llvmpipe: add cbuf/zsbuf + coverage samples to the fragment shader key.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_nir.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87 #include "gallivm/lp_bld_arit.h"
88 #include "gallivm/lp_bld_bitarit.h"
89 #include "gallivm/lp_bld_pack.h"
90 #include "gallivm/lp_bld_format.h"
91 #include "gallivm/lp_bld_quad.h"
92
93 #include "lp_bld_alpha.h"
94 #include "lp_bld_blend.h"
95 #include "lp_bld_depth.h"
96 #include "lp_bld_interp.h"
97 #include "lp_context.h"
98 #include "lp_debug.h"
99 #include "lp_perf.h"
100 #include "lp_setup.h"
101 #include "lp_state.h"
102 #include "lp_tex_sample.h"
103 #include "lp_flush.h"
104 #include "lp_state_fs.h"
105 #include "lp_rast.h"
106 #include "nir/nir_to_tgsi_info.h"
107
108 /** Fragment shader number (for debugging) */
109 static unsigned fs_no = 0;
110
111
112 /**
113 * Expand the relevant bits of mask_input to a n*4-dword mask for the
114 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
115 * quad mask vector to 0 or ~0.
116 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
117 * quad arguments with fs length 8.
118 *
119 * \param first_quad which quad(s) of the quad group to test, in [0,3]
120 * \param mask_input bitwise mask for the whole 4x4 stamp
121 */
122 static LLVMValueRef
123 generate_quad_mask(struct gallivm_state *gallivm,
124 struct lp_type fs_type,
125 unsigned first_quad,
126 unsigned sample,
127 LLVMValueRef mask_input) /* int64 */
128 {
129 LLVMBuilderRef builder = gallivm->builder;
130 struct lp_type mask_type;
131 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
132 LLVMValueRef bits[16];
133 LLVMValueRef mask, bits_vec;
134 int shift, i;
135
136 /*
137 * XXX: We'll need a different path for 16 x u8
138 */
139 assert(fs_type.width == 32);
140 assert(fs_type.length <= ARRAY_SIZE(bits));
141 mask_type = lp_int_type(fs_type);
142
143 /*
144 * mask_input >>= (quad * 4)
145 */
146 switch (first_quad) {
147 case 0:
148 shift = 0;
149 break;
150 case 1:
151 assert(fs_type.length == 4);
152 shift = 2;
153 break;
154 case 2:
155 shift = 8;
156 break;
157 case 3:
158 assert(fs_type.length == 4);
159 shift = 10;
160 break;
161 default:
162 assert(0);
163 shift = 0;
164 }
165
166 mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
167 mask_input = LLVMBuildTrunc(builder, mask_input,
168 i32t, "");
169 mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
170
171 mask_input = LLVMBuildLShr(builder,
172 mask_input,
173 LLVMConstInt(i32t, shift, 0),
174 "");
175
176 /*
177 * mask = { mask_input & (1 << i), for i in [0,3] }
178 */
179 mask = lp_build_broadcast(gallivm,
180 lp_build_vec_type(gallivm, mask_type),
181 mask_input);
182
183 for (i = 0; i < fs_type.length / 4; i++) {
184 unsigned j = 2 * (i % 2) + (i / 2) * 8;
185 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
186 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
187 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
188 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
189 }
190 bits_vec = LLVMConstVector(bits, fs_type.length);
191 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
192
193 /*
194 * mask = mask == bits ? ~0 : 0
195 */
196 mask = lp_build_compare(gallivm,
197 mask_type, PIPE_FUNC_EQUAL,
198 mask, bits_vec);
199
200 return mask;
201 }
202
203
204 #define EARLY_DEPTH_TEST 0x1
205 #define LATE_DEPTH_TEST 0x2
206 #define EARLY_DEPTH_WRITE 0x4
207 #define LATE_DEPTH_WRITE 0x8
208
209 static int
210 find_output_by_semantic( const struct tgsi_shader_info *info,
211 unsigned semantic,
212 unsigned index )
213 {
214 int i;
215
216 for (i = 0; i < info->num_outputs; i++)
217 if (info->output_semantic_name[i] == semantic &&
218 info->output_semantic_index[i] == index)
219 return i;
220
221 return -1;
222 }
223
224
225 /**
226 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
227 */
228 static LLVMValueRef
229 lp_llvm_viewport(LLVMValueRef context_ptr,
230 struct gallivm_state *gallivm,
231 LLVMValueRef viewport_index)
232 {
233 LLVMBuilderRef builder = gallivm->builder;
234 LLVMValueRef ptr;
235 LLVMValueRef res;
236 struct lp_type viewport_type =
237 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
238
239 ptr = lp_jit_context_viewports(gallivm, context_ptr);
240 ptr = LLVMBuildPointerCast(builder, ptr,
241 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
242
243 res = lp_build_pointer_get(builder, ptr, viewport_index);
244
245 return res;
246 }
247
248
249 static LLVMValueRef
250 lp_build_depth_clamp(struct gallivm_state *gallivm,
251 LLVMBuilderRef builder,
252 struct lp_type type,
253 LLVMValueRef context_ptr,
254 LLVMValueRef thread_data_ptr,
255 LLVMValueRef z)
256 {
257 LLVMValueRef viewport, min_depth, max_depth;
258 LLVMValueRef viewport_index;
259 struct lp_build_context f32_bld;
260
261 assert(type.floating);
262 lp_build_context_init(&f32_bld, gallivm, type);
263
264 /*
265 * Assumes clamping of the viewport index will occur in setup/gs. Value
266 * is passed through the rasterization stage via lp_rast_shader_inputs.
267 *
268 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
269 * semantics.
270 */
271 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
272 thread_data_ptr);
273
274 /*
275 * Load the min and max depth from the lp_jit_context.viewports
276 * array of lp_jit_viewport structures.
277 */
278 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
279
280 /* viewports[viewport_index].min_depth */
281 min_depth = LLVMBuildExtractElement(builder, viewport,
282 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
283 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
284
285 /* viewports[viewport_index].max_depth */
286 max_depth = LLVMBuildExtractElement(builder, viewport,
287 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
288 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
289
290 /*
291 * Clamp to the min and max depth values for the given viewport.
292 */
293 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
294 }
295
296
297 /**
298 * Generate the fragment shader, depth/stencil test, and alpha tests.
299 */
300 static void
301 generate_fs_loop(struct gallivm_state *gallivm,
302 struct lp_fragment_shader *shader,
303 const struct lp_fragment_shader_variant_key *key,
304 LLVMBuilderRef builder,
305 struct lp_type type,
306 LLVMValueRef context_ptr,
307 LLVMValueRef num_loop,
308 struct lp_build_interp_soa_context *interp,
309 const struct lp_build_sampler_soa *sampler,
310 const struct lp_build_image_soa *image,
311 LLVMValueRef mask_store,
312 LLVMValueRef (*out_color)[4],
313 LLVMValueRef depth_ptr,
314 LLVMValueRef depth_stride,
315 LLVMValueRef facing,
316 LLVMValueRef thread_data_ptr)
317 {
318 const struct util_format_description *zs_format_desc = NULL;
319 const struct tgsi_token *tokens = shader->base.tokens;
320 struct lp_type int_type = lp_int_type(type);
321 LLVMTypeRef vec_type, int_vec_type;
322 LLVMValueRef mask_ptr, mask_val;
323 LLVMValueRef consts_ptr, num_consts_ptr;
324 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
325 LLVMValueRef z;
326 LLVMValueRef z_value, s_value;
327 LLVMValueRef z_fb, s_fb;
328 LLVMValueRef stencil_refs[2];
329 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
330 struct lp_build_for_loop_state loop_state;
331 struct lp_build_mask_context mask;
332 /*
333 * TODO: figure out if simple_shader optimization is really worthwile to
334 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
335 * code since tests tend to take another codepath than real shaders.
336 */
337 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
338 shader->info.base.num_inputs < 3 &&
339 shader->info.base.num_instructions < 8) && 0;
340 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
341 util_blend_state_is_dual(&key->blend, 0);
342 unsigned attrib;
343 unsigned chan;
344 unsigned cbuf;
345 unsigned depth_mode;
346
347 struct lp_bld_tgsi_system_values system_values;
348
349 memset(&system_values, 0, sizeof(system_values));
350
351 /* truncate then sign extend. */
352 system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
353 system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
354
355 if (key->depth.enabled ||
356 key->stencil[0].enabled) {
357
358 zs_format_desc = util_format_description(key->zsbuf_format);
359 assert(zs_format_desc);
360
361 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
362 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
363 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
364 if (shader->info.base.writes_memory)
365 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
366 else if (key->alpha.enabled ||
367 key->blend.alpha_to_coverage ||
368 shader->info.base.uses_kill ||
369 shader->info.base.writes_samplemask) {
370 /* With alpha test and kill, can do the depth test early
371 * and hopefully eliminate some quads. But need to do a
372 * special deferred depth write once the final mask value
373 * is known. This only works though if there's either no
374 * stencil test or the stencil value isn't written.
375 */
376 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
377 (key->stencil[1].enabled &&
378 key->stencil[1].writemask)))
379 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
380 else
381 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
382 }
383 else
384 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
385 }
386 else {
387 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
388 }
389
390 if (!(key->depth.enabled && key->depth.writemask) &&
391 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
392 (key->stencil[1].enabled &&
393 key->stencil[1].writemask))))
394 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
395 }
396 else {
397 depth_mode = 0;
398 }
399
400 vec_type = lp_build_vec_type(gallivm, type);
401 int_vec_type = lp_build_vec_type(gallivm, int_type);
402
403 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
404 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
405 /* convert scalar stencil refs into vectors */
406 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
407 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
408
409 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
410 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
411
412 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
413 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
414
415 lp_build_for_loop_begin(&loop_state, gallivm,
416 lp_build_const_int32(gallivm, 0),
417 LLVMIntULT,
418 num_loop,
419 lp_build_const_int32(gallivm, 1));
420
421 mask_ptr = LLVMBuildGEP(builder, mask_store,
422 &loop_state.counter, 1, "mask_ptr");
423 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
424
425 memset(outputs, 0, sizeof outputs);
426
427 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
428 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
429 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
430 lp_build_vec_type(gallivm,
431 type),
432 num_loop, "color");
433 }
434 }
435 if (dual_source_blend) {
436 assert(key->nr_cbufs <= 1);
437 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
438 out_color[1][chan] = lp_build_array_alloca(gallivm,
439 lp_build_vec_type(gallivm,
440 type),
441 num_loop, "color1");
442 }
443 }
444
445
446 /* 'mask' will control execution based on quad's pixel alive/killed state */
447 lp_build_mask_begin(&mask, gallivm, type, mask_val);
448
449 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
450 lp_build_mask_check(&mask);
451
452 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
453 z = interp->pos[2];
454
455 if (depth_mode & EARLY_DEPTH_TEST) {
456 /*
457 * Clamp according to ARB_depth_clamp semantics.
458 */
459 if (key->depth_clamp) {
460 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
461 thread_data_ptr, z);
462 }
463 lp_build_depth_stencil_load_swizzled(gallivm, type,
464 zs_format_desc, key->resource_1d,
465 depth_ptr, depth_stride,
466 &z_fb, &s_fb, loop_state.counter);
467 lp_build_depth_stencil_test(gallivm,
468 &key->depth,
469 key->stencil,
470 type,
471 zs_format_desc,
472 &mask,
473 stencil_refs,
474 z, z_fb, s_fb,
475 facing,
476 &z_value, &s_value,
477 !simple_shader);
478
479 if (depth_mode & EARLY_DEPTH_WRITE) {
480 lp_build_depth_stencil_write_swizzled(gallivm, type,
481 zs_format_desc, key->resource_1d,
482 NULL, NULL, NULL, loop_state.counter,
483 depth_ptr, depth_stride,
484 z_value, s_value);
485 }
486 /*
487 * Note mask check if stencil is enabled must be after ds write not after
488 * stencil test otherwise new stencil values may not get written if all
489 * fragments got killed by depth/stencil test.
490 */
491 if (!simple_shader && key->stencil[0].enabled)
492 lp_build_mask_check(&mask);
493 }
494
495 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
496
497 struct lp_build_tgsi_params params;
498 memset(&params, 0, sizeof(params));
499
500 params.type = type;
501 params.mask = &mask;
502 params.consts_ptr = consts_ptr;
503 params.const_sizes_ptr = num_consts_ptr;
504 params.system_values = &system_values;
505 params.inputs = interp->inputs;
506 params.context_ptr = context_ptr;
507 params.thread_data_ptr = thread_data_ptr;
508 params.sampler = sampler;
509 params.info = &shader->info.base;
510 params.ssbo_ptr = ssbo_ptr;
511 params.ssbo_sizes_ptr = num_ssbo_ptr;
512 params.image = image;
513
514 /* Build the actual shader */
515 if (shader->base.type == PIPE_SHADER_IR_TGSI)
516 lp_build_tgsi_soa(gallivm, tokens, &params,
517 outputs);
518 else
519 lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
520 outputs);
521
522 /* Alpha test */
523 if (key->alpha.enabled) {
524 int color0 = find_output_by_semantic(&shader->info.base,
525 TGSI_SEMANTIC_COLOR,
526 0);
527
528 if (color0 != -1 && outputs[color0][3]) {
529 const struct util_format_description *cbuf_format_desc;
530 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
531 LLVMValueRef alpha_ref_value;
532
533 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
534 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
535
536 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
537
538 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
539 &mask, alpha, alpha_ref_value,
540 (depth_mode & LATE_DEPTH_TEST) != 0);
541 }
542 }
543
544 /* Emulate Alpha to Coverage with Alpha test */
545 if (key->blend.alpha_to_coverage) {
546 int color0 = find_output_by_semantic(&shader->info.base,
547 TGSI_SEMANTIC_COLOR,
548 0);
549
550 if (color0 != -1 && outputs[color0][3]) {
551 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
552
553 lp_build_alpha_to_coverage(gallivm, type,
554 &mask, alpha,
555 (depth_mode & LATE_DEPTH_TEST) != 0);
556 }
557 }
558
559 if (shader->info.base.writes_samplemask) {
560 int smaski = find_output_by_semantic(&shader->info.base,
561 TGSI_SEMANTIC_SAMPLEMASK,
562 0);
563 LLVMValueRef smask;
564 struct lp_build_context smask_bld;
565 lp_build_context_init(&smask_bld, gallivm, int_type);
566
567 assert(smaski >= 0);
568 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
569 /*
570 * Pixel is alive according to the first sample in the mask.
571 */
572 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
573 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
574 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
575 lp_build_mask_update(&mask, smask);
576 }
577
578 /* Late Z test */
579 if (depth_mode & LATE_DEPTH_TEST) {
580 int pos0 = find_output_by_semantic(&shader->info.base,
581 TGSI_SEMANTIC_POSITION,
582 0);
583 int s_out = find_output_by_semantic(&shader->info.base,
584 TGSI_SEMANTIC_STENCIL,
585 0);
586 if (pos0 != -1 && outputs[pos0][2]) {
587 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
588 }
589 /*
590 * Clamp according to ARB_depth_clamp semantics.
591 */
592 if (key->depth_clamp) {
593 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
594 thread_data_ptr, z);
595 }
596
597 if (s_out != -1 && outputs[s_out][1]) {
598 /* there's only one value, and spec says to discard additional bits */
599 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
600 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
601 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
602 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
603 stencil_refs[1] = stencil_refs[0];
604 }
605
606 lp_build_depth_stencil_load_swizzled(gallivm, type,
607 zs_format_desc, key->resource_1d,
608 depth_ptr, depth_stride,
609 &z_fb, &s_fb, loop_state.counter);
610
611 lp_build_depth_stencil_test(gallivm,
612 &key->depth,
613 key->stencil,
614 type,
615 zs_format_desc,
616 &mask,
617 stencil_refs,
618 z, z_fb, s_fb,
619 facing,
620 &z_value, &s_value,
621 !simple_shader);
622 /* Late Z write */
623 if (depth_mode & LATE_DEPTH_WRITE) {
624 lp_build_depth_stencil_write_swizzled(gallivm, type,
625 zs_format_desc, key->resource_1d,
626 NULL, NULL, NULL, loop_state.counter,
627 depth_ptr, depth_stride,
628 z_value, s_value);
629 }
630 }
631 else if ((depth_mode & EARLY_DEPTH_TEST) &&
632 (depth_mode & LATE_DEPTH_WRITE))
633 {
634 /* Need to apply a reduced mask to the depth write. Reload the
635 * depth value, update from zs_value with the new mask value and
636 * write that out.
637 */
638 lp_build_depth_stencil_write_swizzled(gallivm, type,
639 zs_format_desc, key->resource_1d,
640 &mask, z_fb, s_fb, loop_state.counter,
641 depth_ptr, depth_stride,
642 z_value, s_value);
643 }
644
645
646 /* Color write */
647 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
648 {
649 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
650 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
651 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
652 {
653 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
654 if(outputs[attrib][chan]) {
655 /* XXX: just initialize outputs to point at colors[] and
656 * skip this.
657 */
658 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
659 LLVMValueRef color_ptr;
660 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
661 &loop_state.counter, 1, "");
662 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
663 LLVMBuildStore(builder, out, color_ptr);
664 }
665 }
666 }
667 }
668
669 if (key->occlusion_count) {
670 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
671 lp_build_name(counter, "counter");
672 lp_build_occlusion_count(gallivm, type,
673 lp_build_mask_value(&mask), counter);
674 }
675
676 mask_val = lp_build_mask_end(&mask);
677 LLVMBuildStore(builder, mask_val, mask_ptr);
678 lp_build_for_loop_end(&loop_state);
679 }
680
681
682 /**
683 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
684 *
685 * Fragment Shader outputs pixels in small 2x2 blocks
686 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
687 *
688 * However in memory pixels are stored in rows
689 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
690 *
691 * @param type fragment shader type (4x or 8x float)
692 * @param num_fs number of fs_src
693 * @param is_1d whether we're outputting to a 1d resource
694 * @param dst_channels number of output channels
695 * @param fs_src output from fragment shader
696 * @param dst pointer to store result
697 * @param pad_inline is channel padding inline or at end of row
698 * @return the number of dsts
699 */
700 static int
701 generate_fs_twiddle(struct gallivm_state *gallivm,
702 struct lp_type type,
703 unsigned num_fs,
704 unsigned dst_channels,
705 LLVMValueRef fs_src[][4],
706 LLVMValueRef* dst,
707 bool pad_inline)
708 {
709 LLVMValueRef src[16];
710
711 bool swizzle_pad;
712 bool twiddle;
713 bool split;
714
715 unsigned pixels = type.length / 4;
716 unsigned reorder_group;
717 unsigned src_channels;
718 unsigned src_count;
719 unsigned i;
720
721 src_channels = dst_channels < 3 ? dst_channels : 4;
722 src_count = num_fs * src_channels;
723
724 assert(pixels == 2 || pixels == 1);
725 assert(num_fs * src_channels <= ARRAY_SIZE(src));
726
727 /*
728 * Transpose from SoA -> AoS
729 */
730 for (i = 0; i < num_fs; ++i) {
731 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
732 }
733
734 /*
735 * Pick transformation options
736 */
737 swizzle_pad = false;
738 twiddle = false;
739 split = false;
740 reorder_group = 0;
741
742 if (dst_channels == 1) {
743 twiddle = true;
744
745 if (pixels == 2) {
746 split = true;
747 }
748 } else if (dst_channels == 2) {
749 if (pixels == 1) {
750 reorder_group = 1;
751 }
752 } else if (dst_channels > 2) {
753 if (pixels == 1) {
754 reorder_group = 2;
755 } else {
756 twiddle = true;
757 }
758
759 if (!pad_inline && dst_channels == 3 && pixels > 1) {
760 swizzle_pad = true;
761 }
762 }
763
764 /*
765 * Split the src in half
766 */
767 if (split) {
768 for (i = num_fs; i > 0; --i) {
769 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
770 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
771 }
772
773 src_count *= 2;
774 type.length = 4;
775 }
776
777 /*
778 * Ensure pixels are in memory order
779 */
780 if (reorder_group) {
781 /* Twiddle pixels by reordering the array, e.g.:
782 *
783 * src_count = 8 -> 0 2 1 3 4 6 5 7
784 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
785 */
786 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
787
788 for (i = 0; i < src_count; ++i) {
789 unsigned group = i / reorder_group;
790 unsigned block = (group / 4) * 4 * reorder_group;
791 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
792 dst[i] = src[j];
793 }
794 } else if (twiddle) {
795 /* Twiddle pixels across elements of array */
796 /*
797 * XXX: we should avoid this in some cases, but would need to tell
798 * lp_build_conv to reorder (or deal with it ourselves).
799 */
800 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
801 } else {
802 /* Do nothing */
803 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
804 }
805
806 /*
807 * Moves any padding between pixels to the end
808 * e.g. RGBXRGBX -> RGBRGBXX
809 */
810 if (swizzle_pad) {
811 unsigned char swizzles[16];
812 unsigned elems = pixels * dst_channels;
813
814 for (i = 0; i < type.length; ++i) {
815 if (i < elems)
816 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
817 else
818 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
819 }
820
821 for (i = 0; i < src_count; ++i) {
822 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
823 }
824 }
825
826 return src_count;
827 }
828
829
830 /*
831 * Untwiddle and transpose, much like the above.
832 * However, this is after conversion, so we get packed vectors.
833 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
834 * the vectors will look like:
835 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
836 * be swizzled here). Extending to 16bit should be trivial.
837 * Should also be extended to handle twice wide vectors with AVX2...
838 */
839 static void
840 fs_twiddle_transpose(struct gallivm_state *gallivm,
841 struct lp_type type,
842 LLVMValueRef *src,
843 unsigned src_count,
844 LLVMValueRef *dst)
845 {
846 unsigned i, j;
847 struct lp_type type64, type16, type32;
848 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
849 LLVMBuilderRef builder = gallivm->builder;
850 LLVMValueRef tmp[4], shuf[8];
851 for (j = 0; j < 2; j++) {
852 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
853 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
854 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
855 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
856 }
857
858 assert(src_count == 4 || src_count == 2 || src_count == 1);
859 assert(type.width == 8);
860 assert(type.length == 16);
861
862 type8_t = lp_build_vec_type(gallivm, type);
863
864 type64 = type;
865 type64.length /= 8;
866 type64.width *= 8;
867 type64_t = lp_build_vec_type(gallivm, type64);
868
869 type16 = type;
870 type16.length /= 2;
871 type16.width *= 2;
872 type16_t = lp_build_vec_type(gallivm, type16);
873
874 type32 = type;
875 type32.length /= 4;
876 type32.width *= 4;
877 type32_t = lp_build_vec_type(gallivm, type32);
878
879 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
880
881 if (src_count == 1) {
882 /* transpose was no-op, just untwiddle */
883 LLVMValueRef shuf_vec;
884 shuf_vec = LLVMConstVector(shuf, 8);
885 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
886 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
887 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
888 } else if (src_count == 2) {
889 LLVMValueRef shuf_vec;
890 shuf_vec = LLVMConstVector(shuf, 4);
891
892 for (i = 0; i < 2; i++) {
893 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
894 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
895 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
896 }
897 } else {
898 for (j = 0; j < 2; j++) {
899 LLVMValueRef lo, hi, lo2, hi2;
900 /*
901 * Note that if we only really have 3 valid channels (rgb)
902 * and we don't need alpha we could substitute a undef here
903 * for the respective channel (causing llvm to drop conversion
904 * for alpha).
905 */
906 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
907 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
908 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
909 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
910 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
911 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
912 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
913 }
914 }
915 }
916
917
918 /**
919 * Load an unswizzled block of pixels from memory
920 */
921 static void
922 load_unswizzled_block(struct gallivm_state *gallivm,
923 LLVMValueRef base_ptr,
924 LLVMValueRef stride,
925 unsigned block_width,
926 unsigned block_height,
927 LLVMValueRef* dst,
928 struct lp_type dst_type,
929 unsigned dst_count,
930 unsigned dst_alignment)
931 {
932 LLVMBuilderRef builder = gallivm->builder;
933 unsigned row_size = dst_count / block_height;
934 unsigned i;
935
936 /* Ensure block exactly fits into dst */
937 assert((block_width * block_height) % dst_count == 0);
938
939 for (i = 0; i < dst_count; ++i) {
940 unsigned x = i % row_size;
941 unsigned y = i / row_size;
942
943 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
944 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
945
946 LLVMValueRef gep[2];
947 LLVMValueRef dst_ptr;
948
949 gep[0] = lp_build_const_int32(gallivm, 0);
950 gep[1] = LLVMBuildAdd(builder, bx, by, "");
951
952 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
953 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
954 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
955
956 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
957
958 LLVMSetAlignment(dst[i], dst_alignment);
959 }
960 }
961
962
963 /**
964 * Store an unswizzled block of pixels to memory
965 */
966 static void
967 store_unswizzled_block(struct gallivm_state *gallivm,
968 LLVMValueRef base_ptr,
969 LLVMValueRef stride,
970 unsigned block_width,
971 unsigned block_height,
972 LLVMValueRef* src,
973 struct lp_type src_type,
974 unsigned src_count,
975 unsigned src_alignment)
976 {
977 LLVMBuilderRef builder = gallivm->builder;
978 unsigned row_size = src_count / block_height;
979 unsigned i;
980
981 /* Ensure src exactly fits into block */
982 assert((block_width * block_height) % src_count == 0);
983
984 for (i = 0; i < src_count; ++i) {
985 unsigned x = i % row_size;
986 unsigned y = i / row_size;
987
988 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
989 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
990
991 LLVMValueRef gep[2];
992 LLVMValueRef src_ptr;
993
994 gep[0] = lp_build_const_int32(gallivm, 0);
995 gep[1] = LLVMBuildAdd(builder, bx, by, "");
996
997 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
998 src_ptr = LLVMBuildBitCast(builder, src_ptr,
999 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1000
1001 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1002
1003 LLVMSetAlignment(src_ptr, src_alignment);
1004 }
1005 }
1006
1007
1008 /**
1009 * Checks if a format description is an arithmetic format
1010 *
1011 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
1012 */
1013 static inline boolean
1014 is_arithmetic_format(const struct util_format_description *format_desc)
1015 {
1016 boolean arith = false;
1017 unsigned i;
1018
1019 for (i = 0; i < format_desc->nr_channels; ++i) {
1020 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1021 arith |= (format_desc->channel[i].size % 8) != 0;
1022 }
1023
1024 return arith;
1025 }
1026
1027
1028 /**
1029 * Checks if this format requires special handling due to required expansion
1030 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1031 * SoA conversion.
1032 */
1033 static inline boolean
1034 format_expands_to_float_soa(const struct util_format_description *format_desc)
1035 {
1036 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1037 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1038 return true;
1039 }
1040 return false;
1041 }
1042
1043
1044 /**
1045 * Retrieves the type representing the memory layout for a format
1046 *
1047 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1048 */
1049 static inline void
1050 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1051 struct lp_type* type)
1052 {
1053 unsigned i;
1054 unsigned chan;
1055
1056 if (format_expands_to_float_soa(format_desc)) {
1057 /* just make this a uint with width of block */
1058 type->floating = false;
1059 type->fixed = false;
1060 type->sign = false;
1061 type->norm = false;
1062 type->width = format_desc->block.bits;
1063 type->length = 1;
1064 return;
1065 }
1066
1067 for (i = 0; i < 4; i++)
1068 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1069 break;
1070 chan = i;
1071
1072 memset(type, 0, sizeof(struct lp_type));
1073 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1074 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1075 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1076 type->norm = format_desc->channel[chan].normalized;
1077
1078 if (is_arithmetic_format(format_desc)) {
1079 type->width = 0;
1080 type->length = 1;
1081
1082 for (i = 0; i < format_desc->nr_channels; ++i) {
1083 type->width += format_desc->channel[i].size;
1084 }
1085 } else {
1086 type->width = format_desc->channel[chan].size;
1087 type->length = format_desc->nr_channels;
1088 }
1089 }
1090
1091
1092 /**
1093 * Retrieves the type for a format which is usable in the blending code.
1094 *
1095 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1096 */
1097 static inline void
1098 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1099 struct lp_type* type)
1100 {
1101 unsigned i;
1102 unsigned chan;
1103
1104 if (format_expands_to_float_soa(format_desc)) {
1105 /* always use ordinary floats for blending */
1106 type->floating = true;
1107 type->fixed = false;
1108 type->sign = true;
1109 type->norm = false;
1110 type->width = 32;
1111 type->length = 4;
1112 return;
1113 }
1114
1115 for (i = 0; i < 4; i++)
1116 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1117 break;
1118 chan = i;
1119
1120 memset(type, 0, sizeof(struct lp_type));
1121 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1122 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1123 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1124 type->norm = format_desc->channel[chan].normalized;
1125 type->width = format_desc->channel[chan].size;
1126 type->length = format_desc->nr_channels;
1127
1128 for (i = 1; i < format_desc->nr_channels; ++i) {
1129 if (format_desc->channel[i].size > type->width)
1130 type->width = format_desc->channel[i].size;
1131 }
1132
1133 if (type->floating) {
1134 type->width = 32;
1135 } else {
1136 if (type->width <= 8) {
1137 type->width = 8;
1138 } else if (type->width <= 16) {
1139 type->width = 16;
1140 } else {
1141 type->width = 32;
1142 }
1143 }
1144
1145 if (is_arithmetic_format(format_desc) && type->length == 3) {
1146 type->length = 4;
1147 }
1148 }
1149
1150
1151 /**
1152 * Scale a normalized value from src_bits to dst_bits.
1153 *
1154 * The exact calculation is
1155 *
1156 * dst = iround(src * dst_mask / src_mask)
1157 *
1158 * or with integer rounding
1159 *
1160 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1161 *
1162 * where
1163 *
1164 * src_mask = (1 << src_bits) - 1
1165 * dst_mask = (1 << dst_bits) - 1
1166 *
1167 * but we try to avoid division and multiplication through shifts.
1168 */
1169 static inline LLVMValueRef
1170 scale_bits(struct gallivm_state *gallivm,
1171 int src_bits,
1172 int dst_bits,
1173 LLVMValueRef src,
1174 struct lp_type src_type)
1175 {
1176 LLVMBuilderRef builder = gallivm->builder;
1177 LLVMValueRef result = src;
1178
1179 if (dst_bits < src_bits) {
1180 int delta_bits = src_bits - dst_bits;
1181
1182 if (delta_bits <= dst_bits) {
1183 /*
1184 * Approximate the rescaling with a single shift.
1185 *
1186 * This gives the wrong rounding.
1187 */
1188
1189 result = LLVMBuildLShr(builder,
1190 src,
1191 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1192 "");
1193
1194 } else {
1195 /*
1196 * Try more accurate rescaling.
1197 */
1198
1199 /*
1200 * Drop the least significant bits to make space for the multiplication.
1201 *
1202 * XXX: A better approach would be to use a wider integer type as intermediate. But
1203 * this is enough to convert alpha from 16bits -> 2 when rendering to
1204 * PIPE_FORMAT_R10G10B10A2_UNORM.
1205 */
1206 result = LLVMBuildLShr(builder,
1207 src,
1208 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1209 "");
1210
1211
1212 result = LLVMBuildMul(builder,
1213 result,
1214 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1215 "");
1216
1217 /*
1218 * Add a rounding term before the division.
1219 *
1220 * TODO: Handle signed integers too.
1221 */
1222 if (!src_type.sign) {
1223 result = LLVMBuildAdd(builder,
1224 result,
1225 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1226 "");
1227 }
1228
1229 /*
1230 * Approximate the division by src_mask with a src_bits shift.
1231 *
1232 * Given the src has already been shifted by dst_bits, all we need
1233 * to do is to shift by the difference.
1234 */
1235
1236 result = LLVMBuildLShr(builder,
1237 result,
1238 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1239 "");
1240 }
1241
1242 } else if (dst_bits > src_bits) {
1243 /* Scale up bits */
1244 int db = dst_bits - src_bits;
1245
1246 /* Shift left by difference in bits */
1247 result = LLVMBuildShl(builder,
1248 src,
1249 lp_build_const_int_vec(gallivm, src_type, db),
1250 "");
1251
1252 if (db <= src_bits) {
1253 /* Enough bits in src to fill the remainder */
1254 LLVMValueRef lower = LLVMBuildLShr(builder,
1255 src,
1256 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1257 "");
1258
1259 result = LLVMBuildOr(builder, result, lower, "");
1260 } else if (db > src_bits) {
1261 /* Need to repeatedly copy src bits to fill remainder in dst */
1262 unsigned n;
1263
1264 for (n = src_bits; n < dst_bits; n *= 2) {
1265 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1266
1267 result = LLVMBuildOr(builder,
1268 result,
1269 LLVMBuildLShr(builder, result, shuv, ""),
1270 "");
1271 }
1272 }
1273 }
1274
1275 return result;
1276 }
1277
1278 /**
1279 * If RT is a smallfloat (needing denorms) format
1280 */
1281 static inline int
1282 have_smallfloat_format(struct lp_type dst_type,
1283 enum pipe_format format)
1284 {
1285 return ((dst_type.floating && dst_type.width != 32) ||
1286 /* due to format handling hacks this format doesn't have floating set
1287 * here (and actually has width set to 32 too) so special case this. */
1288 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1289 }
1290
1291
1292 /**
1293 * Convert from memory format to blending format
1294 *
1295 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1296 */
1297 static void
1298 convert_to_blend_type(struct gallivm_state *gallivm,
1299 unsigned block_size,
1300 const struct util_format_description *src_fmt,
1301 struct lp_type src_type,
1302 struct lp_type dst_type,
1303 LLVMValueRef* src, // and dst
1304 unsigned num_srcs)
1305 {
1306 LLVMValueRef *dst = src;
1307 LLVMBuilderRef builder = gallivm->builder;
1308 struct lp_type blend_type;
1309 struct lp_type mem_type;
1310 unsigned i, j;
1311 unsigned pixels = block_size / num_srcs;
1312 bool is_arith;
1313
1314 /*
1315 * full custom path for packed floats and srgb formats - none of the later
1316 * functions would do anything useful, and given the lp_type representation they
1317 * can't be fixed. Should really have some SoA blend path for these kind of
1318 * formats rather than hacking them in here.
1319 */
1320 if (format_expands_to_float_soa(src_fmt)) {
1321 LLVMValueRef tmpsrc[4];
1322 /*
1323 * This is pretty suboptimal for this case blending in SoA would be much
1324 * better, since conversion gets us SoA values so need to convert back.
1325 */
1326 assert(src_type.width == 32 || src_type.width == 16);
1327 assert(dst_type.floating);
1328 assert(dst_type.width == 32);
1329 assert(dst_type.length % 4 == 0);
1330 assert(num_srcs % 4 == 0);
1331
1332 if (src_type.width == 16) {
1333 /* expand 4x16bit values to 4x32bit */
1334 struct lp_type type32x4 = src_type;
1335 LLVMTypeRef ltype32x4;
1336 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1337 type32x4.width = 32;
1338 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1339 for (i = 0; i < num_fetch; i++) {
1340 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1341 }
1342 src_type.width = 32;
1343 }
1344 for (i = 0; i < 4; i++) {
1345 tmpsrc[i] = src[i];
1346 }
1347 for (i = 0; i < num_srcs / 4; i++) {
1348 LLVMValueRef tmpsoa[4];
1349 LLVMValueRef tmps = tmpsrc[i];
1350 if (dst_type.length == 8) {
1351 LLVMValueRef shuffles[8];
1352 unsigned j;
1353 /* fetch was 4 values but need 8-wide output values */
1354 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1355 /*
1356 * for 8-wide aos transpose would give us wrong order not matching
1357 * incoming converted fs values and mask. ARGH.
1358 */
1359 for (j = 0; j < 4; j++) {
1360 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1361 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1362 }
1363 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1364 LLVMConstVector(shuffles, 8), "");
1365 }
1366 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1367 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1368 }
1369 else {
1370 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1371 }
1372 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1373 }
1374 return;
1375 }
1376
1377 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1378 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1379
1380 /* Is the format arithmetic */
1381 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1382 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1383
1384 /* Pad if necessary */
1385 if (!is_arith && src_type.length < dst_type.length) {
1386 for (i = 0; i < num_srcs; ++i) {
1387 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1388 }
1389
1390 src_type.length = dst_type.length;
1391 }
1392
1393 /* Special case for half-floats */
1394 if (mem_type.width == 16 && mem_type.floating) {
1395 assert(blend_type.width == 32 && blend_type.floating);
1396 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1397 is_arith = false;
1398 }
1399
1400 if (!is_arith) {
1401 return;
1402 }
1403
1404 src_type.width = blend_type.width * blend_type.length;
1405 blend_type.length *= pixels;
1406 src_type.length *= pixels / (src_type.length / mem_type.length);
1407
1408 for (i = 0; i < num_srcs; ++i) {
1409 LLVMValueRef chans[4];
1410 LLVMValueRef res = NULL;
1411
1412 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1413
1414 for (j = 0; j < src_fmt->nr_channels; ++j) {
1415 unsigned mask = 0;
1416 unsigned sa = src_fmt->channel[j].shift;
1417 #if UTIL_ARCH_LITTLE_ENDIAN
1418 unsigned from_lsb = j;
1419 #else
1420 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1421 #endif
1422
1423 mask = (1 << src_fmt->channel[j].size) - 1;
1424
1425 /* Extract bits from source */
1426 chans[j] = LLVMBuildLShr(builder,
1427 dst[i],
1428 lp_build_const_int_vec(gallivm, src_type, sa),
1429 "");
1430
1431 chans[j] = LLVMBuildAnd(builder,
1432 chans[j],
1433 lp_build_const_int_vec(gallivm, src_type, mask),
1434 "");
1435
1436 /* Scale bits */
1437 if (src_type.norm) {
1438 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1439 blend_type.width, chans[j], src_type);
1440 }
1441
1442 /* Insert bits into correct position */
1443 chans[j] = LLVMBuildShl(builder,
1444 chans[j],
1445 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1446 "");
1447
1448 if (j == 0) {
1449 res = chans[j];
1450 } else {
1451 res = LLVMBuildOr(builder, res, chans[j], "");
1452 }
1453 }
1454
1455 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1456 }
1457 }
1458
1459
1460 /**
1461 * Convert from blending format to memory format
1462 *
1463 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1464 */
1465 static void
1466 convert_from_blend_type(struct gallivm_state *gallivm,
1467 unsigned block_size,
1468 const struct util_format_description *src_fmt,
1469 struct lp_type src_type,
1470 struct lp_type dst_type,
1471 LLVMValueRef* src, // and dst
1472 unsigned num_srcs)
1473 {
1474 LLVMValueRef* dst = src;
1475 unsigned i, j, k;
1476 struct lp_type mem_type;
1477 struct lp_type blend_type;
1478 LLVMBuilderRef builder = gallivm->builder;
1479 unsigned pixels = block_size / num_srcs;
1480 bool is_arith;
1481
1482 /*
1483 * full custom path for packed floats and srgb formats - none of the later
1484 * functions would do anything useful, and given the lp_type representation they
1485 * can't be fixed. Should really have some SoA blend path for these kind of
1486 * formats rather than hacking them in here.
1487 */
1488 if (format_expands_to_float_soa(src_fmt)) {
1489 /*
1490 * This is pretty suboptimal for this case blending in SoA would be much
1491 * better - we need to transpose the AoS values back to SoA values for
1492 * conversion/packing.
1493 */
1494 assert(src_type.floating);
1495 assert(src_type.width == 32);
1496 assert(src_type.length % 4 == 0);
1497 assert(dst_type.width == 32 || dst_type.width == 16);
1498
1499 for (i = 0; i < num_srcs / 4; i++) {
1500 LLVMValueRef tmpsoa[4], tmpdst;
1501 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1502 /* really really need SoA here */
1503
1504 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1505 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1506 }
1507 else {
1508 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1509 src_type, tmpsoa);
1510 }
1511
1512 if (src_type.length == 8) {
1513 LLVMValueRef tmpaos, shuffles[8];
1514 unsigned j;
1515 /*
1516 * for 8-wide aos transpose has given us wrong order not matching
1517 * output order. HMPF. Also need to split the output values manually.
1518 */
1519 for (j = 0; j < 4; j++) {
1520 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1521 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1522 }
1523 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1524 LLVMConstVector(shuffles, 8), "");
1525 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1526 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1527 }
1528 else {
1529 src[i] = tmpdst;
1530 }
1531 }
1532 if (dst_type.width == 16) {
1533 struct lp_type type16x8 = dst_type;
1534 struct lp_type type32x4 = dst_type;
1535 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1536 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1537 type16x8.length = 8;
1538 type32x4.width = 32;
1539 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1540 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1541 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1542 /* We could do vector truncation but it doesn't generate very good code */
1543 for (i = 0; i < num_fetch; i++) {
1544 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1545 src[i], lp_build_zero(gallivm, type32x4));
1546 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1547 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1548 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1549 }
1550 }
1551 return;
1552 }
1553
1554 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1555 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1556
1557 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1558
1559 /* Special case for half-floats */
1560 if (mem_type.width == 16 && mem_type.floating) {
1561 int length = dst_type.length;
1562 assert(blend_type.width == 32 && blend_type.floating);
1563
1564 dst_type.length = src_type.length;
1565
1566 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1567
1568 dst_type.length = length;
1569 is_arith = false;
1570 }
1571
1572 /* Remove any padding */
1573 if (!is_arith && (src_type.length % mem_type.length)) {
1574 src_type.length -= (src_type.length % mem_type.length);
1575
1576 for (i = 0; i < num_srcs; ++i) {
1577 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1578 }
1579 }
1580
1581 /* No bit arithmetic to do */
1582 if (!is_arith) {
1583 return;
1584 }
1585
1586 src_type.length = pixels;
1587 src_type.width = blend_type.length * blend_type.width;
1588 dst_type.length = pixels;
1589
1590 for (i = 0; i < num_srcs; ++i) {
1591 LLVMValueRef chans[4];
1592 LLVMValueRef res = NULL;
1593
1594 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1595
1596 for (j = 0; j < src_fmt->nr_channels; ++j) {
1597 unsigned mask = 0;
1598 unsigned sa = src_fmt->channel[j].shift;
1599 unsigned sz_a = src_fmt->channel[j].size;
1600 #if UTIL_ARCH_LITTLE_ENDIAN
1601 unsigned from_lsb = j;
1602 #else
1603 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1604 #endif
1605
1606 assert(blend_type.width > src_fmt->channel[j].size);
1607
1608 for (k = 0; k < blend_type.width; ++k) {
1609 mask |= 1 << k;
1610 }
1611
1612 /* Extract bits */
1613 chans[j] = LLVMBuildLShr(builder,
1614 dst[i],
1615 lp_build_const_int_vec(gallivm, src_type,
1616 from_lsb * blend_type.width),
1617 "");
1618
1619 chans[j] = LLVMBuildAnd(builder,
1620 chans[j],
1621 lp_build_const_int_vec(gallivm, src_type, mask),
1622 "");
1623
1624 /* Scale down bits */
1625 if (src_type.norm) {
1626 chans[j] = scale_bits(gallivm, blend_type.width,
1627 src_fmt->channel[j].size, chans[j], src_type);
1628 } else if (!src_type.floating && sz_a < blend_type.width) {
1629 LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
1630 LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
1631 chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
1632 }
1633
1634 /* Insert bits */
1635 chans[j] = LLVMBuildShl(builder,
1636 chans[j],
1637 lp_build_const_int_vec(gallivm, src_type, sa),
1638 "");
1639
1640 sa += src_fmt->channel[j].size;
1641
1642 if (j == 0) {
1643 res = chans[j];
1644 } else {
1645 res = LLVMBuildOr(builder, res, chans[j], "");
1646 }
1647 }
1648
1649 assert (dst_type.width != 24);
1650
1651 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1652 }
1653 }
1654
1655
1656 /**
1657 * Convert alpha to same blend type as src
1658 */
1659 static void
1660 convert_alpha(struct gallivm_state *gallivm,
1661 struct lp_type row_type,
1662 struct lp_type alpha_type,
1663 const unsigned block_size,
1664 const unsigned block_height,
1665 const unsigned src_count,
1666 const unsigned dst_channels,
1667 const bool pad_inline,
1668 LLVMValueRef* src_alpha)
1669 {
1670 LLVMBuilderRef builder = gallivm->builder;
1671 unsigned i, j;
1672 unsigned length = row_type.length;
1673 row_type.length = alpha_type.length;
1674
1675 /* Twiddle the alpha to match pixels */
1676 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1677
1678 /*
1679 * TODO this should use single lp_build_conv call for
1680 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1681 */
1682 for (i = 0; i < block_height; ++i) {
1683 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1684 }
1685
1686 alpha_type = row_type;
1687 row_type.length = length;
1688
1689 /* If only one channel we can only need the single alpha value per pixel */
1690 if (src_count == 1 && dst_channels == 1) {
1691
1692 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1693 } else {
1694 /* If there are more srcs than rows then we need to split alpha up */
1695 if (src_count > block_height) {
1696 for (i = src_count; i > 0; --i) {
1697 unsigned pixels = block_size / src_count;
1698 unsigned idx = i - 1;
1699
1700 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1701 (idx * pixels) % 4, pixels);
1702 }
1703 }
1704
1705 /* If there is a src for each pixel broadcast the alpha across whole row */
1706 if (src_count == block_size) {
1707 for (i = 0; i < src_count; ++i) {
1708 src_alpha[i] = lp_build_broadcast(gallivm,
1709 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1710 }
1711 } else {
1712 unsigned pixels = block_size / src_count;
1713 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1714 unsigned alpha_span = 1;
1715 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1716
1717 /* Check if we need 2 src_alphas for our shuffles */
1718 if (pixels > alpha_type.length) {
1719 alpha_span = 2;
1720 }
1721
1722 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1723 for (j = 0; j < row_type.length; ++j) {
1724 if (j < pixels * channels) {
1725 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1726 } else {
1727 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1728 }
1729 }
1730
1731 for (i = 0; i < src_count; ++i) {
1732 unsigned idx1 = i, idx2 = i;
1733
1734 if (alpha_span > 1){
1735 idx1 *= alpha_span;
1736 idx2 = idx1 + 1;
1737 }
1738
1739 src_alpha[i] = LLVMBuildShuffleVector(builder,
1740 src_alpha[idx1],
1741 src_alpha[idx2],
1742 LLVMConstVector(shuffles, row_type.length),
1743 "");
1744 }
1745 }
1746 }
1747 }
1748
1749
1750 /**
1751 * Generates the blend function for unswizzled colour buffers
1752 * Also generates the read & write from colour buffer
1753 */
1754 static void
1755 generate_unswizzled_blend(struct gallivm_state *gallivm,
1756 unsigned rt,
1757 struct lp_fragment_shader_variant *variant,
1758 enum pipe_format out_format,
1759 unsigned int num_fs,
1760 struct lp_type fs_type,
1761 LLVMValueRef* fs_mask,
1762 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1763 LLVMValueRef context_ptr,
1764 LLVMValueRef color_ptr,
1765 LLVMValueRef stride,
1766 unsigned partial_mask,
1767 boolean do_branch)
1768 {
1769 const unsigned alpha_channel = 3;
1770 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1771 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1772 const unsigned block_size = block_width * block_height;
1773 const unsigned lp_integer_vector_width = 128;
1774
1775 LLVMBuilderRef builder = gallivm->builder;
1776 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1777 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1778 LLVMValueRef src_alpha[4 * 4];
1779 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1780 LLVMValueRef src_mask[4 * 4];
1781 LLVMValueRef src[4 * 4];
1782 LLVMValueRef src1[4 * 4];
1783 LLVMValueRef dst[4 * 4];
1784 LLVMValueRef blend_color;
1785 LLVMValueRef blend_alpha;
1786 LLVMValueRef i32_zero;
1787 LLVMValueRef check_mask;
1788 LLVMValueRef undef_src_val;
1789
1790 struct lp_build_mask_context mask_ctx;
1791 struct lp_type mask_type;
1792 struct lp_type blend_type;
1793 struct lp_type row_type;
1794 struct lp_type dst_type;
1795 struct lp_type ls_type;
1796
1797 unsigned char swizzle[TGSI_NUM_CHANNELS];
1798 unsigned vector_width;
1799 unsigned src_channels = TGSI_NUM_CHANNELS;
1800 unsigned dst_channels;
1801 unsigned dst_count;
1802 unsigned src_count;
1803 unsigned i, j;
1804
1805 const struct util_format_description* out_format_desc = util_format_description(out_format);
1806
1807 unsigned dst_alignment;
1808
1809 bool pad_inline = is_arithmetic_format(out_format_desc);
1810 bool has_alpha = false;
1811 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1812 util_blend_state_is_dual(&variant->key.blend, 0);
1813
1814 const boolean is_1d = variant->key.resource_1d;
1815 boolean twiddle_after_convert = FALSE;
1816 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1817 LLVMValueRef fpstate = 0;
1818
1819 /* Get type from output format */
1820 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1821 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1822
1823 /*
1824 * Technically this code should go into lp_build_smallfloat_to_float
1825 * and lp_build_float_to_smallfloat but due to the
1826 * http://llvm.org/bugs/show_bug.cgi?id=6393
1827 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1828 * So the ordering is important here and there shouldn't be any
1829 * llvm ir instrunctions in this function before
1830 * this, otherwise half-float format conversions won't work
1831 * (again due to llvm bug #6393).
1832 */
1833 if (have_smallfloat_format(dst_type, out_format)) {
1834 /* We need to make sure that denorms are ok for half float
1835 conversions */
1836 fpstate = lp_build_fpstate_get(gallivm);
1837 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1838 }
1839
1840 mask_type = lp_int32_vec4_type();
1841 mask_type.length = fs_type.length;
1842
1843 for (i = num_fs; i < num_fullblock_fs; i++) {
1844 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1845 }
1846
1847 /* Do not bother executing code when mask is empty.. */
1848 if (do_branch) {
1849 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1850
1851 for (i = 0; i < num_fullblock_fs; ++i) {
1852 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1853 }
1854
1855 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1856 lp_build_mask_check(&mask_ctx);
1857 }
1858
1859 partial_mask |= !variant->opaque;
1860 i32_zero = lp_build_const_int32(gallivm, 0);
1861
1862 undef_src_val = lp_build_undef(gallivm, fs_type);
1863
1864 row_type.length = fs_type.length;
1865 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1866
1867 /* Compute correct swizzle and count channels */
1868 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1869 dst_channels = 0;
1870
1871 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1872 /* Ensure channel is used */
1873 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1874 continue;
1875 }
1876
1877 /* Ensure not already written to (happens in case with GL_ALPHA) */
1878 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1879 continue;
1880 }
1881
1882 /* Ensure we havn't already found all channels */
1883 if (dst_channels >= out_format_desc->nr_channels) {
1884 continue;
1885 }
1886
1887 swizzle[out_format_desc->swizzle[i]] = i;
1888 ++dst_channels;
1889
1890 if (i == alpha_channel) {
1891 has_alpha = true;
1892 }
1893 }
1894
1895 if (format_expands_to_float_soa(out_format_desc)) {
1896 /*
1897 * the code above can't work for layout_other
1898 * for srgb it would sort of work but we short-circuit swizzles, etc.
1899 * as that is done as part of unpack / pack.
1900 */
1901 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1902 has_alpha = true;
1903 swizzle[0] = 0;
1904 swizzle[1] = 1;
1905 swizzle[2] = 2;
1906 swizzle[3] = 3;
1907 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1908 }
1909
1910 /* If 3 channels then pad to include alpha for 4 element transpose */
1911 if (dst_channels == 3) {
1912 assert (!has_alpha);
1913 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1914 if (swizzle[i] > TGSI_NUM_CHANNELS)
1915 swizzle[i] = 3;
1916 }
1917 if (out_format_desc->nr_channels == 4) {
1918 dst_channels = 4;
1919 /*
1920 * We use alpha from the color conversion, not separate one.
1921 * We had to include it for transpose, hence it will get converted
1922 * too (albeit when doing transpose after conversion, that would
1923 * no longer be the case necessarily).
1924 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1925 * otherwise we really have padding, not alpha, included.)
1926 */
1927 has_alpha = true;
1928 }
1929 }
1930
1931 /*
1932 * Load shader output
1933 */
1934 for (i = 0; i < num_fullblock_fs; ++i) {
1935 /* Always load alpha for use in blending */
1936 LLVMValueRef alpha;
1937 if (i < num_fs) {
1938 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1939 }
1940 else {
1941 alpha = undef_src_val;
1942 }
1943
1944 /* Load each channel */
1945 for (j = 0; j < dst_channels; ++j) {
1946 assert(swizzle[j] < 4);
1947 if (i < num_fs) {
1948 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1949 }
1950 else {
1951 fs_src[i][j] = undef_src_val;
1952 }
1953 }
1954
1955 /* If 3 channels then pad to include alpha for 4 element transpose */
1956 /*
1957 * XXX If we include that here maybe could actually use it instead of
1958 * separate alpha for blending?
1959 * (Difficult though we actually convert pad channels, not alpha.)
1960 */
1961 if (dst_channels == 3 && !has_alpha) {
1962 fs_src[i][3] = alpha;
1963 }
1964
1965 /* We split the row_mask and row_alpha as we want 128bit interleave */
1966 if (fs_type.length == 8) {
1967 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1968 0, src_channels);
1969 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1970 src_channels, src_channels);
1971
1972 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1973 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1974 src_channels, src_channels);
1975 } else {
1976 src_mask[i] = fs_mask[i];
1977 src_alpha[i] = alpha;
1978 }
1979 }
1980 if (dual_source_blend) {
1981 /* same as above except different src/dst, skip masks and comments... */
1982 for (i = 0; i < num_fullblock_fs; ++i) {
1983 LLVMValueRef alpha;
1984 if (i < num_fs) {
1985 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1986 }
1987 else {
1988 alpha = undef_src_val;
1989 }
1990
1991 for (j = 0; j < dst_channels; ++j) {
1992 assert(swizzle[j] < 4);
1993 if (i < num_fs) {
1994 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1995 }
1996 else {
1997 fs_src1[i][j] = undef_src_val;
1998 }
1999 }
2000 if (dst_channels == 3 && !has_alpha) {
2001 fs_src1[i][3] = alpha;
2002 }
2003 if (fs_type.length == 8) {
2004 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2005 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2006 src_channels, src_channels);
2007 } else {
2008 src1_alpha[i] = alpha;
2009 }
2010 }
2011 }
2012
2013 if (util_format_is_pure_integer(out_format)) {
2014 /*
2015 * In this case fs_type was really ints or uints disguised as floats,
2016 * fix that up now.
2017 */
2018 fs_type.floating = 0;
2019 fs_type.sign = dst_type.sign;
2020 for (i = 0; i < num_fullblock_fs; ++i) {
2021 for (j = 0; j < dst_channels; ++j) {
2022 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2023 lp_build_vec_type(gallivm, fs_type), "");
2024 }
2025 if (dst_channels == 3 && !has_alpha) {
2026 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2027 lp_build_vec_type(gallivm, fs_type), "");
2028 }
2029 }
2030 }
2031
2032 /*
2033 * We actually should generally do conversion first (for non-1d cases)
2034 * when the blend format is 8 or 16 bits. The reason is obvious,
2035 * there's 2 or 4 times less vectors to deal with for the interleave...
2036 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2037 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2038 * unpack only with 128bit vectors).
2039 * Note: for 16bit sizes really need matching pack conversion code
2040 */
2041 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2042 twiddle_after_convert = TRUE;
2043 }
2044
2045 /*
2046 * Pixel twiddle from fragment shader order to memory order
2047 */
2048 if (!twiddle_after_convert) {
2049 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2050 dst_channels, fs_src, src, pad_inline);
2051 if (dual_source_blend) {
2052 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2053 fs_src1, src1, pad_inline);
2054 }
2055 } else {
2056 src_count = num_fullblock_fs * dst_channels;
2057 /*
2058 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2059 * (AVX) turn out the same later when untwiddling/transpose (albeit
2060 * for true AVX2 path untwiddle needs to be different).
2061 * For now just order by colors first (so we can use unpack later).
2062 */
2063 for (j = 0; j < num_fullblock_fs; j++) {
2064 for (i = 0; i < dst_channels; i++) {
2065 src[i*num_fullblock_fs + j] = fs_src[j][i];
2066 if (dual_source_blend) {
2067 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2068 }
2069 }
2070 }
2071 }
2072
2073 src_channels = dst_channels < 3 ? dst_channels : 4;
2074 if (src_count != num_fullblock_fs * src_channels) {
2075 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2076 row_type.length /= ds;
2077 fs_type.length = row_type.length;
2078 }
2079
2080 blend_type = row_type;
2081 mask_type.length = 4;
2082
2083 /* Convert src to row_type */
2084 if (dual_source_blend) {
2085 struct lp_type old_row_type = row_type;
2086 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2087 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2088 }
2089 else {
2090 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2091 }
2092
2093 /* If the rows are not an SSE vector, combine them to become SSE size! */
2094 if ((row_type.width * row_type.length) % 128) {
2095 unsigned bits = row_type.width * row_type.length;
2096 unsigned combined;
2097
2098 assert(src_count >= (vector_width / bits));
2099
2100 dst_count = src_count / (vector_width / bits);
2101
2102 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2103 if (dual_source_blend) {
2104 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2105 }
2106
2107 row_type.length *= combined;
2108 src_count /= combined;
2109
2110 bits = row_type.width * row_type.length;
2111 assert(bits == 128 || bits == 256);
2112 }
2113
2114 if (twiddle_after_convert) {
2115 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2116 if (dual_source_blend) {
2117 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2118 }
2119 }
2120
2121 /*
2122 * Blend Colour conversion
2123 */
2124 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2125 blend_color = LLVMBuildPointerCast(builder, blend_color,
2126 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2127 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2128 &i32_zero, 1, ""), "");
2129
2130 /* Convert */
2131 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2132
2133 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2134 /*
2135 * since blending is done with floats, there was no conversion.
2136 * However, the rules according to fixed point renderbuffers still
2137 * apply, that is we must clamp inputs to 0.0/1.0.
2138 * (This would apply to separate alpha conversion too but we currently
2139 * force has_alpha to be true.)
2140 * TODO: should skip this with "fake" blend, since post-blend conversion
2141 * will clamp anyway.
2142 * TODO: could also skip this if fragment color clamping is enabled. We
2143 * don't support it natively so it gets baked into the shader however, so
2144 * can't really tell here.
2145 */
2146 struct lp_build_context f32_bld;
2147 assert(row_type.floating);
2148 lp_build_context_init(&f32_bld, gallivm, row_type);
2149 for (i = 0; i < src_count; i++) {
2150 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2151 }
2152 if (dual_source_blend) {
2153 for (i = 0; i < src_count; i++) {
2154 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2155 }
2156 }
2157 /* probably can't be different than row_type but better safe than sorry... */
2158 lp_build_context_init(&f32_bld, gallivm, blend_type);
2159 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2160 }
2161
2162 /* Extract alpha */
2163 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2164
2165 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2166 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2167 if (pad_inline) {
2168 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2169 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2170 } else {
2171 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2172 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2173 }
2174
2175 /*
2176 * Mask conversion
2177 */
2178 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2179
2180 if (src_count < block_height) {
2181 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2182 } else if (src_count > block_height) {
2183 for (i = src_count; i > 0; --i) {
2184 unsigned pixels = block_size / src_count;
2185 unsigned idx = i - 1;
2186
2187 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2188 (idx * pixels) % 4, pixels);
2189 }
2190 }
2191
2192 assert(mask_type.width == 32);
2193
2194 for (i = 0; i < src_count; ++i) {
2195 unsigned pixels = block_size / src_count;
2196 unsigned pixel_width = row_type.width * dst_channels;
2197
2198 if (pixel_width == 24) {
2199 mask_type.width = 8;
2200 mask_type.length = vector_width / mask_type.width;
2201 } else {
2202 mask_type.length = pixels;
2203 mask_type.width = row_type.width * dst_channels;
2204
2205 /*
2206 * If mask_type width is smaller than 32bit, this doesn't quite
2207 * generate the most efficient code (could use some pack).
2208 */
2209 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2210 lp_build_int_vec_type(gallivm, mask_type), "");
2211
2212 mask_type.length *= dst_channels;
2213 mask_type.width /= dst_channels;
2214 }
2215
2216 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2217 lp_build_int_vec_type(gallivm, mask_type), "");
2218 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2219 }
2220
2221 /*
2222 * Alpha conversion
2223 */
2224 if (!has_alpha) {
2225 struct lp_type alpha_type = fs_type;
2226 alpha_type.length = 4;
2227 convert_alpha(gallivm, row_type, alpha_type,
2228 block_size, block_height,
2229 src_count, dst_channels,
2230 pad_inline, src_alpha);
2231 if (dual_source_blend) {
2232 convert_alpha(gallivm, row_type, alpha_type,
2233 block_size, block_height,
2234 src_count, dst_channels,
2235 pad_inline, src1_alpha);
2236 }
2237 }
2238
2239
2240 /*
2241 * Load dst from memory
2242 */
2243 if (src_count < block_height) {
2244 dst_count = block_height;
2245 } else {
2246 dst_count = src_count;
2247 }
2248
2249 dst_type.length *= block_size / dst_count;
2250
2251 if (format_expands_to_float_soa(out_format_desc)) {
2252 /*
2253 * we need multiple values at once for the conversion, so can as well
2254 * load them vectorized here too instead of concatenating later.
2255 * (Still need concatenation later for 8-wide vectors).
2256 */
2257 dst_count = block_height;
2258 dst_type.length = block_width;
2259 }
2260
2261 /*
2262 * Compute the alignment of the destination pointer in bytes
2263 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2264 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2265 * 1d tex but can't distinguish here) so need to stick with per-pixel
2266 * alignment in this case.
2267 */
2268 if (is_1d) {
2269 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2270 }
2271 else {
2272 dst_alignment = dst_type.length * dst_type.width / 8;
2273 }
2274 /* Force power-of-two alignment by extracting only the least-significant-bit */
2275 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2276 /*
2277 * Resource base and stride pointers are aligned to 16 bytes, so that's
2278 * the maximum alignment we can guarantee
2279 */
2280 dst_alignment = MIN2(16, dst_alignment);
2281
2282 ls_type = dst_type;
2283
2284 if (dst_count > src_count) {
2285 if ((dst_type.width == 8 || dst_type.width == 16) &&
2286 util_is_power_of_two_or_zero(dst_type.length) &&
2287 dst_type.length * dst_type.width < 128) {
2288 /*
2289 * Never try to load values as 4xi8 which we will then
2290 * concatenate to larger vectors. This gives llvm a real
2291 * headache (the problem is the type legalizer (?) will
2292 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2293 * then the shuffles to concatenate are more or less impossible
2294 * - llvm is easily capable of generating a sequence of 32
2295 * pextrb/pinsrb instructions for that. Albeit it appears to
2296 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2297 * width to avoid the trouble (16bit seems not as bad, llvm
2298 * probably recognizes the load+shuffle as only one shuffle
2299 * is necessary, but we can do just the same anyway).
2300 */
2301 ls_type.length = dst_type.length * dst_type.width / 32;
2302 ls_type.width = 32;
2303 }
2304 }
2305
2306 if (is_1d) {
2307 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2308 dst, ls_type, dst_count / 4, dst_alignment);
2309 for (i = dst_count / 4; i < dst_count; i++) {
2310 dst[i] = lp_build_undef(gallivm, ls_type);
2311 }
2312
2313 }
2314 else {
2315 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2316 dst, ls_type, dst_count, dst_alignment);
2317 }
2318
2319
2320 /*
2321 * Convert from dst/output format to src/blending format.
2322 *
2323 * This is necessary as we can only read 1 row from memory at a time,
2324 * so the minimum dst_count will ever be at this point is 4.
2325 *
2326 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2327 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2328 * on all 16 pixels in that single vector at once.
2329 */
2330 if (dst_count > src_count) {
2331 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2332 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2333 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2334 for (i = 0; i < dst_count; i++) {
2335 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2336 }
2337 }
2338
2339 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2340
2341 if (ls_type.length != dst_type.length) {
2342 struct lp_type tmp_type = dst_type;
2343 tmp_type.length = dst_type.length * 4 / src_count;
2344 for (i = 0; i < src_count; i++) {
2345 dst[i] = LLVMBuildBitCast(builder, dst[i],
2346 lp_build_vec_type(gallivm, tmp_type), "");
2347 }
2348 }
2349 }
2350
2351 /*
2352 * Blending
2353 */
2354 /* XXX this is broken for RGB8 formats -
2355 * they get expanded from 12 to 16 elements (to include alpha)
2356 * by convert_to_blend_type then reduced to 15 instead of 12
2357 * by convert_from_blend_type (a simple fix though breaks A8...).
2358 * R16G16B16 also crashes differently however something going wrong
2359 * inside llvm handling npot vector sizes seemingly.
2360 * It seems some cleanup could be done here (like skipping conversion/blend
2361 * when not needed).
2362 */
2363 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2364 row_type, dst, src_count);
2365
2366 /*
2367 * FIXME: Really should get logic ops / masks out of generic blend / row
2368 * format. Logic ops will definitely not work on the blend float format
2369 * used for SRGB here and I think OpenGL expects this to work as expected
2370 * (that is incoming values converted to srgb then logic op applied).
2371 */
2372 for (i = 0; i < src_count; ++i) {
2373 dst[i] = lp_build_blend_aos(gallivm,
2374 &variant->key.blend,
2375 out_format,
2376 row_type,
2377 rt,
2378 src[i],
2379 has_alpha ? NULL : src_alpha[i],
2380 src1[i],
2381 has_alpha ? NULL : src1_alpha[i],
2382 dst[i],
2383 partial_mask ? src_mask[i] : NULL,
2384 blend_color,
2385 has_alpha ? NULL : blend_alpha,
2386 swizzle,
2387 pad_inline ? 4 : dst_channels);
2388 }
2389
2390 convert_from_blend_type(gallivm, block_size, out_format_desc,
2391 row_type, dst_type, dst, src_count);
2392
2393 /* Split the blend rows back to memory rows */
2394 if (dst_count > src_count) {
2395 row_type.length = dst_type.length * (dst_count / src_count);
2396
2397 if (src_count == 1) {
2398 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2399 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2400
2401 row_type.length /= 2;
2402 src_count *= 2;
2403 }
2404
2405 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2406 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2407 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2408 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2409
2410 row_type.length /= 2;
2411 src_count *= 2;
2412 }
2413
2414 /*
2415 * Store blend result to memory
2416 */
2417 if (is_1d) {
2418 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2419 dst, dst_type, dst_count / 4, dst_alignment);
2420 }
2421 else {
2422 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2423 dst, dst_type, dst_count, dst_alignment);
2424 }
2425
2426 if (have_smallfloat_format(dst_type, out_format)) {
2427 lp_build_fpstate_set(gallivm, fpstate);
2428 }
2429
2430 if (do_branch) {
2431 lp_build_mask_end(&mask_ctx);
2432 }
2433 }
2434
2435
2436 /**
2437 * Generate the runtime callable function for the whole fragment pipeline.
2438 * Note that the function which we generate operates on a block of 16
2439 * pixels at at time. The block contains 2x2 quads. Each quad contains
2440 * 2x2 pixels.
2441 */
2442 static void
2443 generate_fragment(struct llvmpipe_context *lp,
2444 struct lp_fragment_shader *shader,
2445 struct lp_fragment_shader_variant *variant,
2446 unsigned partial_mask)
2447 {
2448 struct gallivm_state *gallivm = variant->gallivm;
2449 struct lp_fragment_shader_variant_key *key = &variant->key;
2450 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2451 char func_name[64];
2452 struct lp_type fs_type;
2453 struct lp_type blend_type;
2454 LLVMTypeRef fs_elem_type;
2455 LLVMTypeRef blend_vec_type;
2456 LLVMTypeRef arg_types[15];
2457 LLVMTypeRef func_type;
2458 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2459 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2460 LLVMValueRef context_ptr;
2461 LLVMValueRef x;
2462 LLVMValueRef y;
2463 LLVMValueRef a0_ptr;
2464 LLVMValueRef dadx_ptr;
2465 LLVMValueRef dady_ptr;
2466 LLVMValueRef color_ptr_ptr;
2467 LLVMValueRef stride_ptr;
2468 LLVMValueRef color_sample_stride_ptr;
2469 LLVMValueRef depth_ptr;
2470 LLVMValueRef depth_stride;
2471 LLVMValueRef depth_sample_stride;
2472 LLVMValueRef mask_input;
2473 LLVMValueRef thread_data_ptr;
2474 LLVMBasicBlockRef block;
2475 LLVMBuilderRef builder;
2476 struct lp_build_sampler_soa *sampler;
2477 struct lp_build_image_soa *image;
2478 struct lp_build_interp_soa_context interp;
2479 LLVMValueRef fs_mask[16 / 4];
2480 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2481 LLVMValueRef function;
2482 LLVMValueRef facing;
2483 unsigned num_fs;
2484 unsigned i;
2485 unsigned chan;
2486 unsigned cbuf;
2487 boolean cbuf0_write_all;
2488 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2489 util_blend_state_is_dual(&key->blend, 0);
2490
2491 assert(lp_native_vector_width / 32 >= 4);
2492
2493 /* Adjust color input interpolation according to flatshade state:
2494 */
2495 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2496 for (i = 0; i < shader->info.base.num_inputs; i++) {
2497 if (inputs[i].interp == LP_INTERP_COLOR) {
2498 if (key->flatshade)
2499 inputs[i].interp = LP_INTERP_CONSTANT;
2500 else
2501 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2502 }
2503 }
2504
2505 /* check if writes to cbuf[0] are to be copied to all cbufs */
2506 cbuf0_write_all =
2507 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2508
2509 /* TODO: actually pick these based on the fs and color buffer
2510 * characteristics. */
2511
2512 memset(&fs_type, 0, sizeof fs_type);
2513 fs_type.floating = TRUE; /* floating point values */
2514 fs_type.sign = TRUE; /* values are signed */
2515 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2516 fs_type.width = 32; /* 32-bit float */
2517 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2518
2519 memset(&blend_type, 0, sizeof blend_type);
2520 blend_type.floating = FALSE; /* values are integers */
2521 blend_type.sign = FALSE; /* values are unsigned */
2522 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2523 blend_type.width = 8; /* 8-bit ubyte values */
2524 blend_type.length = 16; /* 16 elements per vector */
2525
2526 /*
2527 * Generate the function prototype. Any change here must be reflected in
2528 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2529 */
2530
2531 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2532
2533 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2534
2535 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2536 shader->no, variant->no, partial_mask ? "partial" : "whole");
2537
2538 arg_types[0] = variant->jit_context_ptr_type; /* context */
2539 arg_types[1] = int32_type; /* x */
2540 arg_types[2] = int32_type; /* y */
2541 arg_types[3] = int32_type; /* facing */
2542 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2543 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2544 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2545 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2546 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2547 arg_types[9] = LLVMInt64TypeInContext(gallivm->context); /* mask_input */
2548 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2549 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2550 arg_types[12] = int32_type; /* depth_stride */
2551 arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */
2552 arg_types[14] = int32_type; /* depth sample stride */
2553
2554 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2555 arg_types, ARRAY_SIZE(arg_types), 0);
2556
2557 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2558 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2559
2560 variant->function[partial_mask] = function;
2561
2562 /* XXX: need to propagate noalias down into color param now we are
2563 * passing a pointer-to-pointer?
2564 */
2565 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2566 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2567 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2568
2569 context_ptr = LLVMGetParam(function, 0);
2570 x = LLVMGetParam(function, 1);
2571 y = LLVMGetParam(function, 2);
2572 facing = LLVMGetParam(function, 3);
2573 a0_ptr = LLVMGetParam(function, 4);
2574 dadx_ptr = LLVMGetParam(function, 5);
2575 dady_ptr = LLVMGetParam(function, 6);
2576 color_ptr_ptr = LLVMGetParam(function, 7);
2577 depth_ptr = LLVMGetParam(function, 8);
2578 mask_input = LLVMGetParam(function, 9);
2579 thread_data_ptr = LLVMGetParam(function, 10);
2580 stride_ptr = LLVMGetParam(function, 11);
2581 depth_stride = LLVMGetParam(function, 12);
2582 color_sample_stride_ptr = LLVMGetParam(function, 13);
2583 depth_sample_stride = LLVMGetParam(function, 14);
2584
2585 lp_build_name(context_ptr, "context");
2586 lp_build_name(x, "x");
2587 lp_build_name(y, "y");
2588 lp_build_name(a0_ptr, "a0");
2589 lp_build_name(dadx_ptr, "dadx");
2590 lp_build_name(dady_ptr, "dady");
2591 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2592 lp_build_name(depth_ptr, "depth");
2593 lp_build_name(mask_input, "mask_input");
2594 lp_build_name(thread_data_ptr, "thread_data");
2595 lp_build_name(stride_ptr, "stride_ptr");
2596 lp_build_name(depth_stride, "depth_stride");
2597 lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
2598 lp_build_name(depth_sample_stride, "depth_sample_stride");
2599
2600 /*
2601 * Function body
2602 */
2603
2604 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2605 builder = gallivm->builder;
2606 assert(builder);
2607 LLVMPositionBuilderAtEnd(builder, block);
2608
2609 /*
2610 * Must not count ps invocations if there's a null shader.
2611 * (It would be ok to count with null shader if there's d/s tests,
2612 * but only if there's d/s buffers too, which is different
2613 * to implicit rasterization disable which must not depend
2614 * on the d/s buffers.)
2615 * Could use popcount on mask, but pixel accuracy is not required.
2616 * Could disable if there's no stats query, but maybe not worth it.
2617 */
2618 if (shader->info.base.num_instructions > 1) {
2619 LLVMValueRef invocs, val;
2620 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2621 val = LLVMBuildLoad(builder, invocs, "");
2622 val = LLVMBuildAdd(builder, val,
2623 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2624 "invoc_count");
2625 LLVMBuildStore(builder, val, invocs);
2626 }
2627
2628 /* code generated texture sampling */
2629 sampler = lp_llvm_sampler_soa_create(key->samplers);
2630 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2631
2632 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2633 /* for 1d resources only run "upper half" of stamp */
2634 if (key->resource_1d)
2635 num_fs /= 2;
2636
2637 {
2638 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2639 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2640 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2641 num_loop, "mask_store");
2642 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2643 boolean pixel_center_integer =
2644 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2645
2646 /*
2647 * The shader input interpolation info is not explicitely baked in the
2648 * shader key, but everything it derives from (TGSI, and flatshade) is
2649 * already included in the shader key.
2650 */
2651 lp_build_interp_soa_init(&interp,
2652 gallivm,
2653 shader->info.base.num_inputs,
2654 inputs,
2655 pixel_center_integer,
2656 key->depth_clamp,
2657 builder, fs_type,
2658 a0_ptr, dadx_ptr, dady_ptr,
2659 x, y);
2660
2661 for (i = 0; i < num_fs; i++) {
2662 LLVMValueRef mask;
2663 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2664 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2665 &indexi, 1, "mask_ptr");
2666
2667 if (partial_mask) {
2668 mask = generate_quad_mask(gallivm, fs_type,
2669 i*fs_type.length/4, 0, mask_input);
2670 }
2671 else {
2672 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2673 }
2674 LLVMBuildStore(builder, mask, mask_ptr);
2675 }
2676
2677 generate_fs_loop(gallivm,
2678 shader, key,
2679 builder,
2680 fs_type,
2681 context_ptr,
2682 num_loop,
2683 &interp,
2684 sampler,
2685 image,
2686 mask_store, /* output */
2687 color_store,
2688 depth_ptr,
2689 depth_stride,
2690 facing,
2691 thread_data_ptr);
2692
2693 for (i = 0; i < num_fs; i++) {
2694 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2695 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2696 &indexi, 1, "");
2697 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2698 /* This is fucked up need to reorganize things */
2699 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2700 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2701 ptr = LLVMBuildGEP(builder,
2702 color_store[cbuf * !cbuf0_write_all][chan],
2703 &indexi, 1, "");
2704 fs_out_color[cbuf][chan][i] = ptr;
2705 }
2706 }
2707 if (dual_source_blend) {
2708 /* only support one dual source blend target hence always use output 1 */
2709 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2710 ptr = LLVMBuildGEP(builder,
2711 color_store[1][chan],
2712 &indexi, 1, "");
2713 fs_out_color[1][chan][i] = ptr;
2714 }
2715 }
2716 }
2717 }
2718
2719 sampler->destroy(sampler);
2720 image->destroy(image);
2721 /* Loop over color outputs / color buffers to do blending.
2722 */
2723 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2724 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2725 LLVMValueRef color_ptr;
2726 LLVMValueRef stride;
2727 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2728
2729 boolean do_branch = ((key->depth.enabled
2730 || key->stencil[0].enabled
2731 || key->alpha.enabled)
2732 && !shader->info.base.uses_kill);
2733
2734 color_ptr = LLVMBuildLoad(builder,
2735 LLVMBuildGEP(builder, color_ptr_ptr,
2736 &index, 1, ""),
2737 "");
2738
2739 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2740
2741 stride = LLVMBuildLoad(builder,
2742 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2743 "");
2744
2745 generate_unswizzled_blend(gallivm, cbuf, variant,
2746 key->cbuf_format[cbuf],
2747 num_fs, fs_type, fs_mask, fs_out_color,
2748 context_ptr, color_ptr, stride,
2749 partial_mask, do_branch);
2750 }
2751 }
2752
2753 LLVMBuildRetVoid(builder);
2754
2755 gallivm_verify_function(gallivm, function);
2756 }
2757
2758
2759 static void
2760 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
2761 {
2762 unsigned i;
2763
2764 debug_printf("fs variant %p:\n", (void *) key);
2765
2766 if (key->flatshade) {
2767 debug_printf("flatshade = 1\n");
2768 }
2769 if (key->multisample) {
2770 debug_printf("multisample = 1\n");
2771 debug_printf("coverage samples = %d\n", key->coverage_samples);
2772 }
2773 for (i = 0; i < key->nr_cbufs; ++i) {
2774 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2775 debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
2776 }
2777 if (key->depth.enabled || key->stencil[0].enabled) {
2778 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2779 debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
2780 }
2781 if (key->depth.enabled) {
2782 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2783 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2784 }
2785
2786 for (i = 0; i < 2; ++i) {
2787 if (key->stencil[i].enabled) {
2788 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2789 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2790 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2791 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2792 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2793 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2794 }
2795 }
2796
2797 if (key->alpha.enabled) {
2798 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2799 }
2800
2801 if (key->occlusion_count) {
2802 debug_printf("occlusion_count = 1\n");
2803 }
2804
2805 if (key->blend.logicop_enable) {
2806 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2807 }
2808 else if (key->blend.rt[0].blend_enable) {
2809 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2810 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2811 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2812 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2813 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2814 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2815 }
2816 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2817 if (key->blend.alpha_to_coverage) {
2818 debug_printf("blend.alpha_to_coverage is enabled\n");
2819 }
2820 for (i = 0; i < key->nr_samplers; ++i) {
2821 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
2822 debug_printf("sampler[%u] = \n", i);
2823 debug_printf(" .wrap = %s %s %s\n",
2824 util_str_tex_wrap(sampler->wrap_s, TRUE),
2825 util_str_tex_wrap(sampler->wrap_t, TRUE),
2826 util_str_tex_wrap(sampler->wrap_r, TRUE));
2827 debug_printf(" .min_img_filter = %s\n",
2828 util_str_tex_filter(sampler->min_img_filter, TRUE));
2829 debug_printf(" .min_mip_filter = %s\n",
2830 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2831 debug_printf(" .mag_img_filter = %s\n",
2832 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2833 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2834 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2835 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2836 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2837 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2838 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2839 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2840 }
2841 for (i = 0; i < key->nr_sampler_views; ++i) {
2842 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
2843 debug_printf("texture[%u] = \n", i);
2844 debug_printf(" .format = %s\n",
2845 util_format_name(texture->format));
2846 debug_printf(" .target = %s\n",
2847 util_str_tex_target(texture->target, TRUE));
2848 debug_printf(" .level_zero_only = %u\n",
2849 texture->level_zero_only);
2850 debug_printf(" .pot = %u %u %u\n",
2851 texture->pot_width,
2852 texture->pot_height,
2853 texture->pot_depth);
2854 }
2855 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
2856 for (i = 0; i < key->nr_images; ++i) {
2857 const struct lp_static_texture_state *image = &images[i].image_state;
2858 debug_printf("image[%u] = \n", i);
2859 debug_printf(" .format = %s\n",
2860 util_format_name(image->format));
2861 debug_printf(" .target = %s\n",
2862 util_str_tex_target(image->target, TRUE));
2863 debug_printf(" .level_zero_only = %u\n",
2864 image->level_zero_only);
2865 debug_printf(" .pot = %u %u %u\n",
2866 image->pot_width,
2867 image->pot_height,
2868 image->pot_depth);
2869 }
2870 }
2871
2872
2873 void
2874 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
2875 {
2876 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2877 variant->shader->no, variant->no);
2878 if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
2879 tgsi_dump(variant->shader->base.tokens, 0);
2880 else
2881 nir_print_shader(variant->shader->base.ir.nir, stderr);
2882 dump_fs_variant_key(&variant->key);
2883 debug_printf("variant->opaque = %u\n", variant->opaque);
2884 debug_printf("\n");
2885 }
2886
2887
2888 /**
2889 * Generate a new fragment shader variant from the shader code and
2890 * other state indicated by the key.
2891 */
2892 static struct lp_fragment_shader_variant *
2893 generate_variant(struct llvmpipe_context *lp,
2894 struct lp_fragment_shader *shader,
2895 const struct lp_fragment_shader_variant_key *key)
2896 {
2897 struct lp_fragment_shader_variant *variant;
2898 const struct util_format_description *cbuf0_format_desc = NULL;
2899 boolean fullcolormask;
2900 char module_name[64];
2901
2902 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
2903 if (!variant)
2904 return NULL;
2905
2906 memset(variant, 0, sizeof(*variant));
2907 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2908 shader->no, shader->variants_created);
2909
2910 variant->gallivm = gallivm_create(module_name, lp->context);
2911 if (!variant->gallivm) {
2912 FREE(variant);
2913 return NULL;
2914 }
2915
2916 variant->shader = shader;
2917 variant->list_item_global.base = variant;
2918 variant->list_item_local.base = variant;
2919 variant->no = shader->variants_created++;
2920
2921 memcpy(&variant->key, key, shader->variant_key_size);
2922
2923 /*
2924 * Determine whether we are touching all channels in the color buffer.
2925 */
2926 fullcolormask = FALSE;
2927 if (key->nr_cbufs == 1) {
2928 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2929 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2930 }
2931
2932 variant->opaque =
2933 !key->blend.logicop_enable &&
2934 !key->blend.rt[0].blend_enable &&
2935 fullcolormask &&
2936 !key->stencil[0].enabled &&
2937 !key->alpha.enabled &&
2938 !key->blend.alpha_to_coverage &&
2939 !key->depth.enabled &&
2940 !shader->info.base.uses_kill &&
2941 !shader->info.base.writes_samplemask
2942 ? TRUE : FALSE;
2943
2944 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2945 lp_debug_fs_variant(variant);
2946 }
2947
2948 lp_jit_init_types(variant);
2949
2950 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2951 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2952
2953 if (variant->jit_function[RAST_WHOLE] == NULL) {
2954 if (variant->opaque) {
2955 /* Specialized shader, which doesn't need to read the color buffer. */
2956 generate_fragment(lp, shader, variant, RAST_WHOLE);
2957 }
2958 }
2959
2960 /*
2961 * Compile everything
2962 */
2963
2964 gallivm_compile_module(variant->gallivm);
2965
2966 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2967
2968 if (variant->function[RAST_EDGE_TEST]) {
2969 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2970 gallivm_jit_function(variant->gallivm,
2971 variant->function[RAST_EDGE_TEST]);
2972 }
2973
2974 if (variant->function[RAST_WHOLE]) {
2975 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2976 gallivm_jit_function(variant->gallivm,
2977 variant->function[RAST_WHOLE]);
2978 } else if (!variant->jit_function[RAST_WHOLE]) {
2979 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2980 }
2981
2982 gallivm_free_ir(variant->gallivm);
2983
2984 return variant;
2985 }
2986
2987
2988 static void *
2989 llvmpipe_create_fs_state(struct pipe_context *pipe,
2990 const struct pipe_shader_state *templ)
2991 {
2992 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2993 struct lp_fragment_shader *shader;
2994 int nr_samplers;
2995 int nr_sampler_views;
2996 int nr_images;
2997 int i;
2998
2999 shader = CALLOC_STRUCT(lp_fragment_shader);
3000 if (!shader)
3001 return NULL;
3002
3003 shader->no = fs_no++;
3004 make_empty_list(&shader->variants);
3005
3006 shader->base.type = templ->type;
3007 if (templ->type == PIPE_SHADER_IR_TGSI) {
3008 /* get/save the summary info for this shader */
3009 lp_build_tgsi_info(templ->tokens, &shader->info);
3010
3011 /* we need to keep a local copy of the tokens */
3012 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3013 } else {
3014 shader->base.ir.nir = templ->ir.nir;
3015 nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3016 }
3017
3018 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3019 if (shader->draw_data == NULL) {
3020 FREE((void *) shader->base.tokens);
3021 FREE(shader);
3022 return NULL;
3023 }
3024
3025 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3026 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3027 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3028 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3029
3030 for (i = 0; i < shader->info.base.num_inputs; i++) {
3031 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3032 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
3033
3034 switch (shader->info.base.input_interpolate[i]) {
3035 case TGSI_INTERPOLATE_CONSTANT:
3036 shader->inputs[i].interp = LP_INTERP_CONSTANT;
3037 break;
3038 case TGSI_INTERPOLATE_LINEAR:
3039 shader->inputs[i].interp = LP_INTERP_LINEAR;
3040 break;
3041 case TGSI_INTERPOLATE_PERSPECTIVE:
3042 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3043 break;
3044 case TGSI_INTERPOLATE_COLOR:
3045 shader->inputs[i].interp = LP_INTERP_COLOR;
3046 break;
3047 default:
3048 assert(0);
3049 break;
3050 }
3051
3052 switch (shader->info.base.input_semantic_name[i]) {
3053 case TGSI_SEMANTIC_FACE:
3054 shader->inputs[i].interp = LP_INTERP_FACING;
3055 break;
3056 case TGSI_SEMANTIC_POSITION:
3057 /* Position was already emitted above
3058 */
3059 shader->inputs[i].interp = LP_INTERP_POSITION;
3060 shader->inputs[i].src_index = 0;
3061 continue;
3062 }
3063
3064 /* XXX this is a completely pointless index map... */
3065 shader->inputs[i].src_index = i+1;
3066 }
3067
3068 if (LP_DEBUG & DEBUG_TGSI) {
3069 unsigned attrib;
3070 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3071 shader->no, (void *) shader);
3072 tgsi_dump(templ->tokens, 0);
3073 debug_printf("usage masks:\n");
3074 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3075 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3076 debug_printf(" IN[%u].%s%s%s%s\n",
3077 attrib,
3078 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3079 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3080 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3081 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3082 }
3083 debug_printf("\n");
3084 }
3085
3086 return shader;
3087 }
3088
3089
3090 static void
3091 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3092 {
3093 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3094 struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3095 if (llvmpipe->fs == lp_fs)
3096 return;
3097
3098 draw_bind_fragment_shader(llvmpipe->draw,
3099 (lp_fs ? lp_fs->draw_data : NULL));
3100
3101 llvmpipe->fs = lp_fs;
3102
3103 llvmpipe->dirty |= LP_NEW_FS;
3104 }
3105
3106
3107 /**
3108 * Remove shader variant from two lists: the shader's variant list
3109 * and the context's variant list.
3110 */
3111 static void
3112 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3113 struct lp_fragment_shader_variant *variant)
3114 {
3115 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3116 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3117 "v total cached %u inst %u total inst %u\n",
3118 variant->shader->no, variant->no,
3119 variant->shader->variants_created,
3120 variant->shader->variants_cached,
3121 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3122 }
3123
3124 gallivm_destroy(variant->gallivm);
3125
3126 /* remove from shader's list */
3127 remove_from_list(&variant->list_item_local);
3128 variant->shader->variants_cached--;
3129
3130 /* remove from context's list */
3131 remove_from_list(&variant->list_item_global);
3132 lp->nr_fs_variants--;
3133 lp->nr_fs_instrs -= variant->nr_instrs;
3134
3135 FREE(variant);
3136 }
3137
3138
3139 static void
3140 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3141 {
3142 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3143 struct lp_fragment_shader *shader = fs;
3144 struct lp_fs_variant_list_item *li;
3145
3146 assert(fs != llvmpipe->fs);
3147
3148 /*
3149 * XXX: we need to flush the context until we have some sort of reference
3150 * counting in fragment shaders as they may still be binned
3151 * Flushing alone might not sufficient we need to wait on it too.
3152 */
3153 llvmpipe_finish(pipe, __FUNCTION__);
3154
3155 /* Delete all the variants */
3156 li = first_elem(&shader->variants);
3157 while(!at_end(&shader->variants, li)) {
3158 struct lp_fs_variant_list_item *next = next_elem(li);
3159 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3160 li = next;
3161 }
3162
3163 /* Delete draw module's data */
3164 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3165
3166 if (shader->base.ir.nir)
3167 ralloc_free(shader->base.ir.nir);
3168 assert(shader->variants_cached == 0);
3169 FREE((void *) shader->base.tokens);
3170 FREE(shader);
3171 }
3172
3173
3174
3175 static void
3176 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3177 enum pipe_shader_type shader, uint index,
3178 const struct pipe_constant_buffer *cb)
3179 {
3180 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3181 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3182
3183 assert(shader < PIPE_SHADER_TYPES);
3184 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3185
3186 /* note: reference counting */
3187 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3188
3189 if (constants) {
3190 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3191 debug_printf("Illegal set constant without bind flag\n");
3192 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3193 }
3194 }
3195
3196 if (shader == PIPE_SHADER_VERTEX ||
3197 shader == PIPE_SHADER_GEOMETRY ||
3198 shader == PIPE_SHADER_TESS_CTRL ||
3199 shader == PIPE_SHADER_TESS_EVAL) {
3200 /* Pass the constants to the 'draw' module */
3201 const unsigned size = cb ? cb->buffer_size : 0;
3202 const ubyte *data;
3203
3204 if (constants) {
3205 data = (ubyte *) llvmpipe_resource_data(constants);
3206 }
3207 else if (cb && cb->user_buffer) {
3208 data = (ubyte *) cb->user_buffer;
3209 }
3210 else {
3211 data = NULL;
3212 }
3213
3214 if (data)
3215 data += cb->buffer_offset;
3216
3217 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3218 index, data, size);
3219 }
3220 else if (shader == PIPE_SHADER_COMPUTE)
3221 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3222 else
3223 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3224
3225 if (cb && cb->user_buffer) {
3226 pipe_resource_reference(&constants, NULL);
3227 }
3228 }
3229
3230 static void
3231 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3232 enum pipe_shader_type shader, unsigned start_slot,
3233 unsigned count, const struct pipe_shader_buffer *buffers,
3234 unsigned writable_bitmask)
3235 {
3236 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3237 unsigned i, idx;
3238 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3239 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3240
3241 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3242
3243 if (shader == PIPE_SHADER_VERTEX ||
3244 shader == PIPE_SHADER_GEOMETRY ||
3245 shader == PIPE_SHADER_TESS_CTRL ||
3246 shader == PIPE_SHADER_TESS_EVAL) {
3247 const unsigned size = buffer ? buffer->buffer_size : 0;
3248 const ubyte *data = NULL;
3249 if (buffer && buffer->buffer)
3250 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3251 if (data)
3252 data += buffer->buffer_offset;
3253 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3254 i, data, size);
3255 } else if (shader == PIPE_SHADER_COMPUTE) {
3256 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3257 } else if (shader == PIPE_SHADER_FRAGMENT) {
3258 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3259 }
3260 }
3261 }
3262
3263 static void
3264 llvmpipe_set_shader_images(struct pipe_context *pipe,
3265 enum pipe_shader_type shader, unsigned start_slot,
3266 unsigned count, const struct pipe_image_view *images)
3267 {
3268 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3269 unsigned i, idx;
3270
3271 draw_flush(llvmpipe->draw);
3272 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3273 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3274
3275 util_copy_image_view(&llvmpipe->images[shader][i], image);
3276 }
3277
3278 llvmpipe->num_images[shader] = start_slot + count;
3279 if (shader == PIPE_SHADER_VERTEX ||
3280 shader == PIPE_SHADER_GEOMETRY ||
3281 shader == PIPE_SHADER_TESS_CTRL ||
3282 shader == PIPE_SHADER_TESS_EVAL) {
3283 draw_set_images(llvmpipe->draw,
3284 shader,
3285 llvmpipe->images[shader],
3286 start_slot + count);
3287 } else if (shader == PIPE_SHADER_COMPUTE)
3288 llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
3289 else
3290 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3291 }
3292
3293 /**
3294 * Return the blend factor equivalent to a destination alpha of one.
3295 */
3296 static inline unsigned
3297 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3298 {
3299 switch(factor) {
3300 case PIPE_BLENDFACTOR_DST_ALPHA:
3301 return PIPE_BLENDFACTOR_ONE;
3302 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3303 return PIPE_BLENDFACTOR_ZERO;
3304 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3305 if (clamped_zero)
3306 return PIPE_BLENDFACTOR_ZERO;
3307 else
3308 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3309 }
3310
3311 return factor;
3312 }
3313
3314
3315 /**
3316 * We need to generate several variants of the fragment pipeline to match
3317 * all the combinations of the contributing state atoms.
3318 *
3319 * TODO: there is actually no reason to tie this to context state -- the
3320 * generated code could be cached globally in the screen.
3321 */
3322 static struct lp_fragment_shader_variant_key *
3323 make_variant_key(struct llvmpipe_context *lp,
3324 struct lp_fragment_shader *shader,
3325 char *store)
3326 {
3327 unsigned i;
3328 struct lp_fragment_shader_variant_key *key;
3329
3330 key = (struct lp_fragment_shader_variant_key *)store;
3331
3332 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3333
3334 if (lp->framebuffer.zsbuf) {
3335 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3336 const struct util_format_description *zsbuf_desc =
3337 util_format_description(zsbuf_format);
3338
3339 if (lp->depth_stencil->depth.enabled &&
3340 util_format_has_depth(zsbuf_desc)) {
3341 key->zsbuf_format = zsbuf_format;
3342 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3343 }
3344 if (lp->depth_stencil->stencil[0].enabled &&
3345 util_format_has_stencil(zsbuf_desc)) {
3346 key->zsbuf_format = zsbuf_format;
3347 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3348 }
3349 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3350 key->resource_1d = TRUE;
3351 }
3352 key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
3353 }
3354
3355 /*
3356 * Propagate the depth clamp setting from the rasterizer state.
3357 * depth_clip == 0 implies depth clamping is enabled.
3358 *
3359 * When clip_halfz is enabled, then always clamp the depth values.
3360 *
3361 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3362 * clamp is always active in d3d10, regardless if depth clip is
3363 * enabled or not).
3364 * (GL has an always-on [0,1] clamp on fs depth output instead
3365 * to ensure the depth values stay in range. Doesn't look like
3366 * we do that, though...)
3367 */
3368 if (lp->rasterizer->clip_halfz) {
3369 key->depth_clamp = 1;
3370 } else {
3371 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3372 }
3373
3374 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3375 if (!lp->framebuffer.nr_cbufs ||
3376 !lp->framebuffer.cbufs[0] ||
3377 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3378 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3379 }
3380 if(key->alpha.enabled)
3381 key->alpha.func = lp->depth_stencil->alpha.func;
3382 /* alpha.ref_value is passed in jit_context */
3383
3384 key->flatshade = lp->rasterizer->flatshade;
3385 key->multisample = lp->rasterizer->multisample;
3386 if (lp->active_occlusion_queries && !lp->queries_disabled) {
3387 key->occlusion_count = TRUE;
3388 }
3389
3390 if (lp->framebuffer.nr_cbufs) {
3391 memcpy(&key->blend, lp->blend, sizeof key->blend);
3392 }
3393
3394 key->coverage_samples = 1;
3395 if (key->multisample)
3396 key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
3397 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3398
3399 if (!key->blend.independent_blend_enable) {
3400 /* we always need independent blend otherwise the fixups below won't work */
3401 for (i = 1; i < key->nr_cbufs; i++) {
3402 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3403 }
3404 key->blend.independent_blend_enable = 1;
3405 }
3406
3407 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3408 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3409
3410 if (lp->framebuffer.cbufs[i]) {
3411 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3412 const struct util_format_description *format_desc;
3413
3414 key->cbuf_format[i] = format;
3415 key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
3416
3417 /*
3418 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3419 * mixing of 2d textures with height 1 and 1d textures, so make sure
3420 * we pick 1d if any cbuf or zsbuf is 1d.
3421 */
3422 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3423 key->resource_1d = TRUE;
3424 }
3425
3426 format_desc = util_format_description(format);
3427 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3428 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3429
3430 /*
3431 * Mask out color channels not present in the color buffer.
3432 */
3433 blend_rt->colormask &= util_format_colormask(format_desc);
3434
3435 /*
3436 * Disable blend for integer formats.
3437 */
3438 if (util_format_is_pure_integer(format)) {
3439 blend_rt->blend_enable = 0;
3440 }
3441
3442 /*
3443 * Our swizzled render tiles always have an alpha channel, but the
3444 * linear render target format often does not, so force here the dst
3445 * alpha to be one.
3446 *
3447 * This is not a mere optimization. Wrong results will be produced if
3448 * the dst alpha is used, the dst format does not have alpha, and the
3449 * previous rendering was not flushed from the swizzled to linear
3450 * buffer. For example, NonPowTwo DCT.
3451 *
3452 * TODO: This should be generalized to all channels for better
3453 * performance, but only alpha causes correctness issues.
3454 *
3455 * Also, force rgb/alpha func/factors match, to make AoS blending
3456 * easier.
3457 */
3458 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3459 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3460 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3461 boolean clamped_zero = !util_format_is_float(format) &&
3462 !util_format_is_snorm(format);
3463 blend_rt->rgb_src_factor =
3464 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3465 blend_rt->rgb_dst_factor =
3466 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3467 blend_rt->alpha_func = blend_rt->rgb_func;
3468 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3469 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3470 }
3471 }
3472 else {
3473 /* no color buffer for this fragment output */
3474 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3475 key->cbuf_nr_samples[i] = 0;
3476 blend_rt->colormask = 0x0;
3477 blend_rt->blend_enable = 0;
3478 }
3479 }
3480
3481 /* This value will be the same for all the variants of a given shader:
3482 */
3483 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3484
3485 struct lp_sampler_static_state *fs_sampler;
3486
3487 fs_sampler = key->samplers;
3488
3489 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3490
3491 for(i = 0; i < key->nr_samplers; ++i) {
3492 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3493 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3494 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3495 }
3496 }
3497
3498 /*
3499 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3500 * are dx10-style? Can't really have mixed opcodes, at least not
3501 * if we want to skip the holes here (without rescanning tgsi).
3502 */
3503 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3504 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3505 for(i = 0; i < key->nr_sampler_views; ++i) {
3506 /*
3507 * Note sview may exceed what's representable by file_mask.
3508 * This will still work, the only downside is that not actually
3509 * used views may be included in the shader key.
3510 */
3511 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3512 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3513 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3514 }
3515 }
3516 }
3517 else {
3518 key->nr_sampler_views = key->nr_samplers;
3519 for(i = 0; i < key->nr_sampler_views; ++i) {
3520 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3521 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3522 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3523 }
3524 }
3525 }
3526
3527 struct lp_image_static_state *lp_image;
3528 lp_image = lp_fs_variant_key_images(key);
3529 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3530 for (i = 0; i < key->nr_images; ++i) {
3531 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3532 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3533 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3534 }
3535 }
3536 return key;
3537 }
3538
3539
3540
3541 /**
3542 * Update fragment shader state. This is called just prior to drawing
3543 * something when some fragment-related state has changed.
3544 */
3545 void
3546 llvmpipe_update_fs(struct llvmpipe_context *lp)
3547 {
3548 struct lp_fragment_shader *shader = lp->fs;
3549 struct lp_fragment_shader_variant_key *key;
3550 struct lp_fragment_shader_variant *variant = NULL;
3551 struct lp_fs_variant_list_item *li;
3552 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3553
3554 key = make_variant_key(lp, shader, store);
3555
3556 /* Search the variants for one which matches the key */
3557 li = first_elem(&shader->variants);
3558 while(!at_end(&shader->variants, li)) {
3559 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3560 variant = li->base;
3561 break;
3562 }
3563 li = next_elem(li);
3564 }
3565
3566 if (variant) {
3567 /* Move this variant to the head of the list to implement LRU
3568 * deletion of shader's when we have too many.
3569 */
3570 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3571 }
3572 else {
3573 /* variant not found, create it now */
3574 int64_t t0, t1, dt;
3575 unsigned i;
3576 unsigned variants_to_cull;
3577
3578 if (LP_DEBUG & DEBUG_FS) {
3579 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3580 lp->nr_fs_variants,
3581 lp->nr_fs_instrs,
3582 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3583 }
3584
3585 /* First, check if we've exceeded the max number of shader variants.
3586 * If so, free 6.25% of them (the least recently used ones).
3587 */
3588 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3589
3590 if (variants_to_cull ||
3591 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3592 struct pipe_context *pipe = &lp->pipe;
3593
3594 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3595 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3596 "\t%u instrs,\t%u instrs/variant\n",
3597 shader->variants_cached,
3598 lp->nr_fs_variants, lp->nr_fs_instrs,
3599 lp->nr_fs_instrs / lp->nr_fs_variants);
3600 }
3601
3602 /*
3603 * XXX: we need to flush the context until we have some sort of
3604 * reference counting in fragment shaders as they may still be binned
3605 * Flushing alone might not be sufficient we need to wait on it too.
3606 */
3607 llvmpipe_finish(pipe, __FUNCTION__);
3608
3609 /*
3610 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3611 * number of shader variants (potentially all of them) could be
3612 * pending for destruction on flush.
3613 */
3614
3615 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3616 struct lp_fs_variant_list_item *item;
3617 if (is_empty_list(&lp->fs_variants_list)) {
3618 break;
3619 }
3620 item = last_elem(&lp->fs_variants_list);
3621 assert(item);
3622 assert(item->base);
3623 llvmpipe_remove_shader_variant(lp, item->base);
3624 }
3625 }
3626
3627 /*
3628 * Generate the new variant.
3629 */
3630 t0 = os_time_get();
3631 variant = generate_variant(lp, shader, key);
3632 t1 = os_time_get();
3633 dt = t1 - t0;
3634 LP_COUNT_ADD(llvm_compile_time, dt);
3635 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3636
3637 /* Put the new variant into the list */
3638 if (variant) {
3639 insert_at_head(&shader->variants, &variant->list_item_local);
3640 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3641 lp->nr_fs_variants++;
3642 lp->nr_fs_instrs += variant->nr_instrs;
3643 shader->variants_cached++;
3644 }
3645 }
3646
3647 /* Bind this variant */
3648 lp_setup_set_fs_variant(lp->setup, variant);
3649 }
3650
3651
3652
3653
3654
3655 void
3656 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3657 {
3658 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3659 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3660 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3661
3662 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3663
3664 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3665 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3666 }
3667
3668