Merge branch 'mesa_7_7_branch'
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/p_shader_tokens.h"
66 #include "draw/draw_context.h"
67 #include "tgsi/tgsi_dump.h"
68 #include "tgsi/tgsi_scan.h"
69 #include "tgsi/tgsi_parse.h"
70 #include "lp_bld_type.h"
71 #include "lp_bld_const.h"
72 #include "lp_bld_conv.h"
73 #include "lp_bld_intr.h"
74 #include "lp_bld_logic.h"
75 #include "lp_bld_depth.h"
76 #include "lp_bld_interp.h"
77 #include "lp_bld_tgsi.h"
78 #include "lp_bld_alpha.h"
79 #include "lp_bld_blend.h"
80 #include "lp_bld_swizzle.h"
81 #include "lp_bld_flow.h"
82 #include "lp_bld_debug.h"
83 #include "lp_screen.h"
84 #include "lp_context.h"
85 #include "lp_buffer.h"
86 #include "lp_state.h"
87 #include "lp_tex_sample.h"
88 #include "lp_debug.h"
89
90
91 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
92 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
93
94
95 /*
96 * Derive from the quad's upper left scalar coordinates the coordinates for
97 * all other quad pixels
98 */
99 static void
100 generate_pos0(LLVMBuilderRef builder,
101 LLVMValueRef x,
102 LLVMValueRef y,
103 LLVMValueRef *x0,
104 LLVMValueRef *y0)
105 {
106 LLVMTypeRef int_elem_type = LLVMInt32Type();
107 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
108 LLVMTypeRef elem_type = LLVMFloatType();
109 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
110 LLVMValueRef x_offsets[QUAD_SIZE];
111 LLVMValueRef y_offsets[QUAD_SIZE];
112 unsigned i;
113
114 x = lp_build_broadcast(builder, int_vec_type, x);
115 y = lp_build_broadcast(builder, int_vec_type, y);
116
117 for(i = 0; i < QUAD_SIZE; ++i) {
118 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
119 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
120 }
121
122 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
123 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
124
125 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
126 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
127 }
128
129
130 /**
131 * Generate the depth test.
132 */
133 static void
134 generate_depth(LLVMBuilderRef builder,
135 const struct lp_fragment_shader_variant_key *key,
136 struct lp_type src_type,
137 struct lp_build_mask_context *mask,
138 LLVMValueRef src,
139 LLVMValueRef dst_ptr)
140 {
141 const struct util_format_description *format_desc;
142 struct lp_type dst_type;
143
144 if(!key->depth.enabled)
145 return;
146
147 format_desc = util_format_description(key->zsbuf_format);
148 assert(format_desc);
149
150 /*
151 * Depths are expected to be between 0 and 1, even if they are stored in
152 * floats. Setting these bits here will ensure that the lp_build_conv() call
153 * below won't try to unnecessarily clamp the incoming values.
154 */
155 if(src_type.floating) {
156 src_type.sign = FALSE;
157 src_type.norm = TRUE;
158 }
159 else {
160 assert(!src_type.sign);
161 assert(src_type.norm);
162 }
163
164 /* Pick the depth type. */
165 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
166
167 /* FIXME: Cope with a depth test type with a different bit width. */
168 assert(dst_type.width == src_type.width);
169 assert(dst_type.length == src_type.length);
170
171 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
172
173 dst_ptr = LLVMBuildBitCast(builder,
174 dst_ptr,
175 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
176
177 lp_build_depth_test(builder,
178 &key->depth,
179 dst_type,
180 format_desc,
181 mask,
182 src,
183 dst_ptr);
184 }
185
186
187 /**
188 * Generate the fragment shader, depth/stencil test, and alpha tests.
189 */
190 static void
191 generate_fs(struct llvmpipe_context *lp,
192 struct lp_fragment_shader *shader,
193 const struct lp_fragment_shader_variant_key *key,
194 LLVMBuilderRef builder,
195 struct lp_type type,
196 LLVMValueRef context_ptr,
197 unsigned i,
198 const struct lp_build_interp_soa_context *interp,
199 struct lp_build_sampler_soa *sampler,
200 LLVMValueRef *pmask,
201 LLVMValueRef *color,
202 LLVMValueRef depth_ptr)
203 {
204 const struct tgsi_token *tokens = shader->base.tokens;
205 LLVMTypeRef elem_type;
206 LLVMTypeRef vec_type;
207 LLVMTypeRef int_vec_type;
208 LLVMValueRef consts_ptr;
209 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
210 LLVMValueRef z = interp->pos[2];
211 struct lp_build_flow_context *flow;
212 struct lp_build_mask_context mask;
213 boolean early_depth_test;
214 unsigned attrib;
215 unsigned chan;
216
217 elem_type = lp_build_elem_type(type);
218 vec_type = lp_build_vec_type(type);
219 int_vec_type = lp_build_int_vec_type(type);
220
221 consts_ptr = lp_jit_context_constants(builder, context_ptr);
222
223 flow = lp_build_flow_create(builder);
224
225 memset(outputs, 0, sizeof outputs);
226
227 lp_build_flow_scope_begin(flow);
228
229 /* Declare the color and z variables */
230 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
231 color[chan] = LLVMGetUndef(vec_type);
232 lp_build_flow_scope_declare(flow, &color[chan]);
233 }
234 lp_build_flow_scope_declare(flow, &z);
235
236 lp_build_mask_begin(&mask, flow, type, *pmask);
237
238 early_depth_test =
239 key->depth.enabled &&
240 !key->alpha.enabled &&
241 !shader->info.uses_kill &&
242 !shader->info.writes_z;
243
244 if(early_depth_test)
245 generate_depth(builder, key,
246 type, &mask,
247 z, depth_ptr);
248
249 lp_build_tgsi_soa(builder, tokens, type, &mask,
250 consts_ptr, interp->pos, interp->inputs,
251 outputs, sampler);
252
253 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
254 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
255 if(outputs[attrib][chan]) {
256 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
257
258 switch (shader->info.output_semantic_name[attrib]) {
259 case TGSI_SEMANTIC_COLOR:
260 {
261 unsigned cbuf = shader->info.output_semantic_index[attrib];
262
263 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
264
265 /* Alpha test */
266 /* XXX: should the alpha reference value be passed separately? */
267 if(cbuf == 0 && chan == 3) {
268 LLVMValueRef alpha = outputs[attrib][chan];
269 LLVMValueRef alpha_ref_value;
270 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
271 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
272 lp_build_alpha_test(builder, &key->alpha, type,
273 &mask, alpha, alpha_ref_value);
274 }
275
276 if(cbuf == 0)
277 color[chan] = outputs[attrib][chan];
278
279 break;
280 }
281
282 case TGSI_SEMANTIC_POSITION:
283 if(chan == 2)
284 z = outputs[attrib][chan];
285 break;
286 }
287 }
288 }
289 }
290
291 if(!early_depth_test)
292 generate_depth(builder, key,
293 type, &mask,
294 z, depth_ptr);
295
296 lp_build_mask_end(&mask);
297
298 lp_build_flow_scope_end(flow);
299
300 lp_build_flow_destroy(flow);
301
302 *pmask = mask.value;
303
304 }
305
306
307 /**
308 * Generate color blending and color output.
309 */
310 static void
311 generate_blend(const struct pipe_blend_state *blend,
312 LLVMBuilderRef builder,
313 struct lp_type type,
314 LLVMValueRef context_ptr,
315 LLVMValueRef mask,
316 LLVMValueRef *src,
317 LLVMValueRef dst_ptr)
318 {
319 struct lp_build_context bld;
320 struct lp_build_flow_context *flow;
321 struct lp_build_mask_context mask_ctx;
322 LLVMTypeRef vec_type;
323 LLVMTypeRef int_vec_type;
324 LLVMValueRef const_ptr;
325 LLVMValueRef con[4];
326 LLVMValueRef dst[4];
327 LLVMValueRef res[4];
328 unsigned chan;
329
330 lp_build_context_init(&bld, builder, type);
331
332 flow = lp_build_flow_create(builder);
333 lp_build_mask_begin(&mask_ctx, flow, type, mask);
334
335 vec_type = lp_build_vec_type(type);
336 int_vec_type = lp_build_int_vec_type(type);
337
338 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
339 const_ptr = LLVMBuildBitCast(builder, const_ptr,
340 LLVMPointerType(vec_type, 0), "");
341
342 for(chan = 0; chan < 4; ++chan) {
343 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
344 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
345
346 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
347
348 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
349 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
350 }
351
352 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
353
354 for(chan = 0; chan < 4; ++chan) {
355 if(blend->colormask & (1 << chan)) {
356 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
357 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
358 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
359 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
360 }
361 }
362
363 lp_build_mask_end(&mask_ctx);
364 lp_build_flow_destroy(flow);
365 }
366
367
368 /**
369 * Generate the runtime callable function for the whole fragment pipeline.
370 */
371 static struct lp_fragment_shader_variant *
372 generate_fragment(struct llvmpipe_context *lp,
373 struct lp_fragment_shader *shader,
374 const struct lp_fragment_shader_variant_key *key)
375 {
376 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
377 struct lp_fragment_shader_variant *variant;
378 struct lp_type fs_type;
379 struct lp_type blend_type;
380 LLVMTypeRef fs_elem_type;
381 LLVMTypeRef fs_vec_type;
382 LLVMTypeRef fs_int_vec_type;
383 LLVMTypeRef blend_vec_type;
384 LLVMTypeRef blend_int_vec_type;
385 LLVMTypeRef arg_types[9];
386 LLVMTypeRef func_type;
387 LLVMValueRef context_ptr;
388 LLVMValueRef x;
389 LLVMValueRef y;
390 LLVMValueRef a0_ptr;
391 LLVMValueRef dadx_ptr;
392 LLVMValueRef dady_ptr;
393 LLVMValueRef mask_ptr;
394 LLVMValueRef color_ptr;
395 LLVMValueRef depth_ptr;
396 LLVMBasicBlockRef block;
397 LLVMBuilderRef builder;
398 LLVMValueRef x0;
399 LLVMValueRef y0;
400 struct lp_build_sampler_soa *sampler;
401 struct lp_build_interp_soa_context interp;
402 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
403 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
404 LLVMValueRef blend_mask;
405 LLVMValueRef blend_in_color[NUM_CHANNELS];
406 unsigned num_fs;
407 unsigned i;
408 unsigned chan;
409
410 if (LP_DEBUG & DEBUG_JIT) {
411 tgsi_dump(shader->base.tokens, 0);
412 if(key->depth.enabled) {
413 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
414 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
415 debug_printf("depth.writemask = %u\n", key->depth.writemask);
416 }
417 if(key->alpha.enabled) {
418 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
419 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
420 }
421 if(key->blend.logicop_enable) {
422 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
423 }
424 else if(key->blend.blend_enable) {
425 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
426 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
427 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
428 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
429 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
430 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
431 }
432 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
433 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
434 if(key->sampler[i].format) {
435 debug_printf("sampler[%u] = \n", i);
436 debug_printf(" .format = %s\n",
437 pf_name(key->sampler[i].format));
438 debug_printf(" .target = %s\n",
439 debug_dump_tex_target(key->sampler[i].target, TRUE));
440 debug_printf(" .pot = %u %u %u\n",
441 key->sampler[i].pot_width,
442 key->sampler[i].pot_height,
443 key->sampler[i].pot_depth);
444 debug_printf(" .wrap = %s %s %s\n",
445 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
446 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
447 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
448 debug_printf(" .min_img_filter = %s\n",
449 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
450 debug_printf(" .min_mip_filter = %s\n",
451 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
452 debug_printf(" .mag_img_filter = %s\n",
453 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
454 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
455 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
456 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
457 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
458 }
459 }
460 }
461
462 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
463 if(!variant)
464 return NULL;
465
466 variant->shader = shader;
467 memcpy(&variant->key, key, sizeof *key);
468
469 /* TODO: actually pick these based on the fs and color buffer
470 * characteristics. */
471
472 memset(&fs_type, 0, sizeof fs_type);
473 fs_type.floating = TRUE; /* floating point values */
474 fs_type.sign = TRUE; /* values are signed */
475 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
476 fs_type.width = 32; /* 32-bit float */
477 fs_type.length = 4; /* 4 element per vector */
478 num_fs = 4;
479
480 memset(&blend_type, 0, sizeof blend_type);
481 blend_type.floating = FALSE; /* values are integers */
482 blend_type.sign = FALSE; /* values are unsigned */
483 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
484 blend_type.width = 8; /* 8-bit ubyte values */
485 blend_type.length = 16; /* 16 elements per vector */
486
487 /*
488 * Generate the function prototype. Any change here must be reflected in
489 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
490 */
491
492 fs_elem_type = lp_build_elem_type(fs_type);
493 fs_vec_type = lp_build_vec_type(fs_type);
494 fs_int_vec_type = lp_build_int_vec_type(fs_type);
495
496 blend_vec_type = lp_build_vec_type(blend_type);
497 blend_int_vec_type = lp_build_int_vec_type(blend_type);
498
499 arg_types[0] = screen->context_ptr_type; /* context */
500 arg_types[1] = LLVMInt32Type(); /* x */
501 arg_types[2] = LLVMInt32Type(); /* y */
502 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
503 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
504 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
505 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
506 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
507 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
508
509 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
510
511 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
512 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
513 for(i = 0; i < Elements(arg_types); ++i)
514 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
515 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
516
517 context_ptr = LLVMGetParam(variant->function, 0);
518 x = LLVMGetParam(variant->function, 1);
519 y = LLVMGetParam(variant->function, 2);
520 a0_ptr = LLVMGetParam(variant->function, 3);
521 dadx_ptr = LLVMGetParam(variant->function, 4);
522 dady_ptr = LLVMGetParam(variant->function, 5);
523 mask_ptr = LLVMGetParam(variant->function, 6);
524 color_ptr = LLVMGetParam(variant->function, 7);
525 depth_ptr = LLVMGetParam(variant->function, 8);
526
527 lp_build_name(context_ptr, "context");
528 lp_build_name(x, "x");
529 lp_build_name(y, "y");
530 lp_build_name(a0_ptr, "a0");
531 lp_build_name(dadx_ptr, "dadx");
532 lp_build_name(dady_ptr, "dady");
533 lp_build_name(mask_ptr, "mask");
534 lp_build_name(color_ptr, "color");
535 lp_build_name(depth_ptr, "depth");
536
537 /*
538 * Function body
539 */
540
541 block = LLVMAppendBasicBlock(variant->function, "entry");
542 builder = LLVMCreateBuilder();
543 LLVMPositionBuilderAtEnd(builder, block);
544
545 generate_pos0(builder, x, y, &x0, &y0);
546
547 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
548 a0_ptr, dadx_ptr, dady_ptr,
549 x0, y0, 2, 0);
550
551 /* code generated texture sampling */
552 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
553
554 for(i = 0; i < num_fs; ++i) {
555 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
556 LLVMValueRef out_color[NUM_CHANNELS];
557 LLVMValueRef depth_ptr_i;
558
559 if(i != 0)
560 lp_build_interp_soa_update(&interp);
561
562 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
563 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
564
565 generate_fs(lp, shader, key,
566 builder,
567 fs_type,
568 context_ptr,
569 i,
570 &interp,
571 sampler,
572 &fs_mask[i],
573 out_color,
574 depth_ptr_i);
575
576 for(chan = 0; chan < NUM_CHANNELS; ++chan)
577 fs_out_color[chan][i] = out_color[chan];
578 }
579
580 sampler->destroy(sampler);
581
582 /*
583 * Convert the fs's output color and mask to fit to the blending type.
584 */
585
586 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
587 lp_build_conv(builder, fs_type, blend_type,
588 fs_out_color[chan], num_fs,
589 &blend_in_color[chan], 1);
590 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
591
592 }
593
594 lp_build_conv_mask(builder, fs_type, blend_type,
595 fs_mask, num_fs,
596 &blend_mask, 1);
597
598 /*
599 * Blending.
600 */
601
602 generate_blend(&key->blend,
603 builder,
604 blend_type,
605 context_ptr,
606 blend_mask,
607 blend_in_color,
608 color_ptr);
609
610 LLVMBuildRetVoid(builder);
611
612 LLVMDisposeBuilder(builder);
613
614 /*
615 * Translate the LLVM IR into machine code.
616 */
617
618 #ifdef DEBUG
619 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
620 LLVMDumpValue(variant->function);
621 assert(0);
622 }
623 #endif
624
625 LLVMRunFunctionPassManager(screen->pass, variant->function);
626
627 if (LP_DEBUG & DEBUG_JIT) {
628 LLVMDumpValue(variant->function);
629 debug_printf("\n");
630 }
631
632 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
633
634 if (LP_DEBUG & DEBUG_ASM)
635 lp_disassemble(variant->jit_function);
636
637 variant->next = shader->variants;
638 shader->variants = variant;
639
640 return variant;
641 }
642
643
644 void *
645 llvmpipe_create_fs_state(struct pipe_context *pipe,
646 const struct pipe_shader_state *templ)
647 {
648 struct lp_fragment_shader *shader;
649
650 shader = CALLOC_STRUCT(lp_fragment_shader);
651 if (!shader)
652 return NULL;
653
654 /* get/save the summary info for this shader */
655 tgsi_scan_shader(templ->tokens, &shader->info);
656
657 /* we need to keep a local copy of the tokens */
658 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
659
660 return shader;
661 }
662
663
664 void
665 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
666 {
667 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
668
669 if (llvmpipe->fs == fs)
670 return;
671
672 draw_flush(llvmpipe->draw);
673
674 llvmpipe->fs = fs;
675
676 llvmpipe->dirty |= LP_NEW_FS;
677 }
678
679
680 void
681 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
682 {
683 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
684 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
685 struct lp_fragment_shader *shader = fs;
686 struct lp_fragment_shader_variant *variant;
687
688 assert(fs != llvmpipe->fs);
689 (void) llvmpipe;
690
691 variant = shader->variants;
692 while(variant) {
693 struct lp_fragment_shader_variant *next = variant->next;
694
695 if(variant->function) {
696 if(variant->jit_function)
697 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
698 LLVMDeleteFunction(variant->function);
699 }
700
701 FREE(variant);
702
703 variant = next;
704 }
705
706 FREE((void *) shader->base.tokens);
707 FREE(shader);
708 }
709
710
711
712 void
713 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
714 uint shader, uint index,
715 struct pipe_buffer *constants)
716 {
717 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
718 unsigned size = constants ? constants->size : 0;
719 const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
720
721 assert(shader < PIPE_SHADER_TYPES);
722 assert(index == 0);
723
724 draw_flush(llvmpipe->draw);
725
726 /* note: reference counting */
727 pipe_buffer_reference(&llvmpipe->constants[shader], constants);
728
729 if(shader == PIPE_SHADER_FRAGMENT) {
730 llvmpipe->jit_context.constants = data;
731 }
732
733 if(shader == PIPE_SHADER_VERTEX) {
734 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
735 data, size);
736 }
737
738 llvmpipe->dirty |= LP_NEW_CONSTANTS;
739 }
740
741
742 /**
743 * We need to generate several variants of the fragment pipeline to match
744 * all the combinations of the contributing state atoms.
745 *
746 * TODO: there is actually no reason to tie this to context state -- the
747 * generated code could be cached globally in the screen.
748 */
749 static void
750 make_variant_key(struct llvmpipe_context *lp,
751 struct lp_fragment_shader *shader,
752 struct lp_fragment_shader_variant_key *key)
753 {
754 unsigned i;
755
756 memset(key, 0, sizeof *key);
757
758 if(lp->framebuffer.zsbuf &&
759 lp->depth_stencil->depth.enabled) {
760 key->zsbuf_format = lp->framebuffer.zsbuf->format;
761 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
762 }
763
764 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
765 if(key->alpha.enabled)
766 key->alpha.func = lp->depth_stencil->alpha.func;
767 /* alpha.ref_value is passed in jit_context */
768
769 if(lp->framebuffer.cbufs[0]) {
770 const struct util_format_description *format_desc;
771 unsigned chan;
772
773 memcpy(&key->blend, lp->blend, sizeof key->blend);
774
775 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
776 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
777 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
778
779 /* mask out color channels not present in the color buffer */
780 for(chan = 0; chan < 4; ++chan) {
781 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
782 if(swizzle > 4)
783 key->blend.colormask &= ~(1 << chan);
784 }
785 }
786
787 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
788 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
789 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
790 }
791
792
793 void
794 llvmpipe_update_fs(struct llvmpipe_context *lp)
795 {
796 struct lp_fragment_shader *shader = lp->fs;
797 struct lp_fragment_shader_variant_key key;
798 struct lp_fragment_shader_variant *variant;
799
800 make_variant_key(lp, shader, &key);
801
802 variant = shader->variants;
803 while(variant) {
804 if(memcmp(&variant->key, &key, sizeof key) == 0)
805 break;
806
807 variant = variant->next;
808 }
809
810 if(!variant)
811 variant = generate_fragment(lp, shader, &key);
812
813 shader->current = variant;
814 }