490 &mask, alpha, alpha_ref_value);
491 }
492
493 color[cbuf][chan] = out;
494 break;
495 }
496
497 case TGSI_SEMANTIC_POSITION:
498 if(chan == 2)
499 z = out;
500 break;
501 }
502 }
503 }
504 }
505
506 if(!early_depth_test)
507 generate_depth(builder, key,
508 type, &mask,
509 z, depth_ptr);
510
511 lp_build_mask_end(&mask);
512
513 lp_build_flow_scope_end(flow);
514
515 lp_build_flow_destroy(flow);
516
517 *pmask = mask.value;
518
519 }
520
521
522 /**
523 * Generate color blending and color output.
524 */
525 static void
526 generate_blend(const struct pipe_blend_state *blend,
527 LLVMBuilderRef builder,
528 struct lp_type type,
529 LLVMValueRef context_ptr,
530 LLVMValueRef mask,
531 LLVMValueRef *src,
532 LLVMValueRef dst_ptr)
533 {
534 struct lp_build_context bld;
535 struct lp_build_flow_context *flow;
536 struct lp_build_mask_context mask_ctx;
537 LLVMTypeRef vec_type;
538 LLVMTypeRef int_vec_type;
539 LLVMValueRef const_ptr;
540 LLVMValueRef con[4];
541 LLVMValueRef dst[4];
542 LLVMValueRef res[4];
543 unsigned chan;
544
545 lp_build_context_init(&bld, builder, type);
546
547 flow = lp_build_flow_create(builder);
548
549 /* we'll use this mask context to skip blending if all pixels are dead */
550 lp_build_mask_begin(&mask_ctx, flow, type, mask);
551
552 vec_type = lp_build_vec_type(type);
553 int_vec_type = lp_build_int_vec_type(type);
554
555 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
556 const_ptr = LLVMBuildBitCast(builder, const_ptr,
557 LLVMPointerType(vec_type, 0), "");
558
559 for(chan = 0; chan < 4; ++chan) {
560 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
561 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
562
563 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
564
565 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
566 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
567 }
568
569 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
570
571 for(chan = 0; chan < 4; ++chan) {
572 if(blend->rt[0].colormask & (1 << chan)) {
573 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
574 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
575 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
576 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
577 }
578 }
579
580 lp_build_mask_end(&mask_ctx);
581 lp_build_flow_destroy(flow);
582 }
583
584
585 /**
586 * Generate the runtime callable function for the whole fragment pipeline.
587 * Note that the function which we generate operates on a block of 16
588 * pixels at at time. The block contains 2x2 quads. Each quad contains
589 * 2x2 pixels.
590 */
591 static void
592 generate_fragment(struct llvmpipe_context *lp,
593 struct lp_fragment_shader *shader,
594 struct lp_fragment_shader_variant *variant,
595 unsigned do_tri_test)
596 {
597 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
598 const struct lp_fragment_shader_variant_key *key = &variant->key;
599 struct lp_type fs_type;
600 struct lp_type blend_type;
601 LLVMTypeRef fs_elem_type;
602 LLVMTypeRef fs_vec_type;
603 LLVMTypeRef fs_int_vec_type;
604 LLVMTypeRef blend_vec_type;
605 LLVMTypeRef blend_int_vec_type;
606 LLVMTypeRef arg_types[14];
607 LLVMTypeRef func_type;
608 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
609 LLVMValueRef context_ptr;
610 LLVMValueRef x;
611 LLVMValueRef y;
612 LLVMValueRef a0_ptr;
613 LLVMValueRef dadx_ptr;
614 LLVMValueRef dady_ptr;
615 LLVMValueRef color_ptr_ptr;
616 LLVMValueRef depth_ptr;
617 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
618 LLVMBasicBlockRef block;
619 LLVMBuilderRef builder;
620 LLVMValueRef x0;
621 LLVMValueRef y0;
622 struct lp_build_sampler_soa *sampler;
623 struct lp_build_interp_soa_context interp;
624 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
625 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
626 LLVMValueRef blend_mask;
627 LLVMValueRef blend_in_color[NUM_CHANNELS];
628 LLVMValueRef function;
629 unsigned num_fs;
630 unsigned i;
631 unsigned chan;
632 unsigned cbuf;
633
634
635 /* TODO: actually pick these based on the fs and color buffer
636 * characteristics. */
637
638 memset(&fs_type, 0, sizeof fs_type);
639 fs_type.floating = TRUE; /* floating point values */
640 fs_type.sign = TRUE; /* values are signed */
641 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
642 fs_type.width = 32; /* 32-bit float */
643 fs_type.length = 4; /* 4 elements per vector */
644 num_fs = 4; /* number of quads per block */
645
646 memset(&blend_type, 0, sizeof blend_type);
647 blend_type.floating = FALSE; /* values are integers */
648 blend_type.sign = FALSE; /* values are unsigned */
649 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
650 blend_type.width = 8; /* 8-bit ubyte values */
651 blend_type.length = 16; /* 16 elements per vector */
652
653 /*
654 * Generate the function prototype. Any change here must be reflected in
655 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
656 */
657
658 fs_elem_type = lp_build_elem_type(fs_type);
659 fs_vec_type = lp_build_vec_type(fs_type);
660 fs_int_vec_type = lp_build_int_vec_type(fs_type);
661
662 blend_vec_type = lp_build_vec_type(blend_type);
663 blend_int_vec_type = lp_build_int_vec_type(blend_type);
664
665 arg_types[0] = screen->context_ptr_type; /* context */
666 arg_types[1] = LLVMInt32Type(); /* x */
667 arg_types[2] = LLVMInt32Type(); /* y */
668 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
669 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
670 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
671 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
672 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
673 arg_types[8] = LLVMInt32Type(); /* c0 */
674 arg_types[9] = LLVMInt32Type(); /* c1 */
675 arg_types[10] = LLVMInt32Type(); /* c2 */
676 /* Note: the step arrays are built as int32[16] but we interpret
677 * them here as int32_vec4[4].
678 */
679 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
680 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
681 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
682
683 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
684
685 function = LLVMAddFunction(screen->module, "shader", func_type);
686 LLVMSetFunctionCallConv(function, LLVMCCallConv);
687
688 variant->function[do_tri_test] = function;
689
690
691 /* XXX: need to propagate noalias down into color param now we are
692 * passing a pointer-to-pointer?
693 */
694 for(i = 0; i < Elements(arg_types); ++i)
695 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
696 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
697
698 context_ptr = LLVMGetParam(function, 0);
699 x = LLVMGetParam(function, 1);
700 y = LLVMGetParam(function, 2);
701 a0_ptr = LLVMGetParam(function, 3);
702 dadx_ptr = LLVMGetParam(function, 4);
703 dady_ptr = LLVMGetParam(function, 5);
704 color_ptr_ptr = LLVMGetParam(function, 6);
705 depth_ptr = LLVMGetParam(function, 7);
706 c0 = LLVMGetParam(function, 8);
707 c1 = LLVMGetParam(function, 9);
708 c2 = LLVMGetParam(function, 10);
709 step0_ptr = LLVMGetParam(function, 11);
710 step1_ptr = LLVMGetParam(function, 12);
711 step2_ptr = LLVMGetParam(function, 13);
712
713 lp_build_name(context_ptr, "context");
714 lp_build_name(x, "x");
715 lp_build_name(y, "y");
716 lp_build_name(a0_ptr, "a0");
717 lp_build_name(dadx_ptr, "dadx");
718 lp_build_name(dady_ptr, "dady");
719 lp_build_name(color_ptr_ptr, "color_ptr");
720 lp_build_name(depth_ptr, "depth");
721 lp_build_name(c0, "c0");
722 lp_build_name(c1, "c1");
723 lp_build_name(c2, "c2");
724 lp_build_name(step0_ptr, "step0");
725 lp_build_name(step1_ptr, "step1");
726 lp_build_name(step2_ptr, "step2");
727
728 /*
729 * Function body
730 */
731
732 block = LLVMAppendBasicBlock(function, "entry");
733 builder = LLVMCreateBuilder();
734 LLVMPositionBuilderAtEnd(builder, block);
735
736 generate_pos0(builder, x, y, &x0, &y0);
737
738 lp_build_interp_soa_init(&interp,
739 shader->base.tokens,
740 key->flatshade,
741 builder, fs_type,
742 a0_ptr, dadx_ptr, dady_ptr,
743 x0, y0);
744
745 /* code generated texture sampling */
746 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
747
748 /* loop over quads in the block */
749 for(i = 0; i < num_fs; ++i) {
750 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
751 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
752 LLVMValueRef depth_ptr_i;
753 int cbuf;
754
755 if(i != 0)
756 lp_build_interp_soa_update(&interp, i);
757
758 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
759
760 generate_fs(lp, shader, key,
761 builder,
762 fs_type,
763 context_ptr,
764 i,
765 &interp,
766 sampler,
767 &fs_mask[i], /* output */
768 out_color,
769 depth_ptr_i,
770 do_tri_test,
771 c0, c1, c2,
772 step0_ptr, step1_ptr, step2_ptr);
773
774 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
775 for(chan = 0; chan < NUM_CHANNELS; ++chan)
776 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
777 }
778
779 sampler->destroy(sampler);
780
781 /* Loop over color outputs / color buffers to do blending.
782 */
783 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
784 LLVMValueRef color_ptr;
785 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
786
787 /*
788 * Convert the fs's output color and mask to fit to the blending type.
789 */
790 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
791 lp_build_conv(builder, fs_type, blend_type,
792 fs_out_color[cbuf][chan], num_fs,
793 &blend_in_color[chan], 1);
794 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
795 }
796
797 lp_build_conv_mask(builder, fs_type, blend_type,
798 fs_mask, num_fs,
799 &blend_mask, 1);
800
801 color_ptr = LLVMBuildLoad(builder,
802 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
803 "");
804 lp_build_name(color_ptr, "color_ptr%d", cbuf);
805
806 /*
807 * Blending.
808 */
809 generate_blend(&key->blend,
810 builder,
811 blend_type,
812 context_ptr,
813 blend_mask,
814 blend_in_color,
815 color_ptr);
816 }
817
818 LLVMBuildRetVoid(builder);
819
820 LLVMDisposeBuilder(builder);
821
822
823 /* Verify the LLVM IR. If invalid, dump and abort */
824 #ifdef DEBUG
825 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
826 if (1)
827 LLVMDumpValue(function);
828 abort();
829 }
830 #endif
831
832 /* Apply optimizations to LLVM IR */
833 if (1)
834 LLVMRunFunctionPassManager(screen->pass, function);
835
836 if (LP_DEBUG & DEBUG_JIT) {
837 /* Print the LLVM IR to stderr */
838 LLVMDumpValue(function);
839 debug_printf("\n");
840 }
841
842 /*
843 * Translate the LLVM IR into machine code.
844 */
845 variant->jit_function[do_tri_test] = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, function);
846
847 if (LP_DEBUG & DEBUG_ASM)
848 lp_disassemble(variant->jit_function[do_tri_test]);
849 }
850
851
852 static struct lp_fragment_shader_variant *
853 generate_variant(struct llvmpipe_context *lp,
854 struct lp_fragment_shader *shader,
855 const struct lp_fragment_shader_variant_key *key)
856 {
857 struct lp_fragment_shader_variant *variant;
858
859 if (LP_DEBUG & DEBUG_JIT) {
860 unsigned i;
861
862 tgsi_dump(shader->base.tokens, 0);
863 if(key->depth.enabled) {
864 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
865 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
866 debug_printf("depth.writemask = %u\n", key->depth.writemask);
867 }
868 if(key->alpha.enabled) {
869 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
870 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
871 }
872 if(key->blend.logicop_enable) {
873 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
874 }
875 else if(key->blend.rt[0].blend_enable) {
876 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
877 debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
878 debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
879 debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
880 debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
881 debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
882 }
883 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
884 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
885 if(key->sampler[i].format) {
886 debug_printf("sampler[%u] = \n", i);
887 debug_printf(" .format = %s\n",
888 util_format_name(key->sampler[i].format));
889 debug_printf(" .target = %s\n",
890 util_dump_tex_target(key->sampler[i].target, TRUE));
891 debug_printf(" .pot = %u %u %u\n",
892 key->sampler[i].pot_width,
893 key->sampler[i].pot_height,
894 key->sampler[i].pot_depth);
895 debug_printf(" .wrap = %s %s %s\n",
896 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
897 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
898 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
899 debug_printf(" .min_img_filter = %s\n",
900 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
901 debug_printf(" .min_mip_filter = %s\n",
902 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
903 debug_printf(" .mag_img_filter = %s\n",
904 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
905 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
906 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
907 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
908 }
909 }
910 }
911
912 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
913 if(!variant)
914 return NULL;
915
916 variant->shader = shader;
917 memcpy(&variant->key, key, sizeof *key);
918
919 generate_fragment(lp, shader, variant, 0);
920 generate_fragment(lp, shader, variant, 1);
921
922 /* insert new variant into linked list */
923 variant->next = shader->variants;
924 shader->variants = variant;
925
926 return variant;
927 }
928
929
930 void *
931 llvmpipe_create_fs_state(struct pipe_context *pipe,
932 const struct pipe_shader_state *templ)
933 {
934 struct lp_fragment_shader *shader;
935
936 shader = CALLOC_STRUCT(lp_fragment_shader);
937 if (!shader)
938 return NULL;
939
940 /* get/save the summary info for this shader */
941 tgsi_scan_shader(templ->tokens, &shader->info);
942
943 /* we need to keep a local copy of the tokens */
944 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
945
946 return shader;
947 }
948
949
950 void
951 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
952 {
953 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
954
955 if (llvmpipe->fs == fs)
956 return;
957
958 draw_flush(llvmpipe->draw);
959
960 llvmpipe->fs = fs;
961
962 llvmpipe->dirty |= LP_NEW_FS;
963 }
964
965
966 void
967 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
968 {
969 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
970 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
971 struct lp_fragment_shader *shader = fs;
972 struct lp_fragment_shader_variant *variant;
973
974 assert(fs != llvmpipe->fs);
975 (void) llvmpipe;
976
977 /*
978 * XXX: we need to flush the context until we have some sort of reference
979 * counting in fragment shaders as they may still be binned
980 */
981 draw_flush(llvmpipe->draw);
982 lp_setup_flush(llvmpipe->setup, 0);
983
984 variant = shader->variants;
985 while(variant) {
986 struct lp_fragment_shader_variant *next = variant->next;
987 unsigned i;
988
989 for (i = 0; i < Elements(variant->function); i++) {
990 if (variant->function[i]) {
991 if (variant->jit_function[i])
992 LLVMFreeMachineCodeForFunction(screen->engine,
993 variant->function[i]);
994 LLVMDeleteFunction(variant->function[i]);
995 }
996 }
997
998 FREE(variant);
999
1000 variant = next;
1001 }
1002
1003 FREE((void *) shader->base.tokens);
1004 FREE(shader);
1005 }
1006
1007
1008
1009 void
1010 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1011 uint shader, uint index,
1012 struct pipe_buffer *constants)
1013 {
1014 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1015 unsigned size = constants ? constants->size : 0;
1016 const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
1017
1018 assert(shader < PIPE_SHADER_TYPES);
1019 assert(index == 0);
1020
1021 if(llvmpipe->constants[shader] == constants)
1022 return;
1023
1024 draw_flush(llvmpipe->draw);
1025
1026 /* note: reference counting */
1027 pipe_buffer_reference(&llvmpipe->constants[shader], constants);
1028
1029 if(shader == PIPE_SHADER_VERTEX) {
1030 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1031 data, size);
1032 }
1033
1034 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1035 }
1036
1037
1038 /**
1039 * We need to generate several variants of the fragment pipeline to match
1040 * all the combinations of the contributing state atoms.
1041 *
1042 * TODO: there is actually no reason to tie this to context state -- the
1043 * generated code could be cached globally in the screen.
1044 */
1045 static void
1046 make_variant_key(struct llvmpipe_context *lp,
1047 struct lp_fragment_shader *shader,
1048 struct lp_fragment_shader_variant_key *key)
1049 {
1050 unsigned i;
1051
1052 memset(key, 0, sizeof *key);
1053
1054 if(lp->framebuffer.zsbuf &&
1055 lp->depth_stencil->depth.enabled) {
1056 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1057 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1058 }
1059
1060 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1061 if(key->alpha.enabled)
1062 key->alpha.func = lp->depth_stencil->alpha.func;
1063 /* alpha.ref_value is passed in jit_context */
1064
1065 key->flatshade = lp->rasterizer->flatshade;
1066 key->scissor = lp->rasterizer->scissor;
1067
1068 if (lp->framebuffer.nr_cbufs) {
1069 memcpy(&key->blend, lp->blend, sizeof key->blend);
1070 }
1071
1072 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1073 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1074 const struct util_format_description *format_desc;
1075 unsigned chan;
1076
1077 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1078 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1079 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1080
1081 /* mask out color channels not present in the color buffer.
1082 * Should be simple to incorporate per-cbuf writemasks:
1083 */
1084 for(chan = 0; chan < 4; ++chan) {
1085 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1086
1087 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1088 key->blend.rt[0].colormask |= (1 << chan);
1089 }
1090 }
1091
1092 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1093 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1094 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i]->texture, lp->sampler[i]);
1095 }
1096
1097
1098 /**
1099 * Update fragment state. This is called just prior to drawing
1100 * something when some fragment-related state has changed.
1101 */
1102 void
1103 llvmpipe_update_fs(struct llvmpipe_context *lp)
1104 {
1105 struct lp_fragment_shader *shader = lp->fs;
1106 struct lp_fragment_shader_variant_key key;
1107 struct lp_fragment_shader_variant *variant;
1108 boolean opaque;
1109
1110 make_variant_key(lp, shader, &key);
1111
1112 variant = shader->variants;
1113 while(variant) {
1114 if(memcmp(&variant->key, &key, sizeof key) == 0)
1115 break;
1116
1117 variant = variant->next;
1118 }
1119
1120 if (!variant) {
1121 int64_t t0, t1;
1122 int64_t dt;
1123 t0 = os_time_get();
1124
1125 variant = generate_variant(lp, shader, &key);
1126
1127 t1 = os_time_get();
1128 dt = t1 - t0;
1129 LP_COUNT_ADD(llvm_compile_time, dt);
1130 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1131 }
1132
1133 shader->current = variant;
1134
1135 /* TODO: put this in the variant */
1136 /* TODO: most of these can be relaxed, in particular the colormask */
1137 opaque = !key.blend.logicop_enable &&
1138 !key.blend.rt[0].blend_enable &&
1139 key.blend.rt[0].colormask == 0xf &&
1140 !key.alpha.enabled &&
1141 !key.depth.enabled &&
1142 !key.scissor &&
1143 !shader->info.uses_kill
1144 ? TRUE : FALSE;
1145
1146 lp_setup_set_fs_functions(lp->setup,
1147 shader->current->jit_function[0],
1148 shader->current->jit_function[1],
1149 opaque);
1150 }