Merge branch 'lp-offset-twoside'
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102 #include <llvm-c/BitWriter.h>
103
104
105 static unsigned fs_no = 0;
106
107
108
109 /**
110 * Expand the relevent bits of mask_input to a 4-dword mask for the
111 * four pixels in a 2x2 quad. This will set the four elements of the
112 * quad mask vector to 0 or ~0.
113 *
114 * \param quad which quad of the quad group to test, in [0,3]
115 * \param mask_input bitwise mask for the whole 4x4 stamp
116 */
117 static LLVMValueRef
118 generate_quad_mask(LLVMBuilderRef builder,
119 struct lp_type fs_type,
120 unsigned quad,
121 LLVMValueRef mask_input) /* int32 */
122 {
123 struct lp_type mask_type;
124 LLVMTypeRef i32t = LLVMInt32Type();
125 LLVMValueRef bits[4];
126 LLVMValueRef mask;
127 int shift;
128
129 /*
130 * XXX: We'll need a different path for 16 x u8
131 */
132 assert(fs_type.width == 32);
133 assert(fs_type.length == 4);
134 mask_type = lp_int_type(fs_type);
135
136 /*
137 * mask_input >>= (quad * 4)
138 */
139
140 switch (quad) {
141 case 0:
142 shift = 0;
143 break;
144 case 1:
145 shift = 2;
146 break;
147 case 2:
148 shift = 8;
149 break;
150 case 3:
151 shift = 10;
152 break;
153 default:
154 assert(0);
155 shift = 0;
156 }
157
158 mask_input = LLVMBuildLShr(builder,
159 mask_input,
160 LLVMConstInt(i32t, shift, 0),
161 "");
162
163 /*
164 * mask = { mask_input & (1 << i), for i in [0,3] }
165 */
166
167 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
168
169 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
170 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
171 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
172 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
173
174 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
175
176 /*
177 * mask = mask != 0 ? ~0 : 0
178 */
179
180 mask = lp_build_compare(builder,
181 mask_type, PIPE_FUNC_NOTEQUAL,
182 mask,
183 lp_build_const_int_vec(mask_type, 0));
184
185 return mask;
186 }
187
188
189 #define EARLY_DEPTH_TEST 0x1
190 #define LATE_DEPTH_TEST 0x2
191 #define EARLY_DEPTH_WRITE 0x4
192 #define LATE_DEPTH_WRITE 0x8
193
194 static int
195 find_output_by_semantic( const struct tgsi_shader_info *info,
196 unsigned semantic,
197 unsigned index )
198 {
199 int i;
200
201 for (i = 0; i < info->num_outputs; i++)
202 if (info->output_semantic_name[i] == semantic &&
203 info->output_semantic_index[i] == index)
204 return i;
205
206 return -1;
207 }
208
209
210 /**
211 * Generate the fragment shader, depth/stencil test, and alpha tests.
212 * \param i which quad in the tile, in range [0,3]
213 * \param partial_mask if 1, do mask_input testing
214 */
215 static void
216 generate_fs(struct lp_fragment_shader *shader,
217 const struct lp_fragment_shader_variant_key *key,
218 LLVMBuilderRef builder,
219 struct lp_type type,
220 LLVMValueRef context_ptr,
221 unsigned i,
222 struct lp_build_interp_soa_context *interp,
223 struct lp_build_sampler_soa *sampler,
224 LLVMValueRef *pmask,
225 LLVMValueRef (*color)[4],
226 LLVMValueRef depth_ptr,
227 LLVMValueRef facing,
228 unsigned partial_mask,
229 LLVMValueRef mask_input,
230 LLVMValueRef counter)
231 {
232 const struct util_format_description *zs_format_desc = NULL;
233 const struct tgsi_token *tokens = shader->base.tokens;
234 LLVMTypeRef vec_type;
235 LLVMValueRef consts_ptr;
236 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
237 LLVMValueRef z;
238 LLVMValueRef zs_value = NULL;
239 LLVMValueRef stencil_refs[2];
240 struct lp_build_mask_context mask;
241 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
242 shader->info.base.num_inputs < 3 &&
243 shader->info.base.num_instructions < 8);
244 unsigned attrib;
245 unsigned chan;
246 unsigned cbuf;
247 unsigned depth_mode;
248
249 if (key->depth.enabled ||
250 key->stencil[0].enabled ||
251 key->stencil[1].enabled) {
252
253 zs_format_desc = util_format_description(key->zsbuf_format);
254 assert(zs_format_desc);
255
256 if (!shader->info.base.writes_z) {
257 if (key->alpha.enabled || shader->info.base.uses_kill)
258 /* With alpha test and kill, can do the depth test early
259 * and hopefully eliminate some quads. But need to do a
260 * special deferred depth write once the final mask value
261 * is known.
262 */
263 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
264 else
265 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
266 }
267 else {
268 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
269 }
270
271 if (!(key->depth.enabled && key->depth.writemask) &&
272 !(key->stencil[0].enabled && key->stencil[0].writemask))
273 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
274 }
275 else {
276 depth_mode = 0;
277 }
278
279 assert(i < 4);
280
281 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
282 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
283
284 vec_type = lp_build_vec_type(type);
285
286 consts_ptr = lp_jit_context_constants(builder, context_ptr);
287
288 memset(outputs, 0, sizeof outputs);
289
290 /* Declare the color and z variables */
291 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
292 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
293 color[cbuf][chan] = lp_build_alloca(builder, vec_type, "color");
294 }
295 }
296
297 /* do triangle edge testing */
298 if (partial_mask) {
299 *pmask = generate_quad_mask(builder, type,
300 i, mask_input);
301 }
302 else {
303 *pmask = lp_build_const_int_vec(type, ~0);
304 }
305
306 /* 'mask' will control execution based on quad's pixel alive/killed state */
307 lp_build_mask_begin(&mask, builder, type, *pmask);
308
309 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
310 lp_build_mask_check(&mask);
311
312 lp_build_interp_soa_update_pos(interp, i);
313 z = interp->pos[2];
314
315 if (depth_mode & EARLY_DEPTH_TEST) {
316 lp_build_depth_stencil_test(builder,
317 &key->depth,
318 key->stencil,
319 type,
320 zs_format_desc,
321 &mask,
322 stencil_refs,
323 z,
324 depth_ptr, facing,
325 &zs_value,
326 !simple_shader);
327
328 if (depth_mode & EARLY_DEPTH_WRITE) {
329 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
330 }
331 }
332
333 lp_build_interp_soa_update_inputs(interp, i);
334
335 /* Build the actual shader */
336 lp_build_tgsi_soa(builder, tokens, type, &mask,
337 consts_ptr, interp->pos, interp->inputs,
338 outputs, sampler, &shader->info.base);
339
340
341 /* Alpha test */
342 if (key->alpha.enabled) {
343 int color0 = find_output_by_semantic(&shader->info.base,
344 TGSI_SEMANTIC_COLOR,
345 0);
346
347 if (color0 != -1 && outputs[color0][3]) {
348 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
349 LLVMValueRef alpha_ref_value;
350
351 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
352 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
353
354 lp_build_alpha_test(builder, key->alpha.func, type,
355 &mask, alpha, alpha_ref_value,
356 (depth_mode & LATE_DEPTH_TEST) != 0);
357 }
358 }
359
360 /* Late Z test */
361 if (depth_mode & LATE_DEPTH_TEST) {
362 int pos0 = find_output_by_semantic(&shader->info.base,
363 TGSI_SEMANTIC_POSITION,
364 0);
365
366 if (pos0 != -1 && outputs[pos0][2]) {
367 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
368 }
369
370 lp_build_depth_stencil_test(builder,
371 &key->depth,
372 key->stencil,
373 type,
374 zs_format_desc,
375 &mask,
376 stencil_refs,
377 z,
378 depth_ptr, facing,
379 &zs_value,
380 !simple_shader);
381 /* Late Z write */
382 if (depth_mode & LATE_DEPTH_WRITE) {
383 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
384 }
385 }
386 else if ((depth_mode & EARLY_DEPTH_TEST) &&
387 (depth_mode & LATE_DEPTH_WRITE))
388 {
389 /* Need to apply a reduced mask to the depth write. Reload the
390 * depth value, update from zs_value with the new mask value and
391 * write that out.
392 */
393 lp_build_deferred_depth_write(builder,
394 type,
395 zs_format_desc,
396 &mask,
397 depth_ptr,
398 zs_value);
399 }
400
401
402 /* Color write */
403 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
404 {
405 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR &&
406 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs)
407 {
408 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
409 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
410 if(outputs[attrib][chan]) {
411 /* XXX: just initialize outputs to point at colors[] and
412 * skip this.
413 */
414 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
415 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
416 LLVMBuildStore(builder, out, color[cbuf][chan]);
417 }
418 }
419 }
420 }
421
422 if (counter)
423 lp_build_occlusion_count(builder, type,
424 lp_build_mask_value(&mask), counter);
425
426 *pmask = lp_build_mask_end(&mask);
427 }
428
429
430 /**
431 * Generate color blending and color output.
432 * \param rt the render target index (to index blend, colormask state)
433 * \param type the pixel color type
434 * \param context_ptr pointer to the runtime JIT context
435 * \param mask execution mask (active fragment/pixel mask)
436 * \param src colors from the fragment shader
437 * \param dst_ptr the destination color buffer pointer
438 */
439 static void
440 generate_blend(const struct pipe_blend_state *blend,
441 unsigned rt,
442 LLVMBuilderRef builder,
443 struct lp_type type,
444 LLVMValueRef context_ptr,
445 LLVMValueRef mask,
446 LLVMValueRef *src,
447 LLVMValueRef dst_ptr,
448 boolean do_branch)
449 {
450 struct lp_build_context bld;
451 struct lp_build_mask_context mask_ctx;
452 LLVMTypeRef vec_type;
453 LLVMValueRef const_ptr;
454 LLVMValueRef con[4];
455 LLVMValueRef dst[4];
456 LLVMValueRef res[4];
457 unsigned chan;
458
459 lp_build_context_init(&bld, builder, type);
460
461 lp_build_mask_begin(&mask_ctx, builder, type, mask);
462 if (do_branch)
463 lp_build_mask_check(&mask_ctx);
464
465 vec_type = lp_build_vec_type(type);
466
467 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
468 const_ptr = LLVMBuildBitCast(builder, const_ptr,
469 LLVMPointerType(vec_type, 0), "");
470
471 /* load constant blend color and colors from the dest color buffer */
472 for(chan = 0; chan < 4; ++chan) {
473 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
474 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
475
476 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
477
478 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
479 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
480 }
481
482 /* do blend */
483 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
484
485 /* store results to color buffer */
486 for(chan = 0; chan < 4; ++chan) {
487 if(blend->rt[rt].colormask & (1 << chan)) {
488 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
489 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
490 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
491 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
492 }
493 }
494
495 lp_build_mask_end(&mask_ctx);
496 }
497
498
499 /**
500 * Generate the runtime callable function for the whole fragment pipeline.
501 * Note that the function which we generate operates on a block of 16
502 * pixels at at time. The block contains 2x2 quads. Each quad contains
503 * 2x2 pixels.
504 */
505 static void
506 generate_fragment(struct llvmpipe_screen *screen,
507 struct lp_fragment_shader *shader,
508 struct lp_fragment_shader_variant *variant,
509 unsigned partial_mask)
510 {
511 const struct lp_fragment_shader_variant_key *key = &variant->key;
512 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
513 char func_name[256];
514 struct lp_type fs_type;
515 struct lp_type blend_type;
516 LLVMTypeRef fs_elem_type;
517 LLVMTypeRef fs_int_vec_type;
518 LLVMTypeRef blend_vec_type;
519 LLVMTypeRef arg_types[11];
520 LLVMTypeRef func_type;
521 LLVMValueRef context_ptr;
522 LLVMValueRef x;
523 LLVMValueRef y;
524 LLVMValueRef a0_ptr;
525 LLVMValueRef dadx_ptr;
526 LLVMValueRef dady_ptr;
527 LLVMValueRef color_ptr_ptr;
528 LLVMValueRef depth_ptr;
529 LLVMValueRef mask_input;
530 LLVMValueRef counter = NULL;
531 LLVMBasicBlockRef block;
532 LLVMBuilderRef builder;
533 struct lp_build_sampler_soa *sampler;
534 struct lp_build_interp_soa_context interp;
535 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
536 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
537 LLVMValueRef blend_mask;
538 LLVMValueRef function;
539 LLVMValueRef facing;
540 const struct util_format_description *zs_format_desc;
541 unsigned num_fs;
542 unsigned i;
543 unsigned chan;
544 unsigned cbuf;
545
546 /* Adjust color input interpolation according to flatshade state:
547 */
548 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
549 for (i = 0; i < shader->info.base.num_inputs; i++) {
550 if (inputs[i].interp == LP_INTERP_COLOR) {
551 if (key->flatshade)
552 inputs[i].interp = LP_INTERP_CONSTANT;
553 else
554 inputs[i].interp = LP_INTERP_LINEAR;
555 }
556 }
557
558
559 /* TODO: actually pick these based on the fs and color buffer
560 * characteristics. */
561
562 memset(&fs_type, 0, sizeof fs_type);
563 fs_type.floating = TRUE; /* floating point values */
564 fs_type.sign = TRUE; /* values are signed */
565 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
566 fs_type.width = 32; /* 32-bit float */
567 fs_type.length = 4; /* 4 elements per vector */
568 num_fs = 4; /* number of quads per block */
569
570 memset(&blend_type, 0, sizeof blend_type);
571 blend_type.floating = FALSE; /* values are integers */
572 blend_type.sign = FALSE; /* values are unsigned */
573 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
574 blend_type.width = 8; /* 8-bit ubyte values */
575 blend_type.length = 16; /* 16 elements per vector */
576
577 /*
578 * Generate the function prototype. Any change here must be reflected in
579 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
580 */
581
582 fs_elem_type = lp_build_elem_type(fs_type);
583 fs_int_vec_type = lp_build_int_vec_type(fs_type);
584
585 blend_vec_type = lp_build_vec_type(blend_type);
586
587 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
588 shader->no, variant->no, partial_mask ? "partial" : "whole");
589
590 arg_types[0] = screen->context_ptr_type; /* context */
591 arg_types[1] = LLVMInt32Type(); /* x */
592 arg_types[2] = LLVMInt32Type(); /* y */
593 arg_types[3] = LLVMInt32Type(); /* facing */
594 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
595 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
596 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
597 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
598 arg_types[8] = LLVMPointerType(LLVMInt8Type(), 0); /* depth */
599 arg_types[9] = LLVMInt32Type(); /* mask_input */
600 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
601
602 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
603
604 function = LLVMAddFunction(screen->module, func_name, func_type);
605 LLVMSetFunctionCallConv(function, LLVMCCallConv);
606
607 variant->function[partial_mask] = function;
608
609 /* XXX: need to propagate noalias down into color param now we are
610 * passing a pointer-to-pointer?
611 */
612 for(i = 0; i < Elements(arg_types); ++i)
613 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
614 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
615
616 context_ptr = LLVMGetParam(function, 0);
617 x = LLVMGetParam(function, 1);
618 y = LLVMGetParam(function, 2);
619 facing = LLVMGetParam(function, 3);
620 a0_ptr = LLVMGetParam(function, 4);
621 dadx_ptr = LLVMGetParam(function, 5);
622 dady_ptr = LLVMGetParam(function, 6);
623 color_ptr_ptr = LLVMGetParam(function, 7);
624 depth_ptr = LLVMGetParam(function, 8);
625 mask_input = LLVMGetParam(function, 9);
626
627 lp_build_name(context_ptr, "context");
628 lp_build_name(x, "x");
629 lp_build_name(y, "y");
630 lp_build_name(a0_ptr, "a0");
631 lp_build_name(dadx_ptr, "dadx");
632 lp_build_name(dady_ptr, "dady");
633 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
634 lp_build_name(depth_ptr, "depth");
635 lp_build_name(mask_input, "mask_input");
636
637 if (key->occlusion_count) {
638 counter = LLVMGetParam(function, 10);
639 lp_build_name(counter, "counter");
640 }
641
642 /*
643 * Function body
644 */
645
646 block = LLVMAppendBasicBlock(function, "entry");
647 builder = LLVMCreateBuilder();
648 LLVMPositionBuilderAtEnd(builder, block);
649
650 /*
651 * The shader input interpolation info is not explicitely baked in the
652 * shader key, but everything it derives from (TGSI, and flatshade) is
653 * already included in the shader key.
654 */
655 lp_build_interp_soa_init(&interp,
656 shader->info.base.num_inputs,
657 inputs,
658 builder, fs_type,
659 a0_ptr, dadx_ptr, dady_ptr,
660 x, y);
661
662 /* code generated texture sampling */
663 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
664
665 /* loop over quads in the block */
666 zs_format_desc = util_format_description(key->zsbuf_format);
667
668 for(i = 0; i < num_fs; ++i) {
669 LLVMValueRef depth_offset = LLVMConstInt(LLVMInt32Type(),
670 i*fs_type.length*zs_format_desc->block.bits/8,
671 0);
672 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
673 LLVMValueRef depth_ptr_i;
674
675 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
676
677 generate_fs(shader, key,
678 builder,
679 fs_type,
680 context_ptr,
681 i,
682 &interp,
683 sampler,
684 &fs_mask[i], /* output */
685 out_color,
686 depth_ptr_i,
687 facing,
688 partial_mask,
689 mask_input,
690 counter);
691
692 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
693 for(chan = 0; chan < NUM_CHANNELS; ++chan)
694 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
695 }
696
697 sampler->destroy(sampler);
698
699 /* Loop over color outputs / color buffers to do blending.
700 */
701 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
702 LLVMValueRef color_ptr;
703 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
704 LLVMValueRef blend_in_color[NUM_CHANNELS];
705 unsigned rt;
706
707 /*
708 * Convert the fs's output color and mask to fit to the blending type.
709 */
710 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
711 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
712
713 for (i = 0; i < num_fs; i++) {
714 fs_color_vals[i] =
715 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
716 }
717
718 lp_build_conv(builder, fs_type, blend_type,
719 fs_color_vals,
720 num_fs,
721 &blend_in_color[chan], 1);
722
723 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
724 }
725
726 if (partial_mask || !variant->opaque) {
727 lp_build_conv_mask(builder, fs_type, blend_type,
728 fs_mask, num_fs,
729 &blend_mask, 1);
730 } else {
731 blend_mask = lp_build_const_int_vec(blend_type, ~0);
732 }
733
734 color_ptr = LLVMBuildLoad(builder,
735 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
736 "");
737 lp_build_name(color_ptr, "color_ptr%d", cbuf);
738
739 /* which blend/colormask state to use */
740 rt = key->blend.independent_blend_enable ? cbuf : 0;
741
742 /*
743 * Blending.
744 */
745 {
746 /* Could the 4x4 have been killed?
747 */
748 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
749 !key->alpha.enabled &&
750 !shader->info.base.uses_kill);
751
752 generate_blend(&key->blend,
753 rt,
754 builder,
755 blend_type,
756 context_ptr,
757 blend_mask,
758 blend_in_color,
759 color_ptr,
760 do_branch);
761 }
762 }
763
764 LLVMBuildRetVoid(builder);
765
766 LLVMDisposeBuilder(builder);
767
768
769 /* Verify the LLVM IR. If invalid, dump and abort */
770 #ifdef DEBUG
771 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
772 if (1)
773 lp_debug_dump_value(function);
774 abort();
775 }
776 #endif
777
778 /* Apply optimizations to LLVM IR */
779 LLVMRunFunctionPassManager(screen->pass, function);
780
781 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
782 /* Print the LLVM IR to stderr */
783 lp_debug_dump_value(function);
784 debug_printf("\n");
785 }
786
787 /* Dump byte code to a file */
788 if (0) {
789 LLVMWriteBitcodeToFile(lp_build_module, "llvmpipe.bc");
790 }
791
792 /*
793 * Translate the LLVM IR into machine code.
794 */
795 {
796 void *f = LLVMGetPointerToGlobal(screen->engine, function);
797
798 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
799
800 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
801 lp_disassemble(f);
802 }
803 lp_func_delete_body(function);
804 }
805 }
806
807
808 static void
809 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
810 {
811 unsigned i;
812
813 debug_printf("fs variant %p:\n", (void *) key);
814
815 if (key->flatshade) {
816 debug_printf("flatshade = 1\n");
817 }
818 for (i = 0; i < key->nr_cbufs; ++i) {
819 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
820 }
821 if (key->depth.enabled) {
822 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
823 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
824 debug_printf("depth.writemask = %u\n", key->depth.writemask);
825 }
826
827 for (i = 0; i < 2; ++i) {
828 if (key->stencil[i].enabled) {
829 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
830 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
831 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
832 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
833 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
834 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
835 }
836 }
837
838 if (key->alpha.enabled) {
839 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
840 }
841
842 if (key->occlusion_count) {
843 debug_printf("occlusion_count = 1\n");
844 }
845
846 if (key->blend.logicop_enable) {
847 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
848 }
849 else if (key->blend.rt[0].blend_enable) {
850 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
851 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
852 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
853 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
854 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
855 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
856 }
857 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
858 for (i = 0; i < key->nr_samplers; ++i) {
859 debug_printf("sampler[%u] = \n", i);
860 debug_printf(" .format = %s\n",
861 util_format_name(key->sampler[i].format));
862 debug_printf(" .target = %s\n",
863 util_dump_tex_target(key->sampler[i].target, TRUE));
864 debug_printf(" .pot = %u %u %u\n",
865 key->sampler[i].pot_width,
866 key->sampler[i].pot_height,
867 key->sampler[i].pot_depth);
868 debug_printf(" .wrap = %s %s %s\n",
869 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
870 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
871 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
872 debug_printf(" .min_img_filter = %s\n",
873 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
874 debug_printf(" .min_mip_filter = %s\n",
875 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
876 debug_printf(" .mag_img_filter = %s\n",
877 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
878 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
879 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
880 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
881 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
882 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
883 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
884 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
885 }
886 }
887
888
889 void
890 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
891 {
892 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
893 variant->shader->no, variant->no);
894 tgsi_dump(variant->shader->base.tokens, 0);
895 dump_fs_variant_key(&variant->key);
896 debug_printf("variant->opaque = %u\n", variant->opaque);
897 debug_printf("\n");
898 }
899
900 static struct lp_fragment_shader_variant *
901 generate_variant(struct llvmpipe_screen *screen,
902 struct lp_fragment_shader *shader,
903 const struct lp_fragment_shader_variant_key *key)
904 {
905 struct lp_fragment_shader_variant *variant;
906 boolean fullcolormask;
907
908 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
909 if(!variant)
910 return NULL;
911
912 variant->shader = shader;
913 variant->list_item_global.base = variant;
914 variant->list_item_local.base = variant;
915 variant->no = shader->variants_created++;
916
917 memcpy(&variant->key, key, shader->variant_key_size);
918
919 /*
920 * Determine whether we are touching all channels in the color buffer.
921 */
922 fullcolormask = FALSE;
923 if (key->nr_cbufs == 1) {
924 const struct util_format_description *format_desc;
925 format_desc = util_format_description(key->cbuf_format[0]);
926 if ((~key->blend.rt[0].colormask &
927 util_format_colormask(format_desc)) == 0) {
928 fullcolormask = TRUE;
929 }
930 }
931
932 variant->opaque =
933 !key->blend.logicop_enable &&
934 !key->blend.rt[0].blend_enable &&
935 fullcolormask &&
936 !key->stencil[0].enabled &&
937 !key->alpha.enabled &&
938 !key->depth.enabled &&
939 !shader->info.base.uses_kill
940 ? TRUE : FALSE;
941
942
943 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
944 lp_debug_fs_variant(variant);
945 }
946
947 generate_fragment(screen, shader, variant, RAST_EDGE_TEST);
948
949 if (variant->opaque) {
950 /* Specialized shader, which doesn't need to read the color buffer. */
951 generate_fragment(screen, shader, variant, RAST_WHOLE);
952 } else {
953 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
954 }
955
956 return variant;
957 }
958
959
960 static void *
961 llvmpipe_create_fs_state(struct pipe_context *pipe,
962 const struct pipe_shader_state *templ)
963 {
964 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
965 struct lp_fragment_shader *shader;
966 int nr_samplers;
967 int i;
968
969 shader = CALLOC_STRUCT(lp_fragment_shader);
970 if (!shader)
971 return NULL;
972
973 shader->no = fs_no++;
974 make_empty_list(&shader->variants);
975
976 /* get/save the summary info for this shader */
977 lp_build_tgsi_info(templ->tokens, &shader->info);
978
979 /* we need to keep a local copy of the tokens */
980 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
981
982 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
983 if (shader->draw_data == NULL) {
984 FREE((void *) shader->base.tokens);
985 FREE(shader);
986 return NULL;
987 }
988
989 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
990
991 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
992 sampler[nr_samplers]);
993
994 for (i = 0; i < shader->info.base.num_inputs; i++) {
995 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
996
997 switch (shader->info.base.input_interpolate[i]) {
998 case TGSI_INTERPOLATE_CONSTANT:
999 shader->inputs[i].interp = LP_INTERP_CONSTANT;
1000 break;
1001 case TGSI_INTERPOLATE_LINEAR:
1002 shader->inputs[i].interp = LP_INTERP_LINEAR;
1003 break;
1004 case TGSI_INTERPOLATE_PERSPECTIVE:
1005 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
1006 break;
1007 default:
1008 assert(0);
1009 break;
1010 }
1011
1012 switch (shader->info.base.input_semantic_name[i]) {
1013 case TGSI_SEMANTIC_COLOR:
1014 /* Colors may be either linearly or constant interpolated in
1015 * the fragment shader, but that information isn't available
1016 * here. Mark color inputs and fix them up later.
1017 */
1018 shader->inputs[i].interp = LP_INTERP_COLOR;
1019 break;
1020 case TGSI_SEMANTIC_FACE:
1021 shader->inputs[i].interp = LP_INTERP_FACING;
1022 break;
1023 case TGSI_SEMANTIC_POSITION:
1024 /* Position was already emitted above
1025 */
1026 shader->inputs[i].interp = LP_INTERP_POSITION;
1027 shader->inputs[i].src_index = 0;
1028 continue;
1029 }
1030
1031 shader->inputs[i].src_index = i+1;
1032 }
1033
1034 if (LP_DEBUG & DEBUG_TGSI) {
1035 unsigned attrib;
1036 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
1037 tgsi_dump(templ->tokens, 0);
1038 debug_printf("usage masks:\n");
1039 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
1040 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
1041 debug_printf(" IN[%u].%s%s%s%s\n",
1042 attrib,
1043 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1044 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1045 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1046 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1047 }
1048 debug_printf("\n");
1049 }
1050
1051 return shader;
1052 }
1053
1054
1055 static void
1056 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1057 {
1058 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1059
1060 if (llvmpipe->fs == fs)
1061 return;
1062
1063 draw_flush(llvmpipe->draw);
1064
1065 llvmpipe->fs = (struct lp_fragment_shader *) fs;
1066
1067 draw_bind_fragment_shader(llvmpipe->draw,
1068 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1069
1070 llvmpipe->dirty |= LP_NEW_FS;
1071 }
1072
1073 static void
1074 remove_shader_variant(struct llvmpipe_context *lp,
1075 struct lp_fragment_shader_variant *variant)
1076 {
1077 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
1078 unsigned i;
1079
1080 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1081 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
1082 variant->shader->no, variant->no, variant->shader->variants_created,
1083 variant->shader->variants_cached, lp->nr_fs_variants);
1084 }
1085 for (i = 0; i < Elements(variant->function); i++) {
1086 if (variant->function[i]) {
1087 if (variant->jit_function[i])
1088 LLVMFreeMachineCodeForFunction(screen->engine,
1089 variant->function[i]);
1090 LLVMDeleteFunction(variant->function[i]);
1091 }
1092 }
1093 remove_from_list(&variant->list_item_local);
1094 variant->shader->variants_cached--;
1095 remove_from_list(&variant->list_item_global);
1096 lp->nr_fs_variants--;
1097 FREE(variant);
1098 }
1099
1100 static void
1101 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1102 {
1103 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1104 struct lp_fragment_shader *shader = fs;
1105 struct lp_fs_variant_list_item *li;
1106
1107 assert(fs != llvmpipe->fs);
1108 (void) llvmpipe;
1109
1110 /*
1111 * XXX: we need to flush the context until we have some sort of reference
1112 * counting in fragment shaders as they may still be binned
1113 * Flushing alone might not sufficient we need to wait on it too.
1114 */
1115
1116 llvmpipe_finish(pipe, __FUNCTION__);
1117
1118 li = first_elem(&shader->variants);
1119 while(!at_end(&shader->variants, li)) {
1120 struct lp_fs_variant_list_item *next = next_elem(li);
1121 remove_shader_variant(llvmpipe, li->base);
1122 li = next;
1123 }
1124
1125 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1126
1127 assert(shader->variants_cached == 0);
1128 FREE((void *) shader->base.tokens);
1129 FREE(shader);
1130 }
1131
1132
1133
1134 static void
1135 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1136 uint shader, uint index,
1137 struct pipe_resource *constants)
1138 {
1139 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1140 unsigned size = constants ? constants->width0 : 0;
1141 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1142
1143 assert(shader < PIPE_SHADER_TYPES);
1144 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1145
1146 if(llvmpipe->constants[shader][index] == constants)
1147 return;
1148
1149 draw_flush(llvmpipe->draw);
1150
1151 /* note: reference counting */
1152 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1153
1154 if(shader == PIPE_SHADER_VERTEX ||
1155 shader == PIPE_SHADER_GEOMETRY) {
1156 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1157 index, data, size);
1158 }
1159
1160 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1161 }
1162
1163
1164 /**
1165 * Return the blend factor equivalent to a destination alpha of one.
1166 */
1167 static INLINE unsigned
1168 force_dst_alpha_one(unsigned factor)
1169 {
1170 switch(factor) {
1171 case PIPE_BLENDFACTOR_DST_ALPHA:
1172 return PIPE_BLENDFACTOR_ONE;
1173 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1174 return PIPE_BLENDFACTOR_ZERO;
1175 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1176 return PIPE_BLENDFACTOR_ZERO;
1177 }
1178
1179 return factor;
1180 }
1181
1182
1183 /**
1184 * We need to generate several variants of the fragment pipeline to match
1185 * all the combinations of the contributing state atoms.
1186 *
1187 * TODO: there is actually no reason to tie this to context state -- the
1188 * generated code could be cached globally in the screen.
1189 */
1190 static void
1191 make_variant_key(struct llvmpipe_context *lp,
1192 struct lp_fragment_shader *shader,
1193 struct lp_fragment_shader_variant_key *key)
1194 {
1195 unsigned i;
1196
1197 memset(key, 0, shader->variant_key_size);
1198
1199 if (lp->framebuffer.zsbuf) {
1200 if (lp->depth_stencil->depth.enabled) {
1201 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1202 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1203 }
1204 if (lp->depth_stencil->stencil[0].enabled) {
1205 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1206 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1207 }
1208 }
1209
1210 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1211 if(key->alpha.enabled)
1212 key->alpha.func = lp->depth_stencil->alpha.func;
1213 /* alpha.ref_value is passed in jit_context */
1214
1215 key->flatshade = lp->rasterizer->flatshade;
1216 if (lp->active_query_count) {
1217 key->occlusion_count = TRUE;
1218 }
1219
1220 if (lp->framebuffer.nr_cbufs) {
1221 memcpy(&key->blend, lp->blend, sizeof key->blend);
1222 }
1223
1224 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1225 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1226 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1227 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1228 const struct util_format_description *format_desc;
1229
1230 key->cbuf_format[i] = format;
1231
1232 format_desc = util_format_description(format);
1233 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1234 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1235
1236 blend_rt->colormask = lp->blend->rt[i].colormask;
1237
1238 /*
1239 * Mask out color channels not present in the color buffer.
1240 */
1241 blend_rt->colormask &= util_format_colormask(format_desc);
1242
1243 /*
1244 * Our swizzled render tiles always have an alpha channel, but the linear
1245 * render target format often does not, so force here the dst alpha to be
1246 * one.
1247 *
1248 * This is not a mere optimization. Wrong results will be produced if the
1249 * dst alpha is used, the dst format does not have alpha, and the previous
1250 * rendering was not flushed from the swizzled to linear buffer. For
1251 * example, NonPowTwo DCT.
1252 *
1253 * TODO: This should be generalized to all channels for better
1254 * performance, but only alpha causes correctness issues.
1255 *
1256 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1257 */
1258 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1259 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1260 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1261 blend_rt->alpha_func = blend_rt->rgb_func;
1262 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1263 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1264 }
1265 }
1266
1267 /* This value will be the same for all the variants of a given shader:
1268 */
1269 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1270
1271 for(i = 0; i < key->nr_samplers; ++i) {
1272 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1273 lp_sampler_static_state(&key->sampler[i],
1274 lp->fragment_sampler_views[i],
1275 lp->sampler[i]);
1276 }
1277 }
1278 }
1279
1280 /**
1281 * Update fragment state. This is called just prior to drawing
1282 * something when some fragment-related state has changed.
1283 */
1284 void
1285 llvmpipe_update_fs(struct llvmpipe_context *lp)
1286 {
1287 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
1288 struct lp_fragment_shader *shader = lp->fs;
1289 struct lp_fragment_shader_variant_key key;
1290 struct lp_fragment_shader_variant *variant = NULL;
1291 struct lp_fs_variant_list_item *li;
1292
1293 make_variant_key(lp, shader, &key);
1294
1295 li = first_elem(&shader->variants);
1296 while(!at_end(&shader->variants, li)) {
1297 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1298 variant = li->base;
1299 break;
1300 }
1301 li = next_elem(li);
1302 }
1303
1304 if (variant) {
1305 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1306 }
1307 else {
1308 int64_t t0, t1;
1309 int64_t dt;
1310 unsigned i;
1311 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1312 struct pipe_context *pipe = &lp->pipe;
1313
1314 /*
1315 * XXX: we need to flush the context until we have some sort of reference
1316 * counting in fragment shaders as they may still be binned
1317 * Flushing alone might not be sufficient we need to wait on it too.
1318 */
1319 llvmpipe_finish(pipe, __FUNCTION__);
1320
1321 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1322 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1323 remove_shader_variant(lp, item->base);
1324 }
1325 }
1326 t0 = os_time_get();
1327
1328 variant = generate_variant(screen, shader, &key);
1329
1330 t1 = os_time_get();
1331 dt = t1 - t0;
1332 LP_COUNT_ADD(llvm_compile_time, dt);
1333 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1334
1335 if (variant) {
1336 insert_at_head(&shader->variants, &variant->list_item_local);
1337 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1338 lp->nr_fs_variants++;
1339 shader->variants_cached++;
1340 }
1341 }
1342
1343 lp_setup_set_fs_variant(lp->setup, variant);
1344 }
1345
1346
1347
1348
1349
1350
1351
1352 void
1353 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1354 {
1355 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1356 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1357 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1358
1359 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1360 }