mesa: Add "shader/" path to #include statements in shader parser/lexer sources
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_buffer.h"
87 #include "lp_state.h"
88 #include "lp_quad.h"
89 #include "lp_tex_sample.h"
90 #include "lp_debug.h"
91
92
93 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
94 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
95
96
97 /*
98 * Derive from the quad's upper left scalar coordinates the coordinates for
99 * all other quad pixels
100 */
101 static void
102 generate_pos0(LLVMBuilderRef builder,
103 LLVMValueRef x,
104 LLVMValueRef y,
105 LLVMValueRef *x0,
106 LLVMValueRef *y0)
107 {
108 LLVMTypeRef int_elem_type = LLVMInt32Type();
109 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
110 LLVMTypeRef elem_type = LLVMFloatType();
111 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
112 LLVMValueRef x_offsets[QUAD_SIZE];
113 LLVMValueRef y_offsets[QUAD_SIZE];
114 unsigned i;
115
116 x = lp_build_broadcast(builder, int_vec_type, x);
117 y = lp_build_broadcast(builder, int_vec_type, y);
118
119 for(i = 0; i < QUAD_SIZE; ++i) {
120 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
121 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
122 }
123
124 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
125 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
126
127 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
128 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
129 }
130
131
132 /**
133 * Generate the depth test.
134 */
135 static void
136 generate_depth(LLVMBuilderRef builder,
137 const struct lp_fragment_shader_variant_key *key,
138 struct lp_type src_type,
139 struct lp_build_mask_context *mask,
140 LLVMValueRef src,
141 LLVMValueRef dst_ptr)
142 {
143 const struct util_format_description *format_desc;
144 struct lp_type dst_type;
145
146 if(!key->depth.enabled)
147 return;
148
149 format_desc = util_format_description(key->zsbuf_format);
150 assert(format_desc);
151
152 /*
153 * Depths are expected to be between 0 and 1, even if they are stored in
154 * floats. Setting these bits here will ensure that the lp_build_conv() call
155 * below won't try to unnecessarily clamp the incoming values.
156 */
157 if(src_type.floating) {
158 src_type.sign = FALSE;
159 src_type.norm = TRUE;
160 }
161 else {
162 assert(!src_type.sign);
163 assert(src_type.norm);
164 }
165
166 /* Pick the depth type. */
167 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
168
169 /* FIXME: Cope with a depth test type with a different bit width. */
170 assert(dst_type.width == src_type.width);
171 assert(dst_type.length == src_type.length);
172
173 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
174
175 dst_ptr = LLVMBuildBitCast(builder,
176 dst_ptr,
177 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
178
179 lp_build_depth_test(builder,
180 &key->depth,
181 dst_type,
182 format_desc,
183 mask,
184 src,
185 dst_ptr);
186 }
187
188
189 /**
190 * Generate the fragment shader, depth/stencil test, and alpha tests.
191 */
192 static void
193 generate_fs(struct llvmpipe_context *lp,
194 struct lp_fragment_shader *shader,
195 const struct lp_fragment_shader_variant_key *key,
196 LLVMBuilderRef builder,
197 struct lp_type type,
198 LLVMValueRef context_ptr,
199 unsigned i,
200 const struct lp_build_interp_soa_context *interp,
201 struct lp_build_sampler_soa *sampler,
202 LLVMValueRef *pmask,
203 LLVMValueRef *color,
204 LLVMValueRef depth_ptr)
205 {
206 const struct tgsi_token *tokens = shader->base.tokens;
207 LLVMTypeRef elem_type;
208 LLVMTypeRef vec_type;
209 LLVMTypeRef int_vec_type;
210 LLVMValueRef consts_ptr;
211 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
212 LLVMValueRef z = interp->pos[2];
213 struct lp_build_flow_context *flow;
214 struct lp_build_mask_context mask;
215 boolean early_depth_test;
216 unsigned attrib;
217 unsigned chan;
218
219 elem_type = lp_build_elem_type(type);
220 vec_type = lp_build_vec_type(type);
221 int_vec_type = lp_build_int_vec_type(type);
222
223 consts_ptr = lp_jit_context_constants(builder, context_ptr);
224
225 flow = lp_build_flow_create(builder);
226
227 memset(outputs, 0, sizeof outputs);
228
229 lp_build_flow_scope_begin(flow);
230
231 /* Declare the color and z variables */
232 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
233 color[chan] = LLVMGetUndef(vec_type);
234 lp_build_flow_scope_declare(flow, &color[chan]);
235 }
236 lp_build_flow_scope_declare(flow, &z);
237
238 lp_build_mask_begin(&mask, flow, type, *pmask);
239
240 early_depth_test =
241 key->depth.enabled &&
242 !key->alpha.enabled &&
243 !shader->info.uses_kill &&
244 !shader->info.writes_z;
245
246 if(early_depth_test)
247 generate_depth(builder, key,
248 type, &mask,
249 z, depth_ptr);
250
251 lp_build_tgsi_soa(builder, tokens, type, &mask,
252 consts_ptr, interp->pos, interp->inputs,
253 outputs, sampler);
254
255 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
256 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
257 if(outputs[attrib][chan]) {
258 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
259
260 switch (shader->info.output_semantic_name[attrib]) {
261 case TGSI_SEMANTIC_COLOR:
262 {
263 unsigned cbuf = shader->info.output_semantic_index[attrib];
264
265 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
266
267 /* Alpha test */
268 /* XXX: should the alpha reference value be passed separately? */
269 if(cbuf == 0 && chan == 3) {
270 LLVMValueRef alpha = outputs[attrib][chan];
271 LLVMValueRef alpha_ref_value;
272 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
273 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
274 lp_build_alpha_test(builder, &key->alpha, type,
275 &mask, alpha, alpha_ref_value);
276 }
277
278 if(cbuf == 0)
279 color[chan] = outputs[attrib][chan];
280
281 break;
282 }
283
284 case TGSI_SEMANTIC_POSITION:
285 if(chan == 2)
286 z = outputs[attrib][chan];
287 break;
288 }
289 }
290 }
291 }
292
293 if(!early_depth_test)
294 generate_depth(builder, key,
295 type, &mask,
296 z, depth_ptr);
297
298 lp_build_mask_end(&mask);
299
300 lp_build_flow_scope_end(flow);
301
302 lp_build_flow_destroy(flow);
303
304 *pmask = mask.value;
305
306 }
307
308
309 /**
310 * Generate color blending and color output.
311 */
312 static void
313 generate_blend(const struct pipe_blend_state *blend,
314 LLVMBuilderRef builder,
315 struct lp_type type,
316 LLVMValueRef context_ptr,
317 LLVMValueRef mask,
318 LLVMValueRef *src,
319 LLVMValueRef dst_ptr)
320 {
321 struct lp_build_context bld;
322 struct lp_build_flow_context *flow;
323 struct lp_build_mask_context mask_ctx;
324 LLVMTypeRef vec_type;
325 LLVMTypeRef int_vec_type;
326 LLVMValueRef const_ptr;
327 LLVMValueRef con[4];
328 LLVMValueRef dst[4];
329 LLVMValueRef res[4];
330 unsigned chan;
331
332 lp_build_context_init(&bld, builder, type);
333
334 flow = lp_build_flow_create(builder);
335 lp_build_mask_begin(&mask_ctx, flow, type, mask);
336
337 vec_type = lp_build_vec_type(type);
338 int_vec_type = lp_build_int_vec_type(type);
339
340 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
341 const_ptr = LLVMBuildBitCast(builder, const_ptr,
342 LLVMPointerType(vec_type, 0), "");
343
344 for(chan = 0; chan < 4; ++chan) {
345 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
346 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
347
348 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
349
350 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
351 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
352 }
353
354 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
355
356 for(chan = 0; chan < 4; ++chan) {
357 if(blend->colormask & (1 << chan)) {
358 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
359 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
360 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
361 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
362 }
363 }
364
365 lp_build_mask_end(&mask_ctx);
366 lp_build_flow_destroy(flow);
367 }
368
369
370 /**
371 * Generate the runtime callable function for the whole fragment pipeline.
372 */
373 static struct lp_fragment_shader_variant *
374 generate_fragment(struct llvmpipe_context *lp,
375 struct lp_fragment_shader *shader,
376 const struct lp_fragment_shader_variant_key *key)
377 {
378 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
379 struct lp_fragment_shader_variant *variant;
380 struct lp_type fs_type;
381 struct lp_type blend_type;
382 LLVMTypeRef fs_elem_type;
383 LLVMTypeRef fs_vec_type;
384 LLVMTypeRef fs_int_vec_type;
385 LLVMTypeRef blend_vec_type;
386 LLVMTypeRef blend_int_vec_type;
387 LLVMTypeRef arg_types[9];
388 LLVMTypeRef func_type;
389 LLVMValueRef context_ptr;
390 LLVMValueRef x;
391 LLVMValueRef y;
392 LLVMValueRef a0_ptr;
393 LLVMValueRef dadx_ptr;
394 LLVMValueRef dady_ptr;
395 LLVMValueRef mask_ptr;
396 LLVMValueRef color_ptr;
397 LLVMValueRef depth_ptr;
398 LLVMBasicBlockRef block;
399 LLVMBuilderRef builder;
400 LLVMValueRef x0;
401 LLVMValueRef y0;
402 struct lp_build_sampler_soa *sampler;
403 struct lp_build_interp_soa_context interp;
404 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
405 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
406 LLVMValueRef blend_mask;
407 LLVMValueRef blend_in_color[NUM_CHANNELS];
408 unsigned num_fs;
409 unsigned i;
410 unsigned chan;
411
412 if (LP_DEBUG & DEBUG_JIT) {
413 tgsi_dump(shader->base.tokens, 0);
414 if(key->depth.enabled) {
415 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
416 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
417 debug_printf("depth.writemask = %u\n", key->depth.writemask);
418 }
419 if(key->alpha.enabled) {
420 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
421 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
422 }
423 if(key->blend.logicop_enable) {
424 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
425 }
426 else if(key->blend.blend_enable) {
427 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
428 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
429 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
430 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
431 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
432 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
433 }
434 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
435 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
436 if(key->sampler[i].format) {
437 debug_printf("sampler[%u] = \n", i);
438 debug_printf(" .format = %s\n",
439 pf_name(key->sampler[i].format));
440 debug_printf(" .target = %s\n",
441 debug_dump_tex_target(key->sampler[i].target, TRUE));
442 debug_printf(" .pot = %u %u %u\n",
443 key->sampler[i].pot_width,
444 key->sampler[i].pot_height,
445 key->sampler[i].pot_depth);
446 debug_printf(" .wrap = %s %s %s\n",
447 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
448 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
449 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
450 debug_printf(" .min_img_filter = %s\n",
451 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
452 debug_printf(" .min_mip_filter = %s\n",
453 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
454 debug_printf(" .mag_img_filter = %s\n",
455 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
456 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
457 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
458 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
459 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
460 }
461 }
462 }
463
464 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
465 if(!variant)
466 return NULL;
467
468 variant->shader = shader;
469 memcpy(&variant->key, key, sizeof *key);
470
471 /* TODO: actually pick these based on the fs and color buffer
472 * characteristics. */
473
474 memset(&fs_type, 0, sizeof fs_type);
475 fs_type.floating = TRUE; /* floating point values */
476 fs_type.sign = TRUE; /* values are signed */
477 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
478 fs_type.width = 32; /* 32-bit float */
479 fs_type.length = 4; /* 4 element per vector */
480 num_fs = 4;
481
482 memset(&blend_type, 0, sizeof blend_type);
483 blend_type.floating = FALSE; /* values are integers */
484 blend_type.sign = FALSE; /* values are unsigned */
485 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
486 blend_type.width = 8; /* 8-bit ubyte values */
487 blend_type.length = 16; /* 16 elements per vector */
488
489 /*
490 * Generate the function prototype. Any change here must be reflected in
491 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
492 */
493
494 fs_elem_type = lp_build_elem_type(fs_type);
495 fs_vec_type = lp_build_vec_type(fs_type);
496 fs_int_vec_type = lp_build_int_vec_type(fs_type);
497
498 blend_vec_type = lp_build_vec_type(blend_type);
499 blend_int_vec_type = lp_build_int_vec_type(blend_type);
500
501 arg_types[0] = screen->context_ptr_type; /* context */
502 arg_types[1] = LLVMInt32Type(); /* x */
503 arg_types[2] = LLVMInt32Type(); /* y */
504 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
505 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
506 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
507 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
508 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
509 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
510
511 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
512
513 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
514 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
515 for(i = 0; i < Elements(arg_types); ++i)
516 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
517 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
518
519 context_ptr = LLVMGetParam(variant->function, 0);
520 x = LLVMGetParam(variant->function, 1);
521 y = LLVMGetParam(variant->function, 2);
522 a0_ptr = LLVMGetParam(variant->function, 3);
523 dadx_ptr = LLVMGetParam(variant->function, 4);
524 dady_ptr = LLVMGetParam(variant->function, 5);
525 mask_ptr = LLVMGetParam(variant->function, 6);
526 color_ptr = LLVMGetParam(variant->function, 7);
527 depth_ptr = LLVMGetParam(variant->function, 8);
528
529 lp_build_name(context_ptr, "context");
530 lp_build_name(x, "x");
531 lp_build_name(y, "y");
532 lp_build_name(a0_ptr, "a0");
533 lp_build_name(dadx_ptr, "dadx");
534 lp_build_name(dady_ptr, "dady");
535 lp_build_name(mask_ptr, "mask");
536 lp_build_name(color_ptr, "color");
537 lp_build_name(depth_ptr, "depth");
538
539 /*
540 * Function body
541 */
542
543 block = LLVMAppendBasicBlock(variant->function, "entry");
544 builder = LLVMCreateBuilder();
545 LLVMPositionBuilderAtEnd(builder, block);
546
547 generate_pos0(builder, x, y, &x0, &y0);
548
549 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
550 a0_ptr, dadx_ptr, dady_ptr,
551 x0, y0, 2, 0);
552
553 /* code generated texture sampling */
554 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
555
556 for(i = 0; i < num_fs; ++i) {
557 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
558 LLVMValueRef out_color[NUM_CHANNELS];
559 LLVMValueRef depth_ptr_i;
560
561 if(i != 0)
562 lp_build_interp_soa_update(&interp);
563
564 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
565 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
566
567 generate_fs(lp, shader, key,
568 builder,
569 fs_type,
570 context_ptr,
571 i,
572 &interp,
573 sampler,
574 &fs_mask[i],
575 out_color,
576 depth_ptr_i);
577
578 for(chan = 0; chan < NUM_CHANNELS; ++chan)
579 fs_out_color[chan][i] = out_color[chan];
580 }
581
582 sampler->destroy(sampler);
583
584 /*
585 * Convert the fs's output color and mask to fit to the blending type.
586 */
587
588 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
589 lp_build_conv(builder, fs_type, blend_type,
590 fs_out_color[chan], num_fs,
591 &blend_in_color[chan], 1);
592 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
593
594 }
595
596 lp_build_conv_mask(builder, fs_type, blend_type,
597 fs_mask, num_fs,
598 &blend_mask, 1);
599
600 /*
601 * Blending.
602 */
603
604 generate_blend(&key->blend,
605 builder,
606 blend_type,
607 context_ptr,
608 blend_mask,
609 blend_in_color,
610 color_ptr);
611
612 LLVMBuildRetVoid(builder);
613
614 LLVMDisposeBuilder(builder);
615
616 /*
617 * Translate the LLVM IR into machine code.
618 */
619
620 #ifdef DEBUG
621 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
622 LLVMDumpValue(variant->function);
623 assert(0);
624 }
625 #endif
626
627 LLVMRunFunctionPassManager(screen->pass, variant->function);
628
629 if (LP_DEBUG & DEBUG_JIT) {
630 LLVMDumpValue(variant->function);
631 debug_printf("\n");
632 }
633
634 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
635
636 if (LP_DEBUG & DEBUG_ASM)
637 lp_disassemble(variant->jit_function);
638
639 variant->next = shader->variants;
640 shader->variants = variant;
641
642 return variant;
643 }
644
645
646 void *
647 llvmpipe_create_fs_state(struct pipe_context *pipe,
648 const struct pipe_shader_state *templ)
649 {
650 struct lp_fragment_shader *shader;
651
652 shader = CALLOC_STRUCT(lp_fragment_shader);
653 if (!shader)
654 return NULL;
655
656 /* get/save the summary info for this shader */
657 tgsi_scan_shader(templ->tokens, &shader->info);
658
659 /* we need to keep a local copy of the tokens */
660 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
661
662 return shader;
663 }
664
665
666 void
667 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
668 {
669 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
670
671 if (llvmpipe->fs == fs)
672 return;
673
674 draw_flush(llvmpipe->draw);
675
676 llvmpipe->fs = fs;
677
678 llvmpipe->dirty |= LP_NEW_FS;
679 }
680
681
682 void
683 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
684 {
685 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
686 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
687 struct lp_fragment_shader *shader = fs;
688 struct lp_fragment_shader_variant *variant;
689
690 assert(fs != llvmpipe->fs);
691 (void) llvmpipe;
692
693 variant = shader->variants;
694 while(variant) {
695 struct lp_fragment_shader_variant *next = variant->next;
696
697 if(variant->function) {
698 if(variant->jit_function)
699 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
700 LLVMDeleteFunction(variant->function);
701 }
702
703 FREE(variant);
704
705 variant = next;
706 }
707
708 FREE((void *) shader->base.tokens);
709 FREE(shader);
710 }
711
712
713
714 void
715 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
716 uint shader, uint index,
717 struct pipe_buffer *constants)
718 {
719 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
720 unsigned size = constants ? constants->size : 0;
721 const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
722
723 assert(shader < PIPE_SHADER_TYPES);
724 assert(index == 0);
725
726 draw_flush(llvmpipe->draw);
727
728 /* note: reference counting */
729 pipe_buffer_reference(&llvmpipe->constants[shader], constants);
730
731 if(shader == PIPE_SHADER_FRAGMENT) {
732 llvmpipe->jit_context.constants = data;
733 }
734
735 if(shader == PIPE_SHADER_VERTEX) {
736 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
737 data, size);
738 }
739
740 llvmpipe->dirty |= LP_NEW_CONSTANTS;
741 }
742
743
744 /**
745 * We need to generate several variants of the fragment pipeline to match
746 * all the combinations of the contributing state atoms.
747 *
748 * TODO: there is actually no reason to tie this to context state -- the
749 * generated code could be cached globally in the screen.
750 */
751 static void
752 make_variant_key(struct llvmpipe_context *lp,
753 struct lp_fragment_shader *shader,
754 struct lp_fragment_shader_variant_key *key)
755 {
756 unsigned i;
757
758 memset(key, 0, sizeof *key);
759
760 if(lp->framebuffer.zsbuf &&
761 lp->depth_stencil->depth.enabled) {
762 key->zsbuf_format = lp->framebuffer.zsbuf->format;
763 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
764 }
765
766 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
767 if(key->alpha.enabled)
768 key->alpha.func = lp->depth_stencil->alpha.func;
769 /* alpha.ref_value is passed in jit_context */
770
771 if(lp->framebuffer.cbufs[0]) {
772 const struct util_format_description *format_desc;
773 unsigned chan;
774
775 memcpy(&key->blend, lp->blend, sizeof key->blend);
776
777 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
778 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
779 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
780
781 /* mask out color channels not present in the color buffer */
782 for(chan = 0; chan < 4; ++chan) {
783 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
784 if(swizzle > 4)
785 key->blend.colormask &= ~(1 << chan);
786 }
787 }
788
789 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
790 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
791 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
792 }
793
794
795 void
796 llvmpipe_update_fs(struct llvmpipe_context *lp)
797 {
798 struct lp_fragment_shader *shader = lp->fs;
799 struct lp_fragment_shader_variant_key key;
800 struct lp_fragment_shader_variant *variant;
801
802 make_variant_key(lp, shader, &key);
803
804 variant = shader->variants;
805 while(variant) {
806 if(memcmp(&variant->key, &key, sizeof key) == 0)
807 break;
808
809 variant = variant->next;
810 }
811
812 if(!variant)
813 variant = generate_fragment(lp, shader, &key);
814
815 shader->current = variant;
816 }