gallivm: rework lp_build_tgsi_soa to take a struct
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_bitarit.h"
88 #include "gallivm/lp_bld_pack.h"
89 #include "gallivm/lp_bld_format.h"
90 #include "gallivm/lp_bld_quad.h"
91
92 #include "lp_bld_alpha.h"
93 #include "lp_bld_blend.h"
94 #include "lp_bld_depth.h"
95 #include "lp_bld_interp.h"
96 #include "lp_context.h"
97 #include "lp_debug.h"
98 #include "lp_perf.h"
99 #include "lp_setup.h"
100 #include "lp_state.h"
101 #include "lp_tex_sample.h"
102 #include "lp_flush.h"
103 #include "lp_state_fs.h"
104 #include "lp_rast.h"
105
106
107 /** Fragment shader number (for debugging) */
108 static unsigned fs_no = 0;
109
110
111 /**
112 * Expand the relevant bits of mask_input to a n*4-dword mask for the
113 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
114 * quad mask vector to 0 or ~0.
115 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
116 * quad arguments with fs length 8.
117 *
118 * \param first_quad which quad(s) of the quad group to test, in [0,3]
119 * \param mask_input bitwise mask for the whole 4x4 stamp
120 */
121 static LLVMValueRef
122 generate_quad_mask(struct gallivm_state *gallivm,
123 struct lp_type fs_type,
124 unsigned first_quad,
125 LLVMValueRef mask_input) /* int32 */
126 {
127 LLVMBuilderRef builder = gallivm->builder;
128 struct lp_type mask_type;
129 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
130 LLVMValueRef bits[16];
131 LLVMValueRef mask, bits_vec;
132 int shift, i;
133
134 /*
135 * XXX: We'll need a different path for 16 x u8
136 */
137 assert(fs_type.width == 32);
138 assert(fs_type.length <= ARRAY_SIZE(bits));
139 mask_type = lp_int_type(fs_type);
140
141 /*
142 * mask_input >>= (quad * 4)
143 */
144 switch (first_quad) {
145 case 0:
146 shift = 0;
147 break;
148 case 1:
149 assert(fs_type.length == 4);
150 shift = 2;
151 break;
152 case 2:
153 shift = 8;
154 break;
155 case 3:
156 assert(fs_type.length == 4);
157 shift = 10;
158 break;
159 default:
160 assert(0);
161 shift = 0;
162 }
163
164 mask_input = LLVMBuildLShr(builder,
165 mask_input,
166 LLVMConstInt(i32t, shift, 0),
167 "");
168
169 /*
170 * mask = { mask_input & (1 << i), for i in [0,3] }
171 */
172 mask = lp_build_broadcast(gallivm,
173 lp_build_vec_type(gallivm, mask_type),
174 mask_input);
175
176 for (i = 0; i < fs_type.length / 4; i++) {
177 unsigned j = 2 * (i % 2) + (i / 2) * 8;
178 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
179 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
180 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
181 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
182 }
183 bits_vec = LLVMConstVector(bits, fs_type.length);
184 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
185
186 /*
187 * mask = mask == bits ? ~0 : 0
188 */
189 mask = lp_build_compare(gallivm,
190 mask_type, PIPE_FUNC_EQUAL,
191 mask, bits_vec);
192
193 return mask;
194 }
195
196
197 #define EARLY_DEPTH_TEST 0x1
198 #define LATE_DEPTH_TEST 0x2
199 #define EARLY_DEPTH_WRITE 0x4
200 #define LATE_DEPTH_WRITE 0x8
201
202 static int
203 find_output_by_semantic( const struct tgsi_shader_info *info,
204 unsigned semantic,
205 unsigned index )
206 {
207 int i;
208
209 for (i = 0; i < info->num_outputs; i++)
210 if (info->output_semantic_name[i] == semantic &&
211 info->output_semantic_index[i] == index)
212 return i;
213
214 return -1;
215 }
216
217
218 /**
219 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
220 */
221 static LLVMValueRef
222 lp_llvm_viewport(LLVMValueRef context_ptr,
223 struct gallivm_state *gallivm,
224 LLVMValueRef viewport_index)
225 {
226 LLVMBuilderRef builder = gallivm->builder;
227 LLVMValueRef ptr;
228 LLVMValueRef res;
229 struct lp_type viewport_type =
230 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
231
232 ptr = lp_jit_context_viewports(gallivm, context_ptr);
233 ptr = LLVMBuildPointerCast(builder, ptr,
234 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
235
236 res = lp_build_pointer_get(builder, ptr, viewport_index);
237
238 return res;
239 }
240
241
242 static LLVMValueRef
243 lp_build_depth_clamp(struct gallivm_state *gallivm,
244 LLVMBuilderRef builder,
245 struct lp_type type,
246 LLVMValueRef context_ptr,
247 LLVMValueRef thread_data_ptr,
248 LLVMValueRef z)
249 {
250 LLVMValueRef viewport, min_depth, max_depth;
251 LLVMValueRef viewport_index;
252 struct lp_build_context f32_bld;
253
254 assert(type.floating);
255 lp_build_context_init(&f32_bld, gallivm, type);
256
257 /*
258 * Assumes clamping of the viewport index will occur in setup/gs. Value
259 * is passed through the rasterization stage via lp_rast_shader_inputs.
260 *
261 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
262 * semantics.
263 */
264 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
265 thread_data_ptr);
266
267 /*
268 * Load the min and max depth from the lp_jit_context.viewports
269 * array of lp_jit_viewport structures.
270 */
271 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
272
273 /* viewports[viewport_index].min_depth */
274 min_depth = LLVMBuildExtractElement(builder, viewport,
275 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
276 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
277
278 /* viewports[viewport_index].max_depth */
279 max_depth = LLVMBuildExtractElement(builder, viewport,
280 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
281 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
282
283 /*
284 * Clamp to the min and max depth values for the given viewport.
285 */
286 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
287 }
288
289
290 /**
291 * Generate the fragment shader, depth/stencil test, and alpha tests.
292 */
293 static void
294 generate_fs_loop(struct gallivm_state *gallivm,
295 struct lp_fragment_shader *shader,
296 const struct lp_fragment_shader_variant_key *key,
297 LLVMBuilderRef builder,
298 struct lp_type type,
299 LLVMValueRef context_ptr,
300 LLVMValueRef num_loop,
301 struct lp_build_interp_soa_context *interp,
302 const struct lp_build_sampler_soa *sampler,
303 LLVMValueRef mask_store,
304 LLVMValueRef (*out_color)[4],
305 LLVMValueRef depth_ptr,
306 LLVMValueRef depth_stride,
307 LLVMValueRef facing,
308 LLVMValueRef thread_data_ptr)
309 {
310 const struct util_format_description *zs_format_desc = NULL;
311 const struct tgsi_token *tokens = shader->base.tokens;
312 struct lp_type int_type = lp_int_type(type);
313 LLVMTypeRef vec_type, int_vec_type;
314 LLVMValueRef mask_ptr, mask_val;
315 LLVMValueRef consts_ptr, num_consts_ptr;
316 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
317 LLVMValueRef z;
318 LLVMValueRef z_value, s_value;
319 LLVMValueRef z_fb, s_fb;
320 LLVMValueRef stencil_refs[2];
321 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
322 struct lp_build_for_loop_state loop_state;
323 struct lp_build_mask_context mask;
324 /*
325 * TODO: figure out if simple_shader optimization is really worthwile to
326 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
327 * code since tests tend to take another codepath than real shaders.
328 */
329 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
330 shader->info.base.num_inputs < 3 &&
331 shader->info.base.num_instructions < 8) && 0;
332 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
333 util_blend_state_is_dual(&key->blend, 0);
334 unsigned attrib;
335 unsigned chan;
336 unsigned cbuf;
337 unsigned depth_mode;
338
339 struct lp_bld_tgsi_system_values system_values;
340
341 memset(&system_values, 0, sizeof(system_values));
342
343 if (key->depth.enabled ||
344 key->stencil[0].enabled) {
345
346 zs_format_desc = util_format_description(key->zsbuf_format);
347 assert(zs_format_desc);
348
349 if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
350 if (key->alpha.enabled ||
351 key->blend.alpha_to_coverage ||
352 shader->info.base.uses_kill ||
353 shader->info.base.writes_samplemask) {
354 /* With alpha test and kill, can do the depth test early
355 * and hopefully eliminate some quads. But need to do a
356 * special deferred depth write once the final mask value
357 * is known. This only works though if there's either no
358 * stencil test or the stencil value isn't written.
359 */
360 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
361 (key->stencil[1].enabled &&
362 key->stencil[1].writemask)))
363 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
364 else
365 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
366 }
367 else
368 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
369 }
370 else {
371 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
372 }
373
374 if (!(key->depth.enabled && key->depth.writemask) &&
375 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
376 (key->stencil[1].enabled &&
377 key->stencil[1].writemask))))
378 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
379 }
380 else {
381 depth_mode = 0;
382 }
383
384 vec_type = lp_build_vec_type(gallivm, type);
385 int_vec_type = lp_build_vec_type(gallivm, int_type);
386
387 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
388 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
389 /* convert scalar stencil refs into vectors */
390 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
391 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
392
393 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
394 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
395
396 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
397 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
398
399 lp_build_for_loop_begin(&loop_state, gallivm,
400 lp_build_const_int32(gallivm, 0),
401 LLVMIntULT,
402 num_loop,
403 lp_build_const_int32(gallivm, 1));
404
405 mask_ptr = LLVMBuildGEP(builder, mask_store,
406 &loop_state.counter, 1, "mask_ptr");
407 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
408
409 memset(outputs, 0, sizeof outputs);
410
411 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
412 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
413 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
414 lp_build_vec_type(gallivm,
415 type),
416 num_loop, "color");
417 }
418 }
419 if (dual_source_blend) {
420 assert(key->nr_cbufs <= 1);
421 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
422 out_color[1][chan] = lp_build_array_alloca(gallivm,
423 lp_build_vec_type(gallivm,
424 type),
425 num_loop, "color1");
426 }
427 }
428
429
430 /* 'mask' will control execution based on quad's pixel alive/killed state */
431 lp_build_mask_begin(&mask, gallivm, type, mask_val);
432
433 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
434 lp_build_mask_check(&mask);
435
436 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
437 z = interp->pos[2];
438
439 if (depth_mode & EARLY_DEPTH_TEST) {
440 /*
441 * Clamp according to ARB_depth_clamp semantics.
442 */
443 if (key->depth_clamp) {
444 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
445 thread_data_ptr, z);
446 }
447 lp_build_depth_stencil_load_swizzled(gallivm, type,
448 zs_format_desc, key->resource_1d,
449 depth_ptr, depth_stride,
450 &z_fb, &s_fb, loop_state.counter);
451 lp_build_depth_stencil_test(gallivm,
452 &key->depth,
453 key->stencil,
454 type,
455 zs_format_desc,
456 &mask,
457 stencil_refs,
458 z, z_fb, s_fb,
459 facing,
460 &z_value, &s_value,
461 !simple_shader);
462
463 if (depth_mode & EARLY_DEPTH_WRITE) {
464 lp_build_depth_stencil_write_swizzled(gallivm, type,
465 zs_format_desc, key->resource_1d,
466 NULL, NULL, NULL, loop_state.counter,
467 depth_ptr, depth_stride,
468 z_value, s_value);
469 }
470 /*
471 * Note mask check if stencil is enabled must be after ds write not after
472 * stencil test otherwise new stencil values may not get written if all
473 * fragments got killed by depth/stencil test.
474 */
475 if (!simple_shader && key->stencil[0].enabled)
476 lp_build_mask_check(&mask);
477 }
478
479 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
480
481 struct lp_build_tgsi_params params = {};
482
483 params.type = type;
484 params.mask = &mask;
485 params.consts_ptr = consts_ptr;
486 params.const_sizes_ptr = num_consts_ptr;
487 params.system_values = &system_values;
488 params.inputs = interp->inputs;
489 params.context_ptr = context_ptr;
490 params.thread_data_ptr = thread_data_ptr;
491 params.sampler = sampler;
492 params.info = &shader->info.base;
493 params.ssbo_ptr = ssbo_ptr;
494 params.ssbo_sizes_ptr = num_ssbo_ptr;
495
496 /* Build the actual shader */
497 lp_build_tgsi_soa(gallivm, tokens, &params,
498 outputs);
499
500 /* Alpha test */
501 if (key->alpha.enabled) {
502 int color0 = find_output_by_semantic(&shader->info.base,
503 TGSI_SEMANTIC_COLOR,
504 0);
505
506 if (color0 != -1 && outputs[color0][3]) {
507 const struct util_format_description *cbuf_format_desc;
508 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
509 LLVMValueRef alpha_ref_value;
510
511 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
512 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
513
514 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
515
516 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
517 &mask, alpha, alpha_ref_value,
518 (depth_mode & LATE_DEPTH_TEST) != 0);
519 }
520 }
521
522 /* Emulate Alpha to Coverage with Alpha test */
523 if (key->blend.alpha_to_coverage) {
524 int color0 = find_output_by_semantic(&shader->info.base,
525 TGSI_SEMANTIC_COLOR,
526 0);
527
528 if (color0 != -1 && outputs[color0][3]) {
529 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
530
531 lp_build_alpha_to_coverage(gallivm, type,
532 &mask, alpha,
533 (depth_mode & LATE_DEPTH_TEST) != 0);
534 }
535 }
536
537 if (shader->info.base.writes_samplemask) {
538 int smaski = find_output_by_semantic(&shader->info.base,
539 TGSI_SEMANTIC_SAMPLEMASK,
540 0);
541 LLVMValueRef smask;
542 struct lp_build_context smask_bld;
543 lp_build_context_init(&smask_bld, gallivm, int_type);
544
545 assert(smaski >= 0);
546 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
547 /*
548 * Pixel is alive according to the first sample in the mask.
549 */
550 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
551 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
552 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
553 lp_build_mask_update(&mask, smask);
554 }
555
556 /* Late Z test */
557 if (depth_mode & LATE_DEPTH_TEST) {
558 int pos0 = find_output_by_semantic(&shader->info.base,
559 TGSI_SEMANTIC_POSITION,
560 0);
561 int s_out = find_output_by_semantic(&shader->info.base,
562 TGSI_SEMANTIC_STENCIL,
563 0);
564 if (pos0 != -1 && outputs[pos0][2]) {
565 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
566 }
567 /*
568 * Clamp according to ARB_depth_clamp semantics.
569 */
570 if (key->depth_clamp) {
571 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
572 thread_data_ptr, z);
573 }
574
575 if (s_out != -1 && outputs[s_out][1]) {
576 /* there's only one value, and spec says to discard additional bits */
577 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
578 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
579 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
580 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
581 stencil_refs[1] = stencil_refs[0];
582 }
583
584 lp_build_depth_stencil_load_swizzled(gallivm, type,
585 zs_format_desc, key->resource_1d,
586 depth_ptr, depth_stride,
587 &z_fb, &s_fb, loop_state.counter);
588
589 lp_build_depth_stencil_test(gallivm,
590 &key->depth,
591 key->stencil,
592 type,
593 zs_format_desc,
594 &mask,
595 stencil_refs,
596 z, z_fb, s_fb,
597 facing,
598 &z_value, &s_value,
599 !simple_shader);
600 /* Late Z write */
601 if (depth_mode & LATE_DEPTH_WRITE) {
602 lp_build_depth_stencil_write_swizzled(gallivm, type,
603 zs_format_desc, key->resource_1d,
604 NULL, NULL, NULL, loop_state.counter,
605 depth_ptr, depth_stride,
606 z_value, s_value);
607 }
608 }
609 else if ((depth_mode & EARLY_DEPTH_TEST) &&
610 (depth_mode & LATE_DEPTH_WRITE))
611 {
612 /* Need to apply a reduced mask to the depth write. Reload the
613 * depth value, update from zs_value with the new mask value and
614 * write that out.
615 */
616 lp_build_depth_stencil_write_swizzled(gallivm, type,
617 zs_format_desc, key->resource_1d,
618 &mask, z_fb, s_fb, loop_state.counter,
619 depth_ptr, depth_stride,
620 z_value, s_value);
621 }
622
623
624 /* Color write */
625 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
626 {
627 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
628 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
629 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
630 {
631 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
632 if(outputs[attrib][chan]) {
633 /* XXX: just initialize outputs to point at colors[] and
634 * skip this.
635 */
636 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
637 LLVMValueRef color_ptr;
638 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
639 &loop_state.counter, 1, "");
640 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
641 LLVMBuildStore(builder, out, color_ptr);
642 }
643 }
644 }
645 }
646
647 if (key->occlusion_count) {
648 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
649 lp_build_name(counter, "counter");
650 lp_build_occlusion_count(gallivm, type,
651 lp_build_mask_value(&mask), counter);
652 }
653
654 mask_val = lp_build_mask_end(&mask);
655 LLVMBuildStore(builder, mask_val, mask_ptr);
656 lp_build_for_loop_end(&loop_state);
657 }
658
659
660 /**
661 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
662 *
663 * Fragment Shader outputs pixels in small 2x2 blocks
664 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
665 *
666 * However in memory pixels are stored in rows
667 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
668 *
669 * @param type fragment shader type (4x or 8x float)
670 * @param num_fs number of fs_src
671 * @param is_1d whether we're outputting to a 1d resource
672 * @param dst_channels number of output channels
673 * @param fs_src output from fragment shader
674 * @param dst pointer to store result
675 * @param pad_inline is channel padding inline or at end of row
676 * @return the number of dsts
677 */
678 static int
679 generate_fs_twiddle(struct gallivm_state *gallivm,
680 struct lp_type type,
681 unsigned num_fs,
682 unsigned dst_channels,
683 LLVMValueRef fs_src[][4],
684 LLVMValueRef* dst,
685 bool pad_inline)
686 {
687 LLVMValueRef src[16];
688
689 bool swizzle_pad;
690 bool twiddle;
691 bool split;
692
693 unsigned pixels = type.length / 4;
694 unsigned reorder_group;
695 unsigned src_channels;
696 unsigned src_count;
697 unsigned i;
698
699 src_channels = dst_channels < 3 ? dst_channels : 4;
700 src_count = num_fs * src_channels;
701
702 assert(pixels == 2 || pixels == 1);
703 assert(num_fs * src_channels <= ARRAY_SIZE(src));
704
705 /*
706 * Transpose from SoA -> AoS
707 */
708 for (i = 0; i < num_fs; ++i) {
709 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
710 }
711
712 /*
713 * Pick transformation options
714 */
715 swizzle_pad = false;
716 twiddle = false;
717 split = false;
718 reorder_group = 0;
719
720 if (dst_channels == 1) {
721 twiddle = true;
722
723 if (pixels == 2) {
724 split = true;
725 }
726 } else if (dst_channels == 2) {
727 if (pixels == 1) {
728 reorder_group = 1;
729 }
730 } else if (dst_channels > 2) {
731 if (pixels == 1) {
732 reorder_group = 2;
733 } else {
734 twiddle = true;
735 }
736
737 if (!pad_inline && dst_channels == 3 && pixels > 1) {
738 swizzle_pad = true;
739 }
740 }
741
742 /*
743 * Split the src in half
744 */
745 if (split) {
746 for (i = num_fs; i > 0; --i) {
747 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
748 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
749 }
750
751 src_count *= 2;
752 type.length = 4;
753 }
754
755 /*
756 * Ensure pixels are in memory order
757 */
758 if (reorder_group) {
759 /* Twiddle pixels by reordering the array, e.g.:
760 *
761 * src_count = 8 -> 0 2 1 3 4 6 5 7
762 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
763 */
764 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
765
766 for (i = 0; i < src_count; ++i) {
767 unsigned group = i / reorder_group;
768 unsigned block = (group / 4) * 4 * reorder_group;
769 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
770 dst[i] = src[j];
771 }
772 } else if (twiddle) {
773 /* Twiddle pixels across elements of array */
774 /*
775 * XXX: we should avoid this in some cases, but would need to tell
776 * lp_build_conv to reorder (or deal with it ourselves).
777 */
778 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
779 } else {
780 /* Do nothing */
781 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
782 }
783
784 /*
785 * Moves any padding between pixels to the end
786 * e.g. RGBXRGBX -> RGBRGBXX
787 */
788 if (swizzle_pad) {
789 unsigned char swizzles[16];
790 unsigned elems = pixels * dst_channels;
791
792 for (i = 0; i < type.length; ++i) {
793 if (i < elems)
794 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
795 else
796 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
797 }
798
799 for (i = 0; i < src_count; ++i) {
800 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
801 }
802 }
803
804 return src_count;
805 }
806
807
808 /*
809 * Untwiddle and transpose, much like the above.
810 * However, this is after conversion, so we get packed vectors.
811 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
812 * the vectors will look like:
813 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
814 * be swizzled here). Extending to 16bit should be trivial.
815 * Should also be extended to handle twice wide vectors with AVX2...
816 */
817 static void
818 fs_twiddle_transpose(struct gallivm_state *gallivm,
819 struct lp_type type,
820 LLVMValueRef *src,
821 unsigned src_count,
822 LLVMValueRef *dst)
823 {
824 unsigned i, j;
825 struct lp_type type64, type16, type32;
826 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
827 LLVMBuilderRef builder = gallivm->builder;
828 LLVMValueRef tmp[4], shuf[8];
829 for (j = 0; j < 2; j++) {
830 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
831 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
832 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
833 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
834 }
835
836 assert(src_count == 4 || src_count == 2 || src_count == 1);
837 assert(type.width == 8);
838 assert(type.length == 16);
839
840 type8_t = lp_build_vec_type(gallivm, type);
841
842 type64 = type;
843 type64.length /= 8;
844 type64.width *= 8;
845 type64_t = lp_build_vec_type(gallivm, type64);
846
847 type16 = type;
848 type16.length /= 2;
849 type16.width *= 2;
850 type16_t = lp_build_vec_type(gallivm, type16);
851
852 type32 = type;
853 type32.length /= 4;
854 type32.width *= 4;
855 type32_t = lp_build_vec_type(gallivm, type32);
856
857 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
858
859 if (src_count == 1) {
860 /* transpose was no-op, just untwiddle */
861 LLVMValueRef shuf_vec;
862 shuf_vec = LLVMConstVector(shuf, 8);
863 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
864 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
865 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
866 } else if (src_count == 2) {
867 LLVMValueRef shuf_vec;
868 shuf_vec = LLVMConstVector(shuf, 4);
869
870 for (i = 0; i < 2; i++) {
871 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
872 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
873 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
874 }
875 } else {
876 for (j = 0; j < 2; j++) {
877 LLVMValueRef lo, hi, lo2, hi2;
878 /*
879 * Note that if we only really have 3 valid channels (rgb)
880 * and we don't need alpha we could substitute a undef here
881 * for the respective channel (causing llvm to drop conversion
882 * for alpha).
883 */
884 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
885 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
886 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
887 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
888 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
889 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
890 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
891 }
892 }
893 }
894
895
896 /**
897 * Load an unswizzled block of pixels from memory
898 */
899 static void
900 load_unswizzled_block(struct gallivm_state *gallivm,
901 LLVMValueRef base_ptr,
902 LLVMValueRef stride,
903 unsigned block_width,
904 unsigned block_height,
905 LLVMValueRef* dst,
906 struct lp_type dst_type,
907 unsigned dst_count,
908 unsigned dst_alignment)
909 {
910 LLVMBuilderRef builder = gallivm->builder;
911 unsigned row_size = dst_count / block_height;
912 unsigned i;
913
914 /* Ensure block exactly fits into dst */
915 assert((block_width * block_height) % dst_count == 0);
916
917 for (i = 0; i < dst_count; ++i) {
918 unsigned x = i % row_size;
919 unsigned y = i / row_size;
920
921 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
922 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
923
924 LLVMValueRef gep[2];
925 LLVMValueRef dst_ptr;
926
927 gep[0] = lp_build_const_int32(gallivm, 0);
928 gep[1] = LLVMBuildAdd(builder, bx, by, "");
929
930 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
931 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
932 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
933
934 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
935
936 LLVMSetAlignment(dst[i], dst_alignment);
937 }
938 }
939
940
941 /**
942 * Store an unswizzled block of pixels to memory
943 */
944 static void
945 store_unswizzled_block(struct gallivm_state *gallivm,
946 LLVMValueRef base_ptr,
947 LLVMValueRef stride,
948 unsigned block_width,
949 unsigned block_height,
950 LLVMValueRef* src,
951 struct lp_type src_type,
952 unsigned src_count,
953 unsigned src_alignment)
954 {
955 LLVMBuilderRef builder = gallivm->builder;
956 unsigned row_size = src_count / block_height;
957 unsigned i;
958
959 /* Ensure src exactly fits into block */
960 assert((block_width * block_height) % src_count == 0);
961
962 for (i = 0; i < src_count; ++i) {
963 unsigned x = i % row_size;
964 unsigned y = i / row_size;
965
966 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
967 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
968
969 LLVMValueRef gep[2];
970 LLVMValueRef src_ptr;
971
972 gep[0] = lp_build_const_int32(gallivm, 0);
973 gep[1] = LLVMBuildAdd(builder, bx, by, "");
974
975 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
976 src_ptr = LLVMBuildBitCast(builder, src_ptr,
977 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
978
979 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
980
981 LLVMSetAlignment(src_ptr, src_alignment);
982 }
983 }
984
985
986 /**
987 * Checks if a format description is an arithmetic format
988 *
989 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
990 */
991 static inline boolean
992 is_arithmetic_format(const struct util_format_description *format_desc)
993 {
994 boolean arith = false;
995 unsigned i;
996
997 for (i = 0; i < format_desc->nr_channels; ++i) {
998 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
999 arith |= (format_desc->channel[i].size % 8) != 0;
1000 }
1001
1002 return arith;
1003 }
1004
1005
1006 /**
1007 * Checks if this format requires special handling due to required expansion
1008 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1009 * SoA conversion.
1010 */
1011 static inline boolean
1012 format_expands_to_float_soa(const struct util_format_description *format_desc)
1013 {
1014 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1015 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1016 return true;
1017 }
1018 return false;
1019 }
1020
1021
1022 /**
1023 * Retrieves the type representing the memory layout for a format
1024 *
1025 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1026 */
1027 static inline void
1028 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1029 struct lp_type* type)
1030 {
1031 unsigned i;
1032 unsigned chan;
1033
1034 if (format_expands_to_float_soa(format_desc)) {
1035 /* just make this a uint with width of block */
1036 type->floating = false;
1037 type->fixed = false;
1038 type->sign = false;
1039 type->norm = false;
1040 type->width = format_desc->block.bits;
1041 type->length = 1;
1042 return;
1043 }
1044
1045 for (i = 0; i < 4; i++)
1046 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1047 break;
1048 chan = i;
1049
1050 memset(type, 0, sizeof(struct lp_type));
1051 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1052 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1053 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1054 type->norm = format_desc->channel[chan].normalized;
1055
1056 if (is_arithmetic_format(format_desc)) {
1057 type->width = 0;
1058 type->length = 1;
1059
1060 for (i = 0; i < format_desc->nr_channels; ++i) {
1061 type->width += format_desc->channel[i].size;
1062 }
1063 } else {
1064 type->width = format_desc->channel[chan].size;
1065 type->length = format_desc->nr_channels;
1066 }
1067 }
1068
1069
1070 /**
1071 * Retrieves the type for a format which is usable in the blending code.
1072 *
1073 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1074 */
1075 static inline void
1076 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1077 struct lp_type* type)
1078 {
1079 unsigned i;
1080 unsigned chan;
1081
1082 if (format_expands_to_float_soa(format_desc)) {
1083 /* always use ordinary floats for blending */
1084 type->floating = true;
1085 type->fixed = false;
1086 type->sign = true;
1087 type->norm = false;
1088 type->width = 32;
1089 type->length = 4;
1090 return;
1091 }
1092
1093 for (i = 0; i < 4; i++)
1094 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1095 break;
1096 chan = i;
1097
1098 memset(type, 0, sizeof(struct lp_type));
1099 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1100 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1101 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1102 type->norm = format_desc->channel[chan].normalized;
1103 type->width = format_desc->channel[chan].size;
1104 type->length = format_desc->nr_channels;
1105
1106 for (i = 1; i < format_desc->nr_channels; ++i) {
1107 if (format_desc->channel[i].size > type->width)
1108 type->width = format_desc->channel[i].size;
1109 }
1110
1111 if (type->floating) {
1112 type->width = 32;
1113 } else {
1114 if (type->width <= 8) {
1115 type->width = 8;
1116 } else if (type->width <= 16) {
1117 type->width = 16;
1118 } else {
1119 type->width = 32;
1120 }
1121 }
1122
1123 if (is_arithmetic_format(format_desc) && type->length == 3) {
1124 type->length = 4;
1125 }
1126 }
1127
1128
1129 /**
1130 * Scale a normalized value from src_bits to dst_bits.
1131 *
1132 * The exact calculation is
1133 *
1134 * dst = iround(src * dst_mask / src_mask)
1135 *
1136 * or with integer rounding
1137 *
1138 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1139 *
1140 * where
1141 *
1142 * src_mask = (1 << src_bits) - 1
1143 * dst_mask = (1 << dst_bits) - 1
1144 *
1145 * but we try to avoid division and multiplication through shifts.
1146 */
1147 static inline LLVMValueRef
1148 scale_bits(struct gallivm_state *gallivm,
1149 int src_bits,
1150 int dst_bits,
1151 LLVMValueRef src,
1152 struct lp_type src_type)
1153 {
1154 LLVMBuilderRef builder = gallivm->builder;
1155 LLVMValueRef result = src;
1156
1157 if (dst_bits < src_bits) {
1158 int delta_bits = src_bits - dst_bits;
1159
1160 if (delta_bits <= dst_bits) {
1161 /*
1162 * Approximate the rescaling with a single shift.
1163 *
1164 * This gives the wrong rounding.
1165 */
1166
1167 result = LLVMBuildLShr(builder,
1168 src,
1169 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1170 "");
1171
1172 } else {
1173 /*
1174 * Try more accurate rescaling.
1175 */
1176
1177 /*
1178 * Drop the least significant bits to make space for the multiplication.
1179 *
1180 * XXX: A better approach would be to use a wider integer type as intermediate. But
1181 * this is enough to convert alpha from 16bits -> 2 when rendering to
1182 * PIPE_FORMAT_R10G10B10A2_UNORM.
1183 */
1184 result = LLVMBuildLShr(builder,
1185 src,
1186 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1187 "");
1188
1189
1190 result = LLVMBuildMul(builder,
1191 result,
1192 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1193 "");
1194
1195 /*
1196 * Add a rounding term before the division.
1197 *
1198 * TODO: Handle signed integers too.
1199 */
1200 if (!src_type.sign) {
1201 result = LLVMBuildAdd(builder,
1202 result,
1203 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1204 "");
1205 }
1206
1207 /*
1208 * Approximate the division by src_mask with a src_bits shift.
1209 *
1210 * Given the src has already been shifted by dst_bits, all we need
1211 * to do is to shift by the difference.
1212 */
1213
1214 result = LLVMBuildLShr(builder,
1215 result,
1216 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1217 "");
1218 }
1219
1220 } else if (dst_bits > src_bits) {
1221 /* Scale up bits */
1222 int db = dst_bits - src_bits;
1223
1224 /* Shift left by difference in bits */
1225 result = LLVMBuildShl(builder,
1226 src,
1227 lp_build_const_int_vec(gallivm, src_type, db),
1228 "");
1229
1230 if (db <= src_bits) {
1231 /* Enough bits in src to fill the remainder */
1232 LLVMValueRef lower = LLVMBuildLShr(builder,
1233 src,
1234 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1235 "");
1236
1237 result = LLVMBuildOr(builder, result, lower, "");
1238 } else if (db > src_bits) {
1239 /* Need to repeatedly copy src bits to fill remainder in dst */
1240 unsigned n;
1241
1242 for (n = src_bits; n < dst_bits; n *= 2) {
1243 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1244
1245 result = LLVMBuildOr(builder,
1246 result,
1247 LLVMBuildLShr(builder, result, shuv, ""),
1248 "");
1249 }
1250 }
1251 }
1252
1253 return result;
1254 }
1255
1256 /**
1257 * If RT is a smallfloat (needing denorms) format
1258 */
1259 static inline int
1260 have_smallfloat_format(struct lp_type dst_type,
1261 enum pipe_format format)
1262 {
1263 return ((dst_type.floating && dst_type.width != 32) ||
1264 /* due to format handling hacks this format doesn't have floating set
1265 * here (and actually has width set to 32 too) so special case this. */
1266 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1267 }
1268
1269
1270 /**
1271 * Convert from memory format to blending format
1272 *
1273 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1274 */
1275 static void
1276 convert_to_blend_type(struct gallivm_state *gallivm,
1277 unsigned block_size,
1278 const struct util_format_description *src_fmt,
1279 struct lp_type src_type,
1280 struct lp_type dst_type,
1281 LLVMValueRef* src, // and dst
1282 unsigned num_srcs)
1283 {
1284 LLVMValueRef *dst = src;
1285 LLVMBuilderRef builder = gallivm->builder;
1286 struct lp_type blend_type;
1287 struct lp_type mem_type;
1288 unsigned i, j;
1289 unsigned pixels = block_size / num_srcs;
1290 bool is_arith;
1291
1292 /*
1293 * full custom path for packed floats and srgb formats - none of the later
1294 * functions would do anything useful, and given the lp_type representation they
1295 * can't be fixed. Should really have some SoA blend path for these kind of
1296 * formats rather than hacking them in here.
1297 */
1298 if (format_expands_to_float_soa(src_fmt)) {
1299 LLVMValueRef tmpsrc[4];
1300 /*
1301 * This is pretty suboptimal for this case blending in SoA would be much
1302 * better, since conversion gets us SoA values so need to convert back.
1303 */
1304 assert(src_type.width == 32 || src_type.width == 16);
1305 assert(dst_type.floating);
1306 assert(dst_type.width == 32);
1307 assert(dst_type.length % 4 == 0);
1308 assert(num_srcs % 4 == 0);
1309
1310 if (src_type.width == 16) {
1311 /* expand 4x16bit values to 4x32bit */
1312 struct lp_type type32x4 = src_type;
1313 LLVMTypeRef ltype32x4;
1314 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1315 type32x4.width = 32;
1316 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1317 for (i = 0; i < num_fetch; i++) {
1318 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1319 }
1320 src_type.width = 32;
1321 }
1322 for (i = 0; i < 4; i++) {
1323 tmpsrc[i] = src[i];
1324 }
1325 for (i = 0; i < num_srcs / 4; i++) {
1326 LLVMValueRef tmpsoa[4];
1327 LLVMValueRef tmps = tmpsrc[i];
1328 if (dst_type.length == 8) {
1329 LLVMValueRef shuffles[8];
1330 unsigned j;
1331 /* fetch was 4 values but need 8-wide output values */
1332 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1333 /*
1334 * for 8-wide aos transpose would give us wrong order not matching
1335 * incoming converted fs values and mask. ARGH.
1336 */
1337 for (j = 0; j < 4; j++) {
1338 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1339 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1340 }
1341 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1342 LLVMConstVector(shuffles, 8), "");
1343 }
1344 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1345 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1346 }
1347 else {
1348 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1349 }
1350 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1351 }
1352 return;
1353 }
1354
1355 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1356 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1357
1358 /* Is the format arithmetic */
1359 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1360 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1361
1362 /* Pad if necessary */
1363 if (!is_arith && src_type.length < dst_type.length) {
1364 for (i = 0; i < num_srcs; ++i) {
1365 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1366 }
1367
1368 src_type.length = dst_type.length;
1369 }
1370
1371 /* Special case for half-floats */
1372 if (mem_type.width == 16 && mem_type.floating) {
1373 assert(blend_type.width == 32 && blend_type.floating);
1374 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1375 is_arith = false;
1376 }
1377
1378 if (!is_arith) {
1379 return;
1380 }
1381
1382 src_type.width = blend_type.width * blend_type.length;
1383 blend_type.length *= pixels;
1384 src_type.length *= pixels / (src_type.length / mem_type.length);
1385
1386 for (i = 0; i < num_srcs; ++i) {
1387 LLVMValueRef chans[4];
1388 LLVMValueRef res = NULL;
1389
1390 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1391
1392 for (j = 0; j < src_fmt->nr_channels; ++j) {
1393 unsigned mask = 0;
1394 unsigned sa = src_fmt->channel[j].shift;
1395 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1396 unsigned from_lsb = j;
1397 #else
1398 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1399 #endif
1400
1401 mask = (1 << src_fmt->channel[j].size) - 1;
1402
1403 /* Extract bits from source */
1404 chans[j] = LLVMBuildLShr(builder,
1405 dst[i],
1406 lp_build_const_int_vec(gallivm, src_type, sa),
1407 "");
1408
1409 chans[j] = LLVMBuildAnd(builder,
1410 chans[j],
1411 lp_build_const_int_vec(gallivm, src_type, mask),
1412 "");
1413
1414 /* Scale bits */
1415 if (src_type.norm) {
1416 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1417 blend_type.width, chans[j], src_type);
1418 }
1419
1420 /* Insert bits into correct position */
1421 chans[j] = LLVMBuildShl(builder,
1422 chans[j],
1423 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1424 "");
1425
1426 if (j == 0) {
1427 res = chans[j];
1428 } else {
1429 res = LLVMBuildOr(builder, res, chans[j], "");
1430 }
1431 }
1432
1433 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1434 }
1435 }
1436
1437
1438 /**
1439 * Convert from blending format to memory format
1440 *
1441 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1442 */
1443 static void
1444 convert_from_blend_type(struct gallivm_state *gallivm,
1445 unsigned block_size,
1446 const struct util_format_description *src_fmt,
1447 struct lp_type src_type,
1448 struct lp_type dst_type,
1449 LLVMValueRef* src, // and dst
1450 unsigned num_srcs)
1451 {
1452 LLVMValueRef* dst = src;
1453 unsigned i, j, k;
1454 struct lp_type mem_type;
1455 struct lp_type blend_type;
1456 LLVMBuilderRef builder = gallivm->builder;
1457 unsigned pixels = block_size / num_srcs;
1458 bool is_arith;
1459
1460 /*
1461 * full custom path for packed floats and srgb formats - none of the later
1462 * functions would do anything useful, and given the lp_type representation they
1463 * can't be fixed. Should really have some SoA blend path for these kind of
1464 * formats rather than hacking them in here.
1465 */
1466 if (format_expands_to_float_soa(src_fmt)) {
1467 /*
1468 * This is pretty suboptimal for this case blending in SoA would be much
1469 * better - we need to transpose the AoS values back to SoA values for
1470 * conversion/packing.
1471 */
1472 assert(src_type.floating);
1473 assert(src_type.width == 32);
1474 assert(src_type.length % 4 == 0);
1475 assert(dst_type.width == 32 || dst_type.width == 16);
1476
1477 for (i = 0; i < num_srcs / 4; i++) {
1478 LLVMValueRef tmpsoa[4], tmpdst;
1479 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1480 /* really really need SoA here */
1481
1482 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1483 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1484 }
1485 else {
1486 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1487 src_type, tmpsoa);
1488 }
1489
1490 if (src_type.length == 8) {
1491 LLVMValueRef tmpaos, shuffles[8];
1492 unsigned j;
1493 /*
1494 * for 8-wide aos transpose has given us wrong order not matching
1495 * output order. HMPF. Also need to split the output values manually.
1496 */
1497 for (j = 0; j < 4; j++) {
1498 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1499 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1500 }
1501 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1502 LLVMConstVector(shuffles, 8), "");
1503 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1504 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1505 }
1506 else {
1507 src[i] = tmpdst;
1508 }
1509 }
1510 if (dst_type.width == 16) {
1511 struct lp_type type16x8 = dst_type;
1512 struct lp_type type32x4 = dst_type;
1513 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1514 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1515 type16x8.length = 8;
1516 type32x4.width = 32;
1517 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1518 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1519 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1520 /* We could do vector truncation but it doesn't generate very good code */
1521 for (i = 0; i < num_fetch; i++) {
1522 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1523 src[i], lp_build_zero(gallivm, type32x4));
1524 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1525 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1526 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1527 }
1528 }
1529 return;
1530 }
1531
1532 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1533 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1534
1535 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1536
1537 /* Special case for half-floats */
1538 if (mem_type.width == 16 && mem_type.floating) {
1539 int length = dst_type.length;
1540 assert(blend_type.width == 32 && blend_type.floating);
1541
1542 dst_type.length = src_type.length;
1543
1544 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1545
1546 dst_type.length = length;
1547 is_arith = false;
1548 }
1549
1550 /* Remove any padding */
1551 if (!is_arith && (src_type.length % mem_type.length)) {
1552 src_type.length -= (src_type.length % mem_type.length);
1553
1554 for (i = 0; i < num_srcs; ++i) {
1555 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1556 }
1557 }
1558
1559 /* No bit arithmetic to do */
1560 if (!is_arith) {
1561 return;
1562 }
1563
1564 src_type.length = pixels;
1565 src_type.width = blend_type.length * blend_type.width;
1566 dst_type.length = pixels;
1567
1568 for (i = 0; i < num_srcs; ++i) {
1569 LLVMValueRef chans[4];
1570 LLVMValueRef res = NULL;
1571
1572 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1573
1574 for (j = 0; j < src_fmt->nr_channels; ++j) {
1575 unsigned mask = 0;
1576 unsigned sa = src_fmt->channel[j].shift;
1577 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1578 unsigned from_lsb = j;
1579 #else
1580 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1581 #endif
1582
1583 assert(blend_type.width > src_fmt->channel[j].size);
1584
1585 for (k = 0; k < blend_type.width; ++k) {
1586 mask |= 1 << k;
1587 }
1588
1589 /* Extract bits */
1590 chans[j] = LLVMBuildLShr(builder,
1591 dst[i],
1592 lp_build_const_int_vec(gallivm, src_type,
1593 from_lsb * blend_type.width),
1594 "");
1595
1596 chans[j] = LLVMBuildAnd(builder,
1597 chans[j],
1598 lp_build_const_int_vec(gallivm, src_type, mask),
1599 "");
1600
1601 /* Scale down bits */
1602 if (src_type.norm) {
1603 chans[j] = scale_bits(gallivm, blend_type.width,
1604 src_fmt->channel[j].size, chans[j], src_type);
1605 }
1606
1607 /* Insert bits */
1608 chans[j] = LLVMBuildShl(builder,
1609 chans[j],
1610 lp_build_const_int_vec(gallivm, src_type, sa),
1611 "");
1612
1613 sa += src_fmt->channel[j].size;
1614
1615 if (j == 0) {
1616 res = chans[j];
1617 } else {
1618 res = LLVMBuildOr(builder, res, chans[j], "");
1619 }
1620 }
1621
1622 assert (dst_type.width != 24);
1623
1624 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1625 }
1626 }
1627
1628
1629 /**
1630 * Convert alpha to same blend type as src
1631 */
1632 static void
1633 convert_alpha(struct gallivm_state *gallivm,
1634 struct lp_type row_type,
1635 struct lp_type alpha_type,
1636 const unsigned block_size,
1637 const unsigned block_height,
1638 const unsigned src_count,
1639 const unsigned dst_channels,
1640 const bool pad_inline,
1641 LLVMValueRef* src_alpha)
1642 {
1643 LLVMBuilderRef builder = gallivm->builder;
1644 unsigned i, j;
1645 unsigned length = row_type.length;
1646 row_type.length = alpha_type.length;
1647
1648 /* Twiddle the alpha to match pixels */
1649 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1650
1651 /*
1652 * TODO this should use single lp_build_conv call for
1653 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1654 */
1655 for (i = 0; i < block_height; ++i) {
1656 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1657 }
1658
1659 alpha_type = row_type;
1660 row_type.length = length;
1661
1662 /* If only one channel we can only need the single alpha value per pixel */
1663 if (src_count == 1 && dst_channels == 1) {
1664
1665 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1666 } else {
1667 /* If there are more srcs than rows then we need to split alpha up */
1668 if (src_count > block_height) {
1669 for (i = src_count; i > 0; --i) {
1670 unsigned pixels = block_size / src_count;
1671 unsigned idx = i - 1;
1672
1673 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1674 (idx * pixels) % 4, pixels);
1675 }
1676 }
1677
1678 /* If there is a src for each pixel broadcast the alpha across whole row */
1679 if (src_count == block_size) {
1680 for (i = 0; i < src_count; ++i) {
1681 src_alpha[i] = lp_build_broadcast(gallivm,
1682 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1683 }
1684 } else {
1685 unsigned pixels = block_size / src_count;
1686 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1687 unsigned alpha_span = 1;
1688 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1689
1690 /* Check if we need 2 src_alphas for our shuffles */
1691 if (pixels > alpha_type.length) {
1692 alpha_span = 2;
1693 }
1694
1695 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1696 for (j = 0; j < row_type.length; ++j) {
1697 if (j < pixels * channels) {
1698 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1699 } else {
1700 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1701 }
1702 }
1703
1704 for (i = 0; i < src_count; ++i) {
1705 unsigned idx1 = i, idx2 = i;
1706
1707 if (alpha_span > 1){
1708 idx1 *= alpha_span;
1709 idx2 = idx1 + 1;
1710 }
1711
1712 src_alpha[i] = LLVMBuildShuffleVector(builder,
1713 src_alpha[idx1],
1714 src_alpha[idx2],
1715 LLVMConstVector(shuffles, row_type.length),
1716 "");
1717 }
1718 }
1719 }
1720 }
1721
1722
1723 /**
1724 * Generates the blend function for unswizzled colour buffers
1725 * Also generates the read & write from colour buffer
1726 */
1727 static void
1728 generate_unswizzled_blend(struct gallivm_state *gallivm,
1729 unsigned rt,
1730 struct lp_fragment_shader_variant *variant,
1731 enum pipe_format out_format,
1732 unsigned int num_fs,
1733 struct lp_type fs_type,
1734 LLVMValueRef* fs_mask,
1735 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1736 LLVMValueRef context_ptr,
1737 LLVMValueRef color_ptr,
1738 LLVMValueRef stride,
1739 unsigned partial_mask,
1740 boolean do_branch)
1741 {
1742 const unsigned alpha_channel = 3;
1743 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1744 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1745 const unsigned block_size = block_width * block_height;
1746 const unsigned lp_integer_vector_width = 128;
1747
1748 LLVMBuilderRef builder = gallivm->builder;
1749 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1750 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1751 LLVMValueRef src_alpha[4 * 4];
1752 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1753 LLVMValueRef src_mask[4 * 4];
1754 LLVMValueRef src[4 * 4];
1755 LLVMValueRef src1[4 * 4];
1756 LLVMValueRef dst[4 * 4];
1757 LLVMValueRef blend_color;
1758 LLVMValueRef blend_alpha;
1759 LLVMValueRef i32_zero;
1760 LLVMValueRef check_mask;
1761 LLVMValueRef undef_src_val;
1762
1763 struct lp_build_mask_context mask_ctx;
1764 struct lp_type mask_type;
1765 struct lp_type blend_type;
1766 struct lp_type row_type;
1767 struct lp_type dst_type;
1768 struct lp_type ls_type;
1769
1770 unsigned char swizzle[TGSI_NUM_CHANNELS];
1771 unsigned vector_width;
1772 unsigned src_channels = TGSI_NUM_CHANNELS;
1773 unsigned dst_channels;
1774 unsigned dst_count;
1775 unsigned src_count;
1776 unsigned i, j;
1777
1778 const struct util_format_description* out_format_desc = util_format_description(out_format);
1779
1780 unsigned dst_alignment;
1781
1782 bool pad_inline = is_arithmetic_format(out_format_desc);
1783 bool has_alpha = false;
1784 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1785 util_blend_state_is_dual(&variant->key.blend, 0);
1786
1787 const boolean is_1d = variant->key.resource_1d;
1788 boolean twiddle_after_convert = FALSE;
1789 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1790 LLVMValueRef fpstate = 0;
1791
1792 /* Get type from output format */
1793 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1794 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1795
1796 /*
1797 * Technically this code should go into lp_build_smallfloat_to_float
1798 * and lp_build_float_to_smallfloat but due to the
1799 * http://llvm.org/bugs/show_bug.cgi?id=6393
1800 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1801 * So the ordering is important here and there shouldn't be any
1802 * llvm ir instrunctions in this function before
1803 * this, otherwise half-float format conversions won't work
1804 * (again due to llvm bug #6393).
1805 */
1806 if (have_smallfloat_format(dst_type, out_format)) {
1807 /* We need to make sure that denorms are ok for half float
1808 conversions */
1809 fpstate = lp_build_fpstate_get(gallivm);
1810 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1811 }
1812
1813 mask_type = lp_int32_vec4_type();
1814 mask_type.length = fs_type.length;
1815
1816 for (i = num_fs; i < num_fullblock_fs; i++) {
1817 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1818 }
1819
1820 /* Do not bother executing code when mask is empty.. */
1821 if (do_branch) {
1822 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1823
1824 for (i = 0; i < num_fullblock_fs; ++i) {
1825 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1826 }
1827
1828 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1829 lp_build_mask_check(&mask_ctx);
1830 }
1831
1832 partial_mask |= !variant->opaque;
1833 i32_zero = lp_build_const_int32(gallivm, 0);
1834
1835 undef_src_val = lp_build_undef(gallivm, fs_type);
1836
1837 row_type.length = fs_type.length;
1838 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1839
1840 /* Compute correct swizzle and count channels */
1841 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1842 dst_channels = 0;
1843
1844 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1845 /* Ensure channel is used */
1846 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1847 continue;
1848 }
1849
1850 /* Ensure not already written to (happens in case with GL_ALPHA) */
1851 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1852 continue;
1853 }
1854
1855 /* Ensure we havn't already found all channels */
1856 if (dst_channels >= out_format_desc->nr_channels) {
1857 continue;
1858 }
1859
1860 swizzle[out_format_desc->swizzle[i]] = i;
1861 ++dst_channels;
1862
1863 if (i == alpha_channel) {
1864 has_alpha = true;
1865 }
1866 }
1867
1868 if (format_expands_to_float_soa(out_format_desc)) {
1869 /*
1870 * the code above can't work for layout_other
1871 * for srgb it would sort of work but we short-circuit swizzles, etc.
1872 * as that is done as part of unpack / pack.
1873 */
1874 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1875 has_alpha = true;
1876 swizzle[0] = 0;
1877 swizzle[1] = 1;
1878 swizzle[2] = 2;
1879 swizzle[3] = 3;
1880 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1881 }
1882
1883 /* If 3 channels then pad to include alpha for 4 element transpose */
1884 if (dst_channels == 3) {
1885 assert (!has_alpha);
1886 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1887 if (swizzle[i] > TGSI_NUM_CHANNELS)
1888 swizzle[i] = 3;
1889 }
1890 if (out_format_desc->nr_channels == 4) {
1891 dst_channels = 4;
1892 /*
1893 * We use alpha from the color conversion, not separate one.
1894 * We had to include it for transpose, hence it will get converted
1895 * too (albeit when doing transpose after conversion, that would
1896 * no longer be the case necessarily).
1897 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1898 * otherwise we really have padding, not alpha, included.)
1899 */
1900 has_alpha = true;
1901 }
1902 }
1903
1904 /*
1905 * Load shader output
1906 */
1907 for (i = 0; i < num_fullblock_fs; ++i) {
1908 /* Always load alpha for use in blending */
1909 LLVMValueRef alpha;
1910 if (i < num_fs) {
1911 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1912 }
1913 else {
1914 alpha = undef_src_val;
1915 }
1916
1917 /* Load each channel */
1918 for (j = 0; j < dst_channels; ++j) {
1919 assert(swizzle[j] < 4);
1920 if (i < num_fs) {
1921 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1922 }
1923 else {
1924 fs_src[i][j] = undef_src_val;
1925 }
1926 }
1927
1928 /* If 3 channels then pad to include alpha for 4 element transpose */
1929 /*
1930 * XXX If we include that here maybe could actually use it instead of
1931 * separate alpha for blending?
1932 * (Difficult though we actually convert pad channels, not alpha.)
1933 */
1934 if (dst_channels == 3 && !has_alpha) {
1935 fs_src[i][3] = alpha;
1936 }
1937
1938 /* We split the row_mask and row_alpha as we want 128bit interleave */
1939 if (fs_type.length == 8) {
1940 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1941 0, src_channels);
1942 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1943 src_channels, src_channels);
1944
1945 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1946 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1947 src_channels, src_channels);
1948 } else {
1949 src_mask[i] = fs_mask[i];
1950 src_alpha[i] = alpha;
1951 }
1952 }
1953 if (dual_source_blend) {
1954 /* same as above except different src/dst, skip masks and comments... */
1955 for (i = 0; i < num_fullblock_fs; ++i) {
1956 LLVMValueRef alpha;
1957 if (i < num_fs) {
1958 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1959 }
1960 else {
1961 alpha = undef_src_val;
1962 }
1963
1964 for (j = 0; j < dst_channels; ++j) {
1965 assert(swizzle[j] < 4);
1966 if (i < num_fs) {
1967 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1968 }
1969 else {
1970 fs_src1[i][j] = undef_src_val;
1971 }
1972 }
1973 if (dst_channels == 3 && !has_alpha) {
1974 fs_src1[i][3] = alpha;
1975 }
1976 if (fs_type.length == 8) {
1977 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1978 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1979 src_channels, src_channels);
1980 } else {
1981 src1_alpha[i] = alpha;
1982 }
1983 }
1984 }
1985
1986 if (util_format_is_pure_integer(out_format)) {
1987 /*
1988 * In this case fs_type was really ints or uints disguised as floats,
1989 * fix that up now.
1990 */
1991 fs_type.floating = 0;
1992 fs_type.sign = dst_type.sign;
1993 for (i = 0; i < num_fullblock_fs; ++i) {
1994 for (j = 0; j < dst_channels; ++j) {
1995 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1996 lp_build_vec_type(gallivm, fs_type), "");
1997 }
1998 if (dst_channels == 3 && !has_alpha) {
1999 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2000 lp_build_vec_type(gallivm, fs_type), "");
2001 }
2002 }
2003 }
2004
2005 /*
2006 * We actually should generally do conversion first (for non-1d cases)
2007 * when the blend format is 8 or 16 bits. The reason is obvious,
2008 * there's 2 or 4 times less vectors to deal with for the interleave...
2009 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2010 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2011 * unpack only with 128bit vectors).
2012 * Note: for 16bit sizes really need matching pack conversion code
2013 */
2014 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2015 twiddle_after_convert = TRUE;
2016 }
2017
2018 /*
2019 * Pixel twiddle from fragment shader order to memory order
2020 */
2021 if (!twiddle_after_convert) {
2022 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2023 dst_channels, fs_src, src, pad_inline);
2024 if (dual_source_blend) {
2025 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2026 fs_src1, src1, pad_inline);
2027 }
2028 } else {
2029 src_count = num_fullblock_fs * dst_channels;
2030 /*
2031 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2032 * (AVX) turn out the same later when untwiddling/transpose (albeit
2033 * for true AVX2 path untwiddle needs to be different).
2034 * For now just order by colors first (so we can use unpack later).
2035 */
2036 for (j = 0; j < num_fullblock_fs; j++) {
2037 for (i = 0; i < dst_channels; i++) {
2038 src[i*num_fullblock_fs + j] = fs_src[j][i];
2039 if (dual_source_blend) {
2040 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2041 }
2042 }
2043 }
2044 }
2045
2046 src_channels = dst_channels < 3 ? dst_channels : 4;
2047 if (src_count != num_fullblock_fs * src_channels) {
2048 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2049 row_type.length /= ds;
2050 fs_type.length = row_type.length;
2051 }
2052
2053 blend_type = row_type;
2054 mask_type.length = 4;
2055
2056 /* Convert src to row_type */
2057 if (dual_source_blend) {
2058 struct lp_type old_row_type = row_type;
2059 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2060 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2061 }
2062 else {
2063 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2064 }
2065
2066 /* If the rows are not an SSE vector, combine them to become SSE size! */
2067 if ((row_type.width * row_type.length) % 128) {
2068 unsigned bits = row_type.width * row_type.length;
2069 unsigned combined;
2070
2071 assert(src_count >= (vector_width / bits));
2072
2073 dst_count = src_count / (vector_width / bits);
2074
2075 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2076 if (dual_source_blend) {
2077 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2078 }
2079
2080 row_type.length *= combined;
2081 src_count /= combined;
2082
2083 bits = row_type.width * row_type.length;
2084 assert(bits == 128 || bits == 256);
2085 }
2086
2087 if (twiddle_after_convert) {
2088 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2089 if (dual_source_blend) {
2090 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2091 }
2092 }
2093
2094 /*
2095 * Blend Colour conversion
2096 */
2097 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2098 blend_color = LLVMBuildPointerCast(builder, blend_color,
2099 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2100 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2101 &i32_zero, 1, ""), "");
2102
2103 /* Convert */
2104 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2105
2106 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2107 /*
2108 * since blending is done with floats, there was no conversion.
2109 * However, the rules according to fixed point renderbuffers still
2110 * apply, that is we must clamp inputs to 0.0/1.0.
2111 * (This would apply to separate alpha conversion too but we currently
2112 * force has_alpha to be true.)
2113 * TODO: should skip this with "fake" blend, since post-blend conversion
2114 * will clamp anyway.
2115 * TODO: could also skip this if fragment color clamping is enabled. We
2116 * don't support it natively so it gets baked into the shader however, so
2117 * can't really tell here.
2118 */
2119 struct lp_build_context f32_bld;
2120 assert(row_type.floating);
2121 lp_build_context_init(&f32_bld, gallivm, row_type);
2122 for (i = 0; i < src_count; i++) {
2123 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2124 }
2125 if (dual_source_blend) {
2126 for (i = 0; i < src_count; i++) {
2127 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2128 }
2129 }
2130 /* probably can't be different than row_type but better safe than sorry... */
2131 lp_build_context_init(&f32_bld, gallivm, blend_type);
2132 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2133 }
2134
2135 /* Extract alpha */
2136 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2137
2138 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2139 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2140 if (pad_inline) {
2141 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2142 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2143 } else {
2144 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2145 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2146 }
2147
2148 /*
2149 * Mask conversion
2150 */
2151 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2152
2153 if (src_count < block_height) {
2154 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2155 } else if (src_count > block_height) {
2156 for (i = src_count; i > 0; --i) {
2157 unsigned pixels = block_size / src_count;
2158 unsigned idx = i - 1;
2159
2160 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2161 (idx * pixels) % 4, pixels);
2162 }
2163 }
2164
2165 assert(mask_type.width == 32);
2166
2167 for (i = 0; i < src_count; ++i) {
2168 unsigned pixels = block_size / src_count;
2169 unsigned pixel_width = row_type.width * dst_channels;
2170
2171 if (pixel_width == 24) {
2172 mask_type.width = 8;
2173 mask_type.length = vector_width / mask_type.width;
2174 } else {
2175 mask_type.length = pixels;
2176 mask_type.width = row_type.width * dst_channels;
2177
2178 /*
2179 * If mask_type width is smaller than 32bit, this doesn't quite
2180 * generate the most efficient code (could use some pack).
2181 */
2182 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2183 lp_build_int_vec_type(gallivm, mask_type), "");
2184
2185 mask_type.length *= dst_channels;
2186 mask_type.width /= dst_channels;
2187 }
2188
2189 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2190 lp_build_int_vec_type(gallivm, mask_type), "");
2191 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2192 }
2193
2194 /*
2195 * Alpha conversion
2196 */
2197 if (!has_alpha) {
2198 struct lp_type alpha_type = fs_type;
2199 alpha_type.length = 4;
2200 convert_alpha(gallivm, row_type, alpha_type,
2201 block_size, block_height,
2202 src_count, dst_channels,
2203 pad_inline, src_alpha);
2204 if (dual_source_blend) {
2205 convert_alpha(gallivm, row_type, alpha_type,
2206 block_size, block_height,
2207 src_count, dst_channels,
2208 pad_inline, src1_alpha);
2209 }
2210 }
2211
2212
2213 /*
2214 * Load dst from memory
2215 */
2216 if (src_count < block_height) {
2217 dst_count = block_height;
2218 } else {
2219 dst_count = src_count;
2220 }
2221
2222 dst_type.length *= block_size / dst_count;
2223
2224 if (format_expands_to_float_soa(out_format_desc)) {
2225 /*
2226 * we need multiple values at once for the conversion, so can as well
2227 * load them vectorized here too instead of concatenating later.
2228 * (Still need concatenation later for 8-wide vectors).
2229 */
2230 dst_count = block_height;
2231 dst_type.length = block_width;
2232 }
2233
2234 /*
2235 * Compute the alignment of the destination pointer in bytes
2236 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2237 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2238 * 1d tex but can't distinguish here) so need to stick with per-pixel
2239 * alignment in this case.
2240 */
2241 if (is_1d) {
2242 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2243 }
2244 else {
2245 dst_alignment = dst_type.length * dst_type.width / 8;
2246 }
2247 /* Force power-of-two alignment by extracting only the least-significant-bit */
2248 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2249 /*
2250 * Resource base and stride pointers are aligned to 16 bytes, so that's
2251 * the maximum alignment we can guarantee
2252 */
2253 dst_alignment = MIN2(16, dst_alignment);
2254
2255 ls_type = dst_type;
2256
2257 if (dst_count > src_count) {
2258 if ((dst_type.width == 8 || dst_type.width == 16) &&
2259 util_is_power_of_two_or_zero(dst_type.length) &&
2260 dst_type.length * dst_type.width < 128) {
2261 /*
2262 * Never try to load values as 4xi8 which we will then
2263 * concatenate to larger vectors. This gives llvm a real
2264 * headache (the problem is the type legalizer (?) will
2265 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2266 * then the shuffles to concatenate are more or less impossible
2267 * - llvm is easily capable of generating a sequence of 32
2268 * pextrb/pinsrb instructions for that. Albeit it appears to
2269 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2270 * width to avoid the trouble (16bit seems not as bad, llvm
2271 * probably recognizes the load+shuffle as only one shuffle
2272 * is necessary, but we can do just the same anyway).
2273 */
2274 ls_type.length = dst_type.length * dst_type.width / 32;
2275 ls_type.width = 32;
2276 }
2277 }
2278
2279 if (is_1d) {
2280 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2281 dst, ls_type, dst_count / 4, dst_alignment);
2282 for (i = dst_count / 4; i < dst_count; i++) {
2283 dst[i] = lp_build_undef(gallivm, ls_type);
2284 }
2285
2286 }
2287 else {
2288 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2289 dst, ls_type, dst_count, dst_alignment);
2290 }
2291
2292
2293 /*
2294 * Convert from dst/output format to src/blending format.
2295 *
2296 * This is necessary as we can only read 1 row from memory at a time,
2297 * so the minimum dst_count will ever be at this point is 4.
2298 *
2299 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2300 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2301 * on all 16 pixels in that single vector at once.
2302 */
2303 if (dst_count > src_count) {
2304 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2305 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2306 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2307 for (i = 0; i < dst_count; i++) {
2308 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2309 }
2310 }
2311
2312 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2313
2314 if (ls_type.length != dst_type.length) {
2315 struct lp_type tmp_type = dst_type;
2316 tmp_type.length = dst_type.length * 4 / src_count;
2317 for (i = 0; i < src_count; i++) {
2318 dst[i] = LLVMBuildBitCast(builder, dst[i],
2319 lp_build_vec_type(gallivm, tmp_type), "");
2320 }
2321 }
2322 }
2323
2324 /*
2325 * Blending
2326 */
2327 /* XXX this is broken for RGB8 formats -
2328 * they get expanded from 12 to 16 elements (to include alpha)
2329 * by convert_to_blend_type then reduced to 15 instead of 12
2330 * by convert_from_blend_type (a simple fix though breaks A8...).
2331 * R16G16B16 also crashes differently however something going wrong
2332 * inside llvm handling npot vector sizes seemingly.
2333 * It seems some cleanup could be done here (like skipping conversion/blend
2334 * when not needed).
2335 */
2336 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2337 row_type, dst, src_count);
2338
2339 /*
2340 * FIXME: Really should get logic ops / masks out of generic blend / row
2341 * format. Logic ops will definitely not work on the blend float format
2342 * used for SRGB here and I think OpenGL expects this to work as expected
2343 * (that is incoming values converted to srgb then logic op applied).
2344 */
2345 for (i = 0; i < src_count; ++i) {
2346 dst[i] = lp_build_blend_aos(gallivm,
2347 &variant->key.blend,
2348 out_format,
2349 row_type,
2350 rt,
2351 src[i],
2352 has_alpha ? NULL : src_alpha[i],
2353 src1[i],
2354 has_alpha ? NULL : src1_alpha[i],
2355 dst[i],
2356 partial_mask ? src_mask[i] : NULL,
2357 blend_color,
2358 has_alpha ? NULL : blend_alpha,
2359 swizzle,
2360 pad_inline ? 4 : dst_channels);
2361 }
2362
2363 convert_from_blend_type(gallivm, block_size, out_format_desc,
2364 row_type, dst_type, dst, src_count);
2365
2366 /* Split the blend rows back to memory rows */
2367 if (dst_count > src_count) {
2368 row_type.length = dst_type.length * (dst_count / src_count);
2369
2370 if (src_count == 1) {
2371 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2372 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2373
2374 row_type.length /= 2;
2375 src_count *= 2;
2376 }
2377
2378 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2379 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2380 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2381 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2382
2383 row_type.length /= 2;
2384 src_count *= 2;
2385 }
2386
2387 /*
2388 * Store blend result to memory
2389 */
2390 if (is_1d) {
2391 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2392 dst, dst_type, dst_count / 4, dst_alignment);
2393 }
2394 else {
2395 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2396 dst, dst_type, dst_count, dst_alignment);
2397 }
2398
2399 if (have_smallfloat_format(dst_type, out_format)) {
2400 lp_build_fpstate_set(gallivm, fpstate);
2401 }
2402
2403 if (do_branch) {
2404 lp_build_mask_end(&mask_ctx);
2405 }
2406 }
2407
2408
2409 /**
2410 * Generate the runtime callable function for the whole fragment pipeline.
2411 * Note that the function which we generate operates on a block of 16
2412 * pixels at at time. The block contains 2x2 quads. Each quad contains
2413 * 2x2 pixels.
2414 */
2415 static void
2416 generate_fragment(struct llvmpipe_context *lp,
2417 struct lp_fragment_shader *shader,
2418 struct lp_fragment_shader_variant *variant,
2419 unsigned partial_mask)
2420 {
2421 struct gallivm_state *gallivm = variant->gallivm;
2422 const struct lp_fragment_shader_variant_key *key = &variant->key;
2423 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2424 char func_name[64];
2425 struct lp_type fs_type;
2426 struct lp_type blend_type;
2427 LLVMTypeRef fs_elem_type;
2428 LLVMTypeRef blend_vec_type;
2429 LLVMTypeRef arg_types[13];
2430 LLVMTypeRef func_type;
2431 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2432 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2433 LLVMValueRef context_ptr;
2434 LLVMValueRef x;
2435 LLVMValueRef y;
2436 LLVMValueRef a0_ptr;
2437 LLVMValueRef dadx_ptr;
2438 LLVMValueRef dady_ptr;
2439 LLVMValueRef color_ptr_ptr;
2440 LLVMValueRef stride_ptr;
2441 LLVMValueRef depth_ptr;
2442 LLVMValueRef depth_stride;
2443 LLVMValueRef mask_input;
2444 LLVMValueRef thread_data_ptr;
2445 LLVMBasicBlockRef block;
2446 LLVMBuilderRef builder;
2447 struct lp_build_sampler_soa *sampler;
2448 struct lp_build_interp_soa_context interp;
2449 LLVMValueRef fs_mask[16 / 4];
2450 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2451 LLVMValueRef function;
2452 LLVMValueRef facing;
2453 unsigned num_fs;
2454 unsigned i;
2455 unsigned chan;
2456 unsigned cbuf;
2457 boolean cbuf0_write_all;
2458 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2459 util_blend_state_is_dual(&key->blend, 0);
2460
2461 assert(lp_native_vector_width / 32 >= 4);
2462
2463 /* Adjust color input interpolation according to flatshade state:
2464 */
2465 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2466 for (i = 0; i < shader->info.base.num_inputs; i++) {
2467 if (inputs[i].interp == LP_INTERP_COLOR) {
2468 if (key->flatshade)
2469 inputs[i].interp = LP_INTERP_CONSTANT;
2470 else
2471 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2472 }
2473 }
2474
2475 /* check if writes to cbuf[0] are to be copied to all cbufs */
2476 cbuf0_write_all =
2477 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2478
2479 /* TODO: actually pick these based on the fs and color buffer
2480 * characteristics. */
2481
2482 memset(&fs_type, 0, sizeof fs_type);
2483 fs_type.floating = TRUE; /* floating point values */
2484 fs_type.sign = TRUE; /* values are signed */
2485 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2486 fs_type.width = 32; /* 32-bit float */
2487 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2488
2489 memset(&blend_type, 0, sizeof blend_type);
2490 blend_type.floating = FALSE; /* values are integers */
2491 blend_type.sign = FALSE; /* values are unsigned */
2492 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2493 blend_type.width = 8; /* 8-bit ubyte values */
2494 blend_type.length = 16; /* 16 elements per vector */
2495
2496 /*
2497 * Generate the function prototype. Any change here must be reflected in
2498 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2499 */
2500
2501 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2502
2503 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2504
2505 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2506 shader->no, variant->no, partial_mask ? "partial" : "whole");
2507
2508 arg_types[0] = variant->jit_context_ptr_type; /* context */
2509 arg_types[1] = int32_type; /* x */
2510 arg_types[2] = int32_type; /* y */
2511 arg_types[3] = int32_type; /* facing */
2512 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2513 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2514 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2515 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2516 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2517 arg_types[9] = int32_type; /* mask_input */
2518 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2519 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2520 arg_types[12] = int32_type; /* depth_stride */
2521
2522 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2523 arg_types, ARRAY_SIZE(arg_types), 0);
2524
2525 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2526 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2527
2528 variant->function[partial_mask] = function;
2529
2530 /* XXX: need to propagate noalias down into color param now we are
2531 * passing a pointer-to-pointer?
2532 */
2533 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2534 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2535 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2536
2537 context_ptr = LLVMGetParam(function, 0);
2538 x = LLVMGetParam(function, 1);
2539 y = LLVMGetParam(function, 2);
2540 facing = LLVMGetParam(function, 3);
2541 a0_ptr = LLVMGetParam(function, 4);
2542 dadx_ptr = LLVMGetParam(function, 5);
2543 dady_ptr = LLVMGetParam(function, 6);
2544 color_ptr_ptr = LLVMGetParam(function, 7);
2545 depth_ptr = LLVMGetParam(function, 8);
2546 mask_input = LLVMGetParam(function, 9);
2547 thread_data_ptr = LLVMGetParam(function, 10);
2548 stride_ptr = LLVMGetParam(function, 11);
2549 depth_stride = LLVMGetParam(function, 12);
2550
2551 lp_build_name(context_ptr, "context");
2552 lp_build_name(x, "x");
2553 lp_build_name(y, "y");
2554 lp_build_name(a0_ptr, "a0");
2555 lp_build_name(dadx_ptr, "dadx");
2556 lp_build_name(dady_ptr, "dady");
2557 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2558 lp_build_name(depth_ptr, "depth");
2559 lp_build_name(mask_input, "mask_input");
2560 lp_build_name(thread_data_ptr, "thread_data");
2561 lp_build_name(stride_ptr, "stride_ptr");
2562 lp_build_name(depth_stride, "depth_stride");
2563
2564 /*
2565 * Function body
2566 */
2567
2568 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2569 builder = gallivm->builder;
2570 assert(builder);
2571 LLVMPositionBuilderAtEnd(builder, block);
2572
2573 /*
2574 * Must not count ps invocations if there's a null shader.
2575 * (It would be ok to count with null shader if there's d/s tests,
2576 * but only if there's d/s buffers too, which is different
2577 * to implicit rasterization disable which must not depend
2578 * on the d/s buffers.)
2579 * Could use popcount on mask, but pixel accuracy is not required.
2580 * Could disable if there's no stats query, but maybe not worth it.
2581 */
2582 if (shader->info.base.num_instructions > 1) {
2583 LLVMValueRef invocs, val;
2584 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2585 val = LLVMBuildLoad(builder, invocs, "");
2586 val = LLVMBuildAdd(builder, val,
2587 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2588 "invoc_count");
2589 LLVMBuildStore(builder, val, invocs);
2590 }
2591
2592 /* code generated texture sampling */
2593 sampler = lp_llvm_sampler_soa_create(key->state);
2594
2595 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2596 /* for 1d resources only run "upper half" of stamp */
2597 if (key->resource_1d)
2598 num_fs /= 2;
2599
2600 {
2601 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2602 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2603 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2604 num_loop, "mask_store");
2605 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2606 boolean pixel_center_integer =
2607 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2608
2609 /*
2610 * The shader input interpolation info is not explicitely baked in the
2611 * shader key, but everything it derives from (TGSI, and flatshade) is
2612 * already included in the shader key.
2613 */
2614 lp_build_interp_soa_init(&interp,
2615 gallivm,
2616 shader->info.base.num_inputs,
2617 inputs,
2618 pixel_center_integer,
2619 key->depth_clamp,
2620 builder, fs_type,
2621 a0_ptr, dadx_ptr, dady_ptr,
2622 x, y);
2623
2624 for (i = 0; i < num_fs; i++) {
2625 LLVMValueRef mask;
2626 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2627 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2628 &indexi, 1, "mask_ptr");
2629
2630 if (partial_mask) {
2631 mask = generate_quad_mask(gallivm, fs_type,
2632 i*fs_type.length/4, mask_input);
2633 }
2634 else {
2635 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2636 }
2637 LLVMBuildStore(builder, mask, mask_ptr);
2638 }
2639
2640 generate_fs_loop(gallivm,
2641 shader, key,
2642 builder,
2643 fs_type,
2644 context_ptr,
2645 num_loop,
2646 &interp,
2647 sampler,
2648 mask_store, /* output */
2649 color_store,
2650 depth_ptr,
2651 depth_stride,
2652 facing,
2653 thread_data_ptr);
2654
2655 for (i = 0; i < num_fs; i++) {
2656 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2657 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2658 &indexi, 1, "");
2659 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2660 /* This is fucked up need to reorganize things */
2661 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2662 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2663 ptr = LLVMBuildGEP(builder,
2664 color_store[cbuf * !cbuf0_write_all][chan],
2665 &indexi, 1, "");
2666 fs_out_color[cbuf][chan][i] = ptr;
2667 }
2668 }
2669 if (dual_source_blend) {
2670 /* only support one dual source blend target hence always use output 1 */
2671 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2672 ptr = LLVMBuildGEP(builder,
2673 color_store[1][chan],
2674 &indexi, 1, "");
2675 fs_out_color[1][chan][i] = ptr;
2676 }
2677 }
2678 }
2679 }
2680
2681 sampler->destroy(sampler);
2682
2683 /* Loop over color outputs / color buffers to do blending.
2684 */
2685 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2686 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2687 LLVMValueRef color_ptr;
2688 LLVMValueRef stride;
2689 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2690
2691 boolean do_branch = ((key->depth.enabled
2692 || key->stencil[0].enabled
2693 || key->alpha.enabled)
2694 && !shader->info.base.uses_kill);
2695
2696 color_ptr = LLVMBuildLoad(builder,
2697 LLVMBuildGEP(builder, color_ptr_ptr,
2698 &index, 1, ""),
2699 "");
2700
2701 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2702
2703 stride = LLVMBuildLoad(builder,
2704 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2705 "");
2706
2707 generate_unswizzled_blend(gallivm, cbuf, variant,
2708 key->cbuf_format[cbuf],
2709 num_fs, fs_type, fs_mask, fs_out_color,
2710 context_ptr, color_ptr, stride,
2711 partial_mask, do_branch);
2712 }
2713 }
2714
2715 LLVMBuildRetVoid(builder);
2716
2717 gallivm_verify_function(gallivm, function);
2718 }
2719
2720
2721 static void
2722 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2723 {
2724 unsigned i;
2725
2726 debug_printf("fs variant %p:\n", (void *) key);
2727
2728 if (key->flatshade) {
2729 debug_printf("flatshade = 1\n");
2730 }
2731 for (i = 0; i < key->nr_cbufs; ++i) {
2732 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2733 }
2734 if (key->depth.enabled || key->stencil[0].enabled) {
2735 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2736 }
2737 if (key->depth.enabled) {
2738 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2739 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2740 }
2741
2742 for (i = 0; i < 2; ++i) {
2743 if (key->stencil[i].enabled) {
2744 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2745 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2746 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2747 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2748 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2749 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2750 }
2751 }
2752
2753 if (key->alpha.enabled) {
2754 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2755 }
2756
2757 if (key->occlusion_count) {
2758 debug_printf("occlusion_count = 1\n");
2759 }
2760
2761 if (key->blend.logicop_enable) {
2762 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2763 }
2764 else if (key->blend.rt[0].blend_enable) {
2765 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2766 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2767 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2768 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2769 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2770 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2771 }
2772 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2773 if (key->blend.alpha_to_coverage) {
2774 debug_printf("blend.alpha_to_coverage is enabled\n");
2775 }
2776 for (i = 0; i < key->nr_samplers; ++i) {
2777 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2778 debug_printf("sampler[%u] = \n", i);
2779 debug_printf(" .wrap = %s %s %s\n",
2780 util_str_tex_wrap(sampler->wrap_s, TRUE),
2781 util_str_tex_wrap(sampler->wrap_t, TRUE),
2782 util_str_tex_wrap(sampler->wrap_r, TRUE));
2783 debug_printf(" .min_img_filter = %s\n",
2784 util_str_tex_filter(sampler->min_img_filter, TRUE));
2785 debug_printf(" .min_mip_filter = %s\n",
2786 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2787 debug_printf(" .mag_img_filter = %s\n",
2788 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2789 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2790 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2791 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2792 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2793 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2794 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2795 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2796 }
2797 for (i = 0; i < key->nr_sampler_views; ++i) {
2798 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2799 debug_printf("texture[%u] = \n", i);
2800 debug_printf(" .format = %s\n",
2801 util_format_name(texture->format));
2802 debug_printf(" .target = %s\n",
2803 util_str_tex_target(texture->target, TRUE));
2804 debug_printf(" .level_zero_only = %u\n",
2805 texture->level_zero_only);
2806 debug_printf(" .pot = %u %u %u\n",
2807 texture->pot_width,
2808 texture->pot_height,
2809 texture->pot_depth);
2810 }
2811 }
2812
2813
2814 void
2815 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2816 {
2817 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2818 variant->shader->no, variant->no);
2819 tgsi_dump(variant->shader->base.tokens, 0);
2820 dump_fs_variant_key(&variant->key);
2821 debug_printf("variant->opaque = %u\n", variant->opaque);
2822 debug_printf("\n");
2823 }
2824
2825
2826 /**
2827 * Generate a new fragment shader variant from the shader code and
2828 * other state indicated by the key.
2829 */
2830 static struct lp_fragment_shader_variant *
2831 generate_variant(struct llvmpipe_context *lp,
2832 struct lp_fragment_shader *shader,
2833 const struct lp_fragment_shader_variant_key *key)
2834 {
2835 struct lp_fragment_shader_variant *variant;
2836 const struct util_format_description *cbuf0_format_desc = NULL;
2837 boolean fullcolormask;
2838 char module_name[64];
2839
2840 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2841 if (!variant)
2842 return NULL;
2843
2844 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2845 shader->no, shader->variants_created);
2846
2847 variant->gallivm = gallivm_create(module_name, lp->context);
2848 if (!variant->gallivm) {
2849 FREE(variant);
2850 return NULL;
2851 }
2852
2853 variant->shader = shader;
2854 variant->list_item_global.base = variant;
2855 variant->list_item_local.base = variant;
2856 variant->no = shader->variants_created++;
2857
2858 memcpy(&variant->key, key, shader->variant_key_size);
2859
2860 /*
2861 * Determine whether we are touching all channels in the color buffer.
2862 */
2863 fullcolormask = FALSE;
2864 if (key->nr_cbufs == 1) {
2865 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2866 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2867 }
2868
2869 variant->opaque =
2870 !key->blend.logicop_enable &&
2871 !key->blend.rt[0].blend_enable &&
2872 fullcolormask &&
2873 !key->stencil[0].enabled &&
2874 !key->alpha.enabled &&
2875 !key->blend.alpha_to_coverage &&
2876 !key->depth.enabled &&
2877 !shader->info.base.uses_kill &&
2878 !shader->info.base.writes_samplemask
2879 ? TRUE : FALSE;
2880
2881 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2882 lp_debug_fs_variant(variant);
2883 }
2884
2885 lp_jit_init_types(variant);
2886
2887 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2888 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2889
2890 if (variant->jit_function[RAST_WHOLE] == NULL) {
2891 if (variant->opaque) {
2892 /* Specialized shader, which doesn't need to read the color buffer. */
2893 generate_fragment(lp, shader, variant, RAST_WHOLE);
2894 }
2895 }
2896
2897 /*
2898 * Compile everything
2899 */
2900
2901 gallivm_compile_module(variant->gallivm);
2902
2903 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2904
2905 if (variant->function[RAST_EDGE_TEST]) {
2906 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2907 gallivm_jit_function(variant->gallivm,
2908 variant->function[RAST_EDGE_TEST]);
2909 }
2910
2911 if (variant->function[RAST_WHOLE]) {
2912 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2913 gallivm_jit_function(variant->gallivm,
2914 variant->function[RAST_WHOLE]);
2915 } else if (!variant->jit_function[RAST_WHOLE]) {
2916 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2917 }
2918
2919 gallivm_free_ir(variant->gallivm);
2920
2921 return variant;
2922 }
2923
2924
2925 static void *
2926 llvmpipe_create_fs_state(struct pipe_context *pipe,
2927 const struct pipe_shader_state *templ)
2928 {
2929 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2930 struct lp_fragment_shader *shader;
2931 int nr_samplers;
2932 int nr_sampler_views;
2933 int i;
2934
2935 shader = CALLOC_STRUCT(lp_fragment_shader);
2936 if (!shader)
2937 return NULL;
2938
2939 shader->no = fs_no++;
2940 make_empty_list(&shader->variants);
2941
2942 /* get/save the summary info for this shader */
2943 lp_build_tgsi_info(templ->tokens, &shader->info);
2944
2945 /* we need to keep a local copy of the tokens */
2946 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2947
2948 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2949 if (shader->draw_data == NULL) {
2950 FREE((void *) shader->base.tokens);
2951 FREE(shader);
2952 return NULL;
2953 }
2954
2955 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2956 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2957
2958 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2959 state[MAX2(nr_samplers, nr_sampler_views)]);
2960
2961 for (i = 0; i < shader->info.base.num_inputs; i++) {
2962 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2963 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2964
2965 switch (shader->info.base.input_interpolate[i]) {
2966 case TGSI_INTERPOLATE_CONSTANT:
2967 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2968 break;
2969 case TGSI_INTERPOLATE_LINEAR:
2970 shader->inputs[i].interp = LP_INTERP_LINEAR;
2971 break;
2972 case TGSI_INTERPOLATE_PERSPECTIVE:
2973 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2974 break;
2975 case TGSI_INTERPOLATE_COLOR:
2976 shader->inputs[i].interp = LP_INTERP_COLOR;
2977 break;
2978 default:
2979 assert(0);
2980 break;
2981 }
2982
2983 switch (shader->info.base.input_semantic_name[i]) {
2984 case TGSI_SEMANTIC_FACE:
2985 shader->inputs[i].interp = LP_INTERP_FACING;
2986 break;
2987 case TGSI_SEMANTIC_POSITION:
2988 /* Position was already emitted above
2989 */
2990 shader->inputs[i].interp = LP_INTERP_POSITION;
2991 shader->inputs[i].src_index = 0;
2992 continue;
2993 }
2994
2995 /* XXX this is a completely pointless index map... */
2996 shader->inputs[i].src_index = i+1;
2997 }
2998
2999 if (LP_DEBUG & DEBUG_TGSI) {
3000 unsigned attrib;
3001 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3002 shader->no, (void *) shader);
3003 tgsi_dump(templ->tokens, 0);
3004 debug_printf("usage masks:\n");
3005 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3006 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3007 debug_printf(" IN[%u].%s%s%s%s\n",
3008 attrib,
3009 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3010 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3011 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3012 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3013 }
3014 debug_printf("\n");
3015 }
3016
3017 return shader;
3018 }
3019
3020
3021 static void
3022 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3023 {
3024 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3025
3026 if (llvmpipe->fs == fs)
3027 return;
3028
3029 llvmpipe->fs = (struct lp_fragment_shader *) fs;
3030
3031 draw_bind_fragment_shader(llvmpipe->draw,
3032 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
3033
3034 llvmpipe->dirty |= LP_NEW_FS;
3035 }
3036
3037
3038 /**
3039 * Remove shader variant from two lists: the shader's variant list
3040 * and the context's variant list.
3041 */
3042 static void
3043 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3044 struct lp_fragment_shader_variant *variant)
3045 {
3046 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3047 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3048 "v total cached %u inst %u total inst %u\n",
3049 variant->shader->no, variant->no,
3050 variant->shader->variants_created,
3051 variant->shader->variants_cached,
3052 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3053 }
3054
3055 gallivm_destroy(variant->gallivm);
3056
3057 /* remove from shader's list */
3058 remove_from_list(&variant->list_item_local);
3059 variant->shader->variants_cached--;
3060
3061 /* remove from context's list */
3062 remove_from_list(&variant->list_item_global);
3063 lp->nr_fs_variants--;
3064 lp->nr_fs_instrs -= variant->nr_instrs;
3065
3066 FREE(variant);
3067 }
3068
3069
3070 static void
3071 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3072 {
3073 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3074 struct lp_fragment_shader *shader = fs;
3075 struct lp_fs_variant_list_item *li;
3076
3077 assert(fs != llvmpipe->fs);
3078
3079 /*
3080 * XXX: we need to flush the context until we have some sort of reference
3081 * counting in fragment shaders as they may still be binned
3082 * Flushing alone might not sufficient we need to wait on it too.
3083 */
3084 llvmpipe_finish(pipe, __FUNCTION__);
3085
3086 /* Delete all the variants */
3087 li = first_elem(&shader->variants);
3088 while(!at_end(&shader->variants, li)) {
3089 struct lp_fs_variant_list_item *next = next_elem(li);
3090 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3091 li = next;
3092 }
3093
3094 /* Delete draw module's data */
3095 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3096
3097 assert(shader->variants_cached == 0);
3098 FREE((void *) shader->base.tokens);
3099 FREE(shader);
3100 }
3101
3102
3103
3104 static void
3105 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3106 enum pipe_shader_type shader, uint index,
3107 const struct pipe_constant_buffer *cb)
3108 {
3109 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3110 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3111
3112 assert(shader < PIPE_SHADER_TYPES);
3113 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3114
3115 /* note: reference counting */
3116 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3117
3118 if (constants) {
3119 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3120 debug_printf("Illegal set constant without bind flag\n");
3121 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3122 }
3123 }
3124
3125 if (shader == PIPE_SHADER_VERTEX ||
3126 shader == PIPE_SHADER_GEOMETRY) {
3127 /* Pass the constants to the 'draw' module */
3128 const unsigned size = cb ? cb->buffer_size : 0;
3129 const ubyte *data;
3130
3131 if (constants) {
3132 data = (ubyte *) llvmpipe_resource_data(constants);
3133 }
3134 else if (cb && cb->user_buffer) {
3135 data = (ubyte *) cb->user_buffer;
3136 }
3137 else {
3138 data = NULL;
3139 }
3140
3141 if (data)
3142 data += cb->buffer_offset;
3143
3144 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3145 index, data, size);
3146 }
3147 else {
3148 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3149 }
3150
3151 if (cb && cb->user_buffer) {
3152 pipe_resource_reference(&constants, NULL);
3153 }
3154 }
3155
3156 static void
3157 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3158 enum pipe_shader_type shader, unsigned start_slot,
3159 unsigned count, const struct pipe_shader_buffer *buffers,
3160 unsigned writable_bitmask)
3161 {
3162 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3163 unsigned i, idx;
3164 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3165 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3166
3167 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3168
3169 if (shader == PIPE_SHADER_VERTEX ||
3170 shader == PIPE_SHADER_GEOMETRY) {
3171 const unsigned size = buffer ? buffer->buffer_size : 0;
3172 const ubyte *data = NULL;
3173 if (buffer && buffer->buffer)
3174 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3175 if (data)
3176 data += buffer->buffer_offset;
3177 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3178 i, data, size);
3179 } else if (shader == PIPE_SHADER_FRAGMENT) {
3180 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3181 }
3182 }
3183 }
3184
3185 /**
3186 * Return the blend factor equivalent to a destination alpha of one.
3187 */
3188 static inline unsigned
3189 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3190 {
3191 switch(factor) {
3192 case PIPE_BLENDFACTOR_DST_ALPHA:
3193 return PIPE_BLENDFACTOR_ONE;
3194 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3195 return PIPE_BLENDFACTOR_ZERO;
3196 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3197 if (clamped_zero)
3198 return PIPE_BLENDFACTOR_ZERO;
3199 else
3200 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3201 }
3202
3203 return factor;
3204 }
3205
3206
3207 /**
3208 * We need to generate several variants of the fragment pipeline to match
3209 * all the combinations of the contributing state atoms.
3210 *
3211 * TODO: there is actually no reason to tie this to context state -- the
3212 * generated code could be cached globally in the screen.
3213 */
3214 static void
3215 make_variant_key(struct llvmpipe_context *lp,
3216 struct lp_fragment_shader *shader,
3217 struct lp_fragment_shader_variant_key *key)
3218 {
3219 unsigned i;
3220
3221 memset(key, 0, shader->variant_key_size);
3222
3223 if (lp->framebuffer.zsbuf) {
3224 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3225 const struct util_format_description *zsbuf_desc =
3226 util_format_description(zsbuf_format);
3227
3228 if (lp->depth_stencil->depth.enabled &&
3229 util_format_has_depth(zsbuf_desc)) {
3230 key->zsbuf_format = zsbuf_format;
3231 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3232 }
3233 if (lp->depth_stencil->stencil[0].enabled &&
3234 util_format_has_stencil(zsbuf_desc)) {
3235 key->zsbuf_format = zsbuf_format;
3236 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3237 }
3238 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3239 key->resource_1d = TRUE;
3240 }
3241 }
3242
3243 /*
3244 * Propagate the depth clamp setting from the rasterizer state.
3245 * depth_clip == 0 implies depth clamping is enabled.
3246 *
3247 * When clip_halfz is enabled, then always clamp the depth values.
3248 *
3249 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3250 * clamp is always active in d3d10, regardless if depth clip is
3251 * enabled or not).
3252 * (GL has an always-on [0,1] clamp on fs depth output instead
3253 * to ensure the depth values stay in range. Doesn't look like
3254 * we do that, though...)
3255 */
3256 if (lp->rasterizer->clip_halfz) {
3257 key->depth_clamp = 1;
3258 } else {
3259 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3260 }
3261
3262 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3263 if (!lp->framebuffer.nr_cbufs ||
3264 !lp->framebuffer.cbufs[0] ||
3265 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3266 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3267 }
3268 if(key->alpha.enabled)
3269 key->alpha.func = lp->depth_stencil->alpha.func;
3270 /* alpha.ref_value is passed in jit_context */
3271
3272 key->flatshade = lp->rasterizer->flatshade;
3273 if (lp->active_occlusion_queries) {
3274 key->occlusion_count = TRUE;
3275 }
3276
3277 if (lp->framebuffer.nr_cbufs) {
3278 memcpy(&key->blend, lp->blend, sizeof key->blend);
3279 }
3280
3281 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3282
3283 if (!key->blend.independent_blend_enable) {
3284 /* we always need independent blend otherwise the fixups below won't work */
3285 for (i = 1; i < key->nr_cbufs; i++) {
3286 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3287 }
3288 key->blend.independent_blend_enable = 1;
3289 }
3290
3291 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3292 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3293
3294 if (lp->framebuffer.cbufs[i]) {
3295 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3296 const struct util_format_description *format_desc;
3297
3298 key->cbuf_format[i] = format;
3299
3300 /*
3301 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3302 * mixing of 2d textures with height 1 and 1d textures, so make sure
3303 * we pick 1d if any cbuf or zsbuf is 1d.
3304 */
3305 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3306 key->resource_1d = TRUE;
3307 }
3308
3309 format_desc = util_format_description(format);
3310 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3311 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3312
3313 /*
3314 * Mask out color channels not present in the color buffer.
3315 */
3316 blend_rt->colormask &= util_format_colormask(format_desc);
3317
3318 /*
3319 * Disable blend for integer formats.
3320 */
3321 if (util_format_is_pure_integer(format)) {
3322 blend_rt->blend_enable = 0;
3323 }
3324
3325 /*
3326 * Our swizzled render tiles always have an alpha channel, but the
3327 * linear render target format often does not, so force here the dst
3328 * alpha to be one.
3329 *
3330 * This is not a mere optimization. Wrong results will be produced if
3331 * the dst alpha is used, the dst format does not have alpha, and the
3332 * previous rendering was not flushed from the swizzled to linear
3333 * buffer. For example, NonPowTwo DCT.
3334 *
3335 * TODO: This should be generalized to all channels for better
3336 * performance, but only alpha causes correctness issues.
3337 *
3338 * Also, force rgb/alpha func/factors match, to make AoS blending
3339 * easier.
3340 */
3341 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3342 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3343 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3344 boolean clamped_zero = !util_format_is_float(format) &&
3345 !util_format_is_snorm(format);
3346 blend_rt->rgb_src_factor =
3347 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3348 blend_rt->rgb_dst_factor =
3349 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3350 blend_rt->alpha_func = blend_rt->rgb_func;
3351 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3352 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3353 }
3354 }
3355 else {
3356 /* no color buffer for this fragment output */
3357 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3358 blend_rt->colormask = 0x0;
3359 blend_rt->blend_enable = 0;
3360 }
3361 }
3362
3363 /* This value will be the same for all the variants of a given shader:
3364 */
3365 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3366
3367 for(i = 0; i < key->nr_samplers; ++i) {
3368 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3369 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3370 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3371 }
3372 }
3373
3374 /*
3375 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3376 * are dx10-style? Can't really have mixed opcodes, at least not
3377 * if we want to skip the holes here (without rescanning tgsi).
3378 */
3379 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3380 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3381 for(i = 0; i < key->nr_sampler_views; ++i) {
3382 /*
3383 * Note sview may exceed what's representable by file_mask.
3384 * This will still work, the only downside is that not actually
3385 * used views may be included in the shader key.
3386 */
3387 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3388 lp_sampler_static_texture_state(&key->state[i].texture_state,
3389 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3390 }
3391 }
3392 }
3393 else {
3394 key->nr_sampler_views = key->nr_samplers;
3395 for(i = 0; i < key->nr_sampler_views; ++i) {
3396 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3397 lp_sampler_static_texture_state(&key->state[i].texture_state,
3398 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3399 }
3400 }
3401 }
3402 }
3403
3404
3405
3406 /**
3407 * Update fragment shader state. This is called just prior to drawing
3408 * something when some fragment-related state has changed.
3409 */
3410 void
3411 llvmpipe_update_fs(struct llvmpipe_context *lp)
3412 {
3413 struct lp_fragment_shader *shader = lp->fs;
3414 struct lp_fragment_shader_variant_key key;
3415 struct lp_fragment_shader_variant *variant = NULL;
3416 struct lp_fs_variant_list_item *li;
3417
3418 make_variant_key(lp, shader, &key);
3419
3420 /* Search the variants for one which matches the key */
3421 li = first_elem(&shader->variants);
3422 while(!at_end(&shader->variants, li)) {
3423 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3424 variant = li->base;
3425 break;
3426 }
3427 li = next_elem(li);
3428 }
3429
3430 if (variant) {
3431 /* Move this variant to the head of the list to implement LRU
3432 * deletion of shader's when we have too many.
3433 */
3434 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3435 }
3436 else {
3437 /* variant not found, create it now */
3438 int64_t t0, t1, dt;
3439 unsigned i;
3440 unsigned variants_to_cull;
3441
3442 if (LP_DEBUG & DEBUG_FS) {
3443 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3444 lp->nr_fs_variants,
3445 lp->nr_fs_instrs,
3446 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3447 }
3448
3449 /* First, check if we've exceeded the max number of shader variants.
3450 * If so, free 6.25% of them (the least recently used ones).
3451 */
3452 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3453
3454 if (variants_to_cull ||
3455 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3456 struct pipe_context *pipe = &lp->pipe;
3457
3458 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3459 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3460 "\t%u instrs,\t%u instrs/variant\n",
3461 shader->variants_cached,
3462 lp->nr_fs_variants, lp->nr_fs_instrs,
3463 lp->nr_fs_instrs / lp->nr_fs_variants);
3464 }
3465
3466 /*
3467 * XXX: we need to flush the context until we have some sort of
3468 * reference counting in fragment shaders as they may still be binned
3469 * Flushing alone might not be sufficient we need to wait on it too.
3470 */
3471 llvmpipe_finish(pipe, __FUNCTION__);
3472
3473 /*
3474 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3475 * number of shader variants (potentially all of them) could be
3476 * pending for destruction on flush.
3477 */
3478
3479 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3480 struct lp_fs_variant_list_item *item;
3481 if (is_empty_list(&lp->fs_variants_list)) {
3482 break;
3483 }
3484 item = last_elem(&lp->fs_variants_list);
3485 assert(item);
3486 assert(item->base);
3487 llvmpipe_remove_shader_variant(lp, item->base);
3488 }
3489 }
3490
3491 /*
3492 * Generate the new variant.
3493 */
3494 t0 = os_time_get();
3495 variant = generate_variant(lp, shader, &key);
3496 t1 = os_time_get();
3497 dt = t1 - t0;
3498 LP_COUNT_ADD(llvm_compile_time, dt);
3499 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3500
3501 /* Put the new variant into the list */
3502 if (variant) {
3503 insert_at_head(&shader->variants, &variant->list_item_local);
3504 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3505 lp->nr_fs_variants++;
3506 lp->nr_fs_instrs += variant->nr_instrs;
3507 shader->variants_cached++;
3508 }
3509 }
3510
3511 /* Bind this variant */
3512 lp_setup_set_fs_variant(lp->setup, variant);
3513 }
3514
3515
3516
3517
3518
3519 void
3520 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3521 {
3522 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3523 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3524 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3525
3526 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3527
3528 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3529 }
3530
3531