llvmpipe: make sample position a global array.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_nir.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87 #include "gallivm/lp_bld_arit.h"
88 #include "gallivm/lp_bld_bitarit.h"
89 #include "gallivm/lp_bld_pack.h"
90 #include "gallivm/lp_bld_format.h"
91 #include "gallivm/lp_bld_quad.h"
92
93 #include "lp_bld_alpha.h"
94 #include "lp_bld_blend.h"
95 #include "lp_bld_depth.h"
96 #include "lp_bld_interp.h"
97 #include "lp_context.h"
98 #include "lp_debug.h"
99 #include "lp_perf.h"
100 #include "lp_setup.h"
101 #include "lp_state.h"
102 #include "lp_tex_sample.h"
103 #include "lp_flush.h"
104 #include "lp_state_fs.h"
105 #include "lp_rast.h"
106 #include "nir/nir_to_tgsi_info.h"
107
108 /** Fragment shader number (for debugging) */
109 static unsigned fs_no = 0;
110
111
112 /**
113 * Expand the relevant bits of mask_input to a n*4-dword mask for the
114 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
115 * quad mask vector to 0 or ~0.
116 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
117 * quad arguments with fs length 8.
118 *
119 * \param first_quad which quad(s) of the quad group to test, in [0,3]
120 * \param mask_input bitwise mask for the whole 4x4 stamp
121 */
122 static LLVMValueRef
123 generate_quad_mask(struct gallivm_state *gallivm,
124 struct lp_type fs_type,
125 unsigned first_quad,
126 unsigned sample,
127 LLVMValueRef mask_input) /* int64 */
128 {
129 LLVMBuilderRef builder = gallivm->builder;
130 struct lp_type mask_type;
131 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
132 LLVMValueRef bits[16];
133 LLVMValueRef mask, bits_vec;
134 int shift, i;
135
136 /*
137 * XXX: We'll need a different path for 16 x u8
138 */
139 assert(fs_type.width == 32);
140 assert(fs_type.length <= ARRAY_SIZE(bits));
141 mask_type = lp_int_type(fs_type);
142
143 /*
144 * mask_input >>= (quad * 4)
145 */
146 switch (first_quad) {
147 case 0:
148 shift = 0;
149 break;
150 case 1:
151 assert(fs_type.length == 4);
152 shift = 2;
153 break;
154 case 2:
155 shift = 8;
156 break;
157 case 3:
158 assert(fs_type.length == 4);
159 shift = 10;
160 break;
161 default:
162 assert(0);
163 shift = 0;
164 }
165
166 mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
167 mask_input = LLVMBuildTrunc(builder, mask_input,
168 i32t, "");
169 mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
170
171 mask_input = LLVMBuildLShr(builder,
172 mask_input,
173 LLVMConstInt(i32t, shift, 0),
174 "");
175
176 /*
177 * mask = { mask_input & (1 << i), for i in [0,3] }
178 */
179 mask = lp_build_broadcast(gallivm,
180 lp_build_vec_type(gallivm, mask_type),
181 mask_input);
182
183 for (i = 0; i < fs_type.length / 4; i++) {
184 unsigned j = 2 * (i % 2) + (i / 2) * 8;
185 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
186 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
187 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
188 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
189 }
190 bits_vec = LLVMConstVector(bits, fs_type.length);
191 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
192
193 /*
194 * mask = mask == bits ? ~0 : 0
195 */
196 mask = lp_build_compare(gallivm,
197 mask_type, PIPE_FUNC_EQUAL,
198 mask, bits_vec);
199
200 return mask;
201 }
202
203
204 #define EARLY_DEPTH_TEST 0x1
205 #define LATE_DEPTH_TEST 0x2
206 #define EARLY_DEPTH_WRITE 0x4
207 #define LATE_DEPTH_WRITE 0x8
208
209 static int
210 find_output_by_semantic( const struct tgsi_shader_info *info,
211 unsigned semantic,
212 unsigned index )
213 {
214 int i;
215
216 for (i = 0; i < info->num_outputs; i++)
217 if (info->output_semantic_name[i] == semantic &&
218 info->output_semantic_index[i] == index)
219 return i;
220
221 return -1;
222 }
223
224
225 /**
226 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
227 */
228 static LLVMValueRef
229 lp_llvm_viewport(LLVMValueRef context_ptr,
230 struct gallivm_state *gallivm,
231 LLVMValueRef viewport_index)
232 {
233 LLVMBuilderRef builder = gallivm->builder;
234 LLVMValueRef ptr;
235 LLVMValueRef res;
236 struct lp_type viewport_type =
237 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
238
239 ptr = lp_jit_context_viewports(gallivm, context_ptr);
240 ptr = LLVMBuildPointerCast(builder, ptr,
241 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
242
243 res = lp_build_pointer_get(builder, ptr, viewport_index);
244
245 return res;
246 }
247
248
249 static LLVMValueRef
250 lp_build_depth_clamp(struct gallivm_state *gallivm,
251 LLVMBuilderRef builder,
252 struct lp_type type,
253 LLVMValueRef context_ptr,
254 LLVMValueRef thread_data_ptr,
255 LLVMValueRef z)
256 {
257 LLVMValueRef viewport, min_depth, max_depth;
258 LLVMValueRef viewport_index;
259 struct lp_build_context f32_bld;
260
261 assert(type.floating);
262 lp_build_context_init(&f32_bld, gallivm, type);
263
264 /*
265 * Assumes clamping of the viewport index will occur in setup/gs. Value
266 * is passed through the rasterization stage via lp_rast_shader_inputs.
267 *
268 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
269 * semantics.
270 */
271 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
272 thread_data_ptr);
273
274 /*
275 * Load the min and max depth from the lp_jit_context.viewports
276 * array of lp_jit_viewport structures.
277 */
278 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
279
280 /* viewports[viewport_index].min_depth */
281 min_depth = LLVMBuildExtractElement(builder, viewport,
282 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
283 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
284
285 /* viewports[viewport_index].max_depth */
286 max_depth = LLVMBuildExtractElement(builder, viewport,
287 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
288 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
289
290 /*
291 * Clamp to the min and max depth values for the given viewport.
292 */
293 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
294 }
295
296 static void
297 lp_build_sample_alpha_to_coverage(struct gallivm_state *gallivm,
298 struct lp_type type,
299 unsigned coverage_samples,
300 LLVMValueRef num_loop,
301 LLVMValueRef loop_counter,
302 LLVMValueRef coverage_mask_store,
303 LLVMValueRef alpha)
304 {
305 struct lp_build_context bld;
306 LLVMBuilderRef builder = gallivm->builder;
307 float step = 1.0 / coverage_samples;
308
309 lp_build_context_init(&bld, gallivm, type);
310 for (unsigned s = 0; s < coverage_samples; s++) {
311 LLVMValueRef alpha_ref_value = lp_build_const_vec(gallivm, type, step * s);
312 LLVMValueRef test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);
313
314 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, lp_build_const_int32(gallivm, s), num_loop, "");
315 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_counter, "");
316 LLVMValueRef s_mask_ptr = LLVMBuildGEP(builder, coverage_mask_store, &s_mask_idx, 1, "");
317 LLVMValueRef s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
318 s_mask = LLVMBuildAnd(builder, s_mask, test, "");
319 LLVMBuildStore(builder, s_mask, s_mask_ptr);
320 }
321 }
322
323 /**
324 * Generate the fragment shader, depth/stencil test, and alpha tests.
325 */
326 static void
327 generate_fs_loop(struct gallivm_state *gallivm,
328 struct lp_fragment_shader *shader,
329 const struct lp_fragment_shader_variant_key *key,
330 LLVMBuilderRef builder,
331 struct lp_type type,
332 LLVMValueRef context_ptr,
333 LLVMValueRef sample_pos_array,
334 LLVMValueRef num_loop,
335 struct lp_build_interp_soa_context *interp,
336 const struct lp_build_sampler_soa *sampler,
337 const struct lp_build_image_soa *image,
338 LLVMValueRef mask_store,
339 LLVMValueRef (*out_color)[4],
340 LLVMValueRef depth_base_ptr,
341 LLVMValueRef depth_stride,
342 LLVMValueRef depth_sample_stride,
343 LLVMValueRef facing,
344 LLVMValueRef thread_data_ptr)
345 {
346 const struct util_format_description *zs_format_desc = NULL;
347 const struct tgsi_token *tokens = shader->base.tokens;
348 struct lp_type int_type = lp_int_type(type);
349 LLVMTypeRef vec_type, int_vec_type;
350 LLVMValueRef mask_ptr = NULL, mask_val = NULL;
351 LLVMValueRef consts_ptr, num_consts_ptr;
352 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
353 LLVMValueRef z;
354 LLVMValueRef z_value, s_value;
355 LLVMValueRef z_fb, s_fb;
356 LLVMValueRef depth_ptr;
357 LLVMValueRef stencil_refs[2];
358 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
359 LLVMValueRef zs_samples = lp_build_const_int32(gallivm, key->zsbuf_nr_samples);
360 struct lp_build_for_loop_state loop_state, sample_loop_state;
361 struct lp_build_mask_context mask;
362 /*
363 * TODO: figure out if simple_shader optimization is really worthwile to
364 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
365 * code since tests tend to take another codepath than real shaders.
366 */
367 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
368 shader->info.base.num_inputs < 3 &&
369 shader->info.base.num_instructions < 8) && 0;
370 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
371 util_blend_state_is_dual(&key->blend, 0);
372 unsigned attrib;
373 unsigned chan;
374 unsigned cbuf;
375 unsigned depth_mode;
376
377 struct lp_bld_tgsi_system_values system_values;
378
379 memset(&system_values, 0, sizeof(system_values));
380
381 /* truncate then sign extend. */
382 system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
383 system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
384
385 if (key->depth.enabled ||
386 key->stencil[0].enabled) {
387
388 zs_format_desc = util_format_description(key->zsbuf_format);
389 assert(zs_format_desc);
390
391 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
392 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
393 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
394 if (shader->info.base.writes_memory)
395 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
396 else if (key->alpha.enabled ||
397 key->blend.alpha_to_coverage ||
398 shader->info.base.uses_kill ||
399 shader->info.base.writes_samplemask) {
400 /* With alpha test and kill, can do the depth test early
401 * and hopefully eliminate some quads. But need to do a
402 * special deferred depth write once the final mask value
403 * is known. This only works though if there's either no
404 * stencil test or the stencil value isn't written.
405 */
406 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
407 (key->stencil[1].enabled &&
408 key->stencil[1].writemask)))
409 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
410 else
411 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
412 }
413 else
414 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
415 }
416 else {
417 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
418 }
419
420 if (!(key->depth.enabled && key->depth.writemask) &&
421 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
422 (key->stencil[1].enabled &&
423 key->stencil[1].writemask))))
424 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
425 }
426 else {
427 depth_mode = 0;
428 }
429
430 vec_type = lp_build_vec_type(gallivm, type);
431 int_vec_type = lp_build_vec_type(gallivm, int_type);
432
433 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
434 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
435 /* convert scalar stencil refs into vectors */
436 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
437 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
438
439 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
440 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
441
442 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
443 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
444
445 memset(outputs, 0, sizeof outputs);
446
447 /* Allocate color storage for each fragment sample */
448 LLVMValueRef color_store_size = num_loop;
449 if (key->min_samples > 1)
450 color_store_size = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, key->min_samples), "");
451
452 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
453 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
454 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
455 lp_build_vec_type(gallivm,
456 type),
457 color_store_size, "color");
458 }
459 }
460 if (dual_source_blend) {
461 assert(key->nr_cbufs <= 1);
462 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
463 out_color[1][chan] = lp_build_array_alloca(gallivm,
464 lp_build_vec_type(gallivm,
465 type),
466 color_store_size, "color1");
467 }
468 }
469
470 lp_build_for_loop_begin(&loop_state, gallivm,
471 lp_build_const_int32(gallivm, 0),
472 LLVMIntULT,
473 num_loop,
474 lp_build_const_int32(gallivm, 1));
475
476 if (key->multisample) {
477 /* create shader execution mask by combining all sample masks. */
478 for (unsigned s = 0; s < key->coverage_samples; s++) {
479 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), "");
480 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
481 LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx);
482 if (s == 0)
483 mask_val = s_mask;
484 else
485 mask_val = LLVMBuildOr(builder, s_mask, mask_val, "");
486 }
487 } else {
488 mask_ptr = LLVMBuildGEP(builder, mask_store,
489 &loop_state.counter, 1, "mask_ptr");
490 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
491 }
492
493 /* 'mask' will control execution based on quad's pixel alive/killed state */
494 lp_build_mask_begin(&mask, gallivm, type, mask_val);
495
496 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
497 lp_build_mask_check(&mask);
498
499 /* Create storage for recombining sample masks after early Z pass. */
500 LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth");
501 LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or);
502
503 LLVMValueRef s_mask = NULL, s_mask_ptr = NULL;
504 LLVMValueRef z_sample_value_store = NULL, s_sample_value_store = NULL;
505 LLVMValueRef z_fb_store = NULL, s_fb_store = NULL;
506 LLVMTypeRef z_type = NULL, z_fb_type = NULL;
507
508 /* Run early depth once per sample */
509 if (key->multisample) {
510
511 if (zs_format_desc) {
512 struct lp_type zs_type = lp_depth_type(zs_format_desc, type.length);
513 struct lp_type z_type = zs_type;
514 struct lp_type s_type = zs_type;
515 if (zs_format_desc->block.bits < type.width)
516 z_type.width = type.width;
517 else if (zs_format_desc->block.bits > 32) {
518 z_type.width = z_type.width / 2;
519 s_type.width = s_type.width / 2;
520 s_type.floating = 0;
521 }
522 z_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
523 zs_samples, "z_sample_store");
524 s_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
525 zs_samples, "s_sample_store");
526 z_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, z_type),
527 zs_samples, "z_fb_store");
528 s_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, s_type),
529 zs_samples, "s_fb_store");
530 }
531 lp_build_for_loop_begin(&sample_loop_state, gallivm,
532 lp_build_const_int32(gallivm, 0),
533 LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
534 lp_build_const_int32(gallivm, 1));
535
536 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
537 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
538 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
539
540 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
541 s_mask = LLVMBuildAnd(builder, s_mask, mask_val, "");
542 }
543
544
545 /* for multisample Z needs to be interpolated at sample points for testing. */
546 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
547 z = interp->pos[2];
548
549 depth_ptr = depth_base_ptr;
550 if (key->multisample) {
551 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
552 depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
553 }
554
555 if (depth_mode & EARLY_DEPTH_TEST) {
556 /*
557 * Clamp according to ARB_depth_clamp semantics.
558 */
559 if (key->depth_clamp) {
560 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
561 thread_data_ptr, z);
562 }
563 lp_build_depth_stencil_load_swizzled(gallivm, type,
564 zs_format_desc, key->resource_1d,
565 depth_ptr, depth_stride,
566 &z_fb, &s_fb, loop_state.counter);
567 lp_build_depth_stencil_test(gallivm,
568 &key->depth,
569 key->stencil,
570 type,
571 zs_format_desc,
572 key->multisample ? NULL : &mask,
573 &s_mask,
574 stencil_refs,
575 z, z_fb, s_fb,
576 facing,
577 &z_value, &s_value,
578 !simple_shader && !key->multisample);
579
580 if (depth_mode & EARLY_DEPTH_WRITE) {
581 lp_build_depth_stencil_write_swizzled(gallivm, type,
582 zs_format_desc, key->resource_1d,
583 NULL, NULL, NULL, loop_state.counter,
584 depth_ptr, depth_stride,
585 z_value, s_value);
586 }
587 /*
588 * Note mask check if stencil is enabled must be after ds write not after
589 * stencil test otherwise new stencil values may not get written if all
590 * fragments got killed by depth/stencil test.
591 */
592 if (!simple_shader && key->stencil[0].enabled && !key->multisample)
593 lp_build_mask_check(&mask);
594
595 if (key->multisample) {
596 z_fb_type = LLVMTypeOf(z_fb);
597 z_type = LLVMTypeOf(z_value);
598 lp_build_pointer_set(builder, z_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, z_value, lp_build_int_vec_type(gallivm, type), ""));
599 lp_build_pointer_set(builder, s_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, s_value, lp_build_int_vec_type(gallivm, type), ""));
600 lp_build_pointer_set(builder, z_fb_store, sample_loop_state.counter, z_fb);
601 lp_build_pointer_set(builder, s_fb_store, sample_loop_state.counter, s_fb);
602 }
603 }
604
605 if (key->multisample) {
606 /*
607 * Store the post-early Z coverage mask.
608 * Recombine the resulting coverage masks post early Z into the fragment
609 * shader execution mask.
610 */
611 LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
612 tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, "");
613 LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or);
614
615 LLVMBuildStore(builder, s_mask, s_mask_ptr);
616
617 lp_build_for_loop_end(&sample_loop_state);
618
619 /* recombined all the coverage masks in the shader exec mask. */
620 tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
621 lp_build_mask_update(&mask, tmp_s_mask_or);
622
623 if (key->min_samples == 1) {
624 /* for multisample Z needs to be re interpolated at pixel center */
625 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, NULL);
626 lp_build_mask_update(&mask, tmp_s_mask_or);
627 }
628 }
629
630 LLVMValueRef out_sample_mask_storage = NULL;
631 if (shader->info.base.writes_samplemask) {
632 out_sample_mask_storage = lp_build_alloca(gallivm, int_vec_type, "write_mask");
633 if (key->min_samples > 1)
634 LLVMBuildStore(builder, LLVMConstNull(int_vec_type), out_sample_mask_storage);
635 }
636
637 if (key->multisample && key->min_samples > 1) {
638 lp_build_for_loop_begin(&sample_loop_state, gallivm,
639 lp_build_const_int32(gallivm, 0),
640 LLVMIntULT,
641 lp_build_const_int32(gallivm, key->min_samples),
642 lp_build_const_int32(gallivm, 1));
643
644 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
645 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
646 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
647 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
648 lp_build_mask_force(&mask, s_mask);
649 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, sample_loop_state.counter);
650 system_values.sample_id = sample_loop_state.counter;
651 } else
652 system_values.sample_id = lp_build_const_int32(gallivm, 0);
653
654 system_values.sample_pos = sample_pos_array;
655
656 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, mask_store, system_values.sample_id);
657
658 struct lp_build_tgsi_params params;
659 memset(&params, 0, sizeof(params));
660
661 params.type = type;
662 params.mask = &mask;
663 params.consts_ptr = consts_ptr;
664 params.const_sizes_ptr = num_consts_ptr;
665 params.system_values = &system_values;
666 params.inputs = interp->inputs;
667 params.context_ptr = context_ptr;
668 params.thread_data_ptr = thread_data_ptr;
669 params.sampler = sampler;
670 params.info = &shader->info.base;
671 params.ssbo_ptr = ssbo_ptr;
672 params.ssbo_sizes_ptr = num_ssbo_ptr;
673 params.image = image;
674
675 /* Build the actual shader */
676 if (shader->base.type == PIPE_SHADER_IR_TGSI)
677 lp_build_tgsi_soa(gallivm, tokens, &params,
678 outputs);
679 else
680 lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
681 outputs);
682
683 /* Alpha test */
684 if (key->alpha.enabled) {
685 int color0 = find_output_by_semantic(&shader->info.base,
686 TGSI_SEMANTIC_COLOR,
687 0);
688
689 if (color0 != -1 && outputs[color0][3]) {
690 const struct util_format_description *cbuf_format_desc;
691 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
692 LLVMValueRef alpha_ref_value;
693
694 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
695 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
696
697 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
698
699 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
700 &mask, alpha, alpha_ref_value,
701 (depth_mode & LATE_DEPTH_TEST) != 0);
702 }
703 }
704
705 /* Emulate Alpha to Coverage with Alpha test */
706 if (key->blend.alpha_to_coverage) {
707 int color0 = find_output_by_semantic(&shader->info.base,
708 TGSI_SEMANTIC_COLOR,
709 0);
710
711 if (color0 != -1 && outputs[color0][3]) {
712 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
713
714 if (!key->multisample) {
715 lp_build_alpha_to_coverage(gallivm, type,
716 &mask, alpha,
717 (depth_mode & LATE_DEPTH_TEST) != 0);
718 } else {
719 lp_build_sample_alpha_to_coverage(gallivm, type, key->coverage_samples, num_loop,
720 loop_state.counter,
721 mask_store, alpha);
722 }
723 }
724 }
725 if (key->blend.alpha_to_one && key->multisample) {
726 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) {
727 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
728 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
729 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
730 if (outputs[cbuf][3]) {
731 LLVMBuildStore(builder, lp_build_const_vec(gallivm, type, 1.0), outputs[cbuf][3]);
732 }
733 }
734 }
735 if (shader->info.base.writes_samplemask) {
736 LLVMValueRef output_smask = NULL;
737 int smaski = find_output_by_semantic(&shader->info.base,
738 TGSI_SEMANTIC_SAMPLEMASK,
739 0);
740 struct lp_build_context smask_bld;
741 lp_build_context_init(&smask_bld, gallivm, int_type);
742
743 assert(smaski >= 0);
744 output_smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
745 /*
746 * Pixel is alive according to the first sample in the mask.
747 */
748 output_smask = LLVMBuildBitCast(builder, output_smask, smask_bld.vec_type, "");
749 if (!key->multisample) {
750 output_smask = lp_build_and(&smask_bld, output_smask, smask_bld.one);
751 output_smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, output_smask, smask_bld.zero);
752 lp_build_mask_update(&mask, output_smask);
753 }
754
755 if (key->min_samples > 1) {
756 /* only the bit corresponding to this sample is to be used. */
757 LLVMValueRef tmp_mask = LLVMBuildLoad(builder, out_sample_mask_storage, "tmp_mask");
758 LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
759 LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, lp_build_broadcast(gallivm, int_vec_type, out_smask_idx), "");
760 output_smask = LLVMBuildOr(builder, tmp_mask, smask_bit, "");
761 }
762
763 LLVMBuildStore(builder, output_smask, out_sample_mask_storage);
764 }
765
766 /* Color write - per fragment sample */
767 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
768 {
769 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
770 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
771 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
772 {
773 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
774 if(outputs[attrib][chan]) {
775 /* XXX: just initialize outputs to point at colors[] and
776 * skip this.
777 */
778 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
779 LLVMValueRef color_ptr;
780 LLVMValueRef color_idx = loop_state.counter;
781 if (key->min_samples > 1)
782 color_idx = LLVMBuildAdd(builder, color_idx,
783 LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
784 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
785 &color_idx, 1, "");
786 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
787 LLVMBuildStore(builder, out, color_ptr);
788 }
789 }
790 }
791 }
792
793 if (key->multisample && key->min_samples > 1) {
794 LLVMBuildStore(builder, lp_build_mask_value(&mask), s_mask_ptr);
795 lp_build_for_loop_end(&sample_loop_state);
796 }
797
798 if (key->multisample) {
799 /* execute depth test for each sample */
800 lp_build_for_loop_begin(&sample_loop_state, gallivm,
801 lp_build_const_int32(gallivm, 0),
802 LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
803 lp_build_const_int32(gallivm, 1));
804
805 /* load the per-sample coverage mask */
806 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
807 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
808 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
809
810 /* combine the execution mask post fragment shader with the coverage mask. */
811 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
812 if (key->min_samples == 1)
813 s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), "");
814
815 /* if the shader writes sample mask use that */
816 if (shader->info.base.writes_samplemask) {
817 LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
818 out_smask_idx = lp_build_broadcast(gallivm, int_vec_type, out_smask_idx);
819 LLVMValueRef output_smask = LLVMBuildLoad(builder, out_sample_mask_storage, "");
820 LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, out_smask_idx, "");
821 LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int_vec(gallivm, int_type, 0), "");
822 smask_bit = LLVMBuildSExt(builder, cmp, int_vec_type, "");
823
824 s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
825 }
826 }
827
828 depth_ptr = depth_base_ptr;
829 if (key->multisample) {
830 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
831 depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
832 }
833
834 /* Late Z test */
835 if (depth_mode & LATE_DEPTH_TEST) {
836 int pos0 = find_output_by_semantic(&shader->info.base,
837 TGSI_SEMANTIC_POSITION,
838 0);
839 int s_out = find_output_by_semantic(&shader->info.base,
840 TGSI_SEMANTIC_STENCIL,
841 0);
842 if (pos0 != -1 && outputs[pos0][2]) {
843 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
844 }
845 /*
846 * Clamp according to ARB_depth_clamp semantics.
847 */
848 if (key->depth_clamp) {
849 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
850 thread_data_ptr, z);
851 }
852
853 if (s_out != -1 && outputs[s_out][1]) {
854 /* there's only one value, and spec says to discard additional bits */
855 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
856 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
857 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
858 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
859 stencil_refs[1] = stencil_refs[0];
860 }
861
862 lp_build_depth_stencil_load_swizzled(gallivm, type,
863 zs_format_desc, key->resource_1d,
864 depth_ptr, depth_stride,
865 &z_fb, &s_fb, loop_state.counter);
866
867 lp_build_depth_stencil_test(gallivm,
868 &key->depth,
869 key->stencil,
870 type,
871 zs_format_desc,
872 key->multisample ? NULL : &mask,
873 &s_mask,
874 stencil_refs,
875 z, z_fb, s_fb,
876 facing,
877 &z_value, &s_value,
878 !simple_shader);
879 /* Late Z write */
880 if (depth_mode & LATE_DEPTH_WRITE) {
881 lp_build_depth_stencil_write_swizzled(gallivm, type,
882 zs_format_desc, key->resource_1d,
883 NULL, NULL, NULL, loop_state.counter,
884 depth_ptr, depth_stride,
885 z_value, s_value);
886 }
887 }
888 else if ((depth_mode & EARLY_DEPTH_TEST) &&
889 (depth_mode & LATE_DEPTH_WRITE))
890 {
891 /* Need to apply a reduced mask to the depth write. Reload the
892 * depth value, update from zs_value with the new mask value and
893 * write that out.
894 */
895 if (key->multisample) {
896 z_value = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_sample_value_store, sample_loop_state.counter), z_type, "");;
897 s_value = lp_build_pointer_get(builder, s_sample_value_store, sample_loop_state.counter);
898 z_fb = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_fb_store, sample_loop_state.counter), z_fb_type, "");
899 s_fb = lp_build_pointer_get(builder, s_fb_store, sample_loop_state.counter);
900 }
901 lp_build_depth_stencil_write_swizzled(gallivm, type,
902 zs_format_desc, key->resource_1d,
903 key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
904 depth_ptr, depth_stride,
905 z_value, s_value);
906 }
907
908 if (key->occlusion_count) {
909 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
910 lp_build_name(counter, "counter");
911
912 lp_build_occlusion_count(gallivm, type,
913 key->multisample ? s_mask : lp_build_mask_value(&mask), counter);
914 }
915
916 if (key->multisample) {
917 /* store the sample mask for this loop */
918 LLVMBuildStore(builder, s_mask, s_mask_ptr);
919 lp_build_for_loop_end(&sample_loop_state);
920 }
921
922 mask_val = lp_build_mask_end(&mask);
923 if (!key->multisample)
924 LLVMBuildStore(builder, mask_val, mask_ptr);
925 lp_build_for_loop_end(&loop_state);
926 }
927
928
929 /**
930 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
931 *
932 * Fragment Shader outputs pixels in small 2x2 blocks
933 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
934 *
935 * However in memory pixels are stored in rows
936 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
937 *
938 * @param type fragment shader type (4x or 8x float)
939 * @param num_fs number of fs_src
940 * @param is_1d whether we're outputting to a 1d resource
941 * @param dst_channels number of output channels
942 * @param fs_src output from fragment shader
943 * @param dst pointer to store result
944 * @param pad_inline is channel padding inline or at end of row
945 * @return the number of dsts
946 */
947 static int
948 generate_fs_twiddle(struct gallivm_state *gallivm,
949 struct lp_type type,
950 unsigned num_fs,
951 unsigned dst_channels,
952 LLVMValueRef fs_src[][4],
953 LLVMValueRef* dst,
954 bool pad_inline)
955 {
956 LLVMValueRef src[16];
957
958 bool swizzle_pad;
959 bool twiddle;
960 bool split;
961
962 unsigned pixels = type.length / 4;
963 unsigned reorder_group;
964 unsigned src_channels;
965 unsigned src_count;
966 unsigned i;
967
968 src_channels = dst_channels < 3 ? dst_channels : 4;
969 src_count = num_fs * src_channels;
970
971 assert(pixels == 2 || pixels == 1);
972 assert(num_fs * src_channels <= ARRAY_SIZE(src));
973
974 /*
975 * Transpose from SoA -> AoS
976 */
977 for (i = 0; i < num_fs; ++i) {
978 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
979 }
980
981 /*
982 * Pick transformation options
983 */
984 swizzle_pad = false;
985 twiddle = false;
986 split = false;
987 reorder_group = 0;
988
989 if (dst_channels == 1) {
990 twiddle = true;
991
992 if (pixels == 2) {
993 split = true;
994 }
995 } else if (dst_channels == 2) {
996 if (pixels == 1) {
997 reorder_group = 1;
998 }
999 } else if (dst_channels > 2) {
1000 if (pixels == 1) {
1001 reorder_group = 2;
1002 } else {
1003 twiddle = true;
1004 }
1005
1006 if (!pad_inline && dst_channels == 3 && pixels > 1) {
1007 swizzle_pad = true;
1008 }
1009 }
1010
1011 /*
1012 * Split the src in half
1013 */
1014 if (split) {
1015 for (i = num_fs; i > 0; --i) {
1016 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
1017 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
1018 }
1019
1020 src_count *= 2;
1021 type.length = 4;
1022 }
1023
1024 /*
1025 * Ensure pixels are in memory order
1026 */
1027 if (reorder_group) {
1028 /* Twiddle pixels by reordering the array, e.g.:
1029 *
1030 * src_count = 8 -> 0 2 1 3 4 6 5 7
1031 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
1032 */
1033 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
1034
1035 for (i = 0; i < src_count; ++i) {
1036 unsigned group = i / reorder_group;
1037 unsigned block = (group / 4) * 4 * reorder_group;
1038 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
1039 dst[i] = src[j];
1040 }
1041 } else if (twiddle) {
1042 /* Twiddle pixels across elements of array */
1043 /*
1044 * XXX: we should avoid this in some cases, but would need to tell
1045 * lp_build_conv to reorder (or deal with it ourselves).
1046 */
1047 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
1048 } else {
1049 /* Do nothing */
1050 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
1051 }
1052
1053 /*
1054 * Moves any padding between pixels to the end
1055 * e.g. RGBXRGBX -> RGBRGBXX
1056 */
1057 if (swizzle_pad) {
1058 unsigned char swizzles[16];
1059 unsigned elems = pixels * dst_channels;
1060
1061 for (i = 0; i < type.length; ++i) {
1062 if (i < elems)
1063 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
1064 else
1065 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
1066 }
1067
1068 for (i = 0; i < src_count; ++i) {
1069 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
1070 }
1071 }
1072
1073 return src_count;
1074 }
1075
1076
1077 /*
1078 * Untwiddle and transpose, much like the above.
1079 * However, this is after conversion, so we get packed vectors.
1080 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
1081 * the vectors will look like:
1082 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
1083 * be swizzled here). Extending to 16bit should be trivial.
1084 * Should also be extended to handle twice wide vectors with AVX2...
1085 */
1086 static void
1087 fs_twiddle_transpose(struct gallivm_state *gallivm,
1088 struct lp_type type,
1089 LLVMValueRef *src,
1090 unsigned src_count,
1091 LLVMValueRef *dst)
1092 {
1093 unsigned i, j;
1094 struct lp_type type64, type16, type32;
1095 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
1096 LLVMBuilderRef builder = gallivm->builder;
1097 LLVMValueRef tmp[4], shuf[8];
1098 for (j = 0; j < 2; j++) {
1099 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
1100 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
1101 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
1102 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
1103 }
1104
1105 assert(src_count == 4 || src_count == 2 || src_count == 1);
1106 assert(type.width == 8);
1107 assert(type.length == 16);
1108
1109 type8_t = lp_build_vec_type(gallivm, type);
1110
1111 type64 = type;
1112 type64.length /= 8;
1113 type64.width *= 8;
1114 type64_t = lp_build_vec_type(gallivm, type64);
1115
1116 type16 = type;
1117 type16.length /= 2;
1118 type16.width *= 2;
1119 type16_t = lp_build_vec_type(gallivm, type16);
1120
1121 type32 = type;
1122 type32.length /= 4;
1123 type32.width *= 4;
1124 type32_t = lp_build_vec_type(gallivm, type32);
1125
1126 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
1127
1128 if (src_count == 1) {
1129 /* transpose was no-op, just untwiddle */
1130 LLVMValueRef shuf_vec;
1131 shuf_vec = LLVMConstVector(shuf, 8);
1132 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
1133 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
1134 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
1135 } else if (src_count == 2) {
1136 LLVMValueRef shuf_vec;
1137 shuf_vec = LLVMConstVector(shuf, 4);
1138
1139 for (i = 0; i < 2; i++) {
1140 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
1141 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
1142 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
1143 }
1144 } else {
1145 for (j = 0; j < 2; j++) {
1146 LLVMValueRef lo, hi, lo2, hi2;
1147 /*
1148 * Note that if we only really have 3 valid channels (rgb)
1149 * and we don't need alpha we could substitute a undef here
1150 * for the respective channel (causing llvm to drop conversion
1151 * for alpha).
1152 */
1153 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
1154 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
1155 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
1156 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
1157 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
1158 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
1159 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
1160 }
1161 }
1162 }
1163
1164
1165 /**
1166 * Load an unswizzled block of pixels from memory
1167 */
1168 static void
1169 load_unswizzled_block(struct gallivm_state *gallivm,
1170 LLVMValueRef base_ptr,
1171 LLVMValueRef stride,
1172 unsigned block_width,
1173 unsigned block_height,
1174 LLVMValueRef* dst,
1175 struct lp_type dst_type,
1176 unsigned dst_count,
1177 unsigned dst_alignment)
1178 {
1179 LLVMBuilderRef builder = gallivm->builder;
1180 unsigned row_size = dst_count / block_height;
1181 unsigned i;
1182
1183 /* Ensure block exactly fits into dst */
1184 assert((block_width * block_height) % dst_count == 0);
1185
1186 for (i = 0; i < dst_count; ++i) {
1187 unsigned x = i % row_size;
1188 unsigned y = i / row_size;
1189
1190 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
1191 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1192
1193 LLVMValueRef gep[2];
1194 LLVMValueRef dst_ptr;
1195
1196 gep[0] = lp_build_const_int32(gallivm, 0);
1197 gep[1] = LLVMBuildAdd(builder, bx, by, "");
1198
1199 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1200 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
1201 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
1202
1203 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
1204
1205 LLVMSetAlignment(dst[i], dst_alignment);
1206 }
1207 }
1208
1209
1210 /**
1211 * Store an unswizzled block of pixels to memory
1212 */
1213 static void
1214 store_unswizzled_block(struct gallivm_state *gallivm,
1215 LLVMValueRef base_ptr,
1216 LLVMValueRef stride,
1217 unsigned block_width,
1218 unsigned block_height,
1219 LLVMValueRef* src,
1220 struct lp_type src_type,
1221 unsigned src_count,
1222 unsigned src_alignment)
1223 {
1224 LLVMBuilderRef builder = gallivm->builder;
1225 unsigned row_size = src_count / block_height;
1226 unsigned i;
1227
1228 /* Ensure src exactly fits into block */
1229 assert((block_width * block_height) % src_count == 0);
1230
1231 for (i = 0; i < src_count; ++i) {
1232 unsigned x = i % row_size;
1233 unsigned y = i / row_size;
1234
1235 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
1236 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1237
1238 LLVMValueRef gep[2];
1239 LLVMValueRef src_ptr;
1240
1241 gep[0] = lp_build_const_int32(gallivm, 0);
1242 gep[1] = LLVMBuildAdd(builder, bx, by, "");
1243
1244 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1245 src_ptr = LLVMBuildBitCast(builder, src_ptr,
1246 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1247
1248 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1249
1250 LLVMSetAlignment(src_ptr, src_alignment);
1251 }
1252 }
1253
1254
1255 /**
1256 * Checks if a format description is an arithmetic format
1257 *
1258 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
1259 */
1260 static inline boolean
1261 is_arithmetic_format(const struct util_format_description *format_desc)
1262 {
1263 boolean arith = false;
1264 unsigned i;
1265
1266 for (i = 0; i < format_desc->nr_channels; ++i) {
1267 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1268 arith |= (format_desc->channel[i].size % 8) != 0;
1269 }
1270
1271 return arith;
1272 }
1273
1274
1275 /**
1276 * Checks if this format requires special handling due to required expansion
1277 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1278 * SoA conversion.
1279 */
1280 static inline boolean
1281 format_expands_to_float_soa(const struct util_format_description *format_desc)
1282 {
1283 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1284 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1285 return true;
1286 }
1287 return false;
1288 }
1289
1290
1291 /**
1292 * Retrieves the type representing the memory layout for a format
1293 *
1294 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1295 */
1296 static inline void
1297 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1298 struct lp_type* type)
1299 {
1300 unsigned i;
1301 unsigned chan;
1302
1303 if (format_expands_to_float_soa(format_desc)) {
1304 /* just make this a uint with width of block */
1305 type->floating = false;
1306 type->fixed = false;
1307 type->sign = false;
1308 type->norm = false;
1309 type->width = format_desc->block.bits;
1310 type->length = 1;
1311 return;
1312 }
1313
1314 for (i = 0; i < 4; i++)
1315 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1316 break;
1317 chan = i;
1318
1319 memset(type, 0, sizeof(struct lp_type));
1320 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1321 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1322 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1323 type->norm = format_desc->channel[chan].normalized;
1324
1325 if (is_arithmetic_format(format_desc)) {
1326 type->width = 0;
1327 type->length = 1;
1328
1329 for (i = 0; i < format_desc->nr_channels; ++i) {
1330 type->width += format_desc->channel[i].size;
1331 }
1332 } else {
1333 type->width = format_desc->channel[chan].size;
1334 type->length = format_desc->nr_channels;
1335 }
1336 }
1337
1338
1339 /**
1340 * Retrieves the type for a format which is usable in the blending code.
1341 *
1342 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1343 */
1344 static inline void
1345 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1346 struct lp_type* type)
1347 {
1348 unsigned i;
1349 unsigned chan;
1350
1351 if (format_expands_to_float_soa(format_desc)) {
1352 /* always use ordinary floats for blending */
1353 type->floating = true;
1354 type->fixed = false;
1355 type->sign = true;
1356 type->norm = false;
1357 type->width = 32;
1358 type->length = 4;
1359 return;
1360 }
1361
1362 for (i = 0; i < 4; i++)
1363 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1364 break;
1365 chan = i;
1366
1367 memset(type, 0, sizeof(struct lp_type));
1368 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1369 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1370 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1371 type->norm = format_desc->channel[chan].normalized;
1372 type->width = format_desc->channel[chan].size;
1373 type->length = format_desc->nr_channels;
1374
1375 for (i = 1; i < format_desc->nr_channels; ++i) {
1376 if (format_desc->channel[i].size > type->width)
1377 type->width = format_desc->channel[i].size;
1378 }
1379
1380 if (type->floating) {
1381 type->width = 32;
1382 } else {
1383 if (type->width <= 8) {
1384 type->width = 8;
1385 } else if (type->width <= 16) {
1386 type->width = 16;
1387 } else {
1388 type->width = 32;
1389 }
1390 }
1391
1392 if (is_arithmetic_format(format_desc) && type->length == 3) {
1393 type->length = 4;
1394 }
1395 }
1396
1397
1398 /**
1399 * Scale a normalized value from src_bits to dst_bits.
1400 *
1401 * The exact calculation is
1402 *
1403 * dst = iround(src * dst_mask / src_mask)
1404 *
1405 * or with integer rounding
1406 *
1407 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1408 *
1409 * where
1410 *
1411 * src_mask = (1 << src_bits) - 1
1412 * dst_mask = (1 << dst_bits) - 1
1413 *
1414 * but we try to avoid division and multiplication through shifts.
1415 */
1416 static inline LLVMValueRef
1417 scale_bits(struct gallivm_state *gallivm,
1418 int src_bits,
1419 int dst_bits,
1420 LLVMValueRef src,
1421 struct lp_type src_type)
1422 {
1423 LLVMBuilderRef builder = gallivm->builder;
1424 LLVMValueRef result = src;
1425
1426 if (dst_bits < src_bits) {
1427 int delta_bits = src_bits - dst_bits;
1428
1429 if (delta_bits <= dst_bits) {
1430 /*
1431 * Approximate the rescaling with a single shift.
1432 *
1433 * This gives the wrong rounding.
1434 */
1435
1436 result = LLVMBuildLShr(builder,
1437 src,
1438 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1439 "");
1440
1441 } else {
1442 /*
1443 * Try more accurate rescaling.
1444 */
1445
1446 /*
1447 * Drop the least significant bits to make space for the multiplication.
1448 *
1449 * XXX: A better approach would be to use a wider integer type as intermediate. But
1450 * this is enough to convert alpha from 16bits -> 2 when rendering to
1451 * PIPE_FORMAT_R10G10B10A2_UNORM.
1452 */
1453 result = LLVMBuildLShr(builder,
1454 src,
1455 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1456 "");
1457
1458
1459 result = LLVMBuildMul(builder,
1460 result,
1461 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1462 "");
1463
1464 /*
1465 * Add a rounding term before the division.
1466 *
1467 * TODO: Handle signed integers too.
1468 */
1469 if (!src_type.sign) {
1470 result = LLVMBuildAdd(builder,
1471 result,
1472 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1473 "");
1474 }
1475
1476 /*
1477 * Approximate the division by src_mask with a src_bits shift.
1478 *
1479 * Given the src has already been shifted by dst_bits, all we need
1480 * to do is to shift by the difference.
1481 */
1482
1483 result = LLVMBuildLShr(builder,
1484 result,
1485 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1486 "");
1487 }
1488
1489 } else if (dst_bits > src_bits) {
1490 /* Scale up bits */
1491 int db = dst_bits - src_bits;
1492
1493 /* Shift left by difference in bits */
1494 result = LLVMBuildShl(builder,
1495 src,
1496 lp_build_const_int_vec(gallivm, src_type, db),
1497 "");
1498
1499 if (db <= src_bits) {
1500 /* Enough bits in src to fill the remainder */
1501 LLVMValueRef lower = LLVMBuildLShr(builder,
1502 src,
1503 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1504 "");
1505
1506 result = LLVMBuildOr(builder, result, lower, "");
1507 } else if (db > src_bits) {
1508 /* Need to repeatedly copy src bits to fill remainder in dst */
1509 unsigned n;
1510
1511 for (n = src_bits; n < dst_bits; n *= 2) {
1512 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1513
1514 result = LLVMBuildOr(builder,
1515 result,
1516 LLVMBuildLShr(builder, result, shuv, ""),
1517 "");
1518 }
1519 }
1520 }
1521
1522 return result;
1523 }
1524
1525 /**
1526 * If RT is a smallfloat (needing denorms) format
1527 */
1528 static inline int
1529 have_smallfloat_format(struct lp_type dst_type,
1530 enum pipe_format format)
1531 {
1532 return ((dst_type.floating && dst_type.width != 32) ||
1533 /* due to format handling hacks this format doesn't have floating set
1534 * here (and actually has width set to 32 too) so special case this. */
1535 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1536 }
1537
1538
1539 /**
1540 * Convert from memory format to blending format
1541 *
1542 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1543 */
1544 static void
1545 convert_to_blend_type(struct gallivm_state *gallivm,
1546 unsigned block_size,
1547 const struct util_format_description *src_fmt,
1548 struct lp_type src_type,
1549 struct lp_type dst_type,
1550 LLVMValueRef* src, // and dst
1551 unsigned num_srcs)
1552 {
1553 LLVMValueRef *dst = src;
1554 LLVMBuilderRef builder = gallivm->builder;
1555 struct lp_type blend_type;
1556 struct lp_type mem_type;
1557 unsigned i, j;
1558 unsigned pixels = block_size / num_srcs;
1559 bool is_arith;
1560
1561 /*
1562 * full custom path for packed floats and srgb formats - none of the later
1563 * functions would do anything useful, and given the lp_type representation they
1564 * can't be fixed. Should really have some SoA blend path for these kind of
1565 * formats rather than hacking them in here.
1566 */
1567 if (format_expands_to_float_soa(src_fmt)) {
1568 LLVMValueRef tmpsrc[4];
1569 /*
1570 * This is pretty suboptimal for this case blending in SoA would be much
1571 * better, since conversion gets us SoA values so need to convert back.
1572 */
1573 assert(src_type.width == 32 || src_type.width == 16);
1574 assert(dst_type.floating);
1575 assert(dst_type.width == 32);
1576 assert(dst_type.length % 4 == 0);
1577 assert(num_srcs % 4 == 0);
1578
1579 if (src_type.width == 16) {
1580 /* expand 4x16bit values to 4x32bit */
1581 struct lp_type type32x4 = src_type;
1582 LLVMTypeRef ltype32x4;
1583 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1584 type32x4.width = 32;
1585 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1586 for (i = 0; i < num_fetch; i++) {
1587 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1588 }
1589 src_type.width = 32;
1590 }
1591 for (i = 0; i < 4; i++) {
1592 tmpsrc[i] = src[i];
1593 }
1594 for (i = 0; i < num_srcs / 4; i++) {
1595 LLVMValueRef tmpsoa[4];
1596 LLVMValueRef tmps = tmpsrc[i];
1597 if (dst_type.length == 8) {
1598 LLVMValueRef shuffles[8];
1599 unsigned j;
1600 /* fetch was 4 values but need 8-wide output values */
1601 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1602 /*
1603 * for 8-wide aos transpose would give us wrong order not matching
1604 * incoming converted fs values and mask. ARGH.
1605 */
1606 for (j = 0; j < 4; j++) {
1607 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1608 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1609 }
1610 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1611 LLVMConstVector(shuffles, 8), "");
1612 }
1613 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1614 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1615 }
1616 else {
1617 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1618 }
1619 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1620 }
1621 return;
1622 }
1623
1624 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1625 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1626
1627 /* Is the format arithmetic */
1628 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1629 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1630
1631 /* Pad if necessary */
1632 if (!is_arith && src_type.length < dst_type.length) {
1633 for (i = 0; i < num_srcs; ++i) {
1634 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1635 }
1636
1637 src_type.length = dst_type.length;
1638 }
1639
1640 /* Special case for half-floats */
1641 if (mem_type.width == 16 && mem_type.floating) {
1642 assert(blend_type.width == 32 && blend_type.floating);
1643 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1644 is_arith = false;
1645 }
1646
1647 if (!is_arith) {
1648 return;
1649 }
1650
1651 src_type.width = blend_type.width * blend_type.length;
1652 blend_type.length *= pixels;
1653 src_type.length *= pixels / (src_type.length / mem_type.length);
1654
1655 for (i = 0; i < num_srcs; ++i) {
1656 LLVMValueRef chans[4];
1657 LLVMValueRef res = NULL;
1658
1659 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1660
1661 for (j = 0; j < src_fmt->nr_channels; ++j) {
1662 unsigned mask = 0;
1663 unsigned sa = src_fmt->channel[j].shift;
1664 #if UTIL_ARCH_LITTLE_ENDIAN
1665 unsigned from_lsb = j;
1666 #else
1667 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1668 #endif
1669
1670 mask = (1 << src_fmt->channel[j].size) - 1;
1671
1672 /* Extract bits from source */
1673 chans[j] = LLVMBuildLShr(builder,
1674 dst[i],
1675 lp_build_const_int_vec(gallivm, src_type, sa),
1676 "");
1677
1678 chans[j] = LLVMBuildAnd(builder,
1679 chans[j],
1680 lp_build_const_int_vec(gallivm, src_type, mask),
1681 "");
1682
1683 /* Scale bits */
1684 if (src_type.norm) {
1685 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1686 blend_type.width, chans[j], src_type);
1687 }
1688
1689 /* Insert bits into correct position */
1690 chans[j] = LLVMBuildShl(builder,
1691 chans[j],
1692 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1693 "");
1694
1695 if (j == 0) {
1696 res = chans[j];
1697 } else {
1698 res = LLVMBuildOr(builder, res, chans[j], "");
1699 }
1700 }
1701
1702 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1703 }
1704 }
1705
1706
1707 /**
1708 * Convert from blending format to memory format
1709 *
1710 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1711 */
1712 static void
1713 convert_from_blend_type(struct gallivm_state *gallivm,
1714 unsigned block_size,
1715 const struct util_format_description *src_fmt,
1716 struct lp_type src_type,
1717 struct lp_type dst_type,
1718 LLVMValueRef* src, // and dst
1719 unsigned num_srcs)
1720 {
1721 LLVMValueRef* dst = src;
1722 unsigned i, j, k;
1723 struct lp_type mem_type;
1724 struct lp_type blend_type;
1725 LLVMBuilderRef builder = gallivm->builder;
1726 unsigned pixels = block_size / num_srcs;
1727 bool is_arith;
1728
1729 /*
1730 * full custom path for packed floats and srgb formats - none of the later
1731 * functions would do anything useful, and given the lp_type representation they
1732 * can't be fixed. Should really have some SoA blend path for these kind of
1733 * formats rather than hacking them in here.
1734 */
1735 if (format_expands_to_float_soa(src_fmt)) {
1736 /*
1737 * This is pretty suboptimal for this case blending in SoA would be much
1738 * better - we need to transpose the AoS values back to SoA values for
1739 * conversion/packing.
1740 */
1741 assert(src_type.floating);
1742 assert(src_type.width == 32);
1743 assert(src_type.length % 4 == 0);
1744 assert(dst_type.width == 32 || dst_type.width == 16);
1745
1746 for (i = 0; i < num_srcs / 4; i++) {
1747 LLVMValueRef tmpsoa[4], tmpdst;
1748 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1749 /* really really need SoA here */
1750
1751 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1752 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1753 }
1754 else {
1755 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1756 src_type, tmpsoa);
1757 }
1758
1759 if (src_type.length == 8) {
1760 LLVMValueRef tmpaos, shuffles[8];
1761 unsigned j;
1762 /*
1763 * for 8-wide aos transpose has given us wrong order not matching
1764 * output order. HMPF. Also need to split the output values manually.
1765 */
1766 for (j = 0; j < 4; j++) {
1767 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1768 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1769 }
1770 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1771 LLVMConstVector(shuffles, 8), "");
1772 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1773 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1774 }
1775 else {
1776 src[i] = tmpdst;
1777 }
1778 }
1779 if (dst_type.width == 16) {
1780 struct lp_type type16x8 = dst_type;
1781 struct lp_type type32x4 = dst_type;
1782 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1783 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1784 type16x8.length = 8;
1785 type32x4.width = 32;
1786 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1787 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1788 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1789 /* We could do vector truncation but it doesn't generate very good code */
1790 for (i = 0; i < num_fetch; i++) {
1791 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1792 src[i], lp_build_zero(gallivm, type32x4));
1793 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1794 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1795 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1796 }
1797 }
1798 return;
1799 }
1800
1801 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1802 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1803
1804 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1805
1806 /* Special case for half-floats */
1807 if (mem_type.width == 16 && mem_type.floating) {
1808 int length = dst_type.length;
1809 assert(blend_type.width == 32 && blend_type.floating);
1810
1811 dst_type.length = src_type.length;
1812
1813 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1814
1815 dst_type.length = length;
1816 is_arith = false;
1817 }
1818
1819 /* Remove any padding */
1820 if (!is_arith && (src_type.length % mem_type.length)) {
1821 src_type.length -= (src_type.length % mem_type.length);
1822
1823 for (i = 0; i < num_srcs; ++i) {
1824 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1825 }
1826 }
1827
1828 /* No bit arithmetic to do */
1829 if (!is_arith) {
1830 return;
1831 }
1832
1833 src_type.length = pixels;
1834 src_type.width = blend_type.length * blend_type.width;
1835 dst_type.length = pixels;
1836
1837 for (i = 0; i < num_srcs; ++i) {
1838 LLVMValueRef chans[4];
1839 LLVMValueRef res = NULL;
1840
1841 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1842
1843 for (j = 0; j < src_fmt->nr_channels; ++j) {
1844 unsigned mask = 0;
1845 unsigned sa = src_fmt->channel[j].shift;
1846 unsigned sz_a = src_fmt->channel[j].size;
1847 #if UTIL_ARCH_LITTLE_ENDIAN
1848 unsigned from_lsb = j;
1849 #else
1850 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1851 #endif
1852
1853 assert(blend_type.width > src_fmt->channel[j].size);
1854
1855 for (k = 0; k < blend_type.width; ++k) {
1856 mask |= 1 << k;
1857 }
1858
1859 /* Extract bits */
1860 chans[j] = LLVMBuildLShr(builder,
1861 dst[i],
1862 lp_build_const_int_vec(gallivm, src_type,
1863 from_lsb * blend_type.width),
1864 "");
1865
1866 chans[j] = LLVMBuildAnd(builder,
1867 chans[j],
1868 lp_build_const_int_vec(gallivm, src_type, mask),
1869 "");
1870
1871 /* Scale down bits */
1872 if (src_type.norm) {
1873 chans[j] = scale_bits(gallivm, blend_type.width,
1874 src_fmt->channel[j].size, chans[j], src_type);
1875 } else if (!src_type.floating && sz_a < blend_type.width) {
1876 LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
1877 LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
1878 chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
1879 }
1880
1881 /* Insert bits */
1882 chans[j] = LLVMBuildShl(builder,
1883 chans[j],
1884 lp_build_const_int_vec(gallivm, src_type, sa),
1885 "");
1886
1887 sa += src_fmt->channel[j].size;
1888
1889 if (j == 0) {
1890 res = chans[j];
1891 } else {
1892 res = LLVMBuildOr(builder, res, chans[j], "");
1893 }
1894 }
1895
1896 assert (dst_type.width != 24);
1897
1898 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1899 }
1900 }
1901
1902
1903 /**
1904 * Convert alpha to same blend type as src
1905 */
1906 static void
1907 convert_alpha(struct gallivm_state *gallivm,
1908 struct lp_type row_type,
1909 struct lp_type alpha_type,
1910 const unsigned block_size,
1911 const unsigned block_height,
1912 const unsigned src_count,
1913 const unsigned dst_channels,
1914 const bool pad_inline,
1915 LLVMValueRef* src_alpha)
1916 {
1917 LLVMBuilderRef builder = gallivm->builder;
1918 unsigned i, j;
1919 unsigned length = row_type.length;
1920 row_type.length = alpha_type.length;
1921
1922 /* Twiddle the alpha to match pixels */
1923 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1924
1925 /*
1926 * TODO this should use single lp_build_conv call for
1927 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1928 */
1929 for (i = 0; i < block_height; ++i) {
1930 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1931 }
1932
1933 alpha_type = row_type;
1934 row_type.length = length;
1935
1936 /* If only one channel we can only need the single alpha value per pixel */
1937 if (src_count == 1 && dst_channels == 1) {
1938
1939 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1940 } else {
1941 /* If there are more srcs than rows then we need to split alpha up */
1942 if (src_count > block_height) {
1943 for (i = src_count; i > 0; --i) {
1944 unsigned pixels = block_size / src_count;
1945 unsigned idx = i - 1;
1946
1947 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1948 (idx * pixels) % 4, pixels);
1949 }
1950 }
1951
1952 /* If there is a src for each pixel broadcast the alpha across whole row */
1953 if (src_count == block_size) {
1954 for (i = 0; i < src_count; ++i) {
1955 src_alpha[i] = lp_build_broadcast(gallivm,
1956 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1957 }
1958 } else {
1959 unsigned pixels = block_size / src_count;
1960 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1961 unsigned alpha_span = 1;
1962 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1963
1964 /* Check if we need 2 src_alphas for our shuffles */
1965 if (pixels > alpha_type.length) {
1966 alpha_span = 2;
1967 }
1968
1969 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1970 for (j = 0; j < row_type.length; ++j) {
1971 if (j < pixels * channels) {
1972 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1973 } else {
1974 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1975 }
1976 }
1977
1978 for (i = 0; i < src_count; ++i) {
1979 unsigned idx1 = i, idx2 = i;
1980
1981 if (alpha_span > 1){
1982 idx1 *= alpha_span;
1983 idx2 = idx1 + 1;
1984 }
1985
1986 src_alpha[i] = LLVMBuildShuffleVector(builder,
1987 src_alpha[idx1],
1988 src_alpha[idx2],
1989 LLVMConstVector(shuffles, row_type.length),
1990 "");
1991 }
1992 }
1993 }
1994 }
1995
1996
1997 /**
1998 * Generates the blend function for unswizzled colour buffers
1999 * Also generates the read & write from colour buffer
2000 */
2001 static void
2002 generate_unswizzled_blend(struct gallivm_state *gallivm,
2003 unsigned rt,
2004 struct lp_fragment_shader_variant *variant,
2005 enum pipe_format out_format,
2006 unsigned int num_fs,
2007 struct lp_type fs_type,
2008 LLVMValueRef* fs_mask,
2009 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
2010 LLVMValueRef context_ptr,
2011 LLVMValueRef color_ptr,
2012 LLVMValueRef stride,
2013 unsigned partial_mask,
2014 boolean do_branch)
2015 {
2016 const unsigned alpha_channel = 3;
2017 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
2018 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
2019 const unsigned block_size = block_width * block_height;
2020 const unsigned lp_integer_vector_width = 128;
2021
2022 LLVMBuilderRef builder = gallivm->builder;
2023 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
2024 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
2025 LLVMValueRef src_alpha[4 * 4];
2026 LLVMValueRef src1_alpha[4 * 4] = { NULL };
2027 LLVMValueRef src_mask[4 * 4];
2028 LLVMValueRef src[4 * 4];
2029 LLVMValueRef src1[4 * 4];
2030 LLVMValueRef dst[4 * 4];
2031 LLVMValueRef blend_color;
2032 LLVMValueRef blend_alpha;
2033 LLVMValueRef i32_zero;
2034 LLVMValueRef check_mask;
2035 LLVMValueRef undef_src_val;
2036
2037 struct lp_build_mask_context mask_ctx;
2038 struct lp_type mask_type;
2039 struct lp_type blend_type;
2040 struct lp_type row_type;
2041 struct lp_type dst_type;
2042 struct lp_type ls_type;
2043
2044 unsigned char swizzle[TGSI_NUM_CHANNELS];
2045 unsigned vector_width;
2046 unsigned src_channels = TGSI_NUM_CHANNELS;
2047 unsigned dst_channels;
2048 unsigned dst_count;
2049 unsigned src_count;
2050 unsigned i, j;
2051
2052 const struct util_format_description* out_format_desc = util_format_description(out_format);
2053
2054 unsigned dst_alignment;
2055
2056 bool pad_inline = is_arithmetic_format(out_format_desc);
2057 bool has_alpha = false;
2058 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
2059 util_blend_state_is_dual(&variant->key.blend, 0);
2060
2061 const boolean is_1d = variant->key.resource_1d;
2062 boolean twiddle_after_convert = FALSE;
2063 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
2064 LLVMValueRef fpstate = 0;
2065
2066 /* Get type from output format */
2067 lp_blend_type_from_format_desc(out_format_desc, &row_type);
2068 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
2069
2070 /*
2071 * Technically this code should go into lp_build_smallfloat_to_float
2072 * and lp_build_float_to_smallfloat but due to the
2073 * http://llvm.org/bugs/show_bug.cgi?id=6393
2074 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
2075 * So the ordering is important here and there shouldn't be any
2076 * llvm ir instrunctions in this function before
2077 * this, otherwise half-float format conversions won't work
2078 * (again due to llvm bug #6393).
2079 */
2080 if (have_smallfloat_format(dst_type, out_format)) {
2081 /* We need to make sure that denorms are ok for half float
2082 conversions */
2083 fpstate = lp_build_fpstate_get(gallivm);
2084 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
2085 }
2086
2087 mask_type = lp_int32_vec4_type();
2088 mask_type.length = fs_type.length;
2089
2090 for (i = num_fs; i < num_fullblock_fs; i++) {
2091 fs_mask[i] = lp_build_zero(gallivm, mask_type);
2092 }
2093
2094 /* Do not bother executing code when mask is empty.. */
2095 if (do_branch) {
2096 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
2097
2098 for (i = 0; i < num_fullblock_fs; ++i) {
2099 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
2100 }
2101
2102 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
2103 lp_build_mask_check(&mask_ctx);
2104 }
2105
2106 partial_mask |= !variant->opaque;
2107 i32_zero = lp_build_const_int32(gallivm, 0);
2108
2109 undef_src_val = lp_build_undef(gallivm, fs_type);
2110
2111 row_type.length = fs_type.length;
2112 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
2113
2114 /* Compute correct swizzle and count channels */
2115 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
2116 dst_channels = 0;
2117
2118 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
2119 /* Ensure channel is used */
2120 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
2121 continue;
2122 }
2123
2124 /* Ensure not already written to (happens in case with GL_ALPHA) */
2125 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
2126 continue;
2127 }
2128
2129 /* Ensure we havn't already found all channels */
2130 if (dst_channels >= out_format_desc->nr_channels) {
2131 continue;
2132 }
2133
2134 swizzle[out_format_desc->swizzle[i]] = i;
2135 ++dst_channels;
2136
2137 if (i == alpha_channel) {
2138 has_alpha = true;
2139 }
2140 }
2141
2142 if (format_expands_to_float_soa(out_format_desc)) {
2143 /*
2144 * the code above can't work for layout_other
2145 * for srgb it would sort of work but we short-circuit swizzles, etc.
2146 * as that is done as part of unpack / pack.
2147 */
2148 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
2149 has_alpha = true;
2150 swizzle[0] = 0;
2151 swizzle[1] = 1;
2152 swizzle[2] = 2;
2153 swizzle[3] = 3;
2154 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
2155 }
2156
2157 /* If 3 channels then pad to include alpha for 4 element transpose */
2158 if (dst_channels == 3) {
2159 assert (!has_alpha);
2160 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
2161 if (swizzle[i] > TGSI_NUM_CHANNELS)
2162 swizzle[i] = 3;
2163 }
2164 if (out_format_desc->nr_channels == 4) {
2165 dst_channels = 4;
2166 /*
2167 * We use alpha from the color conversion, not separate one.
2168 * We had to include it for transpose, hence it will get converted
2169 * too (albeit when doing transpose after conversion, that would
2170 * no longer be the case necessarily).
2171 * (It works only with 4 channel dsts, e.g. rgbx formats, because
2172 * otherwise we really have padding, not alpha, included.)
2173 */
2174 has_alpha = true;
2175 }
2176 }
2177
2178 /*
2179 * Load shader output
2180 */
2181 for (i = 0; i < num_fullblock_fs; ++i) {
2182 /* Always load alpha for use in blending */
2183 LLVMValueRef alpha;
2184 if (i < num_fs) {
2185 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
2186 }
2187 else {
2188 alpha = undef_src_val;
2189 }
2190
2191 /* Load each channel */
2192 for (j = 0; j < dst_channels; ++j) {
2193 assert(swizzle[j] < 4);
2194 if (i < num_fs) {
2195 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
2196 }
2197 else {
2198 fs_src[i][j] = undef_src_val;
2199 }
2200 }
2201
2202 /* If 3 channels then pad to include alpha for 4 element transpose */
2203 /*
2204 * XXX If we include that here maybe could actually use it instead of
2205 * separate alpha for blending?
2206 * (Difficult though we actually convert pad channels, not alpha.)
2207 */
2208 if (dst_channels == 3 && !has_alpha) {
2209 fs_src[i][3] = alpha;
2210 }
2211
2212 /* We split the row_mask and row_alpha as we want 128bit interleave */
2213 if (fs_type.length == 8) {
2214 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
2215 0, src_channels);
2216 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
2217 src_channels, src_channels);
2218
2219 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2220 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2221 src_channels, src_channels);
2222 } else {
2223 src_mask[i] = fs_mask[i];
2224 src_alpha[i] = alpha;
2225 }
2226 }
2227 if (dual_source_blend) {
2228 /* same as above except different src/dst, skip masks and comments... */
2229 for (i = 0; i < num_fullblock_fs; ++i) {
2230 LLVMValueRef alpha;
2231 if (i < num_fs) {
2232 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
2233 }
2234 else {
2235 alpha = undef_src_val;
2236 }
2237
2238 for (j = 0; j < dst_channels; ++j) {
2239 assert(swizzle[j] < 4);
2240 if (i < num_fs) {
2241 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
2242 }
2243 else {
2244 fs_src1[i][j] = undef_src_val;
2245 }
2246 }
2247 if (dst_channels == 3 && !has_alpha) {
2248 fs_src1[i][3] = alpha;
2249 }
2250 if (fs_type.length == 8) {
2251 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2252 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2253 src_channels, src_channels);
2254 } else {
2255 src1_alpha[i] = alpha;
2256 }
2257 }
2258 }
2259
2260 if (util_format_is_pure_integer(out_format)) {
2261 /*
2262 * In this case fs_type was really ints or uints disguised as floats,
2263 * fix that up now.
2264 */
2265 fs_type.floating = 0;
2266 fs_type.sign = dst_type.sign;
2267 for (i = 0; i < num_fullblock_fs; ++i) {
2268 for (j = 0; j < dst_channels; ++j) {
2269 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2270 lp_build_vec_type(gallivm, fs_type), "");
2271 }
2272 if (dst_channels == 3 && !has_alpha) {
2273 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2274 lp_build_vec_type(gallivm, fs_type), "");
2275 }
2276 }
2277 }
2278
2279 /*
2280 * We actually should generally do conversion first (for non-1d cases)
2281 * when the blend format is 8 or 16 bits. The reason is obvious,
2282 * there's 2 or 4 times less vectors to deal with for the interleave...
2283 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2284 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2285 * unpack only with 128bit vectors).
2286 * Note: for 16bit sizes really need matching pack conversion code
2287 */
2288 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2289 twiddle_after_convert = TRUE;
2290 }
2291
2292 /*
2293 * Pixel twiddle from fragment shader order to memory order
2294 */
2295 if (!twiddle_after_convert) {
2296 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2297 dst_channels, fs_src, src, pad_inline);
2298 if (dual_source_blend) {
2299 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2300 fs_src1, src1, pad_inline);
2301 }
2302 } else {
2303 src_count = num_fullblock_fs * dst_channels;
2304 /*
2305 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2306 * (AVX) turn out the same later when untwiddling/transpose (albeit
2307 * for true AVX2 path untwiddle needs to be different).
2308 * For now just order by colors first (so we can use unpack later).
2309 */
2310 for (j = 0; j < num_fullblock_fs; j++) {
2311 for (i = 0; i < dst_channels; i++) {
2312 src[i*num_fullblock_fs + j] = fs_src[j][i];
2313 if (dual_source_blend) {
2314 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2315 }
2316 }
2317 }
2318 }
2319
2320 src_channels = dst_channels < 3 ? dst_channels : 4;
2321 if (src_count != num_fullblock_fs * src_channels) {
2322 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2323 row_type.length /= ds;
2324 fs_type.length = row_type.length;
2325 }
2326
2327 blend_type = row_type;
2328 mask_type.length = 4;
2329
2330 /* Convert src to row_type */
2331 if (dual_source_blend) {
2332 struct lp_type old_row_type = row_type;
2333 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2334 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2335 }
2336 else {
2337 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2338 }
2339
2340 /* If the rows are not an SSE vector, combine them to become SSE size! */
2341 if ((row_type.width * row_type.length) % 128) {
2342 unsigned bits = row_type.width * row_type.length;
2343 unsigned combined;
2344
2345 assert(src_count >= (vector_width / bits));
2346
2347 dst_count = src_count / (vector_width / bits);
2348
2349 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2350 if (dual_source_blend) {
2351 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2352 }
2353
2354 row_type.length *= combined;
2355 src_count /= combined;
2356
2357 bits = row_type.width * row_type.length;
2358 assert(bits == 128 || bits == 256);
2359 }
2360
2361 if (twiddle_after_convert) {
2362 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2363 if (dual_source_blend) {
2364 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2365 }
2366 }
2367
2368 /*
2369 * Blend Colour conversion
2370 */
2371 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2372 blend_color = LLVMBuildPointerCast(builder, blend_color,
2373 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2374 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2375 &i32_zero, 1, ""), "");
2376
2377 /* Convert */
2378 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2379
2380 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2381 /*
2382 * since blending is done with floats, there was no conversion.
2383 * However, the rules according to fixed point renderbuffers still
2384 * apply, that is we must clamp inputs to 0.0/1.0.
2385 * (This would apply to separate alpha conversion too but we currently
2386 * force has_alpha to be true.)
2387 * TODO: should skip this with "fake" blend, since post-blend conversion
2388 * will clamp anyway.
2389 * TODO: could also skip this if fragment color clamping is enabled. We
2390 * don't support it natively so it gets baked into the shader however, so
2391 * can't really tell here.
2392 */
2393 struct lp_build_context f32_bld;
2394 assert(row_type.floating);
2395 lp_build_context_init(&f32_bld, gallivm, row_type);
2396 for (i = 0; i < src_count; i++) {
2397 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2398 }
2399 if (dual_source_blend) {
2400 for (i = 0; i < src_count; i++) {
2401 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2402 }
2403 }
2404 /* probably can't be different than row_type but better safe than sorry... */
2405 lp_build_context_init(&f32_bld, gallivm, blend_type);
2406 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2407 }
2408
2409 /* Extract alpha */
2410 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2411
2412 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2413 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2414 if (pad_inline) {
2415 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2416 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2417 } else {
2418 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2419 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2420 }
2421
2422 /*
2423 * Mask conversion
2424 */
2425 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2426
2427 if (src_count < block_height) {
2428 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2429 } else if (src_count > block_height) {
2430 for (i = src_count; i > 0; --i) {
2431 unsigned pixels = block_size / src_count;
2432 unsigned idx = i - 1;
2433
2434 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2435 (idx * pixels) % 4, pixels);
2436 }
2437 }
2438
2439 assert(mask_type.width == 32);
2440
2441 for (i = 0; i < src_count; ++i) {
2442 unsigned pixels = block_size / src_count;
2443 unsigned pixel_width = row_type.width * dst_channels;
2444
2445 if (pixel_width == 24) {
2446 mask_type.width = 8;
2447 mask_type.length = vector_width / mask_type.width;
2448 } else {
2449 mask_type.length = pixels;
2450 mask_type.width = row_type.width * dst_channels;
2451
2452 /*
2453 * If mask_type width is smaller than 32bit, this doesn't quite
2454 * generate the most efficient code (could use some pack).
2455 */
2456 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2457 lp_build_int_vec_type(gallivm, mask_type), "");
2458
2459 mask_type.length *= dst_channels;
2460 mask_type.width /= dst_channels;
2461 }
2462
2463 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2464 lp_build_int_vec_type(gallivm, mask_type), "");
2465 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2466 }
2467
2468 /*
2469 * Alpha conversion
2470 */
2471 if (!has_alpha) {
2472 struct lp_type alpha_type = fs_type;
2473 alpha_type.length = 4;
2474 convert_alpha(gallivm, row_type, alpha_type,
2475 block_size, block_height,
2476 src_count, dst_channels,
2477 pad_inline, src_alpha);
2478 if (dual_source_blend) {
2479 convert_alpha(gallivm, row_type, alpha_type,
2480 block_size, block_height,
2481 src_count, dst_channels,
2482 pad_inline, src1_alpha);
2483 }
2484 }
2485
2486
2487 /*
2488 * Load dst from memory
2489 */
2490 if (src_count < block_height) {
2491 dst_count = block_height;
2492 } else {
2493 dst_count = src_count;
2494 }
2495
2496 dst_type.length *= block_size / dst_count;
2497
2498 if (format_expands_to_float_soa(out_format_desc)) {
2499 /*
2500 * we need multiple values at once for the conversion, so can as well
2501 * load them vectorized here too instead of concatenating later.
2502 * (Still need concatenation later for 8-wide vectors).
2503 */
2504 dst_count = block_height;
2505 dst_type.length = block_width;
2506 }
2507
2508 /*
2509 * Compute the alignment of the destination pointer in bytes
2510 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2511 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2512 * 1d tex but can't distinguish here) so need to stick with per-pixel
2513 * alignment in this case.
2514 */
2515 if (is_1d) {
2516 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2517 }
2518 else {
2519 dst_alignment = dst_type.length * dst_type.width / 8;
2520 }
2521 /* Force power-of-two alignment by extracting only the least-significant-bit */
2522 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2523 /*
2524 * Resource base and stride pointers are aligned to 16 bytes, so that's
2525 * the maximum alignment we can guarantee
2526 */
2527 dst_alignment = MIN2(16, dst_alignment);
2528
2529 ls_type = dst_type;
2530
2531 if (dst_count > src_count) {
2532 if ((dst_type.width == 8 || dst_type.width == 16) &&
2533 util_is_power_of_two_or_zero(dst_type.length) &&
2534 dst_type.length * dst_type.width < 128) {
2535 /*
2536 * Never try to load values as 4xi8 which we will then
2537 * concatenate to larger vectors. This gives llvm a real
2538 * headache (the problem is the type legalizer (?) will
2539 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2540 * then the shuffles to concatenate are more or less impossible
2541 * - llvm is easily capable of generating a sequence of 32
2542 * pextrb/pinsrb instructions for that. Albeit it appears to
2543 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2544 * width to avoid the trouble (16bit seems not as bad, llvm
2545 * probably recognizes the load+shuffle as only one shuffle
2546 * is necessary, but we can do just the same anyway).
2547 */
2548 ls_type.length = dst_type.length * dst_type.width / 32;
2549 ls_type.width = 32;
2550 }
2551 }
2552
2553 if (is_1d) {
2554 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2555 dst, ls_type, dst_count / 4, dst_alignment);
2556 for (i = dst_count / 4; i < dst_count; i++) {
2557 dst[i] = lp_build_undef(gallivm, ls_type);
2558 }
2559
2560 }
2561 else {
2562 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2563 dst, ls_type, dst_count, dst_alignment);
2564 }
2565
2566
2567 /*
2568 * Convert from dst/output format to src/blending format.
2569 *
2570 * This is necessary as we can only read 1 row from memory at a time,
2571 * so the minimum dst_count will ever be at this point is 4.
2572 *
2573 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2574 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2575 * on all 16 pixels in that single vector at once.
2576 */
2577 if (dst_count > src_count) {
2578 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2579 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2580 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2581 for (i = 0; i < dst_count; i++) {
2582 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2583 }
2584 }
2585
2586 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2587
2588 if (ls_type.length != dst_type.length) {
2589 struct lp_type tmp_type = dst_type;
2590 tmp_type.length = dst_type.length * 4 / src_count;
2591 for (i = 0; i < src_count; i++) {
2592 dst[i] = LLVMBuildBitCast(builder, dst[i],
2593 lp_build_vec_type(gallivm, tmp_type), "");
2594 }
2595 }
2596 }
2597
2598 /*
2599 * Blending
2600 */
2601 /* XXX this is broken for RGB8 formats -
2602 * they get expanded from 12 to 16 elements (to include alpha)
2603 * by convert_to_blend_type then reduced to 15 instead of 12
2604 * by convert_from_blend_type (a simple fix though breaks A8...).
2605 * R16G16B16 also crashes differently however something going wrong
2606 * inside llvm handling npot vector sizes seemingly.
2607 * It seems some cleanup could be done here (like skipping conversion/blend
2608 * when not needed).
2609 */
2610 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2611 row_type, dst, src_count);
2612
2613 /*
2614 * FIXME: Really should get logic ops / masks out of generic blend / row
2615 * format. Logic ops will definitely not work on the blend float format
2616 * used for SRGB here and I think OpenGL expects this to work as expected
2617 * (that is incoming values converted to srgb then logic op applied).
2618 */
2619 for (i = 0; i < src_count; ++i) {
2620 dst[i] = lp_build_blend_aos(gallivm,
2621 &variant->key.blend,
2622 out_format,
2623 row_type,
2624 rt,
2625 src[i],
2626 has_alpha ? NULL : src_alpha[i],
2627 src1[i],
2628 has_alpha ? NULL : src1_alpha[i],
2629 dst[i],
2630 partial_mask ? src_mask[i] : NULL,
2631 blend_color,
2632 has_alpha ? NULL : blend_alpha,
2633 swizzle,
2634 pad_inline ? 4 : dst_channels);
2635 }
2636
2637 convert_from_blend_type(gallivm, block_size, out_format_desc,
2638 row_type, dst_type, dst, src_count);
2639
2640 /* Split the blend rows back to memory rows */
2641 if (dst_count > src_count) {
2642 row_type.length = dst_type.length * (dst_count / src_count);
2643
2644 if (src_count == 1) {
2645 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2646 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2647
2648 row_type.length /= 2;
2649 src_count *= 2;
2650 }
2651
2652 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2653 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2654 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2655 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2656
2657 row_type.length /= 2;
2658 src_count *= 2;
2659 }
2660
2661 /*
2662 * Store blend result to memory
2663 */
2664 if (is_1d) {
2665 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2666 dst, dst_type, dst_count / 4, dst_alignment);
2667 }
2668 else {
2669 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2670 dst, dst_type, dst_count, dst_alignment);
2671 }
2672
2673 if (have_smallfloat_format(dst_type, out_format)) {
2674 lp_build_fpstate_set(gallivm, fpstate);
2675 }
2676
2677 if (do_branch) {
2678 lp_build_mask_end(&mask_ctx);
2679 }
2680 }
2681
2682
2683 /**
2684 * Generate the runtime callable function for the whole fragment pipeline.
2685 * Note that the function which we generate operates on a block of 16
2686 * pixels at at time. The block contains 2x2 quads. Each quad contains
2687 * 2x2 pixels.
2688 */
2689 static void
2690 generate_fragment(struct llvmpipe_context *lp,
2691 struct lp_fragment_shader *shader,
2692 struct lp_fragment_shader_variant *variant,
2693 unsigned partial_mask)
2694 {
2695 struct gallivm_state *gallivm = variant->gallivm;
2696 struct lp_fragment_shader_variant_key *key = &variant->key;
2697 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2698 char func_name[64];
2699 struct lp_type fs_type;
2700 struct lp_type blend_type;
2701 LLVMTypeRef fs_elem_type;
2702 LLVMTypeRef blend_vec_type;
2703 LLVMTypeRef arg_types[15];
2704 LLVMTypeRef func_type;
2705 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2706 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2707 LLVMValueRef context_ptr;
2708 LLVMValueRef x;
2709 LLVMValueRef y;
2710 LLVMValueRef a0_ptr;
2711 LLVMValueRef dadx_ptr;
2712 LLVMValueRef dady_ptr;
2713 LLVMValueRef color_ptr_ptr;
2714 LLVMValueRef stride_ptr;
2715 LLVMValueRef color_sample_stride_ptr;
2716 LLVMValueRef depth_ptr;
2717 LLVMValueRef depth_stride;
2718 LLVMValueRef depth_sample_stride;
2719 LLVMValueRef mask_input;
2720 LLVMValueRef thread_data_ptr;
2721 LLVMBasicBlockRef block;
2722 LLVMBuilderRef builder;
2723 struct lp_build_sampler_soa *sampler;
2724 struct lp_build_image_soa *image;
2725 struct lp_build_interp_soa_context interp;
2726 LLVMValueRef fs_mask[(16 / 4) * LP_MAX_SAMPLES];
2727 LLVMValueRef fs_out_color[LP_MAX_SAMPLES][PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2728 LLVMValueRef function;
2729 LLVMValueRef facing;
2730 unsigned num_fs;
2731 unsigned i;
2732 unsigned chan;
2733 unsigned cbuf;
2734 boolean cbuf0_write_all;
2735 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2736 util_blend_state_is_dual(&key->blend, 0);
2737
2738 assert(lp_native_vector_width / 32 >= 4);
2739
2740 /* Adjust color input interpolation according to flatshade state:
2741 */
2742 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2743 for (i = 0; i < shader->info.base.num_inputs; i++) {
2744 if (inputs[i].interp == LP_INTERP_COLOR) {
2745 if (key->flatshade)
2746 inputs[i].interp = LP_INTERP_CONSTANT;
2747 else
2748 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2749 }
2750 }
2751
2752 /* check if writes to cbuf[0] are to be copied to all cbufs */
2753 cbuf0_write_all =
2754 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2755
2756 /* TODO: actually pick these based on the fs and color buffer
2757 * characteristics. */
2758
2759 memset(&fs_type, 0, sizeof fs_type);
2760 fs_type.floating = TRUE; /* floating point values */
2761 fs_type.sign = TRUE; /* values are signed */
2762 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2763 fs_type.width = 32; /* 32-bit float */
2764 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2765
2766 memset(&blend_type, 0, sizeof blend_type);
2767 blend_type.floating = FALSE; /* values are integers */
2768 blend_type.sign = FALSE; /* values are unsigned */
2769 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2770 blend_type.width = 8; /* 8-bit ubyte values */
2771 blend_type.length = 16; /* 16 elements per vector */
2772
2773 /*
2774 * Generate the function prototype. Any change here must be reflected in
2775 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2776 */
2777
2778 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2779
2780 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2781
2782 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2783 shader->no, variant->no, partial_mask ? "partial" : "whole");
2784
2785 arg_types[0] = variant->jit_context_ptr_type; /* context */
2786 arg_types[1] = int32_type; /* x */
2787 arg_types[2] = int32_type; /* y */
2788 arg_types[3] = int32_type; /* facing */
2789 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2790 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2791 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2792 arg_types[7] = LLVMPointerType(LLVMPointerType(int8_type, 0), 0); /* color */
2793 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2794 arg_types[9] = LLVMInt64TypeInContext(gallivm->context); /* mask_input */
2795 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2796 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2797 arg_types[12] = int32_type; /* depth_stride */
2798 arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */
2799 arg_types[14] = int32_type; /* depth sample stride */
2800
2801 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2802 arg_types, ARRAY_SIZE(arg_types), 0);
2803
2804 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2805 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2806
2807 variant->function[partial_mask] = function;
2808
2809 /* XXX: need to propagate noalias down into color param now we are
2810 * passing a pointer-to-pointer?
2811 */
2812 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2813 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2814 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2815
2816 context_ptr = LLVMGetParam(function, 0);
2817 x = LLVMGetParam(function, 1);
2818 y = LLVMGetParam(function, 2);
2819 facing = LLVMGetParam(function, 3);
2820 a0_ptr = LLVMGetParam(function, 4);
2821 dadx_ptr = LLVMGetParam(function, 5);
2822 dady_ptr = LLVMGetParam(function, 6);
2823 color_ptr_ptr = LLVMGetParam(function, 7);
2824 depth_ptr = LLVMGetParam(function, 8);
2825 mask_input = LLVMGetParam(function, 9);
2826 thread_data_ptr = LLVMGetParam(function, 10);
2827 stride_ptr = LLVMGetParam(function, 11);
2828 depth_stride = LLVMGetParam(function, 12);
2829 color_sample_stride_ptr = LLVMGetParam(function, 13);
2830 depth_sample_stride = LLVMGetParam(function, 14);
2831
2832 lp_build_name(context_ptr, "context");
2833 lp_build_name(x, "x");
2834 lp_build_name(y, "y");
2835 lp_build_name(a0_ptr, "a0");
2836 lp_build_name(dadx_ptr, "dadx");
2837 lp_build_name(dady_ptr, "dady");
2838 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2839 lp_build_name(depth_ptr, "depth");
2840 lp_build_name(mask_input, "mask_input");
2841 lp_build_name(thread_data_ptr, "thread_data");
2842 lp_build_name(stride_ptr, "stride_ptr");
2843 lp_build_name(depth_stride, "depth_stride");
2844 lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
2845 lp_build_name(depth_sample_stride, "depth_sample_stride");
2846
2847 /*
2848 * Function body
2849 */
2850
2851 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2852 builder = gallivm->builder;
2853 assert(builder);
2854 LLVMPositionBuilderAtEnd(builder, block);
2855
2856 /*
2857 * Must not count ps invocations if there's a null shader.
2858 * (It would be ok to count with null shader if there's d/s tests,
2859 * but only if there's d/s buffers too, which is different
2860 * to implicit rasterization disable which must not depend
2861 * on the d/s buffers.)
2862 * Could use popcount on mask, but pixel accuracy is not required.
2863 * Could disable if there's no stats query, but maybe not worth it.
2864 */
2865 if (shader->info.base.num_instructions > 1) {
2866 LLVMValueRef invocs, val;
2867 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2868 val = LLVMBuildLoad(builder, invocs, "");
2869 val = LLVMBuildAdd(builder, val,
2870 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2871 "invoc_count");
2872 LLVMBuildStore(builder, val, invocs);
2873 }
2874
2875 /* code generated texture sampling */
2876 sampler = lp_llvm_sampler_soa_create(key->samplers);
2877 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2878
2879 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2880 /* for 1d resources only run "upper half" of stamp */
2881 if (key->resource_1d)
2882 num_fs /= 2;
2883
2884 {
2885 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2886 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2887 LLVMValueRef num_loop_samp = lp_build_const_int32(gallivm, num_fs * key->coverage_samples);
2888 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2889 num_loop_samp, "mask_store");
2890
2891 LLVMTypeRef flt_type = LLVMFloatTypeInContext(gallivm->context);
2892 LLVMValueRef glob_sample_pos = LLVMAddGlobal(gallivm->module, LLVMArrayType(flt_type, key->coverage_samples * 2), "");
2893 LLVMValueRef sample_pos_array;
2894
2895 if (key->multisample && key->coverage_samples == 4) {
2896 LLVMValueRef sample_pos_arr[8];
2897 for (unsigned i = 0; i < 4; i++) {
2898 sample_pos_arr[i * 2] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][0]);
2899 sample_pos_arr[i * 2 + 1] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][1]);
2900 }
2901 sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 8);
2902 } else {
2903 LLVMValueRef sample_pos_arr[2];
2904 sample_pos_arr[0] = LLVMConstReal(flt_type, 0.5);
2905 sample_pos_arr[1] = LLVMConstReal(flt_type, 0.5);
2906 sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 2);
2907 }
2908 LLVMSetInitializer(glob_sample_pos, sample_pos_array);
2909
2910 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2911 boolean pixel_center_integer =
2912 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2913
2914 /*
2915 * The shader input interpolation info is not explicitely baked in the
2916 * shader key, but everything it derives from (TGSI, and flatshade) is
2917 * already included in the shader key.
2918 */
2919 lp_build_interp_soa_init(&interp,
2920 gallivm,
2921 shader->info.base.num_inputs,
2922 inputs,
2923 pixel_center_integer,
2924 key->coverage_samples, glob_sample_pos,
2925 num_loop,
2926 key->depth_clamp,
2927 builder, fs_type,
2928 a0_ptr, dadx_ptr, dady_ptr,
2929 x, y);
2930
2931 for (i = 0; i < num_fs; i++) {
2932 if (key->multisample) {
2933 LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), "");
2934
2935 /*
2936 * For multisampling, extract the per-sample mask from the incoming 64-bit mask,
2937 * store to the per sample mask storage. Or all of them together to generate
2938 * the fragment shader mask. (sample shading TODO).
2939 * Take the incoming state coverage mask into account.
2940 */
2941 for (unsigned s = 0; s < key->coverage_samples; s++) {
2942 LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs));
2943 LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store,
2944 &sindexi, 1, "sample_mask_ptr");
2945 LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type,
2946 i*fs_type.length/4, s, mask_input);
2947
2948 LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), "");
2949 LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), "");
2950 smask_bit = LLVMBuildSExt(builder, cmp, int32_type, "");
2951 smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit);
2952
2953 s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
2954 LLVMBuildStore(builder, s_mask, sample_mask_ptr);
2955 }
2956 } else {
2957 LLVMValueRef mask;
2958 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2959 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2960 &indexi, 1, "mask_ptr");
2961
2962 if (partial_mask) {
2963 mask = generate_quad_mask(gallivm, fs_type,
2964 i*fs_type.length/4, 0, mask_input);
2965 }
2966 else {
2967 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2968 }
2969 LLVMBuildStore(builder, mask, mask_ptr);
2970 }
2971 }
2972
2973 generate_fs_loop(gallivm,
2974 shader, key,
2975 builder,
2976 fs_type,
2977 context_ptr,
2978 glob_sample_pos,
2979 num_loop,
2980 &interp,
2981 sampler,
2982 image,
2983 mask_store, /* output */
2984 color_store,
2985 depth_ptr,
2986 depth_stride,
2987 depth_sample_stride,
2988 facing,
2989 thread_data_ptr);
2990
2991 for (i = 0; i < num_fs; i++) {
2992 LLVMValueRef ptr;
2993 for (unsigned s = 0; s < key->coverage_samples; s++) {
2994 int idx = (i + (s * num_fs));
2995 LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
2996 ptr = LLVMBuildGEP(builder, mask_store, &sindexi, 1, "");
2997
2998 fs_mask[idx] = LLVMBuildLoad(builder, ptr, "smask");
2999 }
3000
3001 for (unsigned s = 0; s < key->min_samples; s++) {
3002 /* This is fucked up need to reorganize things */
3003 int idx = s * num_fs + i;
3004 LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
3005 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
3006 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3007 ptr = LLVMBuildGEP(builder,
3008 color_store[cbuf * !cbuf0_write_all][chan],
3009 &sindexi, 1, "");
3010 fs_out_color[s][cbuf][chan][i] = ptr;
3011 }
3012 }
3013 if (dual_source_blend) {
3014 /* only support one dual source blend target hence always use output 1 */
3015 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3016 ptr = LLVMBuildGEP(builder,
3017 color_store[1][chan],
3018 &sindexi, 1, "");
3019 fs_out_color[s][1][chan][i] = ptr;
3020 }
3021 }
3022 }
3023 }
3024 }
3025
3026 sampler->destroy(sampler);
3027 image->destroy(image);
3028 /* Loop over color outputs / color buffers to do blending.
3029 */
3030 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
3031 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
3032 LLVMValueRef color_ptr;
3033 LLVMValueRef stride;
3034 LLVMValueRef sample_stride = NULL;
3035 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
3036
3037 boolean do_branch = ((key->depth.enabled
3038 || key->stencil[0].enabled
3039 || key->alpha.enabled)
3040 && !shader->info.base.uses_kill);
3041
3042 color_ptr = LLVMBuildLoad(builder,
3043 LLVMBuildGEP(builder, color_ptr_ptr,
3044 &index, 1, ""),
3045 "");
3046
3047 stride = LLVMBuildLoad(builder,
3048 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
3049 "");
3050
3051 if (key->multisample)
3052 sample_stride = LLVMBuildLoad(builder,
3053 LLVMBuildGEP(builder, color_sample_stride_ptr,
3054 &index, 1, ""), "");
3055
3056 for (unsigned s = 0; s < key->cbuf_nr_samples[cbuf]; s++) {
3057 unsigned mask_idx = num_fs * (key->multisample ? s : 0);
3058 unsigned out_idx = key->min_samples == 1 ? 0 : s;
3059 LLVMValueRef out_ptr = color_ptr;;
3060
3061 if (key->multisample) {
3062 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, lp_build_const_int32(gallivm, s), "");
3063 out_ptr = LLVMBuildGEP(builder, out_ptr, &sample_offset, 1, "");
3064 }
3065 out_ptr = LLVMBuildBitCast(builder, out_ptr, LLVMPointerType(blend_vec_type, 0), "");
3066
3067 lp_build_name(out_ptr, "color_ptr%d", cbuf);
3068
3069 generate_unswizzled_blend(gallivm, cbuf, variant,
3070 key->cbuf_format[cbuf],
3071 num_fs, fs_type, &fs_mask[mask_idx], fs_out_color[out_idx],
3072 context_ptr, out_ptr, stride,
3073 partial_mask, do_branch);
3074 }
3075 }
3076 }
3077
3078 LLVMBuildRetVoid(builder);
3079
3080 gallivm_verify_function(gallivm, function);
3081 }
3082
3083
3084 static void
3085 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
3086 {
3087 unsigned i;
3088
3089 debug_printf("fs variant %p:\n", (void *) key);
3090
3091 if (key->flatshade) {
3092 debug_printf("flatshade = 1\n");
3093 }
3094 if (key->multisample) {
3095 debug_printf("multisample = 1\n");
3096 debug_printf("coverage samples = %d\n", key->coverage_samples);
3097 debug_printf("min samples = %d\n", key->min_samples);
3098 }
3099 for (i = 0; i < key->nr_cbufs; ++i) {
3100 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
3101 debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
3102 }
3103 if (key->depth.enabled || key->stencil[0].enabled) {
3104 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
3105 debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
3106 }
3107 if (key->depth.enabled) {
3108 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
3109 debug_printf("depth.writemask = %u\n", key->depth.writemask);
3110 }
3111
3112 for (i = 0; i < 2; ++i) {
3113 if (key->stencil[i].enabled) {
3114 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
3115 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
3116 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
3117 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
3118 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
3119 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
3120 }
3121 }
3122
3123 if (key->alpha.enabled) {
3124 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
3125 }
3126
3127 if (key->occlusion_count) {
3128 debug_printf("occlusion_count = 1\n");
3129 }
3130
3131 if (key->blend.logicop_enable) {
3132 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
3133 }
3134 else if (key->blend.rt[0].blend_enable) {
3135 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
3136 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
3137 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
3138 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
3139 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
3140 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
3141 }
3142 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
3143 if (key->blend.alpha_to_coverage) {
3144 debug_printf("blend.alpha_to_coverage is enabled\n");
3145 }
3146 for (i = 0; i < key->nr_samplers; ++i) {
3147 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
3148 debug_printf("sampler[%u] = \n", i);
3149 debug_printf(" .wrap = %s %s %s\n",
3150 util_str_tex_wrap(sampler->wrap_s, TRUE),
3151 util_str_tex_wrap(sampler->wrap_t, TRUE),
3152 util_str_tex_wrap(sampler->wrap_r, TRUE));
3153 debug_printf(" .min_img_filter = %s\n",
3154 util_str_tex_filter(sampler->min_img_filter, TRUE));
3155 debug_printf(" .min_mip_filter = %s\n",
3156 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
3157 debug_printf(" .mag_img_filter = %s\n",
3158 util_str_tex_filter(sampler->mag_img_filter, TRUE));
3159 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
3160 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
3161 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
3162 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
3163 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
3164 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
3165 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
3166 }
3167 for (i = 0; i < key->nr_sampler_views; ++i) {
3168 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
3169 debug_printf("texture[%u] = \n", i);
3170 debug_printf(" .format = %s\n",
3171 util_format_name(texture->format));
3172 debug_printf(" .target = %s\n",
3173 util_str_tex_target(texture->target, TRUE));
3174 debug_printf(" .level_zero_only = %u\n",
3175 texture->level_zero_only);
3176 debug_printf(" .pot = %u %u %u\n",
3177 texture->pot_width,
3178 texture->pot_height,
3179 texture->pot_depth);
3180 }
3181 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
3182 for (i = 0; i < key->nr_images; ++i) {
3183 const struct lp_static_texture_state *image = &images[i].image_state;
3184 debug_printf("image[%u] = \n", i);
3185 debug_printf(" .format = %s\n",
3186 util_format_name(image->format));
3187 debug_printf(" .target = %s\n",
3188 util_str_tex_target(image->target, TRUE));
3189 debug_printf(" .level_zero_only = %u\n",
3190 image->level_zero_only);
3191 debug_printf(" .pot = %u %u %u\n",
3192 image->pot_width,
3193 image->pot_height,
3194 image->pot_depth);
3195 }
3196 }
3197
3198
3199 void
3200 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
3201 {
3202 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
3203 variant->shader->no, variant->no);
3204 if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
3205 tgsi_dump(variant->shader->base.tokens, 0);
3206 else
3207 nir_print_shader(variant->shader->base.ir.nir, stderr);
3208 dump_fs_variant_key(&variant->key);
3209 debug_printf("variant->opaque = %u\n", variant->opaque);
3210 debug_printf("\n");
3211 }
3212
3213
3214 /**
3215 * Generate a new fragment shader variant from the shader code and
3216 * other state indicated by the key.
3217 */
3218 static struct lp_fragment_shader_variant *
3219 generate_variant(struct llvmpipe_context *lp,
3220 struct lp_fragment_shader *shader,
3221 const struct lp_fragment_shader_variant_key *key)
3222 {
3223 struct lp_fragment_shader_variant *variant;
3224 const struct util_format_description *cbuf0_format_desc = NULL;
3225 boolean fullcolormask;
3226 char module_name[64];
3227
3228 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
3229 if (!variant)
3230 return NULL;
3231
3232 memset(variant, 0, sizeof(*variant));
3233 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
3234 shader->no, shader->variants_created);
3235
3236 variant->gallivm = gallivm_create(module_name, lp->context);
3237 if (!variant->gallivm) {
3238 FREE(variant);
3239 return NULL;
3240 }
3241
3242 variant->shader = shader;
3243 variant->list_item_global.base = variant;
3244 variant->list_item_local.base = variant;
3245 variant->no = shader->variants_created++;
3246
3247 memcpy(&variant->key, key, shader->variant_key_size);
3248
3249 /*
3250 * Determine whether we are touching all channels in the color buffer.
3251 */
3252 fullcolormask = FALSE;
3253 if (key->nr_cbufs == 1) {
3254 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
3255 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
3256 }
3257
3258 variant->opaque =
3259 !key->blend.logicop_enable &&
3260 !key->blend.rt[0].blend_enable &&
3261 fullcolormask &&
3262 !key->stencil[0].enabled &&
3263 !key->alpha.enabled &&
3264 !key->multisample &&
3265 !key->blend.alpha_to_coverage &&
3266 !key->depth.enabled &&
3267 !shader->info.base.uses_kill &&
3268 !shader->info.base.writes_samplemask
3269 ? TRUE : FALSE;
3270
3271 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3272 lp_debug_fs_variant(variant);
3273 }
3274
3275 lp_jit_init_types(variant);
3276
3277 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
3278 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
3279
3280 if (variant->jit_function[RAST_WHOLE] == NULL) {
3281 if (variant->opaque) {
3282 /* Specialized shader, which doesn't need to read the color buffer. */
3283 generate_fragment(lp, shader, variant, RAST_WHOLE);
3284 }
3285 }
3286
3287 /*
3288 * Compile everything
3289 */
3290
3291 gallivm_compile_module(variant->gallivm);
3292
3293 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
3294
3295 if (variant->function[RAST_EDGE_TEST]) {
3296 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
3297 gallivm_jit_function(variant->gallivm,
3298 variant->function[RAST_EDGE_TEST]);
3299 }
3300
3301 if (variant->function[RAST_WHOLE]) {
3302 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
3303 gallivm_jit_function(variant->gallivm,
3304 variant->function[RAST_WHOLE]);
3305 } else if (!variant->jit_function[RAST_WHOLE]) {
3306 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
3307 }
3308
3309 gallivm_free_ir(variant->gallivm);
3310
3311 return variant;
3312 }
3313
3314
3315 static void *
3316 llvmpipe_create_fs_state(struct pipe_context *pipe,
3317 const struct pipe_shader_state *templ)
3318 {
3319 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3320 struct lp_fragment_shader *shader;
3321 int nr_samplers;
3322 int nr_sampler_views;
3323 int nr_images;
3324 int i;
3325
3326 shader = CALLOC_STRUCT(lp_fragment_shader);
3327 if (!shader)
3328 return NULL;
3329
3330 shader->no = fs_no++;
3331 make_empty_list(&shader->variants);
3332
3333 shader->base.type = templ->type;
3334 if (templ->type == PIPE_SHADER_IR_TGSI) {
3335 /* get/save the summary info for this shader */
3336 lp_build_tgsi_info(templ->tokens, &shader->info);
3337
3338 /* we need to keep a local copy of the tokens */
3339 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3340 } else {
3341 shader->base.ir.nir = templ->ir.nir;
3342 nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3343 }
3344
3345 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3346 if (shader->draw_data == NULL) {
3347 FREE((void *) shader->base.tokens);
3348 FREE(shader);
3349 return NULL;
3350 }
3351
3352 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3353 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3354 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3355 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3356
3357 for (i = 0; i < shader->info.base.num_inputs; i++) {
3358 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3359 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
3360 shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
3361
3362 switch (shader->info.base.input_interpolate[i]) {
3363 case TGSI_INTERPOLATE_CONSTANT:
3364 shader->inputs[i].interp = LP_INTERP_CONSTANT;
3365 break;
3366 case TGSI_INTERPOLATE_LINEAR:
3367 shader->inputs[i].interp = LP_INTERP_LINEAR;
3368 break;
3369 case TGSI_INTERPOLATE_PERSPECTIVE:
3370 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3371 break;
3372 case TGSI_INTERPOLATE_COLOR:
3373 shader->inputs[i].interp = LP_INTERP_COLOR;
3374 break;
3375 default:
3376 assert(0);
3377 break;
3378 }
3379
3380 switch (shader->info.base.input_semantic_name[i]) {
3381 case TGSI_SEMANTIC_FACE:
3382 shader->inputs[i].interp = LP_INTERP_FACING;
3383 break;
3384 case TGSI_SEMANTIC_POSITION:
3385 /* Position was already emitted above
3386 */
3387 shader->inputs[i].interp = LP_INTERP_POSITION;
3388 shader->inputs[i].src_index = 0;
3389 continue;
3390 }
3391
3392 /* XXX this is a completely pointless index map... */
3393 shader->inputs[i].src_index = i+1;
3394 }
3395
3396 if (LP_DEBUG & DEBUG_TGSI) {
3397 unsigned attrib;
3398 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3399 shader->no, (void *) shader);
3400 tgsi_dump(templ->tokens, 0);
3401 debug_printf("usage masks:\n");
3402 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3403 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3404 debug_printf(" IN[%u].%s%s%s%s\n",
3405 attrib,
3406 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3407 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3408 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3409 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3410 }
3411 debug_printf("\n");
3412 }
3413
3414 return shader;
3415 }
3416
3417
3418 static void
3419 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3420 {
3421 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3422 struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3423 if (llvmpipe->fs == lp_fs)
3424 return;
3425
3426 draw_bind_fragment_shader(llvmpipe->draw,
3427 (lp_fs ? lp_fs->draw_data : NULL));
3428
3429 llvmpipe->fs = lp_fs;
3430
3431 llvmpipe->dirty |= LP_NEW_FS;
3432 }
3433
3434
3435 /**
3436 * Remove shader variant from two lists: the shader's variant list
3437 * and the context's variant list.
3438 */
3439 static void
3440 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3441 struct lp_fragment_shader_variant *variant)
3442 {
3443 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3444 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3445 "v total cached %u inst %u total inst %u\n",
3446 variant->shader->no, variant->no,
3447 variant->shader->variants_created,
3448 variant->shader->variants_cached,
3449 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3450 }
3451
3452 gallivm_destroy(variant->gallivm);
3453
3454 /* remove from shader's list */
3455 remove_from_list(&variant->list_item_local);
3456 variant->shader->variants_cached--;
3457
3458 /* remove from context's list */
3459 remove_from_list(&variant->list_item_global);
3460 lp->nr_fs_variants--;
3461 lp->nr_fs_instrs -= variant->nr_instrs;
3462
3463 FREE(variant);
3464 }
3465
3466
3467 static void
3468 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3469 {
3470 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3471 struct lp_fragment_shader *shader = fs;
3472 struct lp_fs_variant_list_item *li;
3473
3474 assert(fs != llvmpipe->fs);
3475
3476 /*
3477 * XXX: we need to flush the context until we have some sort of reference
3478 * counting in fragment shaders as they may still be binned
3479 * Flushing alone might not sufficient we need to wait on it too.
3480 */
3481 llvmpipe_finish(pipe, __FUNCTION__);
3482
3483 /* Delete all the variants */
3484 li = first_elem(&shader->variants);
3485 while(!at_end(&shader->variants, li)) {
3486 struct lp_fs_variant_list_item *next = next_elem(li);
3487 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3488 li = next;
3489 }
3490
3491 /* Delete draw module's data */
3492 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3493
3494 if (shader->base.ir.nir)
3495 ralloc_free(shader->base.ir.nir);
3496 assert(shader->variants_cached == 0);
3497 FREE((void *) shader->base.tokens);
3498 FREE(shader);
3499 }
3500
3501
3502
3503 static void
3504 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3505 enum pipe_shader_type shader, uint index,
3506 const struct pipe_constant_buffer *cb)
3507 {
3508 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3509 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3510
3511 assert(shader < PIPE_SHADER_TYPES);
3512 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3513
3514 /* note: reference counting */
3515 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3516
3517 if (constants) {
3518 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3519 debug_printf("Illegal set constant without bind flag\n");
3520 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3521 }
3522 }
3523
3524 if (shader == PIPE_SHADER_VERTEX ||
3525 shader == PIPE_SHADER_GEOMETRY ||
3526 shader == PIPE_SHADER_TESS_CTRL ||
3527 shader == PIPE_SHADER_TESS_EVAL) {
3528 /* Pass the constants to the 'draw' module */
3529 const unsigned size = cb ? cb->buffer_size : 0;
3530 const ubyte *data;
3531
3532 if (constants) {
3533 data = (ubyte *) llvmpipe_resource_data(constants);
3534 }
3535 else if (cb && cb->user_buffer) {
3536 data = (ubyte *) cb->user_buffer;
3537 }
3538 else {
3539 data = NULL;
3540 }
3541
3542 if (data)
3543 data += cb->buffer_offset;
3544
3545 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3546 index, data, size);
3547 }
3548 else if (shader == PIPE_SHADER_COMPUTE)
3549 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3550 else
3551 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3552
3553 if (cb && cb->user_buffer) {
3554 pipe_resource_reference(&constants, NULL);
3555 }
3556 }
3557
3558 static void
3559 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3560 enum pipe_shader_type shader, unsigned start_slot,
3561 unsigned count, const struct pipe_shader_buffer *buffers,
3562 unsigned writable_bitmask)
3563 {
3564 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3565 unsigned i, idx;
3566 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3567 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3568
3569 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3570
3571 if (shader == PIPE_SHADER_VERTEX ||
3572 shader == PIPE_SHADER_GEOMETRY ||
3573 shader == PIPE_SHADER_TESS_CTRL ||
3574 shader == PIPE_SHADER_TESS_EVAL) {
3575 const unsigned size = buffer ? buffer->buffer_size : 0;
3576 const ubyte *data = NULL;
3577 if (buffer && buffer->buffer)
3578 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3579 if (data)
3580 data += buffer->buffer_offset;
3581 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3582 i, data, size);
3583 } else if (shader == PIPE_SHADER_COMPUTE) {
3584 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3585 } else if (shader == PIPE_SHADER_FRAGMENT) {
3586 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3587 }
3588 }
3589 }
3590
3591 static void
3592 llvmpipe_set_shader_images(struct pipe_context *pipe,
3593 enum pipe_shader_type shader, unsigned start_slot,
3594 unsigned count, const struct pipe_image_view *images)
3595 {
3596 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3597 unsigned i, idx;
3598
3599 draw_flush(llvmpipe->draw);
3600 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3601 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3602
3603 util_copy_image_view(&llvmpipe->images[shader][i], image);
3604 }
3605
3606 llvmpipe->num_images[shader] = start_slot + count;
3607 if (shader == PIPE_SHADER_VERTEX ||
3608 shader == PIPE_SHADER_GEOMETRY ||
3609 shader == PIPE_SHADER_TESS_CTRL ||
3610 shader == PIPE_SHADER_TESS_EVAL) {
3611 draw_set_images(llvmpipe->draw,
3612 shader,
3613 llvmpipe->images[shader],
3614 start_slot + count);
3615 } else if (shader == PIPE_SHADER_COMPUTE)
3616 llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
3617 else
3618 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3619 }
3620
3621 /**
3622 * Return the blend factor equivalent to a destination alpha of one.
3623 */
3624 static inline unsigned
3625 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3626 {
3627 switch(factor) {
3628 case PIPE_BLENDFACTOR_DST_ALPHA:
3629 return PIPE_BLENDFACTOR_ONE;
3630 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3631 return PIPE_BLENDFACTOR_ZERO;
3632 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3633 if (clamped_zero)
3634 return PIPE_BLENDFACTOR_ZERO;
3635 else
3636 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3637 }
3638
3639 return factor;
3640 }
3641
3642
3643 /**
3644 * We need to generate several variants of the fragment pipeline to match
3645 * all the combinations of the contributing state atoms.
3646 *
3647 * TODO: there is actually no reason to tie this to context state -- the
3648 * generated code could be cached globally in the screen.
3649 */
3650 static struct lp_fragment_shader_variant_key *
3651 make_variant_key(struct llvmpipe_context *lp,
3652 struct lp_fragment_shader *shader,
3653 char *store)
3654 {
3655 unsigned i;
3656 struct lp_fragment_shader_variant_key *key;
3657
3658 key = (struct lp_fragment_shader_variant_key *)store;
3659
3660 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3661
3662 if (lp->framebuffer.zsbuf) {
3663 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3664 const struct util_format_description *zsbuf_desc =
3665 util_format_description(zsbuf_format);
3666
3667 if (lp->depth_stencil->depth.enabled &&
3668 util_format_has_depth(zsbuf_desc)) {
3669 key->zsbuf_format = zsbuf_format;
3670 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3671 }
3672 if (lp->depth_stencil->stencil[0].enabled &&
3673 util_format_has_stencil(zsbuf_desc)) {
3674 key->zsbuf_format = zsbuf_format;
3675 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3676 }
3677 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3678 key->resource_1d = TRUE;
3679 }
3680 key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
3681 }
3682
3683 /*
3684 * Propagate the depth clamp setting from the rasterizer state.
3685 * depth_clip == 0 implies depth clamping is enabled.
3686 *
3687 * When clip_halfz is enabled, then always clamp the depth values.
3688 *
3689 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3690 * clamp is always active in d3d10, regardless if depth clip is
3691 * enabled or not).
3692 * (GL has an always-on [0,1] clamp on fs depth output instead
3693 * to ensure the depth values stay in range. Doesn't look like
3694 * we do that, though...)
3695 */
3696 if (lp->rasterizer->clip_halfz) {
3697 key->depth_clamp = 1;
3698 } else {
3699 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3700 }
3701
3702 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3703 if (!lp->framebuffer.nr_cbufs ||
3704 !lp->framebuffer.cbufs[0] ||
3705 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3706 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3707 }
3708 if(key->alpha.enabled)
3709 key->alpha.func = lp->depth_stencil->alpha.func;
3710 /* alpha.ref_value is passed in jit_context */
3711
3712 key->flatshade = lp->rasterizer->flatshade;
3713 key->multisample = lp->rasterizer->multisample;
3714 if (lp->active_occlusion_queries && !lp->queries_disabled) {
3715 key->occlusion_count = TRUE;
3716 }
3717
3718 if (lp->framebuffer.nr_cbufs) {
3719 memcpy(&key->blend, lp->blend, sizeof key->blend);
3720 }
3721
3722 key->coverage_samples = 1;
3723 key->min_samples = 1;
3724 if (key->multisample) {
3725 key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
3726 key->min_samples = lp->min_samples == 1 ? 1 : key->coverage_samples;
3727 }
3728 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3729
3730 if (!key->blend.independent_blend_enable) {
3731 /* we always need independent blend otherwise the fixups below won't work */
3732 for (i = 1; i < key->nr_cbufs; i++) {
3733 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3734 }
3735 key->blend.independent_blend_enable = 1;
3736 }
3737
3738 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3739 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3740
3741 if (lp->framebuffer.cbufs[i]) {
3742 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3743 const struct util_format_description *format_desc;
3744
3745 key->cbuf_format[i] = format;
3746 key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
3747
3748 /*
3749 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3750 * mixing of 2d textures with height 1 and 1d textures, so make sure
3751 * we pick 1d if any cbuf or zsbuf is 1d.
3752 */
3753 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3754 key->resource_1d = TRUE;
3755 }
3756
3757 format_desc = util_format_description(format);
3758 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3759 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3760
3761 /*
3762 * Mask out color channels not present in the color buffer.
3763 */
3764 blend_rt->colormask &= util_format_colormask(format_desc);
3765
3766 /*
3767 * Disable blend for integer formats.
3768 */
3769 if (util_format_is_pure_integer(format)) {
3770 blend_rt->blend_enable = 0;
3771 }
3772
3773 /*
3774 * Our swizzled render tiles always have an alpha channel, but the
3775 * linear render target format often does not, so force here the dst
3776 * alpha to be one.
3777 *
3778 * This is not a mere optimization. Wrong results will be produced if
3779 * the dst alpha is used, the dst format does not have alpha, and the
3780 * previous rendering was not flushed from the swizzled to linear
3781 * buffer. For example, NonPowTwo DCT.
3782 *
3783 * TODO: This should be generalized to all channels for better
3784 * performance, but only alpha causes correctness issues.
3785 *
3786 * Also, force rgb/alpha func/factors match, to make AoS blending
3787 * easier.
3788 */
3789 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3790 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3791 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3792 boolean clamped_zero = !util_format_is_float(format) &&
3793 !util_format_is_snorm(format);
3794 blend_rt->rgb_src_factor =
3795 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3796 blend_rt->rgb_dst_factor =
3797 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3798 blend_rt->alpha_func = blend_rt->rgb_func;
3799 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3800 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3801 }
3802 }
3803 else {
3804 /* no color buffer for this fragment output */
3805 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3806 key->cbuf_nr_samples[i] = 0;
3807 blend_rt->colormask = 0x0;
3808 blend_rt->blend_enable = 0;
3809 }
3810 }
3811
3812 /* This value will be the same for all the variants of a given shader:
3813 */
3814 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3815
3816 struct lp_sampler_static_state *fs_sampler;
3817
3818 fs_sampler = key->samplers;
3819
3820 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3821
3822 for(i = 0; i < key->nr_samplers; ++i) {
3823 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3824 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3825 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3826 }
3827 }
3828
3829 /*
3830 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3831 * are dx10-style? Can't really have mixed opcodes, at least not
3832 * if we want to skip the holes here (without rescanning tgsi).
3833 */
3834 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3835 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3836 for(i = 0; i < key->nr_sampler_views; ++i) {
3837 /*
3838 * Note sview may exceed what's representable by file_mask.
3839 * This will still work, the only downside is that not actually
3840 * used views may be included in the shader key.
3841 */
3842 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3843 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3844 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3845 }
3846 }
3847 }
3848 else {
3849 key->nr_sampler_views = key->nr_samplers;
3850 for(i = 0; i < key->nr_sampler_views; ++i) {
3851 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3852 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3853 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3854 }
3855 }
3856 }
3857
3858 struct lp_image_static_state *lp_image;
3859 lp_image = lp_fs_variant_key_images(key);
3860 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3861 for (i = 0; i < key->nr_images; ++i) {
3862 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3863 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3864 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3865 }
3866 }
3867 return key;
3868 }
3869
3870
3871
3872 /**
3873 * Update fragment shader state. This is called just prior to drawing
3874 * something when some fragment-related state has changed.
3875 */
3876 void
3877 llvmpipe_update_fs(struct llvmpipe_context *lp)
3878 {
3879 struct lp_fragment_shader *shader = lp->fs;
3880 struct lp_fragment_shader_variant_key *key;
3881 struct lp_fragment_shader_variant *variant = NULL;
3882 struct lp_fs_variant_list_item *li;
3883 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3884
3885 key = make_variant_key(lp, shader, store);
3886
3887 /* Search the variants for one which matches the key */
3888 li = first_elem(&shader->variants);
3889 while(!at_end(&shader->variants, li)) {
3890 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3891 variant = li->base;
3892 break;
3893 }
3894 li = next_elem(li);
3895 }
3896
3897 if (variant) {
3898 /* Move this variant to the head of the list to implement LRU
3899 * deletion of shader's when we have too many.
3900 */
3901 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3902 }
3903 else {
3904 /* variant not found, create it now */
3905 int64_t t0, t1, dt;
3906 unsigned i;
3907 unsigned variants_to_cull;
3908
3909 if (LP_DEBUG & DEBUG_FS) {
3910 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3911 lp->nr_fs_variants,
3912 lp->nr_fs_instrs,
3913 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3914 }
3915
3916 /* First, check if we've exceeded the max number of shader variants.
3917 * If so, free 6.25% of them (the least recently used ones).
3918 */
3919 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3920
3921 if (variants_to_cull ||
3922 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3923 struct pipe_context *pipe = &lp->pipe;
3924
3925 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3926 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3927 "\t%u instrs,\t%u instrs/variant\n",
3928 shader->variants_cached,
3929 lp->nr_fs_variants, lp->nr_fs_instrs,
3930 lp->nr_fs_instrs / lp->nr_fs_variants);
3931 }
3932
3933 /*
3934 * XXX: we need to flush the context until we have some sort of
3935 * reference counting in fragment shaders as they may still be binned
3936 * Flushing alone might not be sufficient we need to wait on it too.
3937 */
3938 llvmpipe_finish(pipe, __FUNCTION__);
3939
3940 /*
3941 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3942 * number of shader variants (potentially all of them) could be
3943 * pending for destruction on flush.
3944 */
3945
3946 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3947 struct lp_fs_variant_list_item *item;
3948 if (is_empty_list(&lp->fs_variants_list)) {
3949 break;
3950 }
3951 item = last_elem(&lp->fs_variants_list);
3952 assert(item);
3953 assert(item->base);
3954 llvmpipe_remove_shader_variant(lp, item->base);
3955 }
3956 }
3957
3958 /*
3959 * Generate the new variant.
3960 */
3961 t0 = os_time_get();
3962 variant = generate_variant(lp, shader, key);
3963 t1 = os_time_get();
3964 dt = t1 - t0;
3965 LP_COUNT_ADD(llvm_compile_time, dt);
3966 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3967
3968 /* Put the new variant into the list */
3969 if (variant) {
3970 insert_at_head(&shader->variants, &variant->list_item_local);
3971 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3972 lp->nr_fs_variants++;
3973 lp->nr_fs_instrs += variant->nr_instrs;
3974 shader->variants_cached++;
3975 }
3976 }
3977
3978 /* Bind this variant */
3979 lp_setup_set_fs_variant(lp->setup, variant);
3980 }
3981
3982
3983
3984
3985
3986 void
3987 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3988 {
3989 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3990 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3991 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3992
3993 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3994
3995 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3996 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3997 }
3998
3999