llvmpipe: interpolate Z at sample points for early depth test.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_nir.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87 #include "gallivm/lp_bld_arit.h"
88 #include "gallivm/lp_bld_bitarit.h"
89 #include "gallivm/lp_bld_pack.h"
90 #include "gallivm/lp_bld_format.h"
91 #include "gallivm/lp_bld_quad.h"
92
93 #include "lp_bld_alpha.h"
94 #include "lp_bld_blend.h"
95 #include "lp_bld_depth.h"
96 #include "lp_bld_interp.h"
97 #include "lp_context.h"
98 #include "lp_debug.h"
99 #include "lp_perf.h"
100 #include "lp_setup.h"
101 #include "lp_state.h"
102 #include "lp_tex_sample.h"
103 #include "lp_flush.h"
104 #include "lp_state_fs.h"
105 #include "lp_rast.h"
106 #include "nir/nir_to_tgsi_info.h"
107
108 /** Fragment shader number (for debugging) */
109 static unsigned fs_no = 0;
110
111
112 /**
113 * Expand the relevant bits of mask_input to a n*4-dword mask for the
114 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
115 * quad mask vector to 0 or ~0.
116 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
117 * quad arguments with fs length 8.
118 *
119 * \param first_quad which quad(s) of the quad group to test, in [0,3]
120 * \param mask_input bitwise mask for the whole 4x4 stamp
121 */
122 static LLVMValueRef
123 generate_quad_mask(struct gallivm_state *gallivm,
124 struct lp_type fs_type,
125 unsigned first_quad,
126 unsigned sample,
127 LLVMValueRef mask_input) /* int64 */
128 {
129 LLVMBuilderRef builder = gallivm->builder;
130 struct lp_type mask_type;
131 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
132 LLVMValueRef bits[16];
133 LLVMValueRef mask, bits_vec;
134 int shift, i;
135
136 /*
137 * XXX: We'll need a different path for 16 x u8
138 */
139 assert(fs_type.width == 32);
140 assert(fs_type.length <= ARRAY_SIZE(bits));
141 mask_type = lp_int_type(fs_type);
142
143 /*
144 * mask_input >>= (quad * 4)
145 */
146 switch (first_quad) {
147 case 0:
148 shift = 0;
149 break;
150 case 1:
151 assert(fs_type.length == 4);
152 shift = 2;
153 break;
154 case 2:
155 shift = 8;
156 break;
157 case 3:
158 assert(fs_type.length == 4);
159 shift = 10;
160 break;
161 default:
162 assert(0);
163 shift = 0;
164 }
165
166 mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
167 mask_input = LLVMBuildTrunc(builder, mask_input,
168 i32t, "");
169 mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
170
171 mask_input = LLVMBuildLShr(builder,
172 mask_input,
173 LLVMConstInt(i32t, shift, 0),
174 "");
175
176 /*
177 * mask = { mask_input & (1 << i), for i in [0,3] }
178 */
179 mask = lp_build_broadcast(gallivm,
180 lp_build_vec_type(gallivm, mask_type),
181 mask_input);
182
183 for (i = 0; i < fs_type.length / 4; i++) {
184 unsigned j = 2 * (i % 2) + (i / 2) * 8;
185 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
186 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
187 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
188 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
189 }
190 bits_vec = LLVMConstVector(bits, fs_type.length);
191 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
192
193 /*
194 * mask = mask == bits ? ~0 : 0
195 */
196 mask = lp_build_compare(gallivm,
197 mask_type, PIPE_FUNC_EQUAL,
198 mask, bits_vec);
199
200 return mask;
201 }
202
203
204 #define EARLY_DEPTH_TEST 0x1
205 #define LATE_DEPTH_TEST 0x2
206 #define EARLY_DEPTH_WRITE 0x4
207 #define LATE_DEPTH_WRITE 0x8
208
209 static int
210 find_output_by_semantic( const struct tgsi_shader_info *info,
211 unsigned semantic,
212 unsigned index )
213 {
214 int i;
215
216 for (i = 0; i < info->num_outputs; i++)
217 if (info->output_semantic_name[i] == semantic &&
218 info->output_semantic_index[i] == index)
219 return i;
220
221 return -1;
222 }
223
224
225 /**
226 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
227 */
228 static LLVMValueRef
229 lp_llvm_viewport(LLVMValueRef context_ptr,
230 struct gallivm_state *gallivm,
231 LLVMValueRef viewport_index)
232 {
233 LLVMBuilderRef builder = gallivm->builder;
234 LLVMValueRef ptr;
235 LLVMValueRef res;
236 struct lp_type viewport_type =
237 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
238
239 ptr = lp_jit_context_viewports(gallivm, context_ptr);
240 ptr = LLVMBuildPointerCast(builder, ptr,
241 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
242
243 res = lp_build_pointer_get(builder, ptr, viewport_index);
244
245 return res;
246 }
247
248
249 static LLVMValueRef
250 lp_build_depth_clamp(struct gallivm_state *gallivm,
251 LLVMBuilderRef builder,
252 struct lp_type type,
253 LLVMValueRef context_ptr,
254 LLVMValueRef thread_data_ptr,
255 LLVMValueRef z)
256 {
257 LLVMValueRef viewport, min_depth, max_depth;
258 LLVMValueRef viewport_index;
259 struct lp_build_context f32_bld;
260
261 assert(type.floating);
262 lp_build_context_init(&f32_bld, gallivm, type);
263
264 /*
265 * Assumes clamping of the viewport index will occur in setup/gs. Value
266 * is passed through the rasterization stage via lp_rast_shader_inputs.
267 *
268 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
269 * semantics.
270 */
271 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
272 thread_data_ptr);
273
274 /*
275 * Load the min and max depth from the lp_jit_context.viewports
276 * array of lp_jit_viewport structures.
277 */
278 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
279
280 /* viewports[viewport_index].min_depth */
281 min_depth = LLVMBuildExtractElement(builder, viewport,
282 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
283 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
284
285 /* viewports[viewport_index].max_depth */
286 max_depth = LLVMBuildExtractElement(builder, viewport,
287 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
288 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
289
290 /*
291 * Clamp to the min and max depth values for the given viewport.
292 */
293 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
294 }
295
296
297 /**
298 * Generate the fragment shader, depth/stencil test, and alpha tests.
299 */
300 static void
301 generate_fs_loop(struct gallivm_state *gallivm,
302 struct lp_fragment_shader *shader,
303 const struct lp_fragment_shader_variant_key *key,
304 LLVMBuilderRef builder,
305 struct lp_type type,
306 LLVMValueRef context_ptr,
307 LLVMValueRef num_loop,
308 struct lp_build_interp_soa_context *interp,
309 const struct lp_build_sampler_soa *sampler,
310 const struct lp_build_image_soa *image,
311 LLVMValueRef mask_store,
312 LLVMValueRef (*out_color)[4],
313 LLVMValueRef depth_base_ptr,
314 LLVMValueRef depth_stride,
315 LLVMValueRef depth_sample_stride,
316 LLVMValueRef facing,
317 LLVMValueRef thread_data_ptr)
318 {
319 const struct util_format_description *zs_format_desc = NULL;
320 const struct tgsi_token *tokens = shader->base.tokens;
321 struct lp_type int_type = lp_int_type(type);
322 LLVMTypeRef vec_type, int_vec_type;
323 LLVMValueRef mask_ptr = NULL, mask_val = NULL;
324 LLVMValueRef consts_ptr, num_consts_ptr;
325 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
326 LLVMValueRef z;
327 LLVMValueRef z_value, s_value;
328 LLVMValueRef z_fb, s_fb;
329 LLVMValueRef depth_ptr;
330 LLVMValueRef stencil_refs[2];
331 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
332 LLVMValueRef zs_samples = lp_build_const_int32(gallivm, key->zsbuf_nr_samples);
333 struct lp_build_for_loop_state loop_state, sample_loop_state;
334 struct lp_build_mask_context mask;
335 /*
336 * TODO: figure out if simple_shader optimization is really worthwile to
337 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
338 * code since tests tend to take another codepath than real shaders.
339 */
340 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
341 shader->info.base.num_inputs < 3 &&
342 shader->info.base.num_instructions < 8) && 0;
343 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
344 util_blend_state_is_dual(&key->blend, 0);
345 unsigned attrib;
346 unsigned chan;
347 unsigned cbuf;
348 unsigned depth_mode;
349
350 struct lp_bld_tgsi_system_values system_values;
351
352 memset(&system_values, 0, sizeof(system_values));
353
354 /* truncate then sign extend. */
355 system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
356 system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
357
358 if (key->depth.enabled ||
359 key->stencil[0].enabled) {
360
361 zs_format_desc = util_format_description(key->zsbuf_format);
362 assert(zs_format_desc);
363
364 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
365 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
366 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
367 if (shader->info.base.writes_memory)
368 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
369 else if (key->alpha.enabled ||
370 key->blend.alpha_to_coverage ||
371 shader->info.base.uses_kill ||
372 shader->info.base.writes_samplemask) {
373 /* With alpha test and kill, can do the depth test early
374 * and hopefully eliminate some quads. But need to do a
375 * special deferred depth write once the final mask value
376 * is known. This only works though if there's either no
377 * stencil test or the stencil value isn't written.
378 */
379 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
380 (key->stencil[1].enabled &&
381 key->stencil[1].writemask)))
382 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
383 else
384 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
385 }
386 else
387 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
388 }
389 else {
390 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
391 }
392
393 if (!(key->depth.enabled && key->depth.writemask) &&
394 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
395 (key->stencil[1].enabled &&
396 key->stencil[1].writemask))))
397 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
398 }
399 else {
400 depth_mode = 0;
401 }
402
403 vec_type = lp_build_vec_type(gallivm, type);
404 int_vec_type = lp_build_vec_type(gallivm, int_type);
405
406 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
407 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
408 /* convert scalar stencil refs into vectors */
409 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
410 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
411
412 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
413 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
414
415 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
416 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
417
418 memset(outputs, 0, sizeof outputs);
419
420 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
421 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
422 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
423 lp_build_vec_type(gallivm,
424 type),
425 num_loop, "color");
426 }
427 }
428 if (dual_source_blend) {
429 assert(key->nr_cbufs <= 1);
430 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
431 out_color[1][chan] = lp_build_array_alloca(gallivm,
432 lp_build_vec_type(gallivm,
433 type),
434 num_loop, "color1");
435 }
436 }
437
438 lp_build_for_loop_begin(&loop_state, gallivm,
439 lp_build_const_int32(gallivm, 0),
440 LLVMIntULT,
441 num_loop,
442 lp_build_const_int32(gallivm, 1));
443
444 if (key->multisample) {
445 /* create shader execution mask by combining all sample masks. */
446 for (unsigned s = 0; s < key->coverage_samples; s++) {
447 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), "");
448 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
449 LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx);
450 if (s == 0)
451 mask_val = s_mask;
452 else
453 mask_val = LLVMBuildOr(builder, s_mask, mask_val, "");
454 }
455 } else {
456 mask_ptr = LLVMBuildGEP(builder, mask_store,
457 &loop_state.counter, 1, "mask_ptr");
458 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
459 }
460
461 /* 'mask' will control execution based on quad's pixel alive/killed state */
462 lp_build_mask_begin(&mask, gallivm, type, mask_val);
463
464 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
465 lp_build_mask_check(&mask);
466
467 /* Create storage for recombining sample masks after early Z pass. */
468 LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth");
469 LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or);
470
471 LLVMValueRef s_mask = NULL, s_mask_ptr = NULL;
472 LLVMValueRef z_sample_value_store = NULL, s_sample_value_store = NULL;
473 LLVMValueRef z_fb_store = NULL, s_fb_store = NULL;
474 LLVMTypeRef z_type = NULL, z_fb_type = NULL;
475
476 /* Run early depth once per sample */
477 if (key->multisample) {
478
479 if (zs_format_desc) {
480 struct lp_type zs_type = lp_depth_type(zs_format_desc, type.length);
481 struct lp_type z_type = zs_type;
482 struct lp_type s_type = zs_type;
483 if (zs_format_desc->block.bits < type.width)
484 z_type.width = type.width;
485 else if (zs_format_desc->block.bits > 32) {
486 z_type.width = z_type.width / 2;
487 s_type.width = s_type.width / 2;
488 s_type.floating = 0;
489 }
490 z_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
491 zs_samples, "z_sample_store");
492 s_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
493 zs_samples, "s_sample_store");
494 z_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, z_type),
495 zs_samples, "z_fb_store");
496 s_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, s_type),
497 zs_samples, "s_fb_store");
498 }
499 lp_build_for_loop_begin(&sample_loop_state, gallivm,
500 lp_build_const_int32(gallivm, 0),
501 LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
502 lp_build_const_int32(gallivm, 1));
503
504 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
505 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
506 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
507
508 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
509 s_mask = LLVMBuildAnd(builder, s_mask, mask_val, "");
510 }
511
512
513 /* for multisample Z needs to be interpolated at sample points for testing. */
514 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
515 z = interp->pos[2];
516
517 depth_ptr = depth_base_ptr;
518 if (key->multisample) {
519 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
520 depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
521 }
522
523 if (depth_mode & EARLY_DEPTH_TEST) {
524 /*
525 * Clamp according to ARB_depth_clamp semantics.
526 */
527 if (key->depth_clamp) {
528 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
529 thread_data_ptr, z);
530 }
531 lp_build_depth_stencil_load_swizzled(gallivm, type,
532 zs_format_desc, key->resource_1d,
533 depth_ptr, depth_stride,
534 &z_fb, &s_fb, loop_state.counter);
535 lp_build_depth_stencil_test(gallivm,
536 &key->depth,
537 key->stencil,
538 type,
539 zs_format_desc,
540 key->multisample ? NULL : &mask,
541 &s_mask,
542 stencil_refs,
543 z, z_fb, s_fb,
544 facing,
545 &z_value, &s_value,
546 !simple_shader);
547
548 if (depth_mode & EARLY_DEPTH_WRITE) {
549 lp_build_depth_stencil_write_swizzled(gallivm, type,
550 zs_format_desc, key->resource_1d,
551 NULL, NULL, NULL, loop_state.counter,
552 depth_ptr, depth_stride,
553 z_value, s_value);
554 }
555 /*
556 * Note mask check if stencil is enabled must be after ds write not after
557 * stencil test otherwise new stencil values may not get written if all
558 * fragments got killed by depth/stencil test.
559 */
560 if (!simple_shader && key->stencil[0].enabled && !key->multisample)
561 lp_build_mask_check(&mask);
562
563 if (key->multisample) {
564 z_fb_type = LLVMTypeOf(z_fb);
565 z_type = LLVMTypeOf(z_value);
566 lp_build_pointer_set(builder, z_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, z_value, lp_build_int_vec_type(gallivm, type), ""));
567 lp_build_pointer_set(builder, s_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, s_value, lp_build_int_vec_type(gallivm, type), ""));
568 lp_build_pointer_set(builder, z_fb_store, sample_loop_state.counter, z_fb);
569 lp_build_pointer_set(builder, s_fb_store, sample_loop_state.counter, s_fb);
570 }
571 }
572
573 if (key->multisample) {
574 /*
575 * Store the post-early Z coverage mask.
576 * Recombine the resulting coverage masks post early Z into the fragment
577 * shader execution mask.
578 */
579 LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
580 tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, "");
581 LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or);
582
583 LLVMBuildStore(builder, s_mask, s_mask_ptr);
584
585 lp_build_for_loop_end(&sample_loop_state);
586
587 /* recombined all the coverage masks in the shader exec mask. */
588 tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
589 lp_build_mask_update(&mask, tmp_s_mask_or);
590
591 /* for multisample Z needs to be re interpolated at pixel center */
592 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, NULL);
593 }
594
595 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, NULL, NULL);
596
597 struct lp_build_tgsi_params params;
598 memset(&params, 0, sizeof(params));
599
600 params.type = type;
601 params.mask = &mask;
602 params.consts_ptr = consts_ptr;
603 params.const_sizes_ptr = num_consts_ptr;
604 params.system_values = &system_values;
605 params.inputs = interp->inputs;
606 params.context_ptr = context_ptr;
607 params.thread_data_ptr = thread_data_ptr;
608 params.sampler = sampler;
609 params.info = &shader->info.base;
610 params.ssbo_ptr = ssbo_ptr;
611 params.ssbo_sizes_ptr = num_ssbo_ptr;
612 params.image = image;
613
614 /* Build the actual shader */
615 if (shader->base.type == PIPE_SHADER_IR_TGSI)
616 lp_build_tgsi_soa(gallivm, tokens, &params,
617 outputs);
618 else
619 lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
620 outputs);
621
622 /* Alpha test */
623 if (key->alpha.enabled) {
624 int color0 = find_output_by_semantic(&shader->info.base,
625 TGSI_SEMANTIC_COLOR,
626 0);
627
628 if (color0 != -1 && outputs[color0][3]) {
629 const struct util_format_description *cbuf_format_desc;
630 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
631 LLVMValueRef alpha_ref_value;
632
633 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
634 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
635
636 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
637
638 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
639 &mask, alpha, alpha_ref_value,
640 (depth_mode & LATE_DEPTH_TEST) != 0);
641 }
642 }
643
644 /* Emulate Alpha to Coverage with Alpha test */
645 if (key->blend.alpha_to_coverage) {
646 int color0 = find_output_by_semantic(&shader->info.base,
647 TGSI_SEMANTIC_COLOR,
648 0);
649
650 if (color0 != -1 && outputs[color0][3]) {
651 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
652
653 lp_build_alpha_to_coverage(gallivm, type,
654 &mask, alpha,
655 (depth_mode & LATE_DEPTH_TEST) != 0);
656 }
657 }
658
659 if (shader->info.base.writes_samplemask) {
660 int smaski = find_output_by_semantic(&shader->info.base,
661 TGSI_SEMANTIC_SAMPLEMASK,
662 0);
663 LLVMValueRef smask;
664 struct lp_build_context smask_bld;
665 lp_build_context_init(&smask_bld, gallivm, int_type);
666
667 assert(smaski >= 0);
668 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
669 /*
670 * Pixel is alive according to the first sample in the mask.
671 */
672 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
673 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
674 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
675 lp_build_mask_update(&mask, smask);
676 }
677
678 if (key->multisample) {
679 /* execute depth test for each sample */
680 lp_build_for_loop_begin(&sample_loop_state, gallivm,
681 lp_build_const_int32(gallivm, 0),
682 LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
683 lp_build_const_int32(gallivm, 1));
684
685 /* load the per-sample coverage mask */
686 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
687 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
688 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
689
690 /* combine the execution mask post fragment shader with the coverage mask. */
691 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
692 s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), "");
693 }
694
695 depth_ptr = depth_base_ptr;
696 if (key->multisample) {
697 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
698 depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
699 }
700
701 /* Late Z test */
702 if (depth_mode & LATE_DEPTH_TEST) {
703 int pos0 = find_output_by_semantic(&shader->info.base,
704 TGSI_SEMANTIC_POSITION,
705 0);
706 int s_out = find_output_by_semantic(&shader->info.base,
707 TGSI_SEMANTIC_STENCIL,
708 0);
709 if (pos0 != -1 && outputs[pos0][2]) {
710 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
711 }
712 /*
713 * Clamp according to ARB_depth_clamp semantics.
714 */
715 if (key->depth_clamp) {
716 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
717 thread_data_ptr, z);
718 }
719
720 if (s_out != -1 && outputs[s_out][1]) {
721 /* there's only one value, and spec says to discard additional bits */
722 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
723 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
724 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
725 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
726 stencil_refs[1] = stencil_refs[0];
727 }
728
729 lp_build_depth_stencil_load_swizzled(gallivm, type,
730 zs_format_desc, key->resource_1d,
731 depth_ptr, depth_stride,
732 &z_fb, &s_fb, loop_state.counter);
733
734 lp_build_depth_stencil_test(gallivm,
735 &key->depth,
736 key->stencil,
737 type,
738 zs_format_desc,
739 key->multisample ? NULL : &mask,
740 &s_mask,
741 stencil_refs,
742 z, z_fb, s_fb,
743 facing,
744 &z_value, &s_value,
745 !simple_shader);
746 /* Late Z write */
747 if (depth_mode & LATE_DEPTH_WRITE) {
748 lp_build_depth_stencil_write_swizzled(gallivm, type,
749 zs_format_desc, key->resource_1d,
750 NULL, NULL, NULL, loop_state.counter,
751 depth_ptr, depth_stride,
752 z_value, s_value);
753 }
754 }
755 else if ((depth_mode & EARLY_DEPTH_TEST) &&
756 (depth_mode & LATE_DEPTH_WRITE))
757 {
758 /* Need to apply a reduced mask to the depth write. Reload the
759 * depth value, update from zs_value with the new mask value and
760 * write that out.
761 */
762 if (key->multisample) {
763 z_value = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_sample_value_store, sample_loop_state.counter), z_type, "");;
764 s_value = lp_build_pointer_get(builder, s_sample_value_store, sample_loop_state.counter);
765 z_fb = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_fb_store, sample_loop_state.counter), z_fb_type, "");
766 s_fb = lp_build_pointer_get(builder, s_fb_store, sample_loop_state.counter);
767 }
768 lp_build_depth_stencil_write_swizzled(gallivm, type,
769 zs_format_desc, key->resource_1d,
770 key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
771 depth_ptr, depth_stride,
772 z_value, s_value);
773 }
774
775 if (key->multisample) {
776 /* store the sample mask for this loop */
777 LLVMBuildStore(builder, s_mask, s_mask_ptr);
778 lp_build_for_loop_end(&sample_loop_state);
779 }
780
781 /* Color write */
782 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
783 {
784 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
785 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
786 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
787 {
788 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
789 if(outputs[attrib][chan]) {
790 /* XXX: just initialize outputs to point at colors[] and
791 * skip this.
792 */
793 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
794 LLVMValueRef color_ptr;
795 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
796 &loop_state.counter, 1, "");
797 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
798 LLVMBuildStore(builder, out, color_ptr);
799 }
800 }
801 }
802 }
803
804 if (key->occlusion_count) {
805 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
806 lp_build_name(counter, "counter");
807 lp_build_occlusion_count(gallivm, type,
808 lp_build_mask_value(&mask), counter);
809 }
810
811 mask_val = lp_build_mask_end(&mask);
812 if (!key->multisample)
813 LLVMBuildStore(builder, mask_val, mask_ptr);
814 lp_build_for_loop_end(&loop_state);
815 }
816
817
818 /**
819 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
820 *
821 * Fragment Shader outputs pixels in small 2x2 blocks
822 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
823 *
824 * However in memory pixels are stored in rows
825 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
826 *
827 * @param type fragment shader type (4x or 8x float)
828 * @param num_fs number of fs_src
829 * @param is_1d whether we're outputting to a 1d resource
830 * @param dst_channels number of output channels
831 * @param fs_src output from fragment shader
832 * @param dst pointer to store result
833 * @param pad_inline is channel padding inline or at end of row
834 * @return the number of dsts
835 */
836 static int
837 generate_fs_twiddle(struct gallivm_state *gallivm,
838 struct lp_type type,
839 unsigned num_fs,
840 unsigned dst_channels,
841 LLVMValueRef fs_src[][4],
842 LLVMValueRef* dst,
843 bool pad_inline)
844 {
845 LLVMValueRef src[16];
846
847 bool swizzle_pad;
848 bool twiddle;
849 bool split;
850
851 unsigned pixels = type.length / 4;
852 unsigned reorder_group;
853 unsigned src_channels;
854 unsigned src_count;
855 unsigned i;
856
857 src_channels = dst_channels < 3 ? dst_channels : 4;
858 src_count = num_fs * src_channels;
859
860 assert(pixels == 2 || pixels == 1);
861 assert(num_fs * src_channels <= ARRAY_SIZE(src));
862
863 /*
864 * Transpose from SoA -> AoS
865 */
866 for (i = 0; i < num_fs; ++i) {
867 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
868 }
869
870 /*
871 * Pick transformation options
872 */
873 swizzle_pad = false;
874 twiddle = false;
875 split = false;
876 reorder_group = 0;
877
878 if (dst_channels == 1) {
879 twiddle = true;
880
881 if (pixels == 2) {
882 split = true;
883 }
884 } else if (dst_channels == 2) {
885 if (pixels == 1) {
886 reorder_group = 1;
887 }
888 } else if (dst_channels > 2) {
889 if (pixels == 1) {
890 reorder_group = 2;
891 } else {
892 twiddle = true;
893 }
894
895 if (!pad_inline && dst_channels == 3 && pixels > 1) {
896 swizzle_pad = true;
897 }
898 }
899
900 /*
901 * Split the src in half
902 */
903 if (split) {
904 for (i = num_fs; i > 0; --i) {
905 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
906 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
907 }
908
909 src_count *= 2;
910 type.length = 4;
911 }
912
913 /*
914 * Ensure pixels are in memory order
915 */
916 if (reorder_group) {
917 /* Twiddle pixels by reordering the array, e.g.:
918 *
919 * src_count = 8 -> 0 2 1 3 4 6 5 7
920 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
921 */
922 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
923
924 for (i = 0; i < src_count; ++i) {
925 unsigned group = i / reorder_group;
926 unsigned block = (group / 4) * 4 * reorder_group;
927 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
928 dst[i] = src[j];
929 }
930 } else if (twiddle) {
931 /* Twiddle pixels across elements of array */
932 /*
933 * XXX: we should avoid this in some cases, but would need to tell
934 * lp_build_conv to reorder (or deal with it ourselves).
935 */
936 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
937 } else {
938 /* Do nothing */
939 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
940 }
941
942 /*
943 * Moves any padding between pixels to the end
944 * e.g. RGBXRGBX -> RGBRGBXX
945 */
946 if (swizzle_pad) {
947 unsigned char swizzles[16];
948 unsigned elems = pixels * dst_channels;
949
950 for (i = 0; i < type.length; ++i) {
951 if (i < elems)
952 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
953 else
954 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
955 }
956
957 for (i = 0; i < src_count; ++i) {
958 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
959 }
960 }
961
962 return src_count;
963 }
964
965
966 /*
967 * Untwiddle and transpose, much like the above.
968 * However, this is after conversion, so we get packed vectors.
969 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
970 * the vectors will look like:
971 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
972 * be swizzled here). Extending to 16bit should be trivial.
973 * Should also be extended to handle twice wide vectors with AVX2...
974 */
975 static void
976 fs_twiddle_transpose(struct gallivm_state *gallivm,
977 struct lp_type type,
978 LLVMValueRef *src,
979 unsigned src_count,
980 LLVMValueRef *dst)
981 {
982 unsigned i, j;
983 struct lp_type type64, type16, type32;
984 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
985 LLVMBuilderRef builder = gallivm->builder;
986 LLVMValueRef tmp[4], shuf[8];
987 for (j = 0; j < 2; j++) {
988 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
989 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
990 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
991 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
992 }
993
994 assert(src_count == 4 || src_count == 2 || src_count == 1);
995 assert(type.width == 8);
996 assert(type.length == 16);
997
998 type8_t = lp_build_vec_type(gallivm, type);
999
1000 type64 = type;
1001 type64.length /= 8;
1002 type64.width *= 8;
1003 type64_t = lp_build_vec_type(gallivm, type64);
1004
1005 type16 = type;
1006 type16.length /= 2;
1007 type16.width *= 2;
1008 type16_t = lp_build_vec_type(gallivm, type16);
1009
1010 type32 = type;
1011 type32.length /= 4;
1012 type32.width *= 4;
1013 type32_t = lp_build_vec_type(gallivm, type32);
1014
1015 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
1016
1017 if (src_count == 1) {
1018 /* transpose was no-op, just untwiddle */
1019 LLVMValueRef shuf_vec;
1020 shuf_vec = LLVMConstVector(shuf, 8);
1021 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
1022 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
1023 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
1024 } else if (src_count == 2) {
1025 LLVMValueRef shuf_vec;
1026 shuf_vec = LLVMConstVector(shuf, 4);
1027
1028 for (i = 0; i < 2; i++) {
1029 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
1030 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
1031 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
1032 }
1033 } else {
1034 for (j = 0; j < 2; j++) {
1035 LLVMValueRef lo, hi, lo2, hi2;
1036 /*
1037 * Note that if we only really have 3 valid channels (rgb)
1038 * and we don't need alpha we could substitute a undef here
1039 * for the respective channel (causing llvm to drop conversion
1040 * for alpha).
1041 */
1042 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
1043 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
1044 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
1045 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
1046 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
1047 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
1048 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
1049 }
1050 }
1051 }
1052
1053
1054 /**
1055 * Load an unswizzled block of pixels from memory
1056 */
1057 static void
1058 load_unswizzled_block(struct gallivm_state *gallivm,
1059 LLVMValueRef base_ptr,
1060 LLVMValueRef stride,
1061 unsigned block_width,
1062 unsigned block_height,
1063 LLVMValueRef* dst,
1064 struct lp_type dst_type,
1065 unsigned dst_count,
1066 unsigned dst_alignment)
1067 {
1068 LLVMBuilderRef builder = gallivm->builder;
1069 unsigned row_size = dst_count / block_height;
1070 unsigned i;
1071
1072 /* Ensure block exactly fits into dst */
1073 assert((block_width * block_height) % dst_count == 0);
1074
1075 for (i = 0; i < dst_count; ++i) {
1076 unsigned x = i % row_size;
1077 unsigned y = i / row_size;
1078
1079 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
1080 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1081
1082 LLVMValueRef gep[2];
1083 LLVMValueRef dst_ptr;
1084
1085 gep[0] = lp_build_const_int32(gallivm, 0);
1086 gep[1] = LLVMBuildAdd(builder, bx, by, "");
1087
1088 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1089 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
1090 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
1091
1092 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
1093
1094 LLVMSetAlignment(dst[i], dst_alignment);
1095 }
1096 }
1097
1098
1099 /**
1100 * Store an unswizzled block of pixels to memory
1101 */
1102 static void
1103 store_unswizzled_block(struct gallivm_state *gallivm,
1104 LLVMValueRef base_ptr,
1105 LLVMValueRef stride,
1106 unsigned block_width,
1107 unsigned block_height,
1108 LLVMValueRef* src,
1109 struct lp_type src_type,
1110 unsigned src_count,
1111 unsigned src_alignment)
1112 {
1113 LLVMBuilderRef builder = gallivm->builder;
1114 unsigned row_size = src_count / block_height;
1115 unsigned i;
1116
1117 /* Ensure src exactly fits into block */
1118 assert((block_width * block_height) % src_count == 0);
1119
1120 for (i = 0; i < src_count; ++i) {
1121 unsigned x = i % row_size;
1122 unsigned y = i / row_size;
1123
1124 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
1125 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1126
1127 LLVMValueRef gep[2];
1128 LLVMValueRef src_ptr;
1129
1130 gep[0] = lp_build_const_int32(gallivm, 0);
1131 gep[1] = LLVMBuildAdd(builder, bx, by, "");
1132
1133 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1134 src_ptr = LLVMBuildBitCast(builder, src_ptr,
1135 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1136
1137 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1138
1139 LLVMSetAlignment(src_ptr, src_alignment);
1140 }
1141 }
1142
1143
1144 /**
1145 * Checks if a format description is an arithmetic format
1146 *
1147 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
1148 */
1149 static inline boolean
1150 is_arithmetic_format(const struct util_format_description *format_desc)
1151 {
1152 boolean arith = false;
1153 unsigned i;
1154
1155 for (i = 0; i < format_desc->nr_channels; ++i) {
1156 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1157 arith |= (format_desc->channel[i].size % 8) != 0;
1158 }
1159
1160 return arith;
1161 }
1162
1163
1164 /**
1165 * Checks if this format requires special handling due to required expansion
1166 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1167 * SoA conversion.
1168 */
1169 static inline boolean
1170 format_expands_to_float_soa(const struct util_format_description *format_desc)
1171 {
1172 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1173 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1174 return true;
1175 }
1176 return false;
1177 }
1178
1179
1180 /**
1181 * Retrieves the type representing the memory layout for a format
1182 *
1183 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1184 */
1185 static inline void
1186 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1187 struct lp_type* type)
1188 {
1189 unsigned i;
1190 unsigned chan;
1191
1192 if (format_expands_to_float_soa(format_desc)) {
1193 /* just make this a uint with width of block */
1194 type->floating = false;
1195 type->fixed = false;
1196 type->sign = false;
1197 type->norm = false;
1198 type->width = format_desc->block.bits;
1199 type->length = 1;
1200 return;
1201 }
1202
1203 for (i = 0; i < 4; i++)
1204 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1205 break;
1206 chan = i;
1207
1208 memset(type, 0, sizeof(struct lp_type));
1209 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1210 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1211 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1212 type->norm = format_desc->channel[chan].normalized;
1213
1214 if (is_arithmetic_format(format_desc)) {
1215 type->width = 0;
1216 type->length = 1;
1217
1218 for (i = 0; i < format_desc->nr_channels; ++i) {
1219 type->width += format_desc->channel[i].size;
1220 }
1221 } else {
1222 type->width = format_desc->channel[chan].size;
1223 type->length = format_desc->nr_channels;
1224 }
1225 }
1226
1227
1228 /**
1229 * Retrieves the type for a format which is usable in the blending code.
1230 *
1231 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1232 */
1233 static inline void
1234 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1235 struct lp_type* type)
1236 {
1237 unsigned i;
1238 unsigned chan;
1239
1240 if (format_expands_to_float_soa(format_desc)) {
1241 /* always use ordinary floats for blending */
1242 type->floating = true;
1243 type->fixed = false;
1244 type->sign = true;
1245 type->norm = false;
1246 type->width = 32;
1247 type->length = 4;
1248 return;
1249 }
1250
1251 for (i = 0; i < 4; i++)
1252 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1253 break;
1254 chan = i;
1255
1256 memset(type, 0, sizeof(struct lp_type));
1257 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1258 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1259 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1260 type->norm = format_desc->channel[chan].normalized;
1261 type->width = format_desc->channel[chan].size;
1262 type->length = format_desc->nr_channels;
1263
1264 for (i = 1; i < format_desc->nr_channels; ++i) {
1265 if (format_desc->channel[i].size > type->width)
1266 type->width = format_desc->channel[i].size;
1267 }
1268
1269 if (type->floating) {
1270 type->width = 32;
1271 } else {
1272 if (type->width <= 8) {
1273 type->width = 8;
1274 } else if (type->width <= 16) {
1275 type->width = 16;
1276 } else {
1277 type->width = 32;
1278 }
1279 }
1280
1281 if (is_arithmetic_format(format_desc) && type->length == 3) {
1282 type->length = 4;
1283 }
1284 }
1285
1286
1287 /**
1288 * Scale a normalized value from src_bits to dst_bits.
1289 *
1290 * The exact calculation is
1291 *
1292 * dst = iround(src * dst_mask / src_mask)
1293 *
1294 * or with integer rounding
1295 *
1296 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1297 *
1298 * where
1299 *
1300 * src_mask = (1 << src_bits) - 1
1301 * dst_mask = (1 << dst_bits) - 1
1302 *
1303 * but we try to avoid division and multiplication through shifts.
1304 */
1305 static inline LLVMValueRef
1306 scale_bits(struct gallivm_state *gallivm,
1307 int src_bits,
1308 int dst_bits,
1309 LLVMValueRef src,
1310 struct lp_type src_type)
1311 {
1312 LLVMBuilderRef builder = gallivm->builder;
1313 LLVMValueRef result = src;
1314
1315 if (dst_bits < src_bits) {
1316 int delta_bits = src_bits - dst_bits;
1317
1318 if (delta_bits <= dst_bits) {
1319 /*
1320 * Approximate the rescaling with a single shift.
1321 *
1322 * This gives the wrong rounding.
1323 */
1324
1325 result = LLVMBuildLShr(builder,
1326 src,
1327 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1328 "");
1329
1330 } else {
1331 /*
1332 * Try more accurate rescaling.
1333 */
1334
1335 /*
1336 * Drop the least significant bits to make space for the multiplication.
1337 *
1338 * XXX: A better approach would be to use a wider integer type as intermediate. But
1339 * this is enough to convert alpha from 16bits -> 2 when rendering to
1340 * PIPE_FORMAT_R10G10B10A2_UNORM.
1341 */
1342 result = LLVMBuildLShr(builder,
1343 src,
1344 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1345 "");
1346
1347
1348 result = LLVMBuildMul(builder,
1349 result,
1350 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1351 "");
1352
1353 /*
1354 * Add a rounding term before the division.
1355 *
1356 * TODO: Handle signed integers too.
1357 */
1358 if (!src_type.sign) {
1359 result = LLVMBuildAdd(builder,
1360 result,
1361 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1362 "");
1363 }
1364
1365 /*
1366 * Approximate the division by src_mask with a src_bits shift.
1367 *
1368 * Given the src has already been shifted by dst_bits, all we need
1369 * to do is to shift by the difference.
1370 */
1371
1372 result = LLVMBuildLShr(builder,
1373 result,
1374 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1375 "");
1376 }
1377
1378 } else if (dst_bits > src_bits) {
1379 /* Scale up bits */
1380 int db = dst_bits - src_bits;
1381
1382 /* Shift left by difference in bits */
1383 result = LLVMBuildShl(builder,
1384 src,
1385 lp_build_const_int_vec(gallivm, src_type, db),
1386 "");
1387
1388 if (db <= src_bits) {
1389 /* Enough bits in src to fill the remainder */
1390 LLVMValueRef lower = LLVMBuildLShr(builder,
1391 src,
1392 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1393 "");
1394
1395 result = LLVMBuildOr(builder, result, lower, "");
1396 } else if (db > src_bits) {
1397 /* Need to repeatedly copy src bits to fill remainder in dst */
1398 unsigned n;
1399
1400 for (n = src_bits; n < dst_bits; n *= 2) {
1401 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1402
1403 result = LLVMBuildOr(builder,
1404 result,
1405 LLVMBuildLShr(builder, result, shuv, ""),
1406 "");
1407 }
1408 }
1409 }
1410
1411 return result;
1412 }
1413
1414 /**
1415 * If RT is a smallfloat (needing denorms) format
1416 */
1417 static inline int
1418 have_smallfloat_format(struct lp_type dst_type,
1419 enum pipe_format format)
1420 {
1421 return ((dst_type.floating && dst_type.width != 32) ||
1422 /* due to format handling hacks this format doesn't have floating set
1423 * here (and actually has width set to 32 too) so special case this. */
1424 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1425 }
1426
1427
1428 /**
1429 * Convert from memory format to blending format
1430 *
1431 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1432 */
1433 static void
1434 convert_to_blend_type(struct gallivm_state *gallivm,
1435 unsigned block_size,
1436 const struct util_format_description *src_fmt,
1437 struct lp_type src_type,
1438 struct lp_type dst_type,
1439 LLVMValueRef* src, // and dst
1440 unsigned num_srcs)
1441 {
1442 LLVMValueRef *dst = src;
1443 LLVMBuilderRef builder = gallivm->builder;
1444 struct lp_type blend_type;
1445 struct lp_type mem_type;
1446 unsigned i, j;
1447 unsigned pixels = block_size / num_srcs;
1448 bool is_arith;
1449
1450 /*
1451 * full custom path for packed floats and srgb formats - none of the later
1452 * functions would do anything useful, and given the lp_type representation they
1453 * can't be fixed. Should really have some SoA blend path for these kind of
1454 * formats rather than hacking them in here.
1455 */
1456 if (format_expands_to_float_soa(src_fmt)) {
1457 LLVMValueRef tmpsrc[4];
1458 /*
1459 * This is pretty suboptimal for this case blending in SoA would be much
1460 * better, since conversion gets us SoA values so need to convert back.
1461 */
1462 assert(src_type.width == 32 || src_type.width == 16);
1463 assert(dst_type.floating);
1464 assert(dst_type.width == 32);
1465 assert(dst_type.length % 4 == 0);
1466 assert(num_srcs % 4 == 0);
1467
1468 if (src_type.width == 16) {
1469 /* expand 4x16bit values to 4x32bit */
1470 struct lp_type type32x4 = src_type;
1471 LLVMTypeRef ltype32x4;
1472 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1473 type32x4.width = 32;
1474 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1475 for (i = 0; i < num_fetch; i++) {
1476 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1477 }
1478 src_type.width = 32;
1479 }
1480 for (i = 0; i < 4; i++) {
1481 tmpsrc[i] = src[i];
1482 }
1483 for (i = 0; i < num_srcs / 4; i++) {
1484 LLVMValueRef tmpsoa[4];
1485 LLVMValueRef tmps = tmpsrc[i];
1486 if (dst_type.length == 8) {
1487 LLVMValueRef shuffles[8];
1488 unsigned j;
1489 /* fetch was 4 values but need 8-wide output values */
1490 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1491 /*
1492 * for 8-wide aos transpose would give us wrong order not matching
1493 * incoming converted fs values and mask. ARGH.
1494 */
1495 for (j = 0; j < 4; j++) {
1496 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1497 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1498 }
1499 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1500 LLVMConstVector(shuffles, 8), "");
1501 }
1502 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1503 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1504 }
1505 else {
1506 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1507 }
1508 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1509 }
1510 return;
1511 }
1512
1513 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1514 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1515
1516 /* Is the format arithmetic */
1517 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1518 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1519
1520 /* Pad if necessary */
1521 if (!is_arith && src_type.length < dst_type.length) {
1522 for (i = 0; i < num_srcs; ++i) {
1523 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1524 }
1525
1526 src_type.length = dst_type.length;
1527 }
1528
1529 /* Special case for half-floats */
1530 if (mem_type.width == 16 && mem_type.floating) {
1531 assert(blend_type.width == 32 && blend_type.floating);
1532 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1533 is_arith = false;
1534 }
1535
1536 if (!is_arith) {
1537 return;
1538 }
1539
1540 src_type.width = blend_type.width * blend_type.length;
1541 blend_type.length *= pixels;
1542 src_type.length *= pixels / (src_type.length / mem_type.length);
1543
1544 for (i = 0; i < num_srcs; ++i) {
1545 LLVMValueRef chans[4];
1546 LLVMValueRef res = NULL;
1547
1548 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1549
1550 for (j = 0; j < src_fmt->nr_channels; ++j) {
1551 unsigned mask = 0;
1552 unsigned sa = src_fmt->channel[j].shift;
1553 #if UTIL_ARCH_LITTLE_ENDIAN
1554 unsigned from_lsb = j;
1555 #else
1556 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1557 #endif
1558
1559 mask = (1 << src_fmt->channel[j].size) - 1;
1560
1561 /* Extract bits from source */
1562 chans[j] = LLVMBuildLShr(builder,
1563 dst[i],
1564 lp_build_const_int_vec(gallivm, src_type, sa),
1565 "");
1566
1567 chans[j] = LLVMBuildAnd(builder,
1568 chans[j],
1569 lp_build_const_int_vec(gallivm, src_type, mask),
1570 "");
1571
1572 /* Scale bits */
1573 if (src_type.norm) {
1574 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1575 blend_type.width, chans[j], src_type);
1576 }
1577
1578 /* Insert bits into correct position */
1579 chans[j] = LLVMBuildShl(builder,
1580 chans[j],
1581 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1582 "");
1583
1584 if (j == 0) {
1585 res = chans[j];
1586 } else {
1587 res = LLVMBuildOr(builder, res, chans[j], "");
1588 }
1589 }
1590
1591 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1592 }
1593 }
1594
1595
1596 /**
1597 * Convert from blending format to memory format
1598 *
1599 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1600 */
1601 static void
1602 convert_from_blend_type(struct gallivm_state *gallivm,
1603 unsigned block_size,
1604 const struct util_format_description *src_fmt,
1605 struct lp_type src_type,
1606 struct lp_type dst_type,
1607 LLVMValueRef* src, // and dst
1608 unsigned num_srcs)
1609 {
1610 LLVMValueRef* dst = src;
1611 unsigned i, j, k;
1612 struct lp_type mem_type;
1613 struct lp_type blend_type;
1614 LLVMBuilderRef builder = gallivm->builder;
1615 unsigned pixels = block_size / num_srcs;
1616 bool is_arith;
1617
1618 /*
1619 * full custom path for packed floats and srgb formats - none of the later
1620 * functions would do anything useful, and given the lp_type representation they
1621 * can't be fixed. Should really have some SoA blend path for these kind of
1622 * formats rather than hacking them in here.
1623 */
1624 if (format_expands_to_float_soa(src_fmt)) {
1625 /*
1626 * This is pretty suboptimal for this case blending in SoA would be much
1627 * better - we need to transpose the AoS values back to SoA values for
1628 * conversion/packing.
1629 */
1630 assert(src_type.floating);
1631 assert(src_type.width == 32);
1632 assert(src_type.length % 4 == 0);
1633 assert(dst_type.width == 32 || dst_type.width == 16);
1634
1635 for (i = 0; i < num_srcs / 4; i++) {
1636 LLVMValueRef tmpsoa[4], tmpdst;
1637 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1638 /* really really need SoA here */
1639
1640 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1641 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1642 }
1643 else {
1644 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1645 src_type, tmpsoa);
1646 }
1647
1648 if (src_type.length == 8) {
1649 LLVMValueRef tmpaos, shuffles[8];
1650 unsigned j;
1651 /*
1652 * for 8-wide aos transpose has given us wrong order not matching
1653 * output order. HMPF. Also need to split the output values manually.
1654 */
1655 for (j = 0; j < 4; j++) {
1656 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1657 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1658 }
1659 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1660 LLVMConstVector(shuffles, 8), "");
1661 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1662 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1663 }
1664 else {
1665 src[i] = tmpdst;
1666 }
1667 }
1668 if (dst_type.width == 16) {
1669 struct lp_type type16x8 = dst_type;
1670 struct lp_type type32x4 = dst_type;
1671 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1672 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1673 type16x8.length = 8;
1674 type32x4.width = 32;
1675 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1676 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1677 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1678 /* We could do vector truncation but it doesn't generate very good code */
1679 for (i = 0; i < num_fetch; i++) {
1680 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1681 src[i], lp_build_zero(gallivm, type32x4));
1682 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1683 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1684 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1685 }
1686 }
1687 return;
1688 }
1689
1690 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1691 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1692
1693 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1694
1695 /* Special case for half-floats */
1696 if (mem_type.width == 16 && mem_type.floating) {
1697 int length = dst_type.length;
1698 assert(blend_type.width == 32 && blend_type.floating);
1699
1700 dst_type.length = src_type.length;
1701
1702 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1703
1704 dst_type.length = length;
1705 is_arith = false;
1706 }
1707
1708 /* Remove any padding */
1709 if (!is_arith && (src_type.length % mem_type.length)) {
1710 src_type.length -= (src_type.length % mem_type.length);
1711
1712 for (i = 0; i < num_srcs; ++i) {
1713 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1714 }
1715 }
1716
1717 /* No bit arithmetic to do */
1718 if (!is_arith) {
1719 return;
1720 }
1721
1722 src_type.length = pixels;
1723 src_type.width = blend_type.length * blend_type.width;
1724 dst_type.length = pixels;
1725
1726 for (i = 0; i < num_srcs; ++i) {
1727 LLVMValueRef chans[4];
1728 LLVMValueRef res = NULL;
1729
1730 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1731
1732 for (j = 0; j < src_fmt->nr_channels; ++j) {
1733 unsigned mask = 0;
1734 unsigned sa = src_fmt->channel[j].shift;
1735 unsigned sz_a = src_fmt->channel[j].size;
1736 #if UTIL_ARCH_LITTLE_ENDIAN
1737 unsigned from_lsb = j;
1738 #else
1739 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1740 #endif
1741
1742 assert(blend_type.width > src_fmt->channel[j].size);
1743
1744 for (k = 0; k < blend_type.width; ++k) {
1745 mask |= 1 << k;
1746 }
1747
1748 /* Extract bits */
1749 chans[j] = LLVMBuildLShr(builder,
1750 dst[i],
1751 lp_build_const_int_vec(gallivm, src_type,
1752 from_lsb * blend_type.width),
1753 "");
1754
1755 chans[j] = LLVMBuildAnd(builder,
1756 chans[j],
1757 lp_build_const_int_vec(gallivm, src_type, mask),
1758 "");
1759
1760 /* Scale down bits */
1761 if (src_type.norm) {
1762 chans[j] = scale_bits(gallivm, blend_type.width,
1763 src_fmt->channel[j].size, chans[j], src_type);
1764 } else if (!src_type.floating && sz_a < blend_type.width) {
1765 LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
1766 LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
1767 chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
1768 }
1769
1770 /* Insert bits */
1771 chans[j] = LLVMBuildShl(builder,
1772 chans[j],
1773 lp_build_const_int_vec(gallivm, src_type, sa),
1774 "");
1775
1776 sa += src_fmt->channel[j].size;
1777
1778 if (j == 0) {
1779 res = chans[j];
1780 } else {
1781 res = LLVMBuildOr(builder, res, chans[j], "");
1782 }
1783 }
1784
1785 assert (dst_type.width != 24);
1786
1787 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1788 }
1789 }
1790
1791
1792 /**
1793 * Convert alpha to same blend type as src
1794 */
1795 static void
1796 convert_alpha(struct gallivm_state *gallivm,
1797 struct lp_type row_type,
1798 struct lp_type alpha_type,
1799 const unsigned block_size,
1800 const unsigned block_height,
1801 const unsigned src_count,
1802 const unsigned dst_channels,
1803 const bool pad_inline,
1804 LLVMValueRef* src_alpha)
1805 {
1806 LLVMBuilderRef builder = gallivm->builder;
1807 unsigned i, j;
1808 unsigned length = row_type.length;
1809 row_type.length = alpha_type.length;
1810
1811 /* Twiddle the alpha to match pixels */
1812 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1813
1814 /*
1815 * TODO this should use single lp_build_conv call for
1816 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1817 */
1818 for (i = 0; i < block_height; ++i) {
1819 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1820 }
1821
1822 alpha_type = row_type;
1823 row_type.length = length;
1824
1825 /* If only one channel we can only need the single alpha value per pixel */
1826 if (src_count == 1 && dst_channels == 1) {
1827
1828 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1829 } else {
1830 /* If there are more srcs than rows then we need to split alpha up */
1831 if (src_count > block_height) {
1832 for (i = src_count; i > 0; --i) {
1833 unsigned pixels = block_size / src_count;
1834 unsigned idx = i - 1;
1835
1836 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1837 (idx * pixels) % 4, pixels);
1838 }
1839 }
1840
1841 /* If there is a src for each pixel broadcast the alpha across whole row */
1842 if (src_count == block_size) {
1843 for (i = 0; i < src_count; ++i) {
1844 src_alpha[i] = lp_build_broadcast(gallivm,
1845 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1846 }
1847 } else {
1848 unsigned pixels = block_size / src_count;
1849 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1850 unsigned alpha_span = 1;
1851 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1852
1853 /* Check if we need 2 src_alphas for our shuffles */
1854 if (pixels > alpha_type.length) {
1855 alpha_span = 2;
1856 }
1857
1858 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1859 for (j = 0; j < row_type.length; ++j) {
1860 if (j < pixels * channels) {
1861 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1862 } else {
1863 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1864 }
1865 }
1866
1867 for (i = 0; i < src_count; ++i) {
1868 unsigned idx1 = i, idx2 = i;
1869
1870 if (alpha_span > 1){
1871 idx1 *= alpha_span;
1872 idx2 = idx1 + 1;
1873 }
1874
1875 src_alpha[i] = LLVMBuildShuffleVector(builder,
1876 src_alpha[idx1],
1877 src_alpha[idx2],
1878 LLVMConstVector(shuffles, row_type.length),
1879 "");
1880 }
1881 }
1882 }
1883 }
1884
1885
1886 /**
1887 * Generates the blend function for unswizzled colour buffers
1888 * Also generates the read & write from colour buffer
1889 */
1890 static void
1891 generate_unswizzled_blend(struct gallivm_state *gallivm,
1892 unsigned rt,
1893 struct lp_fragment_shader_variant *variant,
1894 enum pipe_format out_format,
1895 unsigned int num_fs,
1896 struct lp_type fs_type,
1897 LLVMValueRef* fs_mask,
1898 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1899 LLVMValueRef context_ptr,
1900 LLVMValueRef color_ptr,
1901 LLVMValueRef stride,
1902 unsigned partial_mask,
1903 boolean do_branch)
1904 {
1905 const unsigned alpha_channel = 3;
1906 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1907 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1908 const unsigned block_size = block_width * block_height;
1909 const unsigned lp_integer_vector_width = 128;
1910
1911 LLVMBuilderRef builder = gallivm->builder;
1912 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1913 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1914 LLVMValueRef src_alpha[4 * 4];
1915 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1916 LLVMValueRef src_mask[4 * 4];
1917 LLVMValueRef src[4 * 4];
1918 LLVMValueRef src1[4 * 4];
1919 LLVMValueRef dst[4 * 4];
1920 LLVMValueRef blend_color;
1921 LLVMValueRef blend_alpha;
1922 LLVMValueRef i32_zero;
1923 LLVMValueRef check_mask;
1924 LLVMValueRef undef_src_val;
1925
1926 struct lp_build_mask_context mask_ctx;
1927 struct lp_type mask_type;
1928 struct lp_type blend_type;
1929 struct lp_type row_type;
1930 struct lp_type dst_type;
1931 struct lp_type ls_type;
1932
1933 unsigned char swizzle[TGSI_NUM_CHANNELS];
1934 unsigned vector_width;
1935 unsigned src_channels = TGSI_NUM_CHANNELS;
1936 unsigned dst_channels;
1937 unsigned dst_count;
1938 unsigned src_count;
1939 unsigned i, j;
1940
1941 const struct util_format_description* out_format_desc = util_format_description(out_format);
1942
1943 unsigned dst_alignment;
1944
1945 bool pad_inline = is_arithmetic_format(out_format_desc);
1946 bool has_alpha = false;
1947 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1948 util_blend_state_is_dual(&variant->key.blend, 0);
1949
1950 const boolean is_1d = variant->key.resource_1d;
1951 boolean twiddle_after_convert = FALSE;
1952 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1953 LLVMValueRef fpstate = 0;
1954
1955 /* Get type from output format */
1956 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1957 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1958
1959 /*
1960 * Technically this code should go into lp_build_smallfloat_to_float
1961 * and lp_build_float_to_smallfloat but due to the
1962 * http://llvm.org/bugs/show_bug.cgi?id=6393
1963 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1964 * So the ordering is important here and there shouldn't be any
1965 * llvm ir instrunctions in this function before
1966 * this, otherwise half-float format conversions won't work
1967 * (again due to llvm bug #6393).
1968 */
1969 if (have_smallfloat_format(dst_type, out_format)) {
1970 /* We need to make sure that denorms are ok for half float
1971 conversions */
1972 fpstate = lp_build_fpstate_get(gallivm);
1973 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1974 }
1975
1976 mask_type = lp_int32_vec4_type();
1977 mask_type.length = fs_type.length;
1978
1979 for (i = num_fs; i < num_fullblock_fs; i++) {
1980 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1981 }
1982
1983 /* Do not bother executing code when mask is empty.. */
1984 if (do_branch) {
1985 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1986
1987 for (i = 0; i < num_fullblock_fs; ++i) {
1988 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1989 }
1990
1991 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1992 lp_build_mask_check(&mask_ctx);
1993 }
1994
1995 partial_mask |= !variant->opaque;
1996 i32_zero = lp_build_const_int32(gallivm, 0);
1997
1998 undef_src_val = lp_build_undef(gallivm, fs_type);
1999
2000 row_type.length = fs_type.length;
2001 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
2002
2003 /* Compute correct swizzle and count channels */
2004 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
2005 dst_channels = 0;
2006
2007 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
2008 /* Ensure channel is used */
2009 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
2010 continue;
2011 }
2012
2013 /* Ensure not already written to (happens in case with GL_ALPHA) */
2014 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
2015 continue;
2016 }
2017
2018 /* Ensure we havn't already found all channels */
2019 if (dst_channels >= out_format_desc->nr_channels) {
2020 continue;
2021 }
2022
2023 swizzle[out_format_desc->swizzle[i]] = i;
2024 ++dst_channels;
2025
2026 if (i == alpha_channel) {
2027 has_alpha = true;
2028 }
2029 }
2030
2031 if (format_expands_to_float_soa(out_format_desc)) {
2032 /*
2033 * the code above can't work for layout_other
2034 * for srgb it would sort of work but we short-circuit swizzles, etc.
2035 * as that is done as part of unpack / pack.
2036 */
2037 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
2038 has_alpha = true;
2039 swizzle[0] = 0;
2040 swizzle[1] = 1;
2041 swizzle[2] = 2;
2042 swizzle[3] = 3;
2043 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
2044 }
2045
2046 /* If 3 channels then pad to include alpha for 4 element transpose */
2047 if (dst_channels == 3) {
2048 assert (!has_alpha);
2049 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
2050 if (swizzle[i] > TGSI_NUM_CHANNELS)
2051 swizzle[i] = 3;
2052 }
2053 if (out_format_desc->nr_channels == 4) {
2054 dst_channels = 4;
2055 /*
2056 * We use alpha from the color conversion, not separate one.
2057 * We had to include it for transpose, hence it will get converted
2058 * too (albeit when doing transpose after conversion, that would
2059 * no longer be the case necessarily).
2060 * (It works only with 4 channel dsts, e.g. rgbx formats, because
2061 * otherwise we really have padding, not alpha, included.)
2062 */
2063 has_alpha = true;
2064 }
2065 }
2066
2067 /*
2068 * Load shader output
2069 */
2070 for (i = 0; i < num_fullblock_fs; ++i) {
2071 /* Always load alpha for use in blending */
2072 LLVMValueRef alpha;
2073 if (i < num_fs) {
2074 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
2075 }
2076 else {
2077 alpha = undef_src_val;
2078 }
2079
2080 /* Load each channel */
2081 for (j = 0; j < dst_channels; ++j) {
2082 assert(swizzle[j] < 4);
2083 if (i < num_fs) {
2084 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
2085 }
2086 else {
2087 fs_src[i][j] = undef_src_val;
2088 }
2089 }
2090
2091 /* If 3 channels then pad to include alpha for 4 element transpose */
2092 /*
2093 * XXX If we include that here maybe could actually use it instead of
2094 * separate alpha for blending?
2095 * (Difficult though we actually convert pad channels, not alpha.)
2096 */
2097 if (dst_channels == 3 && !has_alpha) {
2098 fs_src[i][3] = alpha;
2099 }
2100
2101 /* We split the row_mask and row_alpha as we want 128bit interleave */
2102 if (fs_type.length == 8) {
2103 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
2104 0, src_channels);
2105 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
2106 src_channels, src_channels);
2107
2108 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2109 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2110 src_channels, src_channels);
2111 } else {
2112 src_mask[i] = fs_mask[i];
2113 src_alpha[i] = alpha;
2114 }
2115 }
2116 if (dual_source_blend) {
2117 /* same as above except different src/dst, skip masks and comments... */
2118 for (i = 0; i < num_fullblock_fs; ++i) {
2119 LLVMValueRef alpha;
2120 if (i < num_fs) {
2121 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
2122 }
2123 else {
2124 alpha = undef_src_val;
2125 }
2126
2127 for (j = 0; j < dst_channels; ++j) {
2128 assert(swizzle[j] < 4);
2129 if (i < num_fs) {
2130 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
2131 }
2132 else {
2133 fs_src1[i][j] = undef_src_val;
2134 }
2135 }
2136 if (dst_channels == 3 && !has_alpha) {
2137 fs_src1[i][3] = alpha;
2138 }
2139 if (fs_type.length == 8) {
2140 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2141 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2142 src_channels, src_channels);
2143 } else {
2144 src1_alpha[i] = alpha;
2145 }
2146 }
2147 }
2148
2149 if (util_format_is_pure_integer(out_format)) {
2150 /*
2151 * In this case fs_type was really ints or uints disguised as floats,
2152 * fix that up now.
2153 */
2154 fs_type.floating = 0;
2155 fs_type.sign = dst_type.sign;
2156 for (i = 0; i < num_fullblock_fs; ++i) {
2157 for (j = 0; j < dst_channels; ++j) {
2158 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2159 lp_build_vec_type(gallivm, fs_type), "");
2160 }
2161 if (dst_channels == 3 && !has_alpha) {
2162 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2163 lp_build_vec_type(gallivm, fs_type), "");
2164 }
2165 }
2166 }
2167
2168 /*
2169 * We actually should generally do conversion first (for non-1d cases)
2170 * when the blend format is 8 or 16 bits. The reason is obvious,
2171 * there's 2 or 4 times less vectors to deal with for the interleave...
2172 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2173 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2174 * unpack only with 128bit vectors).
2175 * Note: for 16bit sizes really need matching pack conversion code
2176 */
2177 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2178 twiddle_after_convert = TRUE;
2179 }
2180
2181 /*
2182 * Pixel twiddle from fragment shader order to memory order
2183 */
2184 if (!twiddle_after_convert) {
2185 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2186 dst_channels, fs_src, src, pad_inline);
2187 if (dual_source_blend) {
2188 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2189 fs_src1, src1, pad_inline);
2190 }
2191 } else {
2192 src_count = num_fullblock_fs * dst_channels;
2193 /*
2194 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2195 * (AVX) turn out the same later when untwiddling/transpose (albeit
2196 * for true AVX2 path untwiddle needs to be different).
2197 * For now just order by colors first (so we can use unpack later).
2198 */
2199 for (j = 0; j < num_fullblock_fs; j++) {
2200 for (i = 0; i < dst_channels; i++) {
2201 src[i*num_fullblock_fs + j] = fs_src[j][i];
2202 if (dual_source_blend) {
2203 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2204 }
2205 }
2206 }
2207 }
2208
2209 src_channels = dst_channels < 3 ? dst_channels : 4;
2210 if (src_count != num_fullblock_fs * src_channels) {
2211 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2212 row_type.length /= ds;
2213 fs_type.length = row_type.length;
2214 }
2215
2216 blend_type = row_type;
2217 mask_type.length = 4;
2218
2219 /* Convert src to row_type */
2220 if (dual_source_blend) {
2221 struct lp_type old_row_type = row_type;
2222 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2223 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2224 }
2225 else {
2226 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2227 }
2228
2229 /* If the rows are not an SSE vector, combine them to become SSE size! */
2230 if ((row_type.width * row_type.length) % 128) {
2231 unsigned bits = row_type.width * row_type.length;
2232 unsigned combined;
2233
2234 assert(src_count >= (vector_width / bits));
2235
2236 dst_count = src_count / (vector_width / bits);
2237
2238 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2239 if (dual_source_blend) {
2240 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2241 }
2242
2243 row_type.length *= combined;
2244 src_count /= combined;
2245
2246 bits = row_type.width * row_type.length;
2247 assert(bits == 128 || bits == 256);
2248 }
2249
2250 if (twiddle_after_convert) {
2251 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2252 if (dual_source_blend) {
2253 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2254 }
2255 }
2256
2257 /*
2258 * Blend Colour conversion
2259 */
2260 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2261 blend_color = LLVMBuildPointerCast(builder, blend_color,
2262 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2263 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2264 &i32_zero, 1, ""), "");
2265
2266 /* Convert */
2267 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2268
2269 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2270 /*
2271 * since blending is done with floats, there was no conversion.
2272 * However, the rules according to fixed point renderbuffers still
2273 * apply, that is we must clamp inputs to 0.0/1.0.
2274 * (This would apply to separate alpha conversion too but we currently
2275 * force has_alpha to be true.)
2276 * TODO: should skip this with "fake" blend, since post-blend conversion
2277 * will clamp anyway.
2278 * TODO: could also skip this if fragment color clamping is enabled. We
2279 * don't support it natively so it gets baked into the shader however, so
2280 * can't really tell here.
2281 */
2282 struct lp_build_context f32_bld;
2283 assert(row_type.floating);
2284 lp_build_context_init(&f32_bld, gallivm, row_type);
2285 for (i = 0; i < src_count; i++) {
2286 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2287 }
2288 if (dual_source_blend) {
2289 for (i = 0; i < src_count; i++) {
2290 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2291 }
2292 }
2293 /* probably can't be different than row_type but better safe than sorry... */
2294 lp_build_context_init(&f32_bld, gallivm, blend_type);
2295 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2296 }
2297
2298 /* Extract alpha */
2299 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2300
2301 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2302 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2303 if (pad_inline) {
2304 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2305 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2306 } else {
2307 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2308 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2309 }
2310
2311 /*
2312 * Mask conversion
2313 */
2314 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2315
2316 if (src_count < block_height) {
2317 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2318 } else if (src_count > block_height) {
2319 for (i = src_count; i > 0; --i) {
2320 unsigned pixels = block_size / src_count;
2321 unsigned idx = i - 1;
2322
2323 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2324 (idx * pixels) % 4, pixels);
2325 }
2326 }
2327
2328 assert(mask_type.width == 32);
2329
2330 for (i = 0; i < src_count; ++i) {
2331 unsigned pixels = block_size / src_count;
2332 unsigned pixel_width = row_type.width * dst_channels;
2333
2334 if (pixel_width == 24) {
2335 mask_type.width = 8;
2336 mask_type.length = vector_width / mask_type.width;
2337 } else {
2338 mask_type.length = pixels;
2339 mask_type.width = row_type.width * dst_channels;
2340
2341 /*
2342 * If mask_type width is smaller than 32bit, this doesn't quite
2343 * generate the most efficient code (could use some pack).
2344 */
2345 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2346 lp_build_int_vec_type(gallivm, mask_type), "");
2347
2348 mask_type.length *= dst_channels;
2349 mask_type.width /= dst_channels;
2350 }
2351
2352 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2353 lp_build_int_vec_type(gallivm, mask_type), "");
2354 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2355 }
2356
2357 /*
2358 * Alpha conversion
2359 */
2360 if (!has_alpha) {
2361 struct lp_type alpha_type = fs_type;
2362 alpha_type.length = 4;
2363 convert_alpha(gallivm, row_type, alpha_type,
2364 block_size, block_height,
2365 src_count, dst_channels,
2366 pad_inline, src_alpha);
2367 if (dual_source_blend) {
2368 convert_alpha(gallivm, row_type, alpha_type,
2369 block_size, block_height,
2370 src_count, dst_channels,
2371 pad_inline, src1_alpha);
2372 }
2373 }
2374
2375
2376 /*
2377 * Load dst from memory
2378 */
2379 if (src_count < block_height) {
2380 dst_count = block_height;
2381 } else {
2382 dst_count = src_count;
2383 }
2384
2385 dst_type.length *= block_size / dst_count;
2386
2387 if (format_expands_to_float_soa(out_format_desc)) {
2388 /*
2389 * we need multiple values at once for the conversion, so can as well
2390 * load them vectorized here too instead of concatenating later.
2391 * (Still need concatenation later for 8-wide vectors).
2392 */
2393 dst_count = block_height;
2394 dst_type.length = block_width;
2395 }
2396
2397 /*
2398 * Compute the alignment of the destination pointer in bytes
2399 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2400 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2401 * 1d tex but can't distinguish here) so need to stick with per-pixel
2402 * alignment in this case.
2403 */
2404 if (is_1d) {
2405 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2406 }
2407 else {
2408 dst_alignment = dst_type.length * dst_type.width / 8;
2409 }
2410 /* Force power-of-two alignment by extracting only the least-significant-bit */
2411 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2412 /*
2413 * Resource base and stride pointers are aligned to 16 bytes, so that's
2414 * the maximum alignment we can guarantee
2415 */
2416 dst_alignment = MIN2(16, dst_alignment);
2417
2418 ls_type = dst_type;
2419
2420 if (dst_count > src_count) {
2421 if ((dst_type.width == 8 || dst_type.width == 16) &&
2422 util_is_power_of_two_or_zero(dst_type.length) &&
2423 dst_type.length * dst_type.width < 128) {
2424 /*
2425 * Never try to load values as 4xi8 which we will then
2426 * concatenate to larger vectors. This gives llvm a real
2427 * headache (the problem is the type legalizer (?) will
2428 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2429 * then the shuffles to concatenate are more or less impossible
2430 * - llvm is easily capable of generating a sequence of 32
2431 * pextrb/pinsrb instructions for that. Albeit it appears to
2432 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2433 * width to avoid the trouble (16bit seems not as bad, llvm
2434 * probably recognizes the load+shuffle as only one shuffle
2435 * is necessary, but we can do just the same anyway).
2436 */
2437 ls_type.length = dst_type.length * dst_type.width / 32;
2438 ls_type.width = 32;
2439 }
2440 }
2441
2442 if (is_1d) {
2443 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2444 dst, ls_type, dst_count / 4, dst_alignment);
2445 for (i = dst_count / 4; i < dst_count; i++) {
2446 dst[i] = lp_build_undef(gallivm, ls_type);
2447 }
2448
2449 }
2450 else {
2451 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2452 dst, ls_type, dst_count, dst_alignment);
2453 }
2454
2455
2456 /*
2457 * Convert from dst/output format to src/blending format.
2458 *
2459 * This is necessary as we can only read 1 row from memory at a time,
2460 * so the minimum dst_count will ever be at this point is 4.
2461 *
2462 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2463 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2464 * on all 16 pixels in that single vector at once.
2465 */
2466 if (dst_count > src_count) {
2467 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2468 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2469 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2470 for (i = 0; i < dst_count; i++) {
2471 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2472 }
2473 }
2474
2475 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2476
2477 if (ls_type.length != dst_type.length) {
2478 struct lp_type tmp_type = dst_type;
2479 tmp_type.length = dst_type.length * 4 / src_count;
2480 for (i = 0; i < src_count; i++) {
2481 dst[i] = LLVMBuildBitCast(builder, dst[i],
2482 lp_build_vec_type(gallivm, tmp_type), "");
2483 }
2484 }
2485 }
2486
2487 /*
2488 * Blending
2489 */
2490 /* XXX this is broken for RGB8 formats -
2491 * they get expanded from 12 to 16 elements (to include alpha)
2492 * by convert_to_blend_type then reduced to 15 instead of 12
2493 * by convert_from_blend_type (a simple fix though breaks A8...).
2494 * R16G16B16 also crashes differently however something going wrong
2495 * inside llvm handling npot vector sizes seemingly.
2496 * It seems some cleanup could be done here (like skipping conversion/blend
2497 * when not needed).
2498 */
2499 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2500 row_type, dst, src_count);
2501
2502 /*
2503 * FIXME: Really should get logic ops / masks out of generic blend / row
2504 * format. Logic ops will definitely not work on the blend float format
2505 * used for SRGB here and I think OpenGL expects this to work as expected
2506 * (that is incoming values converted to srgb then logic op applied).
2507 */
2508 for (i = 0; i < src_count; ++i) {
2509 dst[i] = lp_build_blend_aos(gallivm,
2510 &variant->key.blend,
2511 out_format,
2512 row_type,
2513 rt,
2514 src[i],
2515 has_alpha ? NULL : src_alpha[i],
2516 src1[i],
2517 has_alpha ? NULL : src1_alpha[i],
2518 dst[i],
2519 partial_mask ? src_mask[i] : NULL,
2520 blend_color,
2521 has_alpha ? NULL : blend_alpha,
2522 swizzle,
2523 pad_inline ? 4 : dst_channels);
2524 }
2525
2526 convert_from_blend_type(gallivm, block_size, out_format_desc,
2527 row_type, dst_type, dst, src_count);
2528
2529 /* Split the blend rows back to memory rows */
2530 if (dst_count > src_count) {
2531 row_type.length = dst_type.length * (dst_count / src_count);
2532
2533 if (src_count == 1) {
2534 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2535 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2536
2537 row_type.length /= 2;
2538 src_count *= 2;
2539 }
2540
2541 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2542 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2543 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2544 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2545
2546 row_type.length /= 2;
2547 src_count *= 2;
2548 }
2549
2550 /*
2551 * Store blend result to memory
2552 */
2553 if (is_1d) {
2554 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2555 dst, dst_type, dst_count / 4, dst_alignment);
2556 }
2557 else {
2558 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2559 dst, dst_type, dst_count, dst_alignment);
2560 }
2561
2562 if (have_smallfloat_format(dst_type, out_format)) {
2563 lp_build_fpstate_set(gallivm, fpstate);
2564 }
2565
2566 if (do_branch) {
2567 lp_build_mask_end(&mask_ctx);
2568 }
2569 }
2570
2571
2572 /**
2573 * Generate the runtime callable function for the whole fragment pipeline.
2574 * Note that the function which we generate operates on a block of 16
2575 * pixels at at time. The block contains 2x2 quads. Each quad contains
2576 * 2x2 pixels.
2577 */
2578 static void
2579 generate_fragment(struct llvmpipe_context *lp,
2580 struct lp_fragment_shader *shader,
2581 struct lp_fragment_shader_variant *variant,
2582 unsigned partial_mask)
2583 {
2584 struct gallivm_state *gallivm = variant->gallivm;
2585 struct lp_fragment_shader_variant_key *key = &variant->key;
2586 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2587 char func_name[64];
2588 struct lp_type fs_type;
2589 struct lp_type blend_type;
2590 LLVMTypeRef fs_elem_type;
2591 LLVMTypeRef blend_vec_type;
2592 LLVMTypeRef arg_types[15];
2593 LLVMTypeRef func_type;
2594 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2595 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2596 LLVMValueRef context_ptr;
2597 LLVMValueRef x;
2598 LLVMValueRef y;
2599 LLVMValueRef a0_ptr;
2600 LLVMValueRef dadx_ptr;
2601 LLVMValueRef dady_ptr;
2602 LLVMValueRef color_ptr_ptr;
2603 LLVMValueRef stride_ptr;
2604 LLVMValueRef color_sample_stride_ptr;
2605 LLVMValueRef depth_ptr;
2606 LLVMValueRef depth_stride;
2607 LLVMValueRef depth_sample_stride;
2608 LLVMValueRef mask_input;
2609 LLVMValueRef thread_data_ptr;
2610 LLVMBasicBlockRef block;
2611 LLVMBuilderRef builder;
2612 struct lp_build_sampler_soa *sampler;
2613 struct lp_build_image_soa *image;
2614 struct lp_build_interp_soa_context interp;
2615 LLVMValueRef fs_mask[16 / 4];
2616 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2617 LLVMValueRef function;
2618 LLVMValueRef facing;
2619 unsigned num_fs;
2620 unsigned i;
2621 unsigned chan;
2622 unsigned cbuf;
2623 boolean cbuf0_write_all;
2624 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2625 util_blend_state_is_dual(&key->blend, 0);
2626
2627 assert(lp_native_vector_width / 32 >= 4);
2628
2629 /* Adjust color input interpolation according to flatshade state:
2630 */
2631 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2632 for (i = 0; i < shader->info.base.num_inputs; i++) {
2633 if (inputs[i].interp == LP_INTERP_COLOR) {
2634 if (key->flatshade)
2635 inputs[i].interp = LP_INTERP_CONSTANT;
2636 else
2637 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2638 }
2639 }
2640
2641 /* check if writes to cbuf[0] are to be copied to all cbufs */
2642 cbuf0_write_all =
2643 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2644
2645 /* TODO: actually pick these based on the fs and color buffer
2646 * characteristics. */
2647
2648 memset(&fs_type, 0, sizeof fs_type);
2649 fs_type.floating = TRUE; /* floating point values */
2650 fs_type.sign = TRUE; /* values are signed */
2651 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2652 fs_type.width = 32; /* 32-bit float */
2653 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2654
2655 memset(&blend_type, 0, sizeof blend_type);
2656 blend_type.floating = FALSE; /* values are integers */
2657 blend_type.sign = FALSE; /* values are unsigned */
2658 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2659 blend_type.width = 8; /* 8-bit ubyte values */
2660 blend_type.length = 16; /* 16 elements per vector */
2661
2662 /*
2663 * Generate the function prototype. Any change here must be reflected in
2664 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2665 */
2666
2667 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2668
2669 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2670
2671 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2672 shader->no, variant->no, partial_mask ? "partial" : "whole");
2673
2674 arg_types[0] = variant->jit_context_ptr_type; /* context */
2675 arg_types[1] = int32_type; /* x */
2676 arg_types[2] = int32_type; /* y */
2677 arg_types[3] = int32_type; /* facing */
2678 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2679 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2680 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2681 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2682 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2683 arg_types[9] = LLVMInt64TypeInContext(gallivm->context); /* mask_input */
2684 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2685 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2686 arg_types[12] = int32_type; /* depth_stride */
2687 arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */
2688 arg_types[14] = int32_type; /* depth sample stride */
2689
2690 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2691 arg_types, ARRAY_SIZE(arg_types), 0);
2692
2693 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2694 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2695
2696 variant->function[partial_mask] = function;
2697
2698 /* XXX: need to propagate noalias down into color param now we are
2699 * passing a pointer-to-pointer?
2700 */
2701 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2702 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2703 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2704
2705 context_ptr = LLVMGetParam(function, 0);
2706 x = LLVMGetParam(function, 1);
2707 y = LLVMGetParam(function, 2);
2708 facing = LLVMGetParam(function, 3);
2709 a0_ptr = LLVMGetParam(function, 4);
2710 dadx_ptr = LLVMGetParam(function, 5);
2711 dady_ptr = LLVMGetParam(function, 6);
2712 color_ptr_ptr = LLVMGetParam(function, 7);
2713 depth_ptr = LLVMGetParam(function, 8);
2714 mask_input = LLVMGetParam(function, 9);
2715 thread_data_ptr = LLVMGetParam(function, 10);
2716 stride_ptr = LLVMGetParam(function, 11);
2717 depth_stride = LLVMGetParam(function, 12);
2718 color_sample_stride_ptr = LLVMGetParam(function, 13);
2719 depth_sample_stride = LLVMGetParam(function, 14);
2720
2721 lp_build_name(context_ptr, "context");
2722 lp_build_name(x, "x");
2723 lp_build_name(y, "y");
2724 lp_build_name(a0_ptr, "a0");
2725 lp_build_name(dadx_ptr, "dadx");
2726 lp_build_name(dady_ptr, "dady");
2727 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2728 lp_build_name(depth_ptr, "depth");
2729 lp_build_name(mask_input, "mask_input");
2730 lp_build_name(thread_data_ptr, "thread_data");
2731 lp_build_name(stride_ptr, "stride_ptr");
2732 lp_build_name(depth_stride, "depth_stride");
2733 lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
2734 lp_build_name(depth_sample_stride, "depth_sample_stride");
2735
2736 /*
2737 * Function body
2738 */
2739
2740 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2741 builder = gallivm->builder;
2742 assert(builder);
2743 LLVMPositionBuilderAtEnd(builder, block);
2744
2745 /*
2746 * Must not count ps invocations if there's a null shader.
2747 * (It would be ok to count with null shader if there's d/s tests,
2748 * but only if there's d/s buffers too, which is different
2749 * to implicit rasterization disable which must not depend
2750 * on the d/s buffers.)
2751 * Could use popcount on mask, but pixel accuracy is not required.
2752 * Could disable if there's no stats query, but maybe not worth it.
2753 */
2754 if (shader->info.base.num_instructions > 1) {
2755 LLVMValueRef invocs, val;
2756 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2757 val = LLVMBuildLoad(builder, invocs, "");
2758 val = LLVMBuildAdd(builder, val,
2759 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2760 "invoc_count");
2761 LLVMBuildStore(builder, val, invocs);
2762 }
2763
2764 /* code generated texture sampling */
2765 sampler = lp_llvm_sampler_soa_create(key->samplers);
2766 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2767
2768 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2769 /* for 1d resources only run "upper half" of stamp */
2770 if (key->resource_1d)
2771 num_fs /= 2;
2772
2773 {
2774 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2775 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2776 LLVMValueRef num_loop_samp = lp_build_const_int32(gallivm, num_fs * key->coverage_samples);
2777 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2778 num_loop_samp, "mask_store");
2779 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2780 boolean pixel_center_integer =
2781 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2782
2783 /*
2784 * The shader input interpolation info is not explicitely baked in the
2785 * shader key, but everything it derives from (TGSI, and flatshade) is
2786 * already included in the shader key.
2787 */
2788 lp_build_interp_soa_init(&interp,
2789 gallivm,
2790 shader->info.base.num_inputs,
2791 inputs,
2792 pixel_center_integer,
2793 1, NULL, num_loop,
2794 key->depth_clamp,
2795 builder, fs_type,
2796 a0_ptr, dadx_ptr, dady_ptr,
2797 x, y);
2798
2799 for (i = 0; i < num_fs; i++) {
2800 if (key->multisample) {
2801 LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), "");
2802
2803 /*
2804 * For multisampling, extract the per-sample mask from the incoming 64-bit mask,
2805 * store to the per sample mask storage. Or all of them together to generate
2806 * the fragment shader mask. (sample shading TODO).
2807 * Take the incoming state coverage mask into account.
2808 */
2809 for (unsigned s = 0; s < key->coverage_samples; s++) {
2810 LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs));
2811 LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store,
2812 &sindexi, 1, "sample_mask_ptr");
2813 LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type,
2814 i*fs_type.length/4, s, mask_input);
2815
2816 LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), "");
2817 LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), "");
2818 smask_bit = LLVMBuildSExt(builder, cmp, int32_type, "");
2819 smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit);
2820
2821 s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
2822 LLVMBuildStore(builder, s_mask, sample_mask_ptr);
2823 }
2824 } else {
2825 LLVMValueRef mask;
2826 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2827 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2828 &indexi, 1, "mask_ptr");
2829
2830 if (partial_mask) {
2831 mask = generate_quad_mask(gallivm, fs_type,
2832 i*fs_type.length/4, 0, mask_input);
2833 }
2834 else {
2835 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2836 }
2837 LLVMBuildStore(builder, mask, mask_ptr);
2838 }
2839 }
2840
2841 generate_fs_loop(gallivm,
2842 shader, key,
2843 builder,
2844 fs_type,
2845 context_ptr,
2846 num_loop,
2847 &interp,
2848 sampler,
2849 image,
2850 mask_store, /* output */
2851 color_store,
2852 depth_ptr,
2853 depth_stride,
2854 depth_sample_stride,
2855 facing,
2856 thread_data_ptr);
2857
2858 for (i = 0; i < num_fs; i++) {
2859 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2860 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2861 &indexi, 1, "");
2862 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2863 /* This is fucked up need to reorganize things */
2864 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2865 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2866 ptr = LLVMBuildGEP(builder,
2867 color_store[cbuf * !cbuf0_write_all][chan],
2868 &indexi, 1, "");
2869 fs_out_color[cbuf][chan][i] = ptr;
2870 }
2871 }
2872 if (dual_source_blend) {
2873 /* only support one dual source blend target hence always use output 1 */
2874 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2875 ptr = LLVMBuildGEP(builder,
2876 color_store[1][chan],
2877 &indexi, 1, "");
2878 fs_out_color[1][chan][i] = ptr;
2879 }
2880 }
2881 }
2882 }
2883
2884 sampler->destroy(sampler);
2885 image->destroy(image);
2886 /* Loop over color outputs / color buffers to do blending.
2887 */
2888 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2889 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2890 LLVMValueRef color_ptr;
2891 LLVMValueRef stride;
2892 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2893
2894 boolean do_branch = ((key->depth.enabled
2895 || key->stencil[0].enabled
2896 || key->alpha.enabled)
2897 && !shader->info.base.uses_kill);
2898
2899 color_ptr = LLVMBuildLoad(builder,
2900 LLVMBuildGEP(builder, color_ptr_ptr,
2901 &index, 1, ""),
2902 "");
2903
2904 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2905
2906 stride = LLVMBuildLoad(builder,
2907 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2908 "");
2909
2910 generate_unswizzled_blend(gallivm, cbuf, variant,
2911 key->cbuf_format[cbuf],
2912 num_fs, fs_type, fs_mask, fs_out_color,
2913 context_ptr, color_ptr, stride,
2914 partial_mask, do_branch);
2915 }
2916 }
2917
2918 LLVMBuildRetVoid(builder);
2919
2920 gallivm_verify_function(gallivm, function);
2921 }
2922
2923
2924 static void
2925 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
2926 {
2927 unsigned i;
2928
2929 debug_printf("fs variant %p:\n", (void *) key);
2930
2931 if (key->flatshade) {
2932 debug_printf("flatshade = 1\n");
2933 }
2934 if (key->multisample) {
2935 debug_printf("multisample = 1\n");
2936 debug_printf("coverage samples = %d\n", key->coverage_samples);
2937 }
2938 for (i = 0; i < key->nr_cbufs; ++i) {
2939 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2940 debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
2941 }
2942 if (key->depth.enabled || key->stencil[0].enabled) {
2943 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2944 debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
2945 }
2946 if (key->depth.enabled) {
2947 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2948 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2949 }
2950
2951 for (i = 0; i < 2; ++i) {
2952 if (key->stencil[i].enabled) {
2953 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2954 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2955 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2956 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2957 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2958 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2959 }
2960 }
2961
2962 if (key->alpha.enabled) {
2963 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2964 }
2965
2966 if (key->occlusion_count) {
2967 debug_printf("occlusion_count = 1\n");
2968 }
2969
2970 if (key->blend.logicop_enable) {
2971 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2972 }
2973 else if (key->blend.rt[0].blend_enable) {
2974 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2975 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2976 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2977 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2978 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2979 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2980 }
2981 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2982 if (key->blend.alpha_to_coverage) {
2983 debug_printf("blend.alpha_to_coverage is enabled\n");
2984 }
2985 for (i = 0; i < key->nr_samplers; ++i) {
2986 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
2987 debug_printf("sampler[%u] = \n", i);
2988 debug_printf(" .wrap = %s %s %s\n",
2989 util_str_tex_wrap(sampler->wrap_s, TRUE),
2990 util_str_tex_wrap(sampler->wrap_t, TRUE),
2991 util_str_tex_wrap(sampler->wrap_r, TRUE));
2992 debug_printf(" .min_img_filter = %s\n",
2993 util_str_tex_filter(sampler->min_img_filter, TRUE));
2994 debug_printf(" .min_mip_filter = %s\n",
2995 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2996 debug_printf(" .mag_img_filter = %s\n",
2997 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2998 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2999 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
3000 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
3001 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
3002 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
3003 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
3004 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
3005 }
3006 for (i = 0; i < key->nr_sampler_views; ++i) {
3007 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
3008 debug_printf("texture[%u] = \n", i);
3009 debug_printf(" .format = %s\n",
3010 util_format_name(texture->format));
3011 debug_printf(" .target = %s\n",
3012 util_str_tex_target(texture->target, TRUE));
3013 debug_printf(" .level_zero_only = %u\n",
3014 texture->level_zero_only);
3015 debug_printf(" .pot = %u %u %u\n",
3016 texture->pot_width,
3017 texture->pot_height,
3018 texture->pot_depth);
3019 }
3020 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
3021 for (i = 0; i < key->nr_images; ++i) {
3022 const struct lp_static_texture_state *image = &images[i].image_state;
3023 debug_printf("image[%u] = \n", i);
3024 debug_printf(" .format = %s\n",
3025 util_format_name(image->format));
3026 debug_printf(" .target = %s\n",
3027 util_str_tex_target(image->target, TRUE));
3028 debug_printf(" .level_zero_only = %u\n",
3029 image->level_zero_only);
3030 debug_printf(" .pot = %u %u %u\n",
3031 image->pot_width,
3032 image->pot_height,
3033 image->pot_depth);
3034 }
3035 }
3036
3037
3038 void
3039 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
3040 {
3041 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
3042 variant->shader->no, variant->no);
3043 if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
3044 tgsi_dump(variant->shader->base.tokens, 0);
3045 else
3046 nir_print_shader(variant->shader->base.ir.nir, stderr);
3047 dump_fs_variant_key(&variant->key);
3048 debug_printf("variant->opaque = %u\n", variant->opaque);
3049 debug_printf("\n");
3050 }
3051
3052
3053 /**
3054 * Generate a new fragment shader variant from the shader code and
3055 * other state indicated by the key.
3056 */
3057 static struct lp_fragment_shader_variant *
3058 generate_variant(struct llvmpipe_context *lp,
3059 struct lp_fragment_shader *shader,
3060 const struct lp_fragment_shader_variant_key *key)
3061 {
3062 struct lp_fragment_shader_variant *variant;
3063 const struct util_format_description *cbuf0_format_desc = NULL;
3064 boolean fullcolormask;
3065 char module_name[64];
3066
3067 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
3068 if (!variant)
3069 return NULL;
3070
3071 memset(variant, 0, sizeof(*variant));
3072 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
3073 shader->no, shader->variants_created);
3074
3075 variant->gallivm = gallivm_create(module_name, lp->context);
3076 if (!variant->gallivm) {
3077 FREE(variant);
3078 return NULL;
3079 }
3080
3081 variant->shader = shader;
3082 variant->list_item_global.base = variant;
3083 variant->list_item_local.base = variant;
3084 variant->no = shader->variants_created++;
3085
3086 memcpy(&variant->key, key, shader->variant_key_size);
3087
3088 /*
3089 * Determine whether we are touching all channels in the color buffer.
3090 */
3091 fullcolormask = FALSE;
3092 if (key->nr_cbufs == 1) {
3093 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
3094 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
3095 }
3096
3097 variant->opaque =
3098 !key->blend.logicop_enable &&
3099 !key->blend.rt[0].blend_enable &&
3100 fullcolormask &&
3101 !key->stencil[0].enabled &&
3102 !key->alpha.enabled &&
3103 !key->blend.alpha_to_coverage &&
3104 !key->depth.enabled &&
3105 !shader->info.base.uses_kill &&
3106 !shader->info.base.writes_samplemask
3107 ? TRUE : FALSE;
3108
3109 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3110 lp_debug_fs_variant(variant);
3111 }
3112
3113 lp_jit_init_types(variant);
3114
3115 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
3116 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
3117
3118 if (variant->jit_function[RAST_WHOLE] == NULL) {
3119 if (variant->opaque) {
3120 /* Specialized shader, which doesn't need to read the color buffer. */
3121 generate_fragment(lp, shader, variant, RAST_WHOLE);
3122 }
3123 }
3124
3125 /*
3126 * Compile everything
3127 */
3128
3129 gallivm_compile_module(variant->gallivm);
3130
3131 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
3132
3133 if (variant->function[RAST_EDGE_TEST]) {
3134 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
3135 gallivm_jit_function(variant->gallivm,
3136 variant->function[RAST_EDGE_TEST]);
3137 }
3138
3139 if (variant->function[RAST_WHOLE]) {
3140 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
3141 gallivm_jit_function(variant->gallivm,
3142 variant->function[RAST_WHOLE]);
3143 } else if (!variant->jit_function[RAST_WHOLE]) {
3144 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
3145 }
3146
3147 gallivm_free_ir(variant->gallivm);
3148
3149 return variant;
3150 }
3151
3152
3153 static void *
3154 llvmpipe_create_fs_state(struct pipe_context *pipe,
3155 const struct pipe_shader_state *templ)
3156 {
3157 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3158 struct lp_fragment_shader *shader;
3159 int nr_samplers;
3160 int nr_sampler_views;
3161 int nr_images;
3162 int i;
3163
3164 shader = CALLOC_STRUCT(lp_fragment_shader);
3165 if (!shader)
3166 return NULL;
3167
3168 shader->no = fs_no++;
3169 make_empty_list(&shader->variants);
3170
3171 shader->base.type = templ->type;
3172 if (templ->type == PIPE_SHADER_IR_TGSI) {
3173 /* get/save the summary info for this shader */
3174 lp_build_tgsi_info(templ->tokens, &shader->info);
3175
3176 /* we need to keep a local copy of the tokens */
3177 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3178 } else {
3179 shader->base.ir.nir = templ->ir.nir;
3180 nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3181 }
3182
3183 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3184 if (shader->draw_data == NULL) {
3185 FREE((void *) shader->base.tokens);
3186 FREE(shader);
3187 return NULL;
3188 }
3189
3190 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3191 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3192 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3193 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3194
3195 for (i = 0; i < shader->info.base.num_inputs; i++) {
3196 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3197 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
3198 shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
3199
3200 switch (shader->info.base.input_interpolate[i]) {
3201 case TGSI_INTERPOLATE_CONSTANT:
3202 shader->inputs[i].interp = LP_INTERP_CONSTANT;
3203 break;
3204 case TGSI_INTERPOLATE_LINEAR:
3205 shader->inputs[i].interp = LP_INTERP_LINEAR;
3206 break;
3207 case TGSI_INTERPOLATE_PERSPECTIVE:
3208 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3209 break;
3210 case TGSI_INTERPOLATE_COLOR:
3211 shader->inputs[i].interp = LP_INTERP_COLOR;
3212 break;
3213 default:
3214 assert(0);
3215 break;
3216 }
3217
3218 switch (shader->info.base.input_semantic_name[i]) {
3219 case TGSI_SEMANTIC_FACE:
3220 shader->inputs[i].interp = LP_INTERP_FACING;
3221 break;
3222 case TGSI_SEMANTIC_POSITION:
3223 /* Position was already emitted above
3224 */
3225 shader->inputs[i].interp = LP_INTERP_POSITION;
3226 shader->inputs[i].src_index = 0;
3227 continue;
3228 }
3229
3230 /* XXX this is a completely pointless index map... */
3231 shader->inputs[i].src_index = i+1;
3232 }
3233
3234 if (LP_DEBUG & DEBUG_TGSI) {
3235 unsigned attrib;
3236 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3237 shader->no, (void *) shader);
3238 tgsi_dump(templ->tokens, 0);
3239 debug_printf("usage masks:\n");
3240 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3241 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3242 debug_printf(" IN[%u].%s%s%s%s\n",
3243 attrib,
3244 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3245 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3246 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3247 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3248 }
3249 debug_printf("\n");
3250 }
3251
3252 return shader;
3253 }
3254
3255
3256 static void
3257 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3258 {
3259 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3260 struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3261 if (llvmpipe->fs == lp_fs)
3262 return;
3263
3264 draw_bind_fragment_shader(llvmpipe->draw,
3265 (lp_fs ? lp_fs->draw_data : NULL));
3266
3267 llvmpipe->fs = lp_fs;
3268
3269 llvmpipe->dirty |= LP_NEW_FS;
3270 }
3271
3272
3273 /**
3274 * Remove shader variant from two lists: the shader's variant list
3275 * and the context's variant list.
3276 */
3277 static void
3278 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3279 struct lp_fragment_shader_variant *variant)
3280 {
3281 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3282 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3283 "v total cached %u inst %u total inst %u\n",
3284 variant->shader->no, variant->no,
3285 variant->shader->variants_created,
3286 variant->shader->variants_cached,
3287 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3288 }
3289
3290 gallivm_destroy(variant->gallivm);
3291
3292 /* remove from shader's list */
3293 remove_from_list(&variant->list_item_local);
3294 variant->shader->variants_cached--;
3295
3296 /* remove from context's list */
3297 remove_from_list(&variant->list_item_global);
3298 lp->nr_fs_variants--;
3299 lp->nr_fs_instrs -= variant->nr_instrs;
3300
3301 FREE(variant);
3302 }
3303
3304
3305 static void
3306 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3307 {
3308 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3309 struct lp_fragment_shader *shader = fs;
3310 struct lp_fs_variant_list_item *li;
3311
3312 assert(fs != llvmpipe->fs);
3313
3314 /*
3315 * XXX: we need to flush the context until we have some sort of reference
3316 * counting in fragment shaders as they may still be binned
3317 * Flushing alone might not sufficient we need to wait on it too.
3318 */
3319 llvmpipe_finish(pipe, __FUNCTION__);
3320
3321 /* Delete all the variants */
3322 li = first_elem(&shader->variants);
3323 while(!at_end(&shader->variants, li)) {
3324 struct lp_fs_variant_list_item *next = next_elem(li);
3325 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3326 li = next;
3327 }
3328
3329 /* Delete draw module's data */
3330 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3331
3332 if (shader->base.ir.nir)
3333 ralloc_free(shader->base.ir.nir);
3334 assert(shader->variants_cached == 0);
3335 FREE((void *) shader->base.tokens);
3336 FREE(shader);
3337 }
3338
3339
3340
3341 static void
3342 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3343 enum pipe_shader_type shader, uint index,
3344 const struct pipe_constant_buffer *cb)
3345 {
3346 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3347 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3348
3349 assert(shader < PIPE_SHADER_TYPES);
3350 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3351
3352 /* note: reference counting */
3353 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3354
3355 if (constants) {
3356 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3357 debug_printf("Illegal set constant without bind flag\n");
3358 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3359 }
3360 }
3361
3362 if (shader == PIPE_SHADER_VERTEX ||
3363 shader == PIPE_SHADER_GEOMETRY ||
3364 shader == PIPE_SHADER_TESS_CTRL ||
3365 shader == PIPE_SHADER_TESS_EVAL) {
3366 /* Pass the constants to the 'draw' module */
3367 const unsigned size = cb ? cb->buffer_size : 0;
3368 const ubyte *data;
3369
3370 if (constants) {
3371 data = (ubyte *) llvmpipe_resource_data(constants);
3372 }
3373 else if (cb && cb->user_buffer) {
3374 data = (ubyte *) cb->user_buffer;
3375 }
3376 else {
3377 data = NULL;
3378 }
3379
3380 if (data)
3381 data += cb->buffer_offset;
3382
3383 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3384 index, data, size);
3385 }
3386 else if (shader == PIPE_SHADER_COMPUTE)
3387 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3388 else
3389 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3390
3391 if (cb && cb->user_buffer) {
3392 pipe_resource_reference(&constants, NULL);
3393 }
3394 }
3395
3396 static void
3397 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3398 enum pipe_shader_type shader, unsigned start_slot,
3399 unsigned count, const struct pipe_shader_buffer *buffers,
3400 unsigned writable_bitmask)
3401 {
3402 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3403 unsigned i, idx;
3404 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3405 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3406
3407 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3408
3409 if (shader == PIPE_SHADER_VERTEX ||
3410 shader == PIPE_SHADER_GEOMETRY ||
3411 shader == PIPE_SHADER_TESS_CTRL ||
3412 shader == PIPE_SHADER_TESS_EVAL) {
3413 const unsigned size = buffer ? buffer->buffer_size : 0;
3414 const ubyte *data = NULL;
3415 if (buffer && buffer->buffer)
3416 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3417 if (data)
3418 data += buffer->buffer_offset;
3419 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3420 i, data, size);
3421 } else if (shader == PIPE_SHADER_COMPUTE) {
3422 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3423 } else if (shader == PIPE_SHADER_FRAGMENT) {
3424 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3425 }
3426 }
3427 }
3428
3429 static void
3430 llvmpipe_set_shader_images(struct pipe_context *pipe,
3431 enum pipe_shader_type shader, unsigned start_slot,
3432 unsigned count, const struct pipe_image_view *images)
3433 {
3434 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3435 unsigned i, idx;
3436
3437 draw_flush(llvmpipe->draw);
3438 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3439 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3440
3441 util_copy_image_view(&llvmpipe->images[shader][i], image);
3442 }
3443
3444 llvmpipe->num_images[shader] = start_slot + count;
3445 if (shader == PIPE_SHADER_VERTEX ||
3446 shader == PIPE_SHADER_GEOMETRY ||
3447 shader == PIPE_SHADER_TESS_CTRL ||
3448 shader == PIPE_SHADER_TESS_EVAL) {
3449 draw_set_images(llvmpipe->draw,
3450 shader,
3451 llvmpipe->images[shader],
3452 start_slot + count);
3453 } else if (shader == PIPE_SHADER_COMPUTE)
3454 llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
3455 else
3456 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3457 }
3458
3459 /**
3460 * Return the blend factor equivalent to a destination alpha of one.
3461 */
3462 static inline unsigned
3463 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3464 {
3465 switch(factor) {
3466 case PIPE_BLENDFACTOR_DST_ALPHA:
3467 return PIPE_BLENDFACTOR_ONE;
3468 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3469 return PIPE_BLENDFACTOR_ZERO;
3470 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3471 if (clamped_zero)
3472 return PIPE_BLENDFACTOR_ZERO;
3473 else
3474 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3475 }
3476
3477 return factor;
3478 }
3479
3480
3481 /**
3482 * We need to generate several variants of the fragment pipeline to match
3483 * all the combinations of the contributing state atoms.
3484 *
3485 * TODO: there is actually no reason to tie this to context state -- the
3486 * generated code could be cached globally in the screen.
3487 */
3488 static struct lp_fragment_shader_variant_key *
3489 make_variant_key(struct llvmpipe_context *lp,
3490 struct lp_fragment_shader *shader,
3491 char *store)
3492 {
3493 unsigned i;
3494 struct lp_fragment_shader_variant_key *key;
3495
3496 key = (struct lp_fragment_shader_variant_key *)store;
3497
3498 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3499
3500 if (lp->framebuffer.zsbuf) {
3501 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3502 const struct util_format_description *zsbuf_desc =
3503 util_format_description(zsbuf_format);
3504
3505 if (lp->depth_stencil->depth.enabled &&
3506 util_format_has_depth(zsbuf_desc)) {
3507 key->zsbuf_format = zsbuf_format;
3508 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3509 }
3510 if (lp->depth_stencil->stencil[0].enabled &&
3511 util_format_has_stencil(zsbuf_desc)) {
3512 key->zsbuf_format = zsbuf_format;
3513 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3514 }
3515 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3516 key->resource_1d = TRUE;
3517 }
3518 key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
3519 }
3520
3521 /*
3522 * Propagate the depth clamp setting from the rasterizer state.
3523 * depth_clip == 0 implies depth clamping is enabled.
3524 *
3525 * When clip_halfz is enabled, then always clamp the depth values.
3526 *
3527 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3528 * clamp is always active in d3d10, regardless if depth clip is
3529 * enabled or not).
3530 * (GL has an always-on [0,1] clamp on fs depth output instead
3531 * to ensure the depth values stay in range. Doesn't look like
3532 * we do that, though...)
3533 */
3534 if (lp->rasterizer->clip_halfz) {
3535 key->depth_clamp = 1;
3536 } else {
3537 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3538 }
3539
3540 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3541 if (!lp->framebuffer.nr_cbufs ||
3542 !lp->framebuffer.cbufs[0] ||
3543 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3544 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3545 }
3546 if(key->alpha.enabled)
3547 key->alpha.func = lp->depth_stencil->alpha.func;
3548 /* alpha.ref_value is passed in jit_context */
3549
3550 key->flatshade = lp->rasterizer->flatshade;
3551 key->multisample = lp->rasterizer->multisample;
3552 if (lp->active_occlusion_queries && !lp->queries_disabled) {
3553 key->occlusion_count = TRUE;
3554 }
3555
3556 if (lp->framebuffer.nr_cbufs) {
3557 memcpy(&key->blend, lp->blend, sizeof key->blend);
3558 }
3559
3560 key->coverage_samples = 1;
3561 if (key->multisample)
3562 key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
3563 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3564
3565 if (!key->blend.independent_blend_enable) {
3566 /* we always need independent blend otherwise the fixups below won't work */
3567 for (i = 1; i < key->nr_cbufs; i++) {
3568 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3569 }
3570 key->blend.independent_blend_enable = 1;
3571 }
3572
3573 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3574 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3575
3576 if (lp->framebuffer.cbufs[i]) {
3577 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3578 const struct util_format_description *format_desc;
3579
3580 key->cbuf_format[i] = format;
3581 key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
3582
3583 /*
3584 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3585 * mixing of 2d textures with height 1 and 1d textures, so make sure
3586 * we pick 1d if any cbuf or zsbuf is 1d.
3587 */
3588 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3589 key->resource_1d = TRUE;
3590 }
3591
3592 format_desc = util_format_description(format);
3593 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3594 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3595
3596 /*
3597 * Mask out color channels not present in the color buffer.
3598 */
3599 blend_rt->colormask &= util_format_colormask(format_desc);
3600
3601 /*
3602 * Disable blend for integer formats.
3603 */
3604 if (util_format_is_pure_integer(format)) {
3605 blend_rt->blend_enable = 0;
3606 }
3607
3608 /*
3609 * Our swizzled render tiles always have an alpha channel, but the
3610 * linear render target format often does not, so force here the dst
3611 * alpha to be one.
3612 *
3613 * This is not a mere optimization. Wrong results will be produced if
3614 * the dst alpha is used, the dst format does not have alpha, and the
3615 * previous rendering was not flushed from the swizzled to linear
3616 * buffer. For example, NonPowTwo DCT.
3617 *
3618 * TODO: This should be generalized to all channels for better
3619 * performance, but only alpha causes correctness issues.
3620 *
3621 * Also, force rgb/alpha func/factors match, to make AoS blending
3622 * easier.
3623 */
3624 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3625 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3626 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3627 boolean clamped_zero = !util_format_is_float(format) &&
3628 !util_format_is_snorm(format);
3629 blend_rt->rgb_src_factor =
3630 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3631 blend_rt->rgb_dst_factor =
3632 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3633 blend_rt->alpha_func = blend_rt->rgb_func;
3634 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3635 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3636 }
3637 }
3638 else {
3639 /* no color buffer for this fragment output */
3640 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3641 key->cbuf_nr_samples[i] = 0;
3642 blend_rt->colormask = 0x0;
3643 blend_rt->blend_enable = 0;
3644 }
3645 }
3646
3647 /* This value will be the same for all the variants of a given shader:
3648 */
3649 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3650
3651 struct lp_sampler_static_state *fs_sampler;
3652
3653 fs_sampler = key->samplers;
3654
3655 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3656
3657 for(i = 0; i < key->nr_samplers; ++i) {
3658 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3659 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3660 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3661 }
3662 }
3663
3664 /*
3665 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3666 * are dx10-style? Can't really have mixed opcodes, at least not
3667 * if we want to skip the holes here (without rescanning tgsi).
3668 */
3669 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3670 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3671 for(i = 0; i < key->nr_sampler_views; ++i) {
3672 /*
3673 * Note sview may exceed what's representable by file_mask.
3674 * This will still work, the only downside is that not actually
3675 * used views may be included in the shader key.
3676 */
3677 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3678 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3679 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3680 }
3681 }
3682 }
3683 else {
3684 key->nr_sampler_views = key->nr_samplers;
3685 for(i = 0; i < key->nr_sampler_views; ++i) {
3686 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3687 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3688 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3689 }
3690 }
3691 }
3692
3693 struct lp_image_static_state *lp_image;
3694 lp_image = lp_fs_variant_key_images(key);
3695 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3696 for (i = 0; i < key->nr_images; ++i) {
3697 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3698 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3699 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3700 }
3701 }
3702 return key;
3703 }
3704
3705
3706
3707 /**
3708 * Update fragment shader state. This is called just prior to drawing
3709 * something when some fragment-related state has changed.
3710 */
3711 void
3712 llvmpipe_update_fs(struct llvmpipe_context *lp)
3713 {
3714 struct lp_fragment_shader *shader = lp->fs;
3715 struct lp_fragment_shader_variant_key *key;
3716 struct lp_fragment_shader_variant *variant = NULL;
3717 struct lp_fs_variant_list_item *li;
3718 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3719
3720 key = make_variant_key(lp, shader, store);
3721
3722 /* Search the variants for one which matches the key */
3723 li = first_elem(&shader->variants);
3724 while(!at_end(&shader->variants, li)) {
3725 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3726 variant = li->base;
3727 break;
3728 }
3729 li = next_elem(li);
3730 }
3731
3732 if (variant) {
3733 /* Move this variant to the head of the list to implement LRU
3734 * deletion of shader's when we have too many.
3735 */
3736 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3737 }
3738 else {
3739 /* variant not found, create it now */
3740 int64_t t0, t1, dt;
3741 unsigned i;
3742 unsigned variants_to_cull;
3743
3744 if (LP_DEBUG & DEBUG_FS) {
3745 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3746 lp->nr_fs_variants,
3747 lp->nr_fs_instrs,
3748 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3749 }
3750
3751 /* First, check if we've exceeded the max number of shader variants.
3752 * If so, free 6.25% of them (the least recently used ones).
3753 */
3754 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3755
3756 if (variants_to_cull ||
3757 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3758 struct pipe_context *pipe = &lp->pipe;
3759
3760 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3761 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3762 "\t%u instrs,\t%u instrs/variant\n",
3763 shader->variants_cached,
3764 lp->nr_fs_variants, lp->nr_fs_instrs,
3765 lp->nr_fs_instrs / lp->nr_fs_variants);
3766 }
3767
3768 /*
3769 * XXX: we need to flush the context until we have some sort of
3770 * reference counting in fragment shaders as they may still be binned
3771 * Flushing alone might not be sufficient we need to wait on it too.
3772 */
3773 llvmpipe_finish(pipe, __FUNCTION__);
3774
3775 /*
3776 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3777 * number of shader variants (potentially all of them) could be
3778 * pending for destruction on flush.
3779 */
3780
3781 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3782 struct lp_fs_variant_list_item *item;
3783 if (is_empty_list(&lp->fs_variants_list)) {
3784 break;
3785 }
3786 item = last_elem(&lp->fs_variants_list);
3787 assert(item);
3788 assert(item->base);
3789 llvmpipe_remove_shader_variant(lp, item->base);
3790 }
3791 }
3792
3793 /*
3794 * Generate the new variant.
3795 */
3796 t0 = os_time_get();
3797 variant = generate_variant(lp, shader, key);
3798 t1 = os_time_get();
3799 dt = t1 - t0;
3800 LP_COUNT_ADD(llvm_compile_time, dt);
3801 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3802
3803 /* Put the new variant into the list */
3804 if (variant) {
3805 insert_at_head(&shader->variants, &variant->list_item_local);
3806 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3807 lp->nr_fs_variants++;
3808 lp->nr_fs_instrs += variant->nr_instrs;
3809 shader->variants_cached++;
3810 }
3811 }
3812
3813 /* Bind this variant */
3814 lp_setup_set_fs_variant(lp->setup, variant);
3815 }
3816
3817
3818
3819
3820
3821 void
3822 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3823 {
3824 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3825 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3826 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3827
3828 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3829
3830 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3831 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3832 }
3833
3834