mesa: enable GL_ARB_draw_instanced for software drivers
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102 #include <llvm-c/BitWriter.h>
103
104
105 static unsigned fs_no = 0;
106
107
108
109 /**
110 * Expand the relevent bits of mask_input to a 4-dword mask for the
111 * four pixels in a 2x2 quad. This will set the four elements of the
112 * quad mask vector to 0 or ~0.
113 *
114 * \param quad which quad of the quad group to test, in [0,3]
115 * \param mask_input bitwise mask for the whole 4x4 stamp
116 */
117 static LLVMValueRef
118 generate_quad_mask(LLVMBuilderRef builder,
119 struct lp_type fs_type,
120 unsigned quad,
121 LLVMValueRef mask_input) /* int32 */
122 {
123 struct lp_type mask_type;
124 LLVMTypeRef i32t = LLVMInt32Type();
125 LLVMValueRef bits[4];
126 LLVMValueRef mask;
127 int shift;
128
129 /*
130 * XXX: We'll need a different path for 16 x u8
131 */
132 assert(fs_type.width == 32);
133 assert(fs_type.length == 4);
134 mask_type = lp_int_type(fs_type);
135
136 /*
137 * mask_input >>= (quad * 4)
138 */
139
140 switch (quad) {
141 case 0:
142 shift = 0;
143 break;
144 case 1:
145 shift = 2;
146 break;
147 case 2:
148 shift = 8;
149 break;
150 case 3:
151 shift = 10;
152 break;
153 default:
154 assert(0);
155 shift = 0;
156 }
157
158 mask_input = LLVMBuildLShr(builder,
159 mask_input,
160 LLVMConstInt(i32t, shift, 0),
161 "");
162
163 /*
164 * mask = { mask_input & (1 << i), for i in [0,3] }
165 */
166
167 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
168
169 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
170 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
171 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
172 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
173
174 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
175
176 /*
177 * mask = mask != 0 ? ~0 : 0
178 */
179
180 mask = lp_build_compare(builder,
181 mask_type, PIPE_FUNC_NOTEQUAL,
182 mask,
183 lp_build_const_int_vec(mask_type, 0));
184
185 return mask;
186 }
187
188
189 #define EARLY_DEPTH_TEST 0x1
190 #define LATE_DEPTH_TEST 0x2
191 #define EARLY_DEPTH_WRITE 0x4
192 #define LATE_DEPTH_WRITE 0x8
193
194 static int
195 find_output_by_semantic( const struct tgsi_shader_info *info,
196 unsigned semantic,
197 unsigned index )
198 {
199 int i;
200
201 for (i = 0; i < info->num_outputs; i++)
202 if (info->output_semantic_name[i] == semantic &&
203 info->output_semantic_index[i] == index)
204 return i;
205
206 return -1;
207 }
208
209
210 /**
211 * Generate the fragment shader, depth/stencil test, and alpha tests.
212 * \param i which quad in the tile, in range [0,3]
213 * \param partial_mask if 1, do mask_input testing
214 */
215 static void
216 generate_fs(struct lp_fragment_shader *shader,
217 const struct lp_fragment_shader_variant_key *key,
218 LLVMBuilderRef builder,
219 struct lp_type type,
220 LLVMValueRef context_ptr,
221 unsigned i,
222 struct lp_build_interp_soa_context *interp,
223 struct lp_build_sampler_soa *sampler,
224 LLVMValueRef *pmask,
225 LLVMValueRef (*color)[4],
226 LLVMValueRef depth_ptr,
227 LLVMValueRef facing,
228 unsigned partial_mask,
229 LLVMValueRef mask_input,
230 LLVMValueRef counter)
231 {
232 const struct util_format_description *zs_format_desc = NULL;
233 const struct tgsi_token *tokens = shader->base.tokens;
234 LLVMTypeRef vec_type;
235 LLVMValueRef consts_ptr;
236 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
237 LLVMValueRef z;
238 LLVMValueRef zs_value = NULL;
239 LLVMValueRef stencil_refs[2];
240 struct lp_build_mask_context mask;
241 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
242 shader->info.base.num_inputs < 3 &&
243 shader->info.base.num_instructions < 8);
244 unsigned attrib;
245 unsigned chan;
246 unsigned cbuf;
247 unsigned depth_mode;
248
249 if (key->depth.enabled ||
250 key->stencil[0].enabled ||
251 key->stencil[1].enabled) {
252
253 zs_format_desc = util_format_description(key->zsbuf_format);
254 assert(zs_format_desc);
255
256 if (!shader->info.base.writes_z) {
257 if (key->alpha.enabled || shader->info.base.uses_kill)
258 /* With alpha test and kill, can do the depth test early
259 * and hopefully eliminate some quads. But need to do a
260 * special deferred depth write once the final mask value
261 * is known.
262 */
263 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
264 else
265 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
266 }
267 else {
268 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
269 }
270
271 if (!(key->depth.enabled && key->depth.writemask) &&
272 !(key->stencil[0].enabled && key->stencil[0].writemask))
273 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
274 }
275 else {
276 depth_mode = 0;
277 }
278
279 assert(i < 4);
280
281 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
282 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
283
284 vec_type = lp_build_vec_type(type);
285
286 consts_ptr = lp_jit_context_constants(builder, context_ptr);
287
288 memset(outputs, 0, sizeof outputs);
289
290 /* Declare the color and z variables */
291 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
292 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
293 color[cbuf][chan] = lp_build_alloca(builder, vec_type, "color");
294 }
295 }
296
297 /* do triangle edge testing */
298 if (partial_mask) {
299 *pmask = generate_quad_mask(builder, type,
300 i, mask_input);
301 }
302 else {
303 *pmask = lp_build_const_int_vec(type, ~0);
304 }
305
306 /* 'mask' will control execution based on quad's pixel alive/killed state */
307 lp_build_mask_begin(&mask, builder, type, *pmask);
308
309 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
310 lp_build_mask_check(&mask);
311
312 lp_build_interp_soa_update_pos(interp, i);
313 z = interp->pos[2];
314
315 if (depth_mode & EARLY_DEPTH_TEST) {
316 lp_build_depth_stencil_test(builder,
317 &key->depth,
318 key->stencil,
319 type,
320 zs_format_desc,
321 &mask,
322 stencil_refs,
323 z,
324 depth_ptr, facing,
325 &zs_value,
326 !simple_shader);
327
328 if (depth_mode & EARLY_DEPTH_WRITE) {
329 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
330 }
331 }
332
333 lp_build_interp_soa_update_inputs(interp, i);
334
335 /* Build the actual shader */
336 lp_build_tgsi_soa(builder, tokens, type, &mask,
337 consts_ptr, NULL, /* sys values array */
338 interp->pos, interp->inputs,
339 outputs, sampler, &shader->info.base);
340
341
342 /* Alpha test */
343 if (key->alpha.enabled) {
344 int color0 = find_output_by_semantic(&shader->info.base,
345 TGSI_SEMANTIC_COLOR,
346 0);
347
348 if (color0 != -1 && outputs[color0][3]) {
349 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
350 LLVMValueRef alpha_ref_value;
351
352 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
353 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
354
355 lp_build_alpha_test(builder, key->alpha.func, type,
356 &mask, alpha, alpha_ref_value,
357 (depth_mode & LATE_DEPTH_TEST) != 0);
358 }
359 }
360
361 /* Late Z test */
362 if (depth_mode & LATE_DEPTH_TEST) {
363 int pos0 = find_output_by_semantic(&shader->info.base,
364 TGSI_SEMANTIC_POSITION,
365 0);
366
367 if (pos0 != -1 && outputs[pos0][2]) {
368 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
369 }
370
371 lp_build_depth_stencil_test(builder,
372 &key->depth,
373 key->stencil,
374 type,
375 zs_format_desc,
376 &mask,
377 stencil_refs,
378 z,
379 depth_ptr, facing,
380 &zs_value,
381 !simple_shader);
382 /* Late Z write */
383 if (depth_mode & LATE_DEPTH_WRITE) {
384 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
385 }
386 }
387 else if ((depth_mode & EARLY_DEPTH_TEST) &&
388 (depth_mode & LATE_DEPTH_WRITE))
389 {
390 /* Need to apply a reduced mask to the depth write. Reload the
391 * depth value, update from zs_value with the new mask value and
392 * write that out.
393 */
394 lp_build_deferred_depth_write(builder,
395 type,
396 zs_format_desc,
397 &mask,
398 depth_ptr,
399 zs_value);
400 }
401
402
403 /* Color write */
404 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
405 {
406 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR &&
407 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs)
408 {
409 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
410 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
411 if(outputs[attrib][chan]) {
412 /* XXX: just initialize outputs to point at colors[] and
413 * skip this.
414 */
415 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
416 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
417 LLVMBuildStore(builder, out, color[cbuf][chan]);
418 }
419 }
420 }
421 }
422
423 if (counter)
424 lp_build_occlusion_count(builder, type,
425 lp_build_mask_value(&mask), counter);
426
427 *pmask = lp_build_mask_end(&mask);
428 }
429
430
431 /**
432 * Generate color blending and color output.
433 * \param rt the render target index (to index blend, colormask state)
434 * \param type the pixel color type
435 * \param context_ptr pointer to the runtime JIT context
436 * \param mask execution mask (active fragment/pixel mask)
437 * \param src colors from the fragment shader
438 * \param dst_ptr the destination color buffer pointer
439 */
440 static void
441 generate_blend(const struct pipe_blend_state *blend,
442 unsigned rt,
443 LLVMBuilderRef builder,
444 struct lp_type type,
445 LLVMValueRef context_ptr,
446 LLVMValueRef mask,
447 LLVMValueRef *src,
448 LLVMValueRef dst_ptr,
449 boolean do_branch)
450 {
451 struct lp_build_context bld;
452 struct lp_build_mask_context mask_ctx;
453 LLVMTypeRef vec_type;
454 LLVMValueRef const_ptr;
455 LLVMValueRef con[4];
456 LLVMValueRef dst[4];
457 LLVMValueRef res[4];
458 unsigned chan;
459
460 lp_build_context_init(&bld, builder, type);
461
462 lp_build_mask_begin(&mask_ctx, builder, type, mask);
463 if (do_branch)
464 lp_build_mask_check(&mask_ctx);
465
466 vec_type = lp_build_vec_type(type);
467
468 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
469 const_ptr = LLVMBuildBitCast(builder, const_ptr,
470 LLVMPointerType(vec_type, 0), "");
471
472 /* load constant blend color and colors from the dest color buffer */
473 for(chan = 0; chan < 4; ++chan) {
474 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
475 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
476
477 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
478
479 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
480 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
481 }
482
483 /* do blend */
484 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
485
486 /* store results to color buffer */
487 for(chan = 0; chan < 4; ++chan) {
488 if(blend->rt[rt].colormask & (1 << chan)) {
489 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
490 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
491 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
492 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
493 }
494 }
495
496 lp_build_mask_end(&mask_ctx);
497 }
498
499
500 /**
501 * Generate the runtime callable function for the whole fragment pipeline.
502 * Note that the function which we generate operates on a block of 16
503 * pixels at at time. The block contains 2x2 quads. Each quad contains
504 * 2x2 pixels.
505 */
506 static void
507 generate_fragment(struct llvmpipe_screen *screen,
508 struct lp_fragment_shader *shader,
509 struct lp_fragment_shader_variant *variant,
510 unsigned partial_mask)
511 {
512 const struct lp_fragment_shader_variant_key *key = &variant->key;
513 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
514 char func_name[256];
515 struct lp_type fs_type;
516 struct lp_type blend_type;
517 LLVMTypeRef fs_elem_type;
518 LLVMTypeRef fs_int_vec_type;
519 LLVMTypeRef blend_vec_type;
520 LLVMTypeRef arg_types[11];
521 LLVMTypeRef func_type;
522 LLVMValueRef context_ptr;
523 LLVMValueRef x;
524 LLVMValueRef y;
525 LLVMValueRef a0_ptr;
526 LLVMValueRef dadx_ptr;
527 LLVMValueRef dady_ptr;
528 LLVMValueRef color_ptr_ptr;
529 LLVMValueRef depth_ptr;
530 LLVMValueRef mask_input;
531 LLVMValueRef counter = NULL;
532 LLVMBasicBlockRef block;
533 LLVMBuilderRef builder;
534 struct lp_build_sampler_soa *sampler;
535 struct lp_build_interp_soa_context interp;
536 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
537 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
538 LLVMValueRef blend_mask;
539 LLVMValueRef function;
540 LLVMValueRef facing;
541 const struct util_format_description *zs_format_desc;
542 unsigned num_fs;
543 unsigned i;
544 unsigned chan;
545 unsigned cbuf;
546
547 /* Adjust color input interpolation according to flatshade state:
548 */
549 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
550 for (i = 0; i < shader->info.base.num_inputs; i++) {
551 if (inputs[i].interp == LP_INTERP_COLOR) {
552 if (key->flatshade)
553 inputs[i].interp = LP_INTERP_CONSTANT;
554 else
555 inputs[i].interp = LP_INTERP_LINEAR;
556 }
557 }
558
559
560 /* TODO: actually pick these based on the fs and color buffer
561 * characteristics. */
562
563 memset(&fs_type, 0, sizeof fs_type);
564 fs_type.floating = TRUE; /* floating point values */
565 fs_type.sign = TRUE; /* values are signed */
566 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
567 fs_type.width = 32; /* 32-bit float */
568 fs_type.length = 4; /* 4 elements per vector */
569 num_fs = 4; /* number of quads per block */
570
571 memset(&blend_type, 0, sizeof blend_type);
572 blend_type.floating = FALSE; /* values are integers */
573 blend_type.sign = FALSE; /* values are unsigned */
574 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
575 blend_type.width = 8; /* 8-bit ubyte values */
576 blend_type.length = 16; /* 16 elements per vector */
577
578 /*
579 * Generate the function prototype. Any change here must be reflected in
580 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
581 */
582
583 fs_elem_type = lp_build_elem_type(fs_type);
584 fs_int_vec_type = lp_build_int_vec_type(fs_type);
585
586 blend_vec_type = lp_build_vec_type(blend_type);
587
588 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
589 shader->no, variant->no, partial_mask ? "partial" : "whole");
590
591 arg_types[0] = screen->context_ptr_type; /* context */
592 arg_types[1] = LLVMInt32Type(); /* x */
593 arg_types[2] = LLVMInt32Type(); /* y */
594 arg_types[3] = LLVMInt32Type(); /* facing */
595 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
596 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
597 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
598 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
599 arg_types[8] = LLVMPointerType(LLVMInt8Type(), 0); /* depth */
600 arg_types[9] = LLVMInt32Type(); /* mask_input */
601 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
602
603 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
604
605 function = LLVMAddFunction(screen->module, func_name, func_type);
606 LLVMSetFunctionCallConv(function, LLVMCCallConv);
607
608 variant->function[partial_mask] = function;
609
610 /* XXX: need to propagate noalias down into color param now we are
611 * passing a pointer-to-pointer?
612 */
613 for(i = 0; i < Elements(arg_types); ++i)
614 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
615 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
616
617 context_ptr = LLVMGetParam(function, 0);
618 x = LLVMGetParam(function, 1);
619 y = LLVMGetParam(function, 2);
620 facing = LLVMGetParam(function, 3);
621 a0_ptr = LLVMGetParam(function, 4);
622 dadx_ptr = LLVMGetParam(function, 5);
623 dady_ptr = LLVMGetParam(function, 6);
624 color_ptr_ptr = LLVMGetParam(function, 7);
625 depth_ptr = LLVMGetParam(function, 8);
626 mask_input = LLVMGetParam(function, 9);
627
628 lp_build_name(context_ptr, "context");
629 lp_build_name(x, "x");
630 lp_build_name(y, "y");
631 lp_build_name(a0_ptr, "a0");
632 lp_build_name(dadx_ptr, "dadx");
633 lp_build_name(dady_ptr, "dady");
634 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
635 lp_build_name(depth_ptr, "depth");
636 lp_build_name(mask_input, "mask_input");
637
638 if (key->occlusion_count) {
639 counter = LLVMGetParam(function, 10);
640 lp_build_name(counter, "counter");
641 }
642
643 /*
644 * Function body
645 */
646
647 block = LLVMAppendBasicBlock(function, "entry");
648 builder = LLVMCreateBuilder();
649 LLVMPositionBuilderAtEnd(builder, block);
650
651 /*
652 * The shader input interpolation info is not explicitely baked in the
653 * shader key, but everything it derives from (TGSI, and flatshade) is
654 * already included in the shader key.
655 */
656 lp_build_interp_soa_init(&interp,
657 shader->info.base.num_inputs,
658 inputs,
659 builder, fs_type,
660 a0_ptr, dadx_ptr, dady_ptr,
661 x, y);
662
663 /* code generated texture sampling */
664 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
665
666 /* loop over quads in the block */
667 zs_format_desc = util_format_description(key->zsbuf_format);
668
669 for(i = 0; i < num_fs; ++i) {
670 LLVMValueRef depth_offset = LLVMConstInt(LLVMInt32Type(),
671 i*fs_type.length*zs_format_desc->block.bits/8,
672 0);
673 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
674 LLVMValueRef depth_ptr_i;
675
676 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
677
678 generate_fs(shader, key,
679 builder,
680 fs_type,
681 context_ptr,
682 i,
683 &interp,
684 sampler,
685 &fs_mask[i], /* output */
686 out_color,
687 depth_ptr_i,
688 facing,
689 partial_mask,
690 mask_input,
691 counter);
692
693 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
694 for(chan = 0; chan < NUM_CHANNELS; ++chan)
695 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
696 }
697
698 sampler->destroy(sampler);
699
700 /* Loop over color outputs / color buffers to do blending.
701 */
702 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
703 LLVMValueRef color_ptr;
704 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
705 LLVMValueRef blend_in_color[NUM_CHANNELS];
706 unsigned rt;
707
708 /*
709 * Convert the fs's output color and mask to fit to the blending type.
710 */
711 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
712 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
713
714 for (i = 0; i < num_fs; i++) {
715 fs_color_vals[i] =
716 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
717 }
718
719 lp_build_conv(builder, fs_type, blend_type,
720 fs_color_vals,
721 num_fs,
722 &blend_in_color[chan], 1);
723
724 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
725 }
726
727 if (partial_mask || !variant->opaque) {
728 lp_build_conv_mask(builder, fs_type, blend_type,
729 fs_mask, num_fs,
730 &blend_mask, 1);
731 } else {
732 blend_mask = lp_build_const_int_vec(blend_type, ~0);
733 }
734
735 color_ptr = LLVMBuildLoad(builder,
736 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
737 "");
738 lp_build_name(color_ptr, "color_ptr%d", cbuf);
739
740 /* which blend/colormask state to use */
741 rt = key->blend.independent_blend_enable ? cbuf : 0;
742
743 /*
744 * Blending.
745 */
746 {
747 /* Could the 4x4 have been killed?
748 */
749 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
750 !key->alpha.enabled &&
751 !shader->info.base.uses_kill);
752
753 generate_blend(&key->blend,
754 rt,
755 builder,
756 blend_type,
757 context_ptr,
758 blend_mask,
759 blend_in_color,
760 color_ptr,
761 do_branch);
762 }
763 }
764
765 LLVMBuildRetVoid(builder);
766
767 LLVMDisposeBuilder(builder);
768
769
770 /* Verify the LLVM IR. If invalid, dump and abort */
771 #ifdef DEBUG
772 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
773 if (1)
774 lp_debug_dump_value(function);
775 abort();
776 }
777 #endif
778
779 /* Apply optimizations to LLVM IR */
780 LLVMRunFunctionPassManager(screen->pass, function);
781
782 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
783 /* Print the LLVM IR to stderr */
784 lp_debug_dump_value(function);
785 debug_printf("\n");
786 }
787
788 /* Dump byte code to a file */
789 if (0) {
790 LLVMWriteBitcodeToFile(lp_build_module, "llvmpipe.bc");
791 }
792
793 /*
794 * Translate the LLVM IR into machine code.
795 */
796 {
797 void *f = LLVMGetPointerToGlobal(screen->engine, function);
798
799 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
800
801 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
802 lp_disassemble(f);
803 }
804 lp_func_delete_body(function);
805 }
806 }
807
808
809 static void
810 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
811 {
812 unsigned i;
813
814 debug_printf("fs variant %p:\n", (void *) key);
815
816 if (key->flatshade) {
817 debug_printf("flatshade = 1\n");
818 }
819 for (i = 0; i < key->nr_cbufs; ++i) {
820 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
821 }
822 if (key->depth.enabled) {
823 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
824 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
825 debug_printf("depth.writemask = %u\n", key->depth.writemask);
826 }
827
828 for (i = 0; i < 2; ++i) {
829 if (key->stencil[i].enabled) {
830 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
831 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
832 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
833 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
834 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
835 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
836 }
837 }
838
839 if (key->alpha.enabled) {
840 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
841 }
842
843 if (key->occlusion_count) {
844 debug_printf("occlusion_count = 1\n");
845 }
846
847 if (key->blend.logicop_enable) {
848 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
849 }
850 else if (key->blend.rt[0].blend_enable) {
851 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
852 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
853 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
854 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
855 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
856 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
857 }
858 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
859 for (i = 0; i < key->nr_samplers; ++i) {
860 debug_printf("sampler[%u] = \n", i);
861 debug_printf(" .format = %s\n",
862 util_format_name(key->sampler[i].format));
863 debug_printf(" .target = %s\n",
864 util_dump_tex_target(key->sampler[i].target, TRUE));
865 debug_printf(" .pot = %u %u %u\n",
866 key->sampler[i].pot_width,
867 key->sampler[i].pot_height,
868 key->sampler[i].pot_depth);
869 debug_printf(" .wrap = %s %s %s\n",
870 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
871 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
872 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
873 debug_printf(" .min_img_filter = %s\n",
874 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
875 debug_printf(" .min_mip_filter = %s\n",
876 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
877 debug_printf(" .mag_img_filter = %s\n",
878 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
879 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
880 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
881 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
882 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
883 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
884 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
885 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
886 }
887 }
888
889
890 void
891 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
892 {
893 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
894 variant->shader->no, variant->no);
895 tgsi_dump(variant->shader->base.tokens, 0);
896 dump_fs_variant_key(&variant->key);
897 debug_printf("variant->opaque = %u\n", variant->opaque);
898 debug_printf("\n");
899 }
900
901 static struct lp_fragment_shader_variant *
902 generate_variant(struct llvmpipe_screen *screen,
903 struct lp_fragment_shader *shader,
904 const struct lp_fragment_shader_variant_key *key)
905 {
906 struct lp_fragment_shader_variant *variant;
907 boolean fullcolormask;
908
909 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
910 if(!variant)
911 return NULL;
912
913 variant->shader = shader;
914 variant->list_item_global.base = variant;
915 variant->list_item_local.base = variant;
916 variant->no = shader->variants_created++;
917
918 memcpy(&variant->key, key, shader->variant_key_size);
919
920 /*
921 * Determine whether we are touching all channels in the color buffer.
922 */
923 fullcolormask = FALSE;
924 if (key->nr_cbufs == 1) {
925 const struct util_format_description *format_desc;
926 format_desc = util_format_description(key->cbuf_format[0]);
927 if ((~key->blend.rt[0].colormask &
928 util_format_colormask(format_desc)) == 0) {
929 fullcolormask = TRUE;
930 }
931 }
932
933 variant->opaque =
934 !key->blend.logicop_enable &&
935 !key->blend.rt[0].blend_enable &&
936 fullcolormask &&
937 !key->stencil[0].enabled &&
938 !key->alpha.enabled &&
939 !key->depth.enabled &&
940 !shader->info.base.uses_kill
941 ? TRUE : FALSE;
942
943
944 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
945 lp_debug_fs_variant(variant);
946 }
947
948 generate_fragment(screen, shader, variant, RAST_EDGE_TEST);
949
950 if (variant->opaque) {
951 /* Specialized shader, which doesn't need to read the color buffer. */
952 generate_fragment(screen, shader, variant, RAST_WHOLE);
953 } else {
954 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
955 }
956
957 return variant;
958 }
959
960
961 static void *
962 llvmpipe_create_fs_state(struct pipe_context *pipe,
963 const struct pipe_shader_state *templ)
964 {
965 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
966 struct lp_fragment_shader *shader;
967 int nr_samplers;
968 int i;
969
970 shader = CALLOC_STRUCT(lp_fragment_shader);
971 if (!shader)
972 return NULL;
973
974 shader->no = fs_no++;
975 make_empty_list(&shader->variants);
976
977 /* get/save the summary info for this shader */
978 lp_build_tgsi_info(templ->tokens, &shader->info);
979
980 /* we need to keep a local copy of the tokens */
981 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
982
983 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
984 if (shader->draw_data == NULL) {
985 FREE((void *) shader->base.tokens);
986 FREE(shader);
987 return NULL;
988 }
989
990 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
991
992 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
993 sampler[nr_samplers]);
994
995 for (i = 0; i < shader->info.base.num_inputs; i++) {
996 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
997
998 switch (shader->info.base.input_interpolate[i]) {
999 case TGSI_INTERPOLATE_CONSTANT:
1000 shader->inputs[i].interp = LP_INTERP_CONSTANT;
1001 break;
1002 case TGSI_INTERPOLATE_LINEAR:
1003 shader->inputs[i].interp = LP_INTERP_LINEAR;
1004 break;
1005 case TGSI_INTERPOLATE_PERSPECTIVE:
1006 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
1007 break;
1008 default:
1009 assert(0);
1010 break;
1011 }
1012
1013 switch (shader->info.base.input_semantic_name[i]) {
1014 case TGSI_SEMANTIC_COLOR:
1015 /* Colors may be either linearly or constant interpolated in
1016 * the fragment shader, but that information isn't available
1017 * here. Mark color inputs and fix them up later.
1018 */
1019 shader->inputs[i].interp = LP_INTERP_COLOR;
1020 break;
1021 case TGSI_SEMANTIC_FACE:
1022 shader->inputs[i].interp = LP_INTERP_FACING;
1023 break;
1024 case TGSI_SEMANTIC_POSITION:
1025 /* Position was already emitted above
1026 */
1027 shader->inputs[i].interp = LP_INTERP_POSITION;
1028 shader->inputs[i].src_index = 0;
1029 continue;
1030 }
1031
1032 shader->inputs[i].src_index = i+1;
1033 }
1034
1035 if (LP_DEBUG & DEBUG_TGSI) {
1036 unsigned attrib;
1037 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
1038 tgsi_dump(templ->tokens, 0);
1039 debug_printf("usage masks:\n");
1040 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
1041 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
1042 debug_printf(" IN[%u].%s%s%s%s\n",
1043 attrib,
1044 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1045 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1046 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1047 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1048 }
1049 debug_printf("\n");
1050 }
1051
1052 return shader;
1053 }
1054
1055
1056 static void
1057 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1058 {
1059 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1060
1061 if (llvmpipe->fs == fs)
1062 return;
1063
1064 draw_flush(llvmpipe->draw);
1065
1066 llvmpipe->fs = (struct lp_fragment_shader *) fs;
1067
1068 draw_bind_fragment_shader(llvmpipe->draw,
1069 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1070
1071 llvmpipe->dirty |= LP_NEW_FS;
1072 }
1073
1074 static void
1075 remove_shader_variant(struct llvmpipe_context *lp,
1076 struct lp_fragment_shader_variant *variant)
1077 {
1078 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
1079 unsigned i;
1080
1081 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1082 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
1083 variant->shader->no, variant->no, variant->shader->variants_created,
1084 variant->shader->variants_cached, lp->nr_fs_variants);
1085 }
1086 for (i = 0; i < Elements(variant->function); i++) {
1087 if (variant->function[i]) {
1088 if (variant->jit_function[i])
1089 LLVMFreeMachineCodeForFunction(screen->engine,
1090 variant->function[i]);
1091 LLVMDeleteFunction(variant->function[i]);
1092 }
1093 }
1094 remove_from_list(&variant->list_item_local);
1095 variant->shader->variants_cached--;
1096 remove_from_list(&variant->list_item_global);
1097 lp->nr_fs_variants--;
1098 FREE(variant);
1099 }
1100
1101 static void
1102 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1103 {
1104 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1105 struct lp_fragment_shader *shader = fs;
1106 struct lp_fs_variant_list_item *li;
1107
1108 assert(fs != llvmpipe->fs);
1109 (void) llvmpipe;
1110
1111 /*
1112 * XXX: we need to flush the context until we have some sort of reference
1113 * counting in fragment shaders as they may still be binned
1114 * Flushing alone might not sufficient we need to wait on it too.
1115 */
1116
1117 llvmpipe_finish(pipe, __FUNCTION__);
1118
1119 li = first_elem(&shader->variants);
1120 while(!at_end(&shader->variants, li)) {
1121 struct lp_fs_variant_list_item *next = next_elem(li);
1122 remove_shader_variant(llvmpipe, li->base);
1123 li = next;
1124 }
1125
1126 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1127
1128 assert(shader->variants_cached == 0);
1129 FREE((void *) shader->base.tokens);
1130 FREE(shader);
1131 }
1132
1133
1134
1135 static void
1136 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1137 uint shader, uint index,
1138 struct pipe_resource *constants)
1139 {
1140 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1141 unsigned size = constants ? constants->width0 : 0;
1142 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1143
1144 assert(shader < PIPE_SHADER_TYPES);
1145 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1146
1147 if(llvmpipe->constants[shader][index] == constants)
1148 return;
1149
1150 draw_flush(llvmpipe->draw);
1151
1152 /* note: reference counting */
1153 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1154
1155 if(shader == PIPE_SHADER_VERTEX ||
1156 shader == PIPE_SHADER_GEOMETRY) {
1157 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1158 index, data, size);
1159 }
1160
1161 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1162 }
1163
1164
1165 /**
1166 * Return the blend factor equivalent to a destination alpha of one.
1167 */
1168 static INLINE unsigned
1169 force_dst_alpha_one(unsigned factor)
1170 {
1171 switch(factor) {
1172 case PIPE_BLENDFACTOR_DST_ALPHA:
1173 return PIPE_BLENDFACTOR_ONE;
1174 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1175 return PIPE_BLENDFACTOR_ZERO;
1176 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1177 return PIPE_BLENDFACTOR_ZERO;
1178 }
1179
1180 return factor;
1181 }
1182
1183
1184 /**
1185 * We need to generate several variants of the fragment pipeline to match
1186 * all the combinations of the contributing state atoms.
1187 *
1188 * TODO: there is actually no reason to tie this to context state -- the
1189 * generated code could be cached globally in the screen.
1190 */
1191 static void
1192 make_variant_key(struct llvmpipe_context *lp,
1193 struct lp_fragment_shader *shader,
1194 struct lp_fragment_shader_variant_key *key)
1195 {
1196 unsigned i;
1197
1198 memset(key, 0, shader->variant_key_size);
1199
1200 if (lp->framebuffer.zsbuf) {
1201 if (lp->depth_stencil->depth.enabled) {
1202 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1203 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1204 }
1205 if (lp->depth_stencil->stencil[0].enabled) {
1206 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1207 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1208 }
1209 }
1210
1211 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1212 if(key->alpha.enabled)
1213 key->alpha.func = lp->depth_stencil->alpha.func;
1214 /* alpha.ref_value is passed in jit_context */
1215
1216 key->flatshade = lp->rasterizer->flatshade;
1217 if (lp->active_query_count) {
1218 key->occlusion_count = TRUE;
1219 }
1220
1221 if (lp->framebuffer.nr_cbufs) {
1222 memcpy(&key->blend, lp->blend, sizeof key->blend);
1223 }
1224
1225 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1226 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1227 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1228 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1229 const struct util_format_description *format_desc;
1230
1231 key->cbuf_format[i] = format;
1232
1233 format_desc = util_format_description(format);
1234 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1235 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1236
1237 blend_rt->colormask = lp->blend->rt[i].colormask;
1238
1239 /*
1240 * Mask out color channels not present in the color buffer.
1241 */
1242 blend_rt->colormask &= util_format_colormask(format_desc);
1243
1244 /*
1245 * Our swizzled render tiles always have an alpha channel, but the linear
1246 * render target format often does not, so force here the dst alpha to be
1247 * one.
1248 *
1249 * This is not a mere optimization. Wrong results will be produced if the
1250 * dst alpha is used, the dst format does not have alpha, and the previous
1251 * rendering was not flushed from the swizzled to linear buffer. For
1252 * example, NonPowTwo DCT.
1253 *
1254 * TODO: This should be generalized to all channels for better
1255 * performance, but only alpha causes correctness issues.
1256 *
1257 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1258 */
1259 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1260 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1261 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1262 blend_rt->alpha_func = blend_rt->rgb_func;
1263 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1264 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1265 }
1266 }
1267
1268 /* This value will be the same for all the variants of a given shader:
1269 */
1270 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1271
1272 for(i = 0; i < key->nr_samplers; ++i) {
1273 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1274 lp_sampler_static_state(&key->sampler[i],
1275 lp->fragment_sampler_views[i],
1276 lp->sampler[i]);
1277 }
1278 }
1279 }
1280
1281 /**
1282 * Update fragment state. This is called just prior to drawing
1283 * something when some fragment-related state has changed.
1284 */
1285 void
1286 llvmpipe_update_fs(struct llvmpipe_context *lp)
1287 {
1288 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
1289 struct lp_fragment_shader *shader = lp->fs;
1290 struct lp_fragment_shader_variant_key key;
1291 struct lp_fragment_shader_variant *variant = NULL;
1292 struct lp_fs_variant_list_item *li;
1293
1294 make_variant_key(lp, shader, &key);
1295
1296 li = first_elem(&shader->variants);
1297 while(!at_end(&shader->variants, li)) {
1298 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1299 variant = li->base;
1300 break;
1301 }
1302 li = next_elem(li);
1303 }
1304
1305 if (variant) {
1306 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1307 }
1308 else {
1309 int64_t t0, t1;
1310 int64_t dt;
1311 unsigned i;
1312 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1313 struct pipe_context *pipe = &lp->pipe;
1314
1315 /*
1316 * XXX: we need to flush the context until we have some sort of reference
1317 * counting in fragment shaders as they may still be binned
1318 * Flushing alone might not be sufficient we need to wait on it too.
1319 */
1320 llvmpipe_finish(pipe, __FUNCTION__);
1321
1322 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1323 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1324 remove_shader_variant(lp, item->base);
1325 }
1326 }
1327 t0 = os_time_get();
1328
1329 variant = generate_variant(screen, shader, &key);
1330
1331 t1 = os_time_get();
1332 dt = t1 - t0;
1333 LP_COUNT_ADD(llvm_compile_time, dt);
1334 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1335
1336 if (variant) {
1337 insert_at_head(&shader->variants, &variant->list_item_local);
1338 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1339 lp->nr_fs_variants++;
1340 shader->variants_cached++;
1341 }
1342 }
1343
1344 lp_setup_set_fs_variant(lp->setup, variant);
1345 }
1346
1347
1348
1349
1350
1351
1352
1353 void
1354 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1355 {
1356 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1357 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1358 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1359
1360 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1361 }