llvmpipe: add ssbo support to compute shaders
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_bitarit.h"
88 #include "gallivm/lp_bld_pack.h"
89 #include "gallivm/lp_bld_format.h"
90 #include "gallivm/lp_bld_quad.h"
91
92 #include "lp_bld_alpha.h"
93 #include "lp_bld_blend.h"
94 #include "lp_bld_depth.h"
95 #include "lp_bld_interp.h"
96 #include "lp_context.h"
97 #include "lp_debug.h"
98 #include "lp_perf.h"
99 #include "lp_setup.h"
100 #include "lp_state.h"
101 #include "lp_tex_sample.h"
102 #include "lp_flush.h"
103 #include "lp_state_fs.h"
104 #include "lp_rast.h"
105
106
107 /** Fragment shader number (for debugging) */
108 static unsigned fs_no = 0;
109
110
111 /**
112 * Expand the relevant bits of mask_input to a n*4-dword mask for the
113 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
114 * quad mask vector to 0 or ~0.
115 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
116 * quad arguments with fs length 8.
117 *
118 * \param first_quad which quad(s) of the quad group to test, in [0,3]
119 * \param mask_input bitwise mask for the whole 4x4 stamp
120 */
121 static LLVMValueRef
122 generate_quad_mask(struct gallivm_state *gallivm,
123 struct lp_type fs_type,
124 unsigned first_quad,
125 LLVMValueRef mask_input) /* int32 */
126 {
127 LLVMBuilderRef builder = gallivm->builder;
128 struct lp_type mask_type;
129 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
130 LLVMValueRef bits[16];
131 LLVMValueRef mask, bits_vec;
132 int shift, i;
133
134 /*
135 * XXX: We'll need a different path for 16 x u8
136 */
137 assert(fs_type.width == 32);
138 assert(fs_type.length <= ARRAY_SIZE(bits));
139 mask_type = lp_int_type(fs_type);
140
141 /*
142 * mask_input >>= (quad * 4)
143 */
144 switch (first_quad) {
145 case 0:
146 shift = 0;
147 break;
148 case 1:
149 assert(fs_type.length == 4);
150 shift = 2;
151 break;
152 case 2:
153 shift = 8;
154 break;
155 case 3:
156 assert(fs_type.length == 4);
157 shift = 10;
158 break;
159 default:
160 assert(0);
161 shift = 0;
162 }
163
164 mask_input = LLVMBuildLShr(builder,
165 mask_input,
166 LLVMConstInt(i32t, shift, 0),
167 "");
168
169 /*
170 * mask = { mask_input & (1 << i), for i in [0,3] }
171 */
172 mask = lp_build_broadcast(gallivm,
173 lp_build_vec_type(gallivm, mask_type),
174 mask_input);
175
176 for (i = 0; i < fs_type.length / 4; i++) {
177 unsigned j = 2 * (i % 2) + (i / 2) * 8;
178 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
179 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
180 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
181 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
182 }
183 bits_vec = LLVMConstVector(bits, fs_type.length);
184 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
185
186 /*
187 * mask = mask == bits ? ~0 : 0
188 */
189 mask = lp_build_compare(gallivm,
190 mask_type, PIPE_FUNC_EQUAL,
191 mask, bits_vec);
192
193 return mask;
194 }
195
196
197 #define EARLY_DEPTH_TEST 0x1
198 #define LATE_DEPTH_TEST 0x2
199 #define EARLY_DEPTH_WRITE 0x4
200 #define LATE_DEPTH_WRITE 0x8
201
202 static int
203 find_output_by_semantic( const struct tgsi_shader_info *info,
204 unsigned semantic,
205 unsigned index )
206 {
207 int i;
208
209 for (i = 0; i < info->num_outputs; i++)
210 if (info->output_semantic_name[i] == semantic &&
211 info->output_semantic_index[i] == index)
212 return i;
213
214 return -1;
215 }
216
217
218 /**
219 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
220 */
221 static LLVMValueRef
222 lp_llvm_viewport(LLVMValueRef context_ptr,
223 struct gallivm_state *gallivm,
224 LLVMValueRef viewport_index)
225 {
226 LLVMBuilderRef builder = gallivm->builder;
227 LLVMValueRef ptr;
228 LLVMValueRef res;
229 struct lp_type viewport_type =
230 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
231
232 ptr = lp_jit_context_viewports(gallivm, context_ptr);
233 ptr = LLVMBuildPointerCast(builder, ptr,
234 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
235
236 res = lp_build_pointer_get(builder, ptr, viewport_index);
237
238 return res;
239 }
240
241
242 static LLVMValueRef
243 lp_build_depth_clamp(struct gallivm_state *gallivm,
244 LLVMBuilderRef builder,
245 struct lp_type type,
246 LLVMValueRef context_ptr,
247 LLVMValueRef thread_data_ptr,
248 LLVMValueRef z)
249 {
250 LLVMValueRef viewport, min_depth, max_depth;
251 LLVMValueRef viewport_index;
252 struct lp_build_context f32_bld;
253
254 assert(type.floating);
255 lp_build_context_init(&f32_bld, gallivm, type);
256
257 /*
258 * Assumes clamping of the viewport index will occur in setup/gs. Value
259 * is passed through the rasterization stage via lp_rast_shader_inputs.
260 *
261 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
262 * semantics.
263 */
264 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
265 thread_data_ptr);
266
267 /*
268 * Load the min and max depth from the lp_jit_context.viewports
269 * array of lp_jit_viewport structures.
270 */
271 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
272
273 /* viewports[viewport_index].min_depth */
274 min_depth = LLVMBuildExtractElement(builder, viewport,
275 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
276 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
277
278 /* viewports[viewport_index].max_depth */
279 max_depth = LLVMBuildExtractElement(builder, viewport,
280 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
281 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
282
283 /*
284 * Clamp to the min and max depth values for the given viewport.
285 */
286 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
287 }
288
289
290 /**
291 * Generate the fragment shader, depth/stencil test, and alpha tests.
292 */
293 static void
294 generate_fs_loop(struct gallivm_state *gallivm,
295 struct lp_fragment_shader *shader,
296 const struct lp_fragment_shader_variant_key *key,
297 LLVMBuilderRef builder,
298 struct lp_type type,
299 LLVMValueRef context_ptr,
300 LLVMValueRef num_loop,
301 struct lp_build_interp_soa_context *interp,
302 const struct lp_build_sampler_soa *sampler,
303 const struct lp_build_image_soa *image,
304 LLVMValueRef mask_store,
305 LLVMValueRef (*out_color)[4],
306 LLVMValueRef depth_ptr,
307 LLVMValueRef depth_stride,
308 LLVMValueRef facing,
309 LLVMValueRef thread_data_ptr)
310 {
311 const struct util_format_description *zs_format_desc = NULL;
312 const struct tgsi_token *tokens = shader->base.tokens;
313 struct lp_type int_type = lp_int_type(type);
314 LLVMTypeRef vec_type, int_vec_type;
315 LLVMValueRef mask_ptr, mask_val;
316 LLVMValueRef consts_ptr, num_consts_ptr;
317 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
318 LLVMValueRef z;
319 LLVMValueRef z_value, s_value;
320 LLVMValueRef z_fb, s_fb;
321 LLVMValueRef stencil_refs[2];
322 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
323 struct lp_build_for_loop_state loop_state;
324 struct lp_build_mask_context mask;
325 /*
326 * TODO: figure out if simple_shader optimization is really worthwile to
327 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
328 * code since tests tend to take another codepath than real shaders.
329 */
330 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
331 shader->info.base.num_inputs < 3 &&
332 shader->info.base.num_instructions < 8) && 0;
333 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
334 util_blend_state_is_dual(&key->blend, 0);
335 unsigned attrib;
336 unsigned chan;
337 unsigned cbuf;
338 unsigned depth_mode;
339
340 struct lp_bld_tgsi_system_values system_values;
341
342 memset(&system_values, 0, sizeof(system_values));
343
344 if (key->depth.enabled ||
345 key->stencil[0].enabled) {
346
347 zs_format_desc = util_format_description(key->zsbuf_format);
348 assert(zs_format_desc);
349
350 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
351 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
352 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
353 if (shader->info.base.writes_memory)
354 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
355 else if (key->alpha.enabled ||
356 key->blend.alpha_to_coverage ||
357 shader->info.base.uses_kill ||
358 shader->info.base.writes_samplemask) {
359 /* With alpha test and kill, can do the depth test early
360 * and hopefully eliminate some quads. But need to do a
361 * special deferred depth write once the final mask value
362 * is known. This only works though if there's either no
363 * stencil test or the stencil value isn't written.
364 */
365 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
366 (key->stencil[1].enabled &&
367 key->stencil[1].writemask)))
368 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
369 else
370 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
371 }
372 else
373 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
374 }
375 else {
376 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
377 }
378
379 if (!(key->depth.enabled && key->depth.writemask) &&
380 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
381 (key->stencil[1].enabled &&
382 key->stencil[1].writemask))))
383 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
384 }
385 else {
386 depth_mode = 0;
387 }
388
389 vec_type = lp_build_vec_type(gallivm, type);
390 int_vec_type = lp_build_vec_type(gallivm, int_type);
391
392 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
393 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
394 /* convert scalar stencil refs into vectors */
395 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
396 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
397
398 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
399 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
400
401 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
402 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
403
404 lp_build_for_loop_begin(&loop_state, gallivm,
405 lp_build_const_int32(gallivm, 0),
406 LLVMIntULT,
407 num_loop,
408 lp_build_const_int32(gallivm, 1));
409
410 mask_ptr = LLVMBuildGEP(builder, mask_store,
411 &loop_state.counter, 1, "mask_ptr");
412 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
413
414 memset(outputs, 0, sizeof outputs);
415
416 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
417 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
418 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
419 lp_build_vec_type(gallivm,
420 type),
421 num_loop, "color");
422 }
423 }
424 if (dual_source_blend) {
425 assert(key->nr_cbufs <= 1);
426 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
427 out_color[1][chan] = lp_build_array_alloca(gallivm,
428 lp_build_vec_type(gallivm,
429 type),
430 num_loop, "color1");
431 }
432 }
433
434
435 /* 'mask' will control execution based on quad's pixel alive/killed state */
436 lp_build_mask_begin(&mask, gallivm, type, mask_val);
437
438 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
439 lp_build_mask_check(&mask);
440
441 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
442 z = interp->pos[2];
443
444 if (depth_mode & EARLY_DEPTH_TEST) {
445 /*
446 * Clamp according to ARB_depth_clamp semantics.
447 */
448 if (key->depth_clamp) {
449 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
450 thread_data_ptr, z);
451 }
452 lp_build_depth_stencil_load_swizzled(gallivm, type,
453 zs_format_desc, key->resource_1d,
454 depth_ptr, depth_stride,
455 &z_fb, &s_fb, loop_state.counter);
456 lp_build_depth_stencil_test(gallivm,
457 &key->depth,
458 key->stencil,
459 type,
460 zs_format_desc,
461 &mask,
462 stencil_refs,
463 z, z_fb, s_fb,
464 facing,
465 &z_value, &s_value,
466 !simple_shader);
467
468 if (depth_mode & EARLY_DEPTH_WRITE) {
469 lp_build_depth_stencil_write_swizzled(gallivm, type,
470 zs_format_desc, key->resource_1d,
471 NULL, NULL, NULL, loop_state.counter,
472 depth_ptr, depth_stride,
473 z_value, s_value);
474 }
475 /*
476 * Note mask check if stencil is enabled must be after ds write not after
477 * stencil test otherwise new stencil values may not get written if all
478 * fragments got killed by depth/stencil test.
479 */
480 if (!simple_shader && key->stencil[0].enabled)
481 lp_build_mask_check(&mask);
482 }
483
484 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
485
486 struct lp_build_tgsi_params params;
487 memset(&params, 0, sizeof(params));
488
489 params.type = type;
490 params.mask = &mask;
491 params.consts_ptr = consts_ptr;
492 params.const_sizes_ptr = num_consts_ptr;
493 params.system_values = &system_values;
494 params.inputs = interp->inputs;
495 params.context_ptr = context_ptr;
496 params.thread_data_ptr = thread_data_ptr;
497 params.sampler = sampler;
498 params.info = &shader->info.base;
499 params.ssbo_ptr = ssbo_ptr;
500 params.ssbo_sizes_ptr = num_ssbo_ptr;
501 params.image = image;
502
503 /* Build the actual shader */
504 lp_build_tgsi_soa(gallivm, tokens, &params,
505 outputs);
506
507 /* Alpha test */
508 if (key->alpha.enabled) {
509 int color0 = find_output_by_semantic(&shader->info.base,
510 TGSI_SEMANTIC_COLOR,
511 0);
512
513 if (color0 != -1 && outputs[color0][3]) {
514 const struct util_format_description *cbuf_format_desc;
515 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
516 LLVMValueRef alpha_ref_value;
517
518 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
519 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
520
521 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
522
523 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
524 &mask, alpha, alpha_ref_value,
525 (depth_mode & LATE_DEPTH_TEST) != 0);
526 }
527 }
528
529 /* Emulate Alpha to Coverage with Alpha test */
530 if (key->blend.alpha_to_coverage) {
531 int color0 = find_output_by_semantic(&shader->info.base,
532 TGSI_SEMANTIC_COLOR,
533 0);
534
535 if (color0 != -1 && outputs[color0][3]) {
536 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
537
538 lp_build_alpha_to_coverage(gallivm, type,
539 &mask, alpha,
540 (depth_mode & LATE_DEPTH_TEST) != 0);
541 }
542 }
543
544 if (shader->info.base.writes_samplemask) {
545 int smaski = find_output_by_semantic(&shader->info.base,
546 TGSI_SEMANTIC_SAMPLEMASK,
547 0);
548 LLVMValueRef smask;
549 struct lp_build_context smask_bld;
550 lp_build_context_init(&smask_bld, gallivm, int_type);
551
552 assert(smaski >= 0);
553 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
554 /*
555 * Pixel is alive according to the first sample in the mask.
556 */
557 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
558 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
559 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
560 lp_build_mask_update(&mask, smask);
561 }
562
563 /* Late Z test */
564 if (depth_mode & LATE_DEPTH_TEST) {
565 int pos0 = find_output_by_semantic(&shader->info.base,
566 TGSI_SEMANTIC_POSITION,
567 0);
568 int s_out = find_output_by_semantic(&shader->info.base,
569 TGSI_SEMANTIC_STENCIL,
570 0);
571 if (pos0 != -1 && outputs[pos0][2]) {
572 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
573 }
574 /*
575 * Clamp according to ARB_depth_clamp semantics.
576 */
577 if (key->depth_clamp) {
578 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
579 thread_data_ptr, z);
580 }
581
582 if (s_out != -1 && outputs[s_out][1]) {
583 /* there's only one value, and spec says to discard additional bits */
584 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
585 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
586 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
587 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
588 stencil_refs[1] = stencil_refs[0];
589 }
590
591 lp_build_depth_stencil_load_swizzled(gallivm, type,
592 zs_format_desc, key->resource_1d,
593 depth_ptr, depth_stride,
594 &z_fb, &s_fb, loop_state.counter);
595
596 lp_build_depth_stencil_test(gallivm,
597 &key->depth,
598 key->stencil,
599 type,
600 zs_format_desc,
601 &mask,
602 stencil_refs,
603 z, z_fb, s_fb,
604 facing,
605 &z_value, &s_value,
606 !simple_shader);
607 /* Late Z write */
608 if (depth_mode & LATE_DEPTH_WRITE) {
609 lp_build_depth_stencil_write_swizzled(gallivm, type,
610 zs_format_desc, key->resource_1d,
611 NULL, NULL, NULL, loop_state.counter,
612 depth_ptr, depth_stride,
613 z_value, s_value);
614 }
615 }
616 else if ((depth_mode & EARLY_DEPTH_TEST) &&
617 (depth_mode & LATE_DEPTH_WRITE))
618 {
619 /* Need to apply a reduced mask to the depth write. Reload the
620 * depth value, update from zs_value with the new mask value and
621 * write that out.
622 */
623 lp_build_depth_stencil_write_swizzled(gallivm, type,
624 zs_format_desc, key->resource_1d,
625 &mask, z_fb, s_fb, loop_state.counter,
626 depth_ptr, depth_stride,
627 z_value, s_value);
628 }
629
630
631 /* Color write */
632 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
633 {
634 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
635 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
636 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
637 {
638 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
639 if(outputs[attrib][chan]) {
640 /* XXX: just initialize outputs to point at colors[] and
641 * skip this.
642 */
643 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
644 LLVMValueRef color_ptr;
645 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
646 &loop_state.counter, 1, "");
647 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
648 LLVMBuildStore(builder, out, color_ptr);
649 }
650 }
651 }
652 }
653
654 if (key->occlusion_count) {
655 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
656 lp_build_name(counter, "counter");
657 lp_build_occlusion_count(gallivm, type,
658 lp_build_mask_value(&mask), counter);
659 }
660
661 mask_val = lp_build_mask_end(&mask);
662 LLVMBuildStore(builder, mask_val, mask_ptr);
663 lp_build_for_loop_end(&loop_state);
664 }
665
666
667 /**
668 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
669 *
670 * Fragment Shader outputs pixels in small 2x2 blocks
671 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
672 *
673 * However in memory pixels are stored in rows
674 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
675 *
676 * @param type fragment shader type (4x or 8x float)
677 * @param num_fs number of fs_src
678 * @param is_1d whether we're outputting to a 1d resource
679 * @param dst_channels number of output channels
680 * @param fs_src output from fragment shader
681 * @param dst pointer to store result
682 * @param pad_inline is channel padding inline or at end of row
683 * @return the number of dsts
684 */
685 static int
686 generate_fs_twiddle(struct gallivm_state *gallivm,
687 struct lp_type type,
688 unsigned num_fs,
689 unsigned dst_channels,
690 LLVMValueRef fs_src[][4],
691 LLVMValueRef* dst,
692 bool pad_inline)
693 {
694 LLVMValueRef src[16];
695
696 bool swizzle_pad;
697 bool twiddle;
698 bool split;
699
700 unsigned pixels = type.length / 4;
701 unsigned reorder_group;
702 unsigned src_channels;
703 unsigned src_count;
704 unsigned i;
705
706 src_channels = dst_channels < 3 ? dst_channels : 4;
707 src_count = num_fs * src_channels;
708
709 assert(pixels == 2 || pixels == 1);
710 assert(num_fs * src_channels <= ARRAY_SIZE(src));
711
712 /*
713 * Transpose from SoA -> AoS
714 */
715 for (i = 0; i < num_fs; ++i) {
716 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
717 }
718
719 /*
720 * Pick transformation options
721 */
722 swizzle_pad = false;
723 twiddle = false;
724 split = false;
725 reorder_group = 0;
726
727 if (dst_channels == 1) {
728 twiddle = true;
729
730 if (pixels == 2) {
731 split = true;
732 }
733 } else if (dst_channels == 2) {
734 if (pixels == 1) {
735 reorder_group = 1;
736 }
737 } else if (dst_channels > 2) {
738 if (pixels == 1) {
739 reorder_group = 2;
740 } else {
741 twiddle = true;
742 }
743
744 if (!pad_inline && dst_channels == 3 && pixels > 1) {
745 swizzle_pad = true;
746 }
747 }
748
749 /*
750 * Split the src in half
751 */
752 if (split) {
753 for (i = num_fs; i > 0; --i) {
754 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
755 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
756 }
757
758 src_count *= 2;
759 type.length = 4;
760 }
761
762 /*
763 * Ensure pixels are in memory order
764 */
765 if (reorder_group) {
766 /* Twiddle pixels by reordering the array, e.g.:
767 *
768 * src_count = 8 -> 0 2 1 3 4 6 5 7
769 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
770 */
771 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
772
773 for (i = 0; i < src_count; ++i) {
774 unsigned group = i / reorder_group;
775 unsigned block = (group / 4) * 4 * reorder_group;
776 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
777 dst[i] = src[j];
778 }
779 } else if (twiddle) {
780 /* Twiddle pixels across elements of array */
781 /*
782 * XXX: we should avoid this in some cases, but would need to tell
783 * lp_build_conv to reorder (or deal with it ourselves).
784 */
785 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
786 } else {
787 /* Do nothing */
788 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
789 }
790
791 /*
792 * Moves any padding between pixels to the end
793 * e.g. RGBXRGBX -> RGBRGBXX
794 */
795 if (swizzle_pad) {
796 unsigned char swizzles[16];
797 unsigned elems = pixels * dst_channels;
798
799 for (i = 0; i < type.length; ++i) {
800 if (i < elems)
801 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
802 else
803 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
804 }
805
806 for (i = 0; i < src_count; ++i) {
807 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
808 }
809 }
810
811 return src_count;
812 }
813
814
815 /*
816 * Untwiddle and transpose, much like the above.
817 * However, this is after conversion, so we get packed vectors.
818 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
819 * the vectors will look like:
820 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
821 * be swizzled here). Extending to 16bit should be trivial.
822 * Should also be extended to handle twice wide vectors with AVX2...
823 */
824 static void
825 fs_twiddle_transpose(struct gallivm_state *gallivm,
826 struct lp_type type,
827 LLVMValueRef *src,
828 unsigned src_count,
829 LLVMValueRef *dst)
830 {
831 unsigned i, j;
832 struct lp_type type64, type16, type32;
833 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
834 LLVMBuilderRef builder = gallivm->builder;
835 LLVMValueRef tmp[4], shuf[8];
836 for (j = 0; j < 2; j++) {
837 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
838 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
839 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
840 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
841 }
842
843 assert(src_count == 4 || src_count == 2 || src_count == 1);
844 assert(type.width == 8);
845 assert(type.length == 16);
846
847 type8_t = lp_build_vec_type(gallivm, type);
848
849 type64 = type;
850 type64.length /= 8;
851 type64.width *= 8;
852 type64_t = lp_build_vec_type(gallivm, type64);
853
854 type16 = type;
855 type16.length /= 2;
856 type16.width *= 2;
857 type16_t = lp_build_vec_type(gallivm, type16);
858
859 type32 = type;
860 type32.length /= 4;
861 type32.width *= 4;
862 type32_t = lp_build_vec_type(gallivm, type32);
863
864 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
865
866 if (src_count == 1) {
867 /* transpose was no-op, just untwiddle */
868 LLVMValueRef shuf_vec;
869 shuf_vec = LLVMConstVector(shuf, 8);
870 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
871 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
872 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
873 } else if (src_count == 2) {
874 LLVMValueRef shuf_vec;
875 shuf_vec = LLVMConstVector(shuf, 4);
876
877 for (i = 0; i < 2; i++) {
878 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
879 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
880 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
881 }
882 } else {
883 for (j = 0; j < 2; j++) {
884 LLVMValueRef lo, hi, lo2, hi2;
885 /*
886 * Note that if we only really have 3 valid channels (rgb)
887 * and we don't need alpha we could substitute a undef here
888 * for the respective channel (causing llvm to drop conversion
889 * for alpha).
890 */
891 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
892 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
893 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
894 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
895 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
896 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
897 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
898 }
899 }
900 }
901
902
903 /**
904 * Load an unswizzled block of pixels from memory
905 */
906 static void
907 load_unswizzled_block(struct gallivm_state *gallivm,
908 LLVMValueRef base_ptr,
909 LLVMValueRef stride,
910 unsigned block_width,
911 unsigned block_height,
912 LLVMValueRef* dst,
913 struct lp_type dst_type,
914 unsigned dst_count,
915 unsigned dst_alignment)
916 {
917 LLVMBuilderRef builder = gallivm->builder;
918 unsigned row_size = dst_count / block_height;
919 unsigned i;
920
921 /* Ensure block exactly fits into dst */
922 assert((block_width * block_height) % dst_count == 0);
923
924 for (i = 0; i < dst_count; ++i) {
925 unsigned x = i % row_size;
926 unsigned y = i / row_size;
927
928 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
929 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
930
931 LLVMValueRef gep[2];
932 LLVMValueRef dst_ptr;
933
934 gep[0] = lp_build_const_int32(gallivm, 0);
935 gep[1] = LLVMBuildAdd(builder, bx, by, "");
936
937 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
938 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
939 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
940
941 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
942
943 LLVMSetAlignment(dst[i], dst_alignment);
944 }
945 }
946
947
948 /**
949 * Store an unswizzled block of pixels to memory
950 */
951 static void
952 store_unswizzled_block(struct gallivm_state *gallivm,
953 LLVMValueRef base_ptr,
954 LLVMValueRef stride,
955 unsigned block_width,
956 unsigned block_height,
957 LLVMValueRef* src,
958 struct lp_type src_type,
959 unsigned src_count,
960 unsigned src_alignment)
961 {
962 LLVMBuilderRef builder = gallivm->builder;
963 unsigned row_size = src_count / block_height;
964 unsigned i;
965
966 /* Ensure src exactly fits into block */
967 assert((block_width * block_height) % src_count == 0);
968
969 for (i = 0; i < src_count; ++i) {
970 unsigned x = i % row_size;
971 unsigned y = i / row_size;
972
973 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
974 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
975
976 LLVMValueRef gep[2];
977 LLVMValueRef src_ptr;
978
979 gep[0] = lp_build_const_int32(gallivm, 0);
980 gep[1] = LLVMBuildAdd(builder, bx, by, "");
981
982 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
983 src_ptr = LLVMBuildBitCast(builder, src_ptr,
984 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
985
986 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
987
988 LLVMSetAlignment(src_ptr, src_alignment);
989 }
990 }
991
992
993 /**
994 * Checks if a format description is an arithmetic format
995 *
996 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
997 */
998 static inline boolean
999 is_arithmetic_format(const struct util_format_description *format_desc)
1000 {
1001 boolean arith = false;
1002 unsigned i;
1003
1004 for (i = 0; i < format_desc->nr_channels; ++i) {
1005 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1006 arith |= (format_desc->channel[i].size % 8) != 0;
1007 }
1008
1009 return arith;
1010 }
1011
1012
1013 /**
1014 * Checks if this format requires special handling due to required expansion
1015 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1016 * SoA conversion.
1017 */
1018 static inline boolean
1019 format_expands_to_float_soa(const struct util_format_description *format_desc)
1020 {
1021 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1022 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1023 return true;
1024 }
1025 return false;
1026 }
1027
1028
1029 /**
1030 * Retrieves the type representing the memory layout for a format
1031 *
1032 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1033 */
1034 static inline void
1035 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1036 struct lp_type* type)
1037 {
1038 unsigned i;
1039 unsigned chan;
1040
1041 if (format_expands_to_float_soa(format_desc)) {
1042 /* just make this a uint with width of block */
1043 type->floating = false;
1044 type->fixed = false;
1045 type->sign = false;
1046 type->norm = false;
1047 type->width = format_desc->block.bits;
1048 type->length = 1;
1049 return;
1050 }
1051
1052 for (i = 0; i < 4; i++)
1053 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1054 break;
1055 chan = i;
1056
1057 memset(type, 0, sizeof(struct lp_type));
1058 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1059 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1060 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1061 type->norm = format_desc->channel[chan].normalized;
1062
1063 if (is_arithmetic_format(format_desc)) {
1064 type->width = 0;
1065 type->length = 1;
1066
1067 for (i = 0; i < format_desc->nr_channels; ++i) {
1068 type->width += format_desc->channel[i].size;
1069 }
1070 } else {
1071 type->width = format_desc->channel[chan].size;
1072 type->length = format_desc->nr_channels;
1073 }
1074 }
1075
1076
1077 /**
1078 * Retrieves the type for a format which is usable in the blending code.
1079 *
1080 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1081 */
1082 static inline void
1083 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1084 struct lp_type* type)
1085 {
1086 unsigned i;
1087 unsigned chan;
1088
1089 if (format_expands_to_float_soa(format_desc)) {
1090 /* always use ordinary floats for blending */
1091 type->floating = true;
1092 type->fixed = false;
1093 type->sign = true;
1094 type->norm = false;
1095 type->width = 32;
1096 type->length = 4;
1097 return;
1098 }
1099
1100 for (i = 0; i < 4; i++)
1101 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1102 break;
1103 chan = i;
1104
1105 memset(type, 0, sizeof(struct lp_type));
1106 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1107 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1108 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1109 type->norm = format_desc->channel[chan].normalized;
1110 type->width = format_desc->channel[chan].size;
1111 type->length = format_desc->nr_channels;
1112
1113 for (i = 1; i < format_desc->nr_channels; ++i) {
1114 if (format_desc->channel[i].size > type->width)
1115 type->width = format_desc->channel[i].size;
1116 }
1117
1118 if (type->floating) {
1119 type->width = 32;
1120 } else {
1121 if (type->width <= 8) {
1122 type->width = 8;
1123 } else if (type->width <= 16) {
1124 type->width = 16;
1125 } else {
1126 type->width = 32;
1127 }
1128 }
1129
1130 if (is_arithmetic_format(format_desc) && type->length == 3) {
1131 type->length = 4;
1132 }
1133 }
1134
1135
1136 /**
1137 * Scale a normalized value from src_bits to dst_bits.
1138 *
1139 * The exact calculation is
1140 *
1141 * dst = iround(src * dst_mask / src_mask)
1142 *
1143 * or with integer rounding
1144 *
1145 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1146 *
1147 * where
1148 *
1149 * src_mask = (1 << src_bits) - 1
1150 * dst_mask = (1 << dst_bits) - 1
1151 *
1152 * but we try to avoid division and multiplication through shifts.
1153 */
1154 static inline LLVMValueRef
1155 scale_bits(struct gallivm_state *gallivm,
1156 int src_bits,
1157 int dst_bits,
1158 LLVMValueRef src,
1159 struct lp_type src_type)
1160 {
1161 LLVMBuilderRef builder = gallivm->builder;
1162 LLVMValueRef result = src;
1163
1164 if (dst_bits < src_bits) {
1165 int delta_bits = src_bits - dst_bits;
1166
1167 if (delta_bits <= dst_bits) {
1168 /*
1169 * Approximate the rescaling with a single shift.
1170 *
1171 * This gives the wrong rounding.
1172 */
1173
1174 result = LLVMBuildLShr(builder,
1175 src,
1176 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1177 "");
1178
1179 } else {
1180 /*
1181 * Try more accurate rescaling.
1182 */
1183
1184 /*
1185 * Drop the least significant bits to make space for the multiplication.
1186 *
1187 * XXX: A better approach would be to use a wider integer type as intermediate. But
1188 * this is enough to convert alpha from 16bits -> 2 when rendering to
1189 * PIPE_FORMAT_R10G10B10A2_UNORM.
1190 */
1191 result = LLVMBuildLShr(builder,
1192 src,
1193 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1194 "");
1195
1196
1197 result = LLVMBuildMul(builder,
1198 result,
1199 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1200 "");
1201
1202 /*
1203 * Add a rounding term before the division.
1204 *
1205 * TODO: Handle signed integers too.
1206 */
1207 if (!src_type.sign) {
1208 result = LLVMBuildAdd(builder,
1209 result,
1210 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1211 "");
1212 }
1213
1214 /*
1215 * Approximate the division by src_mask with a src_bits shift.
1216 *
1217 * Given the src has already been shifted by dst_bits, all we need
1218 * to do is to shift by the difference.
1219 */
1220
1221 result = LLVMBuildLShr(builder,
1222 result,
1223 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1224 "");
1225 }
1226
1227 } else if (dst_bits > src_bits) {
1228 /* Scale up bits */
1229 int db = dst_bits - src_bits;
1230
1231 /* Shift left by difference in bits */
1232 result = LLVMBuildShl(builder,
1233 src,
1234 lp_build_const_int_vec(gallivm, src_type, db),
1235 "");
1236
1237 if (db <= src_bits) {
1238 /* Enough bits in src to fill the remainder */
1239 LLVMValueRef lower = LLVMBuildLShr(builder,
1240 src,
1241 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1242 "");
1243
1244 result = LLVMBuildOr(builder, result, lower, "");
1245 } else if (db > src_bits) {
1246 /* Need to repeatedly copy src bits to fill remainder in dst */
1247 unsigned n;
1248
1249 for (n = src_bits; n < dst_bits; n *= 2) {
1250 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1251
1252 result = LLVMBuildOr(builder,
1253 result,
1254 LLVMBuildLShr(builder, result, shuv, ""),
1255 "");
1256 }
1257 }
1258 }
1259
1260 return result;
1261 }
1262
1263 /**
1264 * If RT is a smallfloat (needing denorms) format
1265 */
1266 static inline int
1267 have_smallfloat_format(struct lp_type dst_type,
1268 enum pipe_format format)
1269 {
1270 return ((dst_type.floating && dst_type.width != 32) ||
1271 /* due to format handling hacks this format doesn't have floating set
1272 * here (and actually has width set to 32 too) so special case this. */
1273 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1274 }
1275
1276
1277 /**
1278 * Convert from memory format to blending format
1279 *
1280 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1281 */
1282 static void
1283 convert_to_blend_type(struct gallivm_state *gallivm,
1284 unsigned block_size,
1285 const struct util_format_description *src_fmt,
1286 struct lp_type src_type,
1287 struct lp_type dst_type,
1288 LLVMValueRef* src, // and dst
1289 unsigned num_srcs)
1290 {
1291 LLVMValueRef *dst = src;
1292 LLVMBuilderRef builder = gallivm->builder;
1293 struct lp_type blend_type;
1294 struct lp_type mem_type;
1295 unsigned i, j;
1296 unsigned pixels = block_size / num_srcs;
1297 bool is_arith;
1298
1299 /*
1300 * full custom path for packed floats and srgb formats - none of the later
1301 * functions would do anything useful, and given the lp_type representation they
1302 * can't be fixed. Should really have some SoA blend path for these kind of
1303 * formats rather than hacking them in here.
1304 */
1305 if (format_expands_to_float_soa(src_fmt)) {
1306 LLVMValueRef tmpsrc[4];
1307 /*
1308 * This is pretty suboptimal for this case blending in SoA would be much
1309 * better, since conversion gets us SoA values so need to convert back.
1310 */
1311 assert(src_type.width == 32 || src_type.width == 16);
1312 assert(dst_type.floating);
1313 assert(dst_type.width == 32);
1314 assert(dst_type.length % 4 == 0);
1315 assert(num_srcs % 4 == 0);
1316
1317 if (src_type.width == 16) {
1318 /* expand 4x16bit values to 4x32bit */
1319 struct lp_type type32x4 = src_type;
1320 LLVMTypeRef ltype32x4;
1321 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1322 type32x4.width = 32;
1323 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1324 for (i = 0; i < num_fetch; i++) {
1325 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1326 }
1327 src_type.width = 32;
1328 }
1329 for (i = 0; i < 4; i++) {
1330 tmpsrc[i] = src[i];
1331 }
1332 for (i = 0; i < num_srcs / 4; i++) {
1333 LLVMValueRef tmpsoa[4];
1334 LLVMValueRef tmps = tmpsrc[i];
1335 if (dst_type.length == 8) {
1336 LLVMValueRef shuffles[8];
1337 unsigned j;
1338 /* fetch was 4 values but need 8-wide output values */
1339 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1340 /*
1341 * for 8-wide aos transpose would give us wrong order not matching
1342 * incoming converted fs values and mask. ARGH.
1343 */
1344 for (j = 0; j < 4; j++) {
1345 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1346 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1347 }
1348 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1349 LLVMConstVector(shuffles, 8), "");
1350 }
1351 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1352 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1353 }
1354 else {
1355 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1356 }
1357 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1358 }
1359 return;
1360 }
1361
1362 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1363 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1364
1365 /* Is the format arithmetic */
1366 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1367 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1368
1369 /* Pad if necessary */
1370 if (!is_arith && src_type.length < dst_type.length) {
1371 for (i = 0; i < num_srcs; ++i) {
1372 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1373 }
1374
1375 src_type.length = dst_type.length;
1376 }
1377
1378 /* Special case for half-floats */
1379 if (mem_type.width == 16 && mem_type.floating) {
1380 assert(blend_type.width == 32 && blend_type.floating);
1381 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1382 is_arith = false;
1383 }
1384
1385 if (!is_arith) {
1386 return;
1387 }
1388
1389 src_type.width = blend_type.width * blend_type.length;
1390 blend_type.length *= pixels;
1391 src_type.length *= pixels / (src_type.length / mem_type.length);
1392
1393 for (i = 0; i < num_srcs; ++i) {
1394 LLVMValueRef chans[4];
1395 LLVMValueRef res = NULL;
1396
1397 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1398
1399 for (j = 0; j < src_fmt->nr_channels; ++j) {
1400 unsigned mask = 0;
1401 unsigned sa = src_fmt->channel[j].shift;
1402 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1403 unsigned from_lsb = j;
1404 #else
1405 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1406 #endif
1407
1408 mask = (1 << src_fmt->channel[j].size) - 1;
1409
1410 /* Extract bits from source */
1411 chans[j] = LLVMBuildLShr(builder,
1412 dst[i],
1413 lp_build_const_int_vec(gallivm, src_type, sa),
1414 "");
1415
1416 chans[j] = LLVMBuildAnd(builder,
1417 chans[j],
1418 lp_build_const_int_vec(gallivm, src_type, mask),
1419 "");
1420
1421 /* Scale bits */
1422 if (src_type.norm) {
1423 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1424 blend_type.width, chans[j], src_type);
1425 }
1426
1427 /* Insert bits into correct position */
1428 chans[j] = LLVMBuildShl(builder,
1429 chans[j],
1430 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1431 "");
1432
1433 if (j == 0) {
1434 res = chans[j];
1435 } else {
1436 res = LLVMBuildOr(builder, res, chans[j], "");
1437 }
1438 }
1439
1440 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1441 }
1442 }
1443
1444
1445 /**
1446 * Convert from blending format to memory format
1447 *
1448 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1449 */
1450 static void
1451 convert_from_blend_type(struct gallivm_state *gallivm,
1452 unsigned block_size,
1453 const struct util_format_description *src_fmt,
1454 struct lp_type src_type,
1455 struct lp_type dst_type,
1456 LLVMValueRef* src, // and dst
1457 unsigned num_srcs)
1458 {
1459 LLVMValueRef* dst = src;
1460 unsigned i, j, k;
1461 struct lp_type mem_type;
1462 struct lp_type blend_type;
1463 LLVMBuilderRef builder = gallivm->builder;
1464 unsigned pixels = block_size / num_srcs;
1465 bool is_arith;
1466
1467 /*
1468 * full custom path for packed floats and srgb formats - none of the later
1469 * functions would do anything useful, and given the lp_type representation they
1470 * can't be fixed. Should really have some SoA blend path for these kind of
1471 * formats rather than hacking them in here.
1472 */
1473 if (format_expands_to_float_soa(src_fmt)) {
1474 /*
1475 * This is pretty suboptimal for this case blending in SoA would be much
1476 * better - we need to transpose the AoS values back to SoA values for
1477 * conversion/packing.
1478 */
1479 assert(src_type.floating);
1480 assert(src_type.width == 32);
1481 assert(src_type.length % 4 == 0);
1482 assert(dst_type.width == 32 || dst_type.width == 16);
1483
1484 for (i = 0; i < num_srcs / 4; i++) {
1485 LLVMValueRef tmpsoa[4], tmpdst;
1486 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1487 /* really really need SoA here */
1488
1489 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1490 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1491 }
1492 else {
1493 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1494 src_type, tmpsoa);
1495 }
1496
1497 if (src_type.length == 8) {
1498 LLVMValueRef tmpaos, shuffles[8];
1499 unsigned j;
1500 /*
1501 * for 8-wide aos transpose has given us wrong order not matching
1502 * output order. HMPF. Also need to split the output values manually.
1503 */
1504 for (j = 0; j < 4; j++) {
1505 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1506 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1507 }
1508 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1509 LLVMConstVector(shuffles, 8), "");
1510 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1511 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1512 }
1513 else {
1514 src[i] = tmpdst;
1515 }
1516 }
1517 if (dst_type.width == 16) {
1518 struct lp_type type16x8 = dst_type;
1519 struct lp_type type32x4 = dst_type;
1520 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1521 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1522 type16x8.length = 8;
1523 type32x4.width = 32;
1524 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1525 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1526 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1527 /* We could do vector truncation but it doesn't generate very good code */
1528 for (i = 0; i < num_fetch; i++) {
1529 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1530 src[i], lp_build_zero(gallivm, type32x4));
1531 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1532 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1533 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1534 }
1535 }
1536 return;
1537 }
1538
1539 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1540 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1541
1542 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1543
1544 /* Special case for half-floats */
1545 if (mem_type.width == 16 && mem_type.floating) {
1546 int length = dst_type.length;
1547 assert(blend_type.width == 32 && blend_type.floating);
1548
1549 dst_type.length = src_type.length;
1550
1551 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1552
1553 dst_type.length = length;
1554 is_arith = false;
1555 }
1556
1557 /* Remove any padding */
1558 if (!is_arith && (src_type.length % mem_type.length)) {
1559 src_type.length -= (src_type.length % mem_type.length);
1560
1561 for (i = 0; i < num_srcs; ++i) {
1562 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1563 }
1564 }
1565
1566 /* No bit arithmetic to do */
1567 if (!is_arith) {
1568 return;
1569 }
1570
1571 src_type.length = pixels;
1572 src_type.width = blend_type.length * blend_type.width;
1573 dst_type.length = pixels;
1574
1575 for (i = 0; i < num_srcs; ++i) {
1576 LLVMValueRef chans[4];
1577 LLVMValueRef res = NULL;
1578
1579 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1580
1581 for (j = 0; j < src_fmt->nr_channels; ++j) {
1582 unsigned mask = 0;
1583 unsigned sa = src_fmt->channel[j].shift;
1584 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1585 unsigned from_lsb = j;
1586 #else
1587 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1588 #endif
1589
1590 assert(blend_type.width > src_fmt->channel[j].size);
1591
1592 for (k = 0; k < blend_type.width; ++k) {
1593 mask |= 1 << k;
1594 }
1595
1596 /* Extract bits */
1597 chans[j] = LLVMBuildLShr(builder,
1598 dst[i],
1599 lp_build_const_int_vec(gallivm, src_type,
1600 from_lsb * blend_type.width),
1601 "");
1602
1603 chans[j] = LLVMBuildAnd(builder,
1604 chans[j],
1605 lp_build_const_int_vec(gallivm, src_type, mask),
1606 "");
1607
1608 /* Scale down bits */
1609 if (src_type.norm) {
1610 chans[j] = scale_bits(gallivm, blend_type.width,
1611 src_fmt->channel[j].size, chans[j], src_type);
1612 }
1613
1614 /* Insert bits */
1615 chans[j] = LLVMBuildShl(builder,
1616 chans[j],
1617 lp_build_const_int_vec(gallivm, src_type, sa),
1618 "");
1619
1620 sa += src_fmt->channel[j].size;
1621
1622 if (j == 0) {
1623 res = chans[j];
1624 } else {
1625 res = LLVMBuildOr(builder, res, chans[j], "");
1626 }
1627 }
1628
1629 assert (dst_type.width != 24);
1630
1631 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1632 }
1633 }
1634
1635
1636 /**
1637 * Convert alpha to same blend type as src
1638 */
1639 static void
1640 convert_alpha(struct gallivm_state *gallivm,
1641 struct lp_type row_type,
1642 struct lp_type alpha_type,
1643 const unsigned block_size,
1644 const unsigned block_height,
1645 const unsigned src_count,
1646 const unsigned dst_channels,
1647 const bool pad_inline,
1648 LLVMValueRef* src_alpha)
1649 {
1650 LLVMBuilderRef builder = gallivm->builder;
1651 unsigned i, j;
1652 unsigned length = row_type.length;
1653 row_type.length = alpha_type.length;
1654
1655 /* Twiddle the alpha to match pixels */
1656 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1657
1658 /*
1659 * TODO this should use single lp_build_conv call for
1660 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1661 */
1662 for (i = 0; i < block_height; ++i) {
1663 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1664 }
1665
1666 alpha_type = row_type;
1667 row_type.length = length;
1668
1669 /* If only one channel we can only need the single alpha value per pixel */
1670 if (src_count == 1 && dst_channels == 1) {
1671
1672 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1673 } else {
1674 /* If there are more srcs than rows then we need to split alpha up */
1675 if (src_count > block_height) {
1676 for (i = src_count; i > 0; --i) {
1677 unsigned pixels = block_size / src_count;
1678 unsigned idx = i - 1;
1679
1680 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1681 (idx * pixels) % 4, pixels);
1682 }
1683 }
1684
1685 /* If there is a src for each pixel broadcast the alpha across whole row */
1686 if (src_count == block_size) {
1687 for (i = 0; i < src_count; ++i) {
1688 src_alpha[i] = lp_build_broadcast(gallivm,
1689 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1690 }
1691 } else {
1692 unsigned pixels = block_size / src_count;
1693 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1694 unsigned alpha_span = 1;
1695 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1696
1697 /* Check if we need 2 src_alphas for our shuffles */
1698 if (pixels > alpha_type.length) {
1699 alpha_span = 2;
1700 }
1701
1702 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1703 for (j = 0; j < row_type.length; ++j) {
1704 if (j < pixels * channels) {
1705 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1706 } else {
1707 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1708 }
1709 }
1710
1711 for (i = 0; i < src_count; ++i) {
1712 unsigned idx1 = i, idx2 = i;
1713
1714 if (alpha_span > 1){
1715 idx1 *= alpha_span;
1716 idx2 = idx1 + 1;
1717 }
1718
1719 src_alpha[i] = LLVMBuildShuffleVector(builder,
1720 src_alpha[idx1],
1721 src_alpha[idx2],
1722 LLVMConstVector(shuffles, row_type.length),
1723 "");
1724 }
1725 }
1726 }
1727 }
1728
1729
1730 /**
1731 * Generates the blend function for unswizzled colour buffers
1732 * Also generates the read & write from colour buffer
1733 */
1734 static void
1735 generate_unswizzled_blend(struct gallivm_state *gallivm,
1736 unsigned rt,
1737 struct lp_fragment_shader_variant *variant,
1738 enum pipe_format out_format,
1739 unsigned int num_fs,
1740 struct lp_type fs_type,
1741 LLVMValueRef* fs_mask,
1742 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1743 LLVMValueRef context_ptr,
1744 LLVMValueRef color_ptr,
1745 LLVMValueRef stride,
1746 unsigned partial_mask,
1747 boolean do_branch)
1748 {
1749 const unsigned alpha_channel = 3;
1750 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1751 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1752 const unsigned block_size = block_width * block_height;
1753 const unsigned lp_integer_vector_width = 128;
1754
1755 LLVMBuilderRef builder = gallivm->builder;
1756 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1757 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1758 LLVMValueRef src_alpha[4 * 4];
1759 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1760 LLVMValueRef src_mask[4 * 4];
1761 LLVMValueRef src[4 * 4];
1762 LLVMValueRef src1[4 * 4];
1763 LLVMValueRef dst[4 * 4];
1764 LLVMValueRef blend_color;
1765 LLVMValueRef blend_alpha;
1766 LLVMValueRef i32_zero;
1767 LLVMValueRef check_mask;
1768 LLVMValueRef undef_src_val;
1769
1770 struct lp_build_mask_context mask_ctx;
1771 struct lp_type mask_type;
1772 struct lp_type blend_type;
1773 struct lp_type row_type;
1774 struct lp_type dst_type;
1775 struct lp_type ls_type;
1776
1777 unsigned char swizzle[TGSI_NUM_CHANNELS];
1778 unsigned vector_width;
1779 unsigned src_channels = TGSI_NUM_CHANNELS;
1780 unsigned dst_channels;
1781 unsigned dst_count;
1782 unsigned src_count;
1783 unsigned i, j;
1784
1785 const struct util_format_description* out_format_desc = util_format_description(out_format);
1786
1787 unsigned dst_alignment;
1788
1789 bool pad_inline = is_arithmetic_format(out_format_desc);
1790 bool has_alpha = false;
1791 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1792 util_blend_state_is_dual(&variant->key.blend, 0);
1793
1794 const boolean is_1d = variant->key.resource_1d;
1795 boolean twiddle_after_convert = FALSE;
1796 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1797 LLVMValueRef fpstate = 0;
1798
1799 /* Get type from output format */
1800 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1801 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1802
1803 /*
1804 * Technically this code should go into lp_build_smallfloat_to_float
1805 * and lp_build_float_to_smallfloat but due to the
1806 * http://llvm.org/bugs/show_bug.cgi?id=6393
1807 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1808 * So the ordering is important here and there shouldn't be any
1809 * llvm ir instrunctions in this function before
1810 * this, otherwise half-float format conversions won't work
1811 * (again due to llvm bug #6393).
1812 */
1813 if (have_smallfloat_format(dst_type, out_format)) {
1814 /* We need to make sure that denorms are ok for half float
1815 conversions */
1816 fpstate = lp_build_fpstate_get(gallivm);
1817 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1818 }
1819
1820 mask_type = lp_int32_vec4_type();
1821 mask_type.length = fs_type.length;
1822
1823 for (i = num_fs; i < num_fullblock_fs; i++) {
1824 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1825 }
1826
1827 /* Do not bother executing code when mask is empty.. */
1828 if (do_branch) {
1829 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1830
1831 for (i = 0; i < num_fullblock_fs; ++i) {
1832 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1833 }
1834
1835 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1836 lp_build_mask_check(&mask_ctx);
1837 }
1838
1839 partial_mask |= !variant->opaque;
1840 i32_zero = lp_build_const_int32(gallivm, 0);
1841
1842 undef_src_val = lp_build_undef(gallivm, fs_type);
1843
1844 row_type.length = fs_type.length;
1845 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1846
1847 /* Compute correct swizzle and count channels */
1848 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1849 dst_channels = 0;
1850
1851 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1852 /* Ensure channel is used */
1853 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1854 continue;
1855 }
1856
1857 /* Ensure not already written to (happens in case with GL_ALPHA) */
1858 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1859 continue;
1860 }
1861
1862 /* Ensure we havn't already found all channels */
1863 if (dst_channels >= out_format_desc->nr_channels) {
1864 continue;
1865 }
1866
1867 swizzle[out_format_desc->swizzle[i]] = i;
1868 ++dst_channels;
1869
1870 if (i == alpha_channel) {
1871 has_alpha = true;
1872 }
1873 }
1874
1875 if (format_expands_to_float_soa(out_format_desc)) {
1876 /*
1877 * the code above can't work for layout_other
1878 * for srgb it would sort of work but we short-circuit swizzles, etc.
1879 * as that is done as part of unpack / pack.
1880 */
1881 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1882 has_alpha = true;
1883 swizzle[0] = 0;
1884 swizzle[1] = 1;
1885 swizzle[2] = 2;
1886 swizzle[3] = 3;
1887 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1888 }
1889
1890 /* If 3 channels then pad to include alpha for 4 element transpose */
1891 if (dst_channels == 3) {
1892 assert (!has_alpha);
1893 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1894 if (swizzle[i] > TGSI_NUM_CHANNELS)
1895 swizzle[i] = 3;
1896 }
1897 if (out_format_desc->nr_channels == 4) {
1898 dst_channels = 4;
1899 /*
1900 * We use alpha from the color conversion, not separate one.
1901 * We had to include it for transpose, hence it will get converted
1902 * too (albeit when doing transpose after conversion, that would
1903 * no longer be the case necessarily).
1904 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1905 * otherwise we really have padding, not alpha, included.)
1906 */
1907 has_alpha = true;
1908 }
1909 }
1910
1911 /*
1912 * Load shader output
1913 */
1914 for (i = 0; i < num_fullblock_fs; ++i) {
1915 /* Always load alpha for use in blending */
1916 LLVMValueRef alpha;
1917 if (i < num_fs) {
1918 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1919 }
1920 else {
1921 alpha = undef_src_val;
1922 }
1923
1924 /* Load each channel */
1925 for (j = 0; j < dst_channels; ++j) {
1926 assert(swizzle[j] < 4);
1927 if (i < num_fs) {
1928 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1929 }
1930 else {
1931 fs_src[i][j] = undef_src_val;
1932 }
1933 }
1934
1935 /* If 3 channels then pad to include alpha for 4 element transpose */
1936 /*
1937 * XXX If we include that here maybe could actually use it instead of
1938 * separate alpha for blending?
1939 * (Difficult though we actually convert pad channels, not alpha.)
1940 */
1941 if (dst_channels == 3 && !has_alpha) {
1942 fs_src[i][3] = alpha;
1943 }
1944
1945 /* We split the row_mask and row_alpha as we want 128bit interleave */
1946 if (fs_type.length == 8) {
1947 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1948 0, src_channels);
1949 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1950 src_channels, src_channels);
1951
1952 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1953 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1954 src_channels, src_channels);
1955 } else {
1956 src_mask[i] = fs_mask[i];
1957 src_alpha[i] = alpha;
1958 }
1959 }
1960 if (dual_source_blend) {
1961 /* same as above except different src/dst, skip masks and comments... */
1962 for (i = 0; i < num_fullblock_fs; ++i) {
1963 LLVMValueRef alpha;
1964 if (i < num_fs) {
1965 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1966 }
1967 else {
1968 alpha = undef_src_val;
1969 }
1970
1971 for (j = 0; j < dst_channels; ++j) {
1972 assert(swizzle[j] < 4);
1973 if (i < num_fs) {
1974 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1975 }
1976 else {
1977 fs_src1[i][j] = undef_src_val;
1978 }
1979 }
1980 if (dst_channels == 3 && !has_alpha) {
1981 fs_src1[i][3] = alpha;
1982 }
1983 if (fs_type.length == 8) {
1984 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1985 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1986 src_channels, src_channels);
1987 } else {
1988 src1_alpha[i] = alpha;
1989 }
1990 }
1991 }
1992
1993 if (util_format_is_pure_integer(out_format)) {
1994 /*
1995 * In this case fs_type was really ints or uints disguised as floats,
1996 * fix that up now.
1997 */
1998 fs_type.floating = 0;
1999 fs_type.sign = dst_type.sign;
2000 for (i = 0; i < num_fullblock_fs; ++i) {
2001 for (j = 0; j < dst_channels; ++j) {
2002 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2003 lp_build_vec_type(gallivm, fs_type), "");
2004 }
2005 if (dst_channels == 3 && !has_alpha) {
2006 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2007 lp_build_vec_type(gallivm, fs_type), "");
2008 }
2009 }
2010 }
2011
2012 /*
2013 * We actually should generally do conversion first (for non-1d cases)
2014 * when the blend format is 8 or 16 bits. The reason is obvious,
2015 * there's 2 or 4 times less vectors to deal with for the interleave...
2016 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2017 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2018 * unpack only with 128bit vectors).
2019 * Note: for 16bit sizes really need matching pack conversion code
2020 */
2021 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2022 twiddle_after_convert = TRUE;
2023 }
2024
2025 /*
2026 * Pixel twiddle from fragment shader order to memory order
2027 */
2028 if (!twiddle_after_convert) {
2029 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2030 dst_channels, fs_src, src, pad_inline);
2031 if (dual_source_blend) {
2032 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2033 fs_src1, src1, pad_inline);
2034 }
2035 } else {
2036 src_count = num_fullblock_fs * dst_channels;
2037 /*
2038 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2039 * (AVX) turn out the same later when untwiddling/transpose (albeit
2040 * for true AVX2 path untwiddle needs to be different).
2041 * For now just order by colors first (so we can use unpack later).
2042 */
2043 for (j = 0; j < num_fullblock_fs; j++) {
2044 for (i = 0; i < dst_channels; i++) {
2045 src[i*num_fullblock_fs + j] = fs_src[j][i];
2046 if (dual_source_blend) {
2047 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2048 }
2049 }
2050 }
2051 }
2052
2053 src_channels = dst_channels < 3 ? dst_channels : 4;
2054 if (src_count != num_fullblock_fs * src_channels) {
2055 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2056 row_type.length /= ds;
2057 fs_type.length = row_type.length;
2058 }
2059
2060 blend_type = row_type;
2061 mask_type.length = 4;
2062
2063 /* Convert src to row_type */
2064 if (dual_source_blend) {
2065 struct lp_type old_row_type = row_type;
2066 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2067 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2068 }
2069 else {
2070 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2071 }
2072
2073 /* If the rows are not an SSE vector, combine them to become SSE size! */
2074 if ((row_type.width * row_type.length) % 128) {
2075 unsigned bits = row_type.width * row_type.length;
2076 unsigned combined;
2077
2078 assert(src_count >= (vector_width / bits));
2079
2080 dst_count = src_count / (vector_width / bits);
2081
2082 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2083 if (dual_source_blend) {
2084 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2085 }
2086
2087 row_type.length *= combined;
2088 src_count /= combined;
2089
2090 bits = row_type.width * row_type.length;
2091 assert(bits == 128 || bits == 256);
2092 }
2093
2094 if (twiddle_after_convert) {
2095 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2096 if (dual_source_blend) {
2097 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2098 }
2099 }
2100
2101 /*
2102 * Blend Colour conversion
2103 */
2104 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2105 blend_color = LLVMBuildPointerCast(builder, blend_color,
2106 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2107 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2108 &i32_zero, 1, ""), "");
2109
2110 /* Convert */
2111 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2112
2113 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2114 /*
2115 * since blending is done with floats, there was no conversion.
2116 * However, the rules according to fixed point renderbuffers still
2117 * apply, that is we must clamp inputs to 0.0/1.0.
2118 * (This would apply to separate alpha conversion too but we currently
2119 * force has_alpha to be true.)
2120 * TODO: should skip this with "fake" blend, since post-blend conversion
2121 * will clamp anyway.
2122 * TODO: could also skip this if fragment color clamping is enabled. We
2123 * don't support it natively so it gets baked into the shader however, so
2124 * can't really tell here.
2125 */
2126 struct lp_build_context f32_bld;
2127 assert(row_type.floating);
2128 lp_build_context_init(&f32_bld, gallivm, row_type);
2129 for (i = 0; i < src_count; i++) {
2130 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2131 }
2132 if (dual_source_blend) {
2133 for (i = 0; i < src_count; i++) {
2134 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2135 }
2136 }
2137 /* probably can't be different than row_type but better safe than sorry... */
2138 lp_build_context_init(&f32_bld, gallivm, blend_type);
2139 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2140 }
2141
2142 /* Extract alpha */
2143 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2144
2145 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2146 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2147 if (pad_inline) {
2148 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2149 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2150 } else {
2151 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2152 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2153 }
2154
2155 /*
2156 * Mask conversion
2157 */
2158 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2159
2160 if (src_count < block_height) {
2161 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2162 } else if (src_count > block_height) {
2163 for (i = src_count; i > 0; --i) {
2164 unsigned pixels = block_size / src_count;
2165 unsigned idx = i - 1;
2166
2167 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2168 (idx * pixels) % 4, pixels);
2169 }
2170 }
2171
2172 assert(mask_type.width == 32);
2173
2174 for (i = 0; i < src_count; ++i) {
2175 unsigned pixels = block_size / src_count;
2176 unsigned pixel_width = row_type.width * dst_channels;
2177
2178 if (pixel_width == 24) {
2179 mask_type.width = 8;
2180 mask_type.length = vector_width / mask_type.width;
2181 } else {
2182 mask_type.length = pixels;
2183 mask_type.width = row_type.width * dst_channels;
2184
2185 /*
2186 * If mask_type width is smaller than 32bit, this doesn't quite
2187 * generate the most efficient code (could use some pack).
2188 */
2189 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2190 lp_build_int_vec_type(gallivm, mask_type), "");
2191
2192 mask_type.length *= dst_channels;
2193 mask_type.width /= dst_channels;
2194 }
2195
2196 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2197 lp_build_int_vec_type(gallivm, mask_type), "");
2198 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2199 }
2200
2201 /*
2202 * Alpha conversion
2203 */
2204 if (!has_alpha) {
2205 struct lp_type alpha_type = fs_type;
2206 alpha_type.length = 4;
2207 convert_alpha(gallivm, row_type, alpha_type,
2208 block_size, block_height,
2209 src_count, dst_channels,
2210 pad_inline, src_alpha);
2211 if (dual_source_blend) {
2212 convert_alpha(gallivm, row_type, alpha_type,
2213 block_size, block_height,
2214 src_count, dst_channels,
2215 pad_inline, src1_alpha);
2216 }
2217 }
2218
2219
2220 /*
2221 * Load dst from memory
2222 */
2223 if (src_count < block_height) {
2224 dst_count = block_height;
2225 } else {
2226 dst_count = src_count;
2227 }
2228
2229 dst_type.length *= block_size / dst_count;
2230
2231 if (format_expands_to_float_soa(out_format_desc)) {
2232 /*
2233 * we need multiple values at once for the conversion, so can as well
2234 * load them vectorized here too instead of concatenating later.
2235 * (Still need concatenation later for 8-wide vectors).
2236 */
2237 dst_count = block_height;
2238 dst_type.length = block_width;
2239 }
2240
2241 /*
2242 * Compute the alignment of the destination pointer in bytes
2243 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2244 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2245 * 1d tex but can't distinguish here) so need to stick with per-pixel
2246 * alignment in this case.
2247 */
2248 if (is_1d) {
2249 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2250 }
2251 else {
2252 dst_alignment = dst_type.length * dst_type.width / 8;
2253 }
2254 /* Force power-of-two alignment by extracting only the least-significant-bit */
2255 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2256 /*
2257 * Resource base and stride pointers are aligned to 16 bytes, so that's
2258 * the maximum alignment we can guarantee
2259 */
2260 dst_alignment = MIN2(16, dst_alignment);
2261
2262 ls_type = dst_type;
2263
2264 if (dst_count > src_count) {
2265 if ((dst_type.width == 8 || dst_type.width == 16) &&
2266 util_is_power_of_two_or_zero(dst_type.length) &&
2267 dst_type.length * dst_type.width < 128) {
2268 /*
2269 * Never try to load values as 4xi8 which we will then
2270 * concatenate to larger vectors. This gives llvm a real
2271 * headache (the problem is the type legalizer (?) will
2272 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2273 * then the shuffles to concatenate are more or less impossible
2274 * - llvm is easily capable of generating a sequence of 32
2275 * pextrb/pinsrb instructions for that. Albeit it appears to
2276 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2277 * width to avoid the trouble (16bit seems not as bad, llvm
2278 * probably recognizes the load+shuffle as only one shuffle
2279 * is necessary, but we can do just the same anyway).
2280 */
2281 ls_type.length = dst_type.length * dst_type.width / 32;
2282 ls_type.width = 32;
2283 }
2284 }
2285
2286 if (is_1d) {
2287 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2288 dst, ls_type, dst_count / 4, dst_alignment);
2289 for (i = dst_count / 4; i < dst_count; i++) {
2290 dst[i] = lp_build_undef(gallivm, ls_type);
2291 }
2292
2293 }
2294 else {
2295 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2296 dst, ls_type, dst_count, dst_alignment);
2297 }
2298
2299
2300 /*
2301 * Convert from dst/output format to src/blending format.
2302 *
2303 * This is necessary as we can only read 1 row from memory at a time,
2304 * so the minimum dst_count will ever be at this point is 4.
2305 *
2306 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2307 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2308 * on all 16 pixels in that single vector at once.
2309 */
2310 if (dst_count > src_count) {
2311 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2312 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2313 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2314 for (i = 0; i < dst_count; i++) {
2315 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2316 }
2317 }
2318
2319 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2320
2321 if (ls_type.length != dst_type.length) {
2322 struct lp_type tmp_type = dst_type;
2323 tmp_type.length = dst_type.length * 4 / src_count;
2324 for (i = 0; i < src_count; i++) {
2325 dst[i] = LLVMBuildBitCast(builder, dst[i],
2326 lp_build_vec_type(gallivm, tmp_type), "");
2327 }
2328 }
2329 }
2330
2331 /*
2332 * Blending
2333 */
2334 /* XXX this is broken for RGB8 formats -
2335 * they get expanded from 12 to 16 elements (to include alpha)
2336 * by convert_to_blend_type then reduced to 15 instead of 12
2337 * by convert_from_blend_type (a simple fix though breaks A8...).
2338 * R16G16B16 also crashes differently however something going wrong
2339 * inside llvm handling npot vector sizes seemingly.
2340 * It seems some cleanup could be done here (like skipping conversion/blend
2341 * when not needed).
2342 */
2343 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2344 row_type, dst, src_count);
2345
2346 /*
2347 * FIXME: Really should get logic ops / masks out of generic blend / row
2348 * format. Logic ops will definitely not work on the blend float format
2349 * used for SRGB here and I think OpenGL expects this to work as expected
2350 * (that is incoming values converted to srgb then logic op applied).
2351 */
2352 for (i = 0; i < src_count; ++i) {
2353 dst[i] = lp_build_blend_aos(gallivm,
2354 &variant->key.blend,
2355 out_format,
2356 row_type,
2357 rt,
2358 src[i],
2359 has_alpha ? NULL : src_alpha[i],
2360 src1[i],
2361 has_alpha ? NULL : src1_alpha[i],
2362 dst[i],
2363 partial_mask ? src_mask[i] : NULL,
2364 blend_color,
2365 has_alpha ? NULL : blend_alpha,
2366 swizzle,
2367 pad_inline ? 4 : dst_channels);
2368 }
2369
2370 convert_from_blend_type(gallivm, block_size, out_format_desc,
2371 row_type, dst_type, dst, src_count);
2372
2373 /* Split the blend rows back to memory rows */
2374 if (dst_count > src_count) {
2375 row_type.length = dst_type.length * (dst_count / src_count);
2376
2377 if (src_count == 1) {
2378 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2379 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2380
2381 row_type.length /= 2;
2382 src_count *= 2;
2383 }
2384
2385 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2386 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2387 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2388 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2389
2390 row_type.length /= 2;
2391 src_count *= 2;
2392 }
2393
2394 /*
2395 * Store blend result to memory
2396 */
2397 if (is_1d) {
2398 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2399 dst, dst_type, dst_count / 4, dst_alignment);
2400 }
2401 else {
2402 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2403 dst, dst_type, dst_count, dst_alignment);
2404 }
2405
2406 if (have_smallfloat_format(dst_type, out_format)) {
2407 lp_build_fpstate_set(gallivm, fpstate);
2408 }
2409
2410 if (do_branch) {
2411 lp_build_mask_end(&mask_ctx);
2412 }
2413 }
2414
2415
2416 /**
2417 * Generate the runtime callable function for the whole fragment pipeline.
2418 * Note that the function which we generate operates on a block of 16
2419 * pixels at at time. The block contains 2x2 quads. Each quad contains
2420 * 2x2 pixels.
2421 */
2422 static void
2423 generate_fragment(struct llvmpipe_context *lp,
2424 struct lp_fragment_shader *shader,
2425 struct lp_fragment_shader_variant *variant,
2426 unsigned partial_mask)
2427 {
2428 struct gallivm_state *gallivm = variant->gallivm;
2429 struct lp_fragment_shader_variant_key *key = &variant->key;
2430 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2431 char func_name[64];
2432 struct lp_type fs_type;
2433 struct lp_type blend_type;
2434 LLVMTypeRef fs_elem_type;
2435 LLVMTypeRef blend_vec_type;
2436 LLVMTypeRef arg_types[13];
2437 LLVMTypeRef func_type;
2438 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2439 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2440 LLVMValueRef context_ptr;
2441 LLVMValueRef x;
2442 LLVMValueRef y;
2443 LLVMValueRef a0_ptr;
2444 LLVMValueRef dadx_ptr;
2445 LLVMValueRef dady_ptr;
2446 LLVMValueRef color_ptr_ptr;
2447 LLVMValueRef stride_ptr;
2448 LLVMValueRef depth_ptr;
2449 LLVMValueRef depth_stride;
2450 LLVMValueRef mask_input;
2451 LLVMValueRef thread_data_ptr;
2452 LLVMBasicBlockRef block;
2453 LLVMBuilderRef builder;
2454 struct lp_build_sampler_soa *sampler;
2455 struct lp_build_image_soa *image;
2456 struct lp_build_interp_soa_context interp;
2457 LLVMValueRef fs_mask[16 / 4];
2458 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2459 LLVMValueRef function;
2460 LLVMValueRef facing;
2461 unsigned num_fs;
2462 unsigned i;
2463 unsigned chan;
2464 unsigned cbuf;
2465 boolean cbuf0_write_all;
2466 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2467 util_blend_state_is_dual(&key->blend, 0);
2468
2469 assert(lp_native_vector_width / 32 >= 4);
2470
2471 /* Adjust color input interpolation according to flatshade state:
2472 */
2473 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2474 for (i = 0; i < shader->info.base.num_inputs; i++) {
2475 if (inputs[i].interp == LP_INTERP_COLOR) {
2476 if (key->flatshade)
2477 inputs[i].interp = LP_INTERP_CONSTANT;
2478 else
2479 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2480 }
2481 }
2482
2483 /* check if writes to cbuf[0] are to be copied to all cbufs */
2484 cbuf0_write_all =
2485 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2486
2487 /* TODO: actually pick these based on the fs and color buffer
2488 * characteristics. */
2489
2490 memset(&fs_type, 0, sizeof fs_type);
2491 fs_type.floating = TRUE; /* floating point values */
2492 fs_type.sign = TRUE; /* values are signed */
2493 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2494 fs_type.width = 32; /* 32-bit float */
2495 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2496
2497 memset(&blend_type, 0, sizeof blend_type);
2498 blend_type.floating = FALSE; /* values are integers */
2499 blend_type.sign = FALSE; /* values are unsigned */
2500 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2501 blend_type.width = 8; /* 8-bit ubyte values */
2502 blend_type.length = 16; /* 16 elements per vector */
2503
2504 /*
2505 * Generate the function prototype. Any change here must be reflected in
2506 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2507 */
2508
2509 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2510
2511 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2512
2513 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2514 shader->no, variant->no, partial_mask ? "partial" : "whole");
2515
2516 arg_types[0] = variant->jit_context_ptr_type; /* context */
2517 arg_types[1] = int32_type; /* x */
2518 arg_types[2] = int32_type; /* y */
2519 arg_types[3] = int32_type; /* facing */
2520 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2521 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2522 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2523 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2524 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2525 arg_types[9] = int32_type; /* mask_input */
2526 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2527 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2528 arg_types[12] = int32_type; /* depth_stride */
2529
2530 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2531 arg_types, ARRAY_SIZE(arg_types), 0);
2532
2533 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2534 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2535
2536 variant->function[partial_mask] = function;
2537
2538 /* XXX: need to propagate noalias down into color param now we are
2539 * passing a pointer-to-pointer?
2540 */
2541 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2542 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2543 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2544
2545 context_ptr = LLVMGetParam(function, 0);
2546 x = LLVMGetParam(function, 1);
2547 y = LLVMGetParam(function, 2);
2548 facing = LLVMGetParam(function, 3);
2549 a0_ptr = LLVMGetParam(function, 4);
2550 dadx_ptr = LLVMGetParam(function, 5);
2551 dady_ptr = LLVMGetParam(function, 6);
2552 color_ptr_ptr = LLVMGetParam(function, 7);
2553 depth_ptr = LLVMGetParam(function, 8);
2554 mask_input = LLVMGetParam(function, 9);
2555 thread_data_ptr = LLVMGetParam(function, 10);
2556 stride_ptr = LLVMGetParam(function, 11);
2557 depth_stride = LLVMGetParam(function, 12);
2558
2559 lp_build_name(context_ptr, "context");
2560 lp_build_name(x, "x");
2561 lp_build_name(y, "y");
2562 lp_build_name(a0_ptr, "a0");
2563 lp_build_name(dadx_ptr, "dadx");
2564 lp_build_name(dady_ptr, "dady");
2565 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2566 lp_build_name(depth_ptr, "depth");
2567 lp_build_name(mask_input, "mask_input");
2568 lp_build_name(thread_data_ptr, "thread_data");
2569 lp_build_name(stride_ptr, "stride_ptr");
2570 lp_build_name(depth_stride, "depth_stride");
2571
2572 /*
2573 * Function body
2574 */
2575
2576 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2577 builder = gallivm->builder;
2578 assert(builder);
2579 LLVMPositionBuilderAtEnd(builder, block);
2580
2581 /*
2582 * Must not count ps invocations if there's a null shader.
2583 * (It would be ok to count with null shader if there's d/s tests,
2584 * but only if there's d/s buffers too, which is different
2585 * to implicit rasterization disable which must not depend
2586 * on the d/s buffers.)
2587 * Could use popcount on mask, but pixel accuracy is not required.
2588 * Could disable if there's no stats query, but maybe not worth it.
2589 */
2590 if (shader->info.base.num_instructions > 1) {
2591 LLVMValueRef invocs, val;
2592 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2593 val = LLVMBuildLoad(builder, invocs, "");
2594 val = LLVMBuildAdd(builder, val,
2595 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2596 "invoc_count");
2597 LLVMBuildStore(builder, val, invocs);
2598 }
2599
2600 /* code generated texture sampling */
2601 sampler = lp_llvm_sampler_soa_create(key->samplers);
2602 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2603
2604 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2605 /* for 1d resources only run "upper half" of stamp */
2606 if (key->resource_1d)
2607 num_fs /= 2;
2608
2609 {
2610 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2611 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2612 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2613 num_loop, "mask_store");
2614 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2615 boolean pixel_center_integer =
2616 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2617
2618 /*
2619 * The shader input interpolation info is not explicitely baked in the
2620 * shader key, but everything it derives from (TGSI, and flatshade) is
2621 * already included in the shader key.
2622 */
2623 lp_build_interp_soa_init(&interp,
2624 gallivm,
2625 shader->info.base.num_inputs,
2626 inputs,
2627 pixel_center_integer,
2628 key->depth_clamp,
2629 builder, fs_type,
2630 a0_ptr, dadx_ptr, dady_ptr,
2631 x, y);
2632
2633 for (i = 0; i < num_fs; i++) {
2634 LLVMValueRef mask;
2635 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2636 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2637 &indexi, 1, "mask_ptr");
2638
2639 if (partial_mask) {
2640 mask = generate_quad_mask(gallivm, fs_type,
2641 i*fs_type.length/4, mask_input);
2642 }
2643 else {
2644 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2645 }
2646 LLVMBuildStore(builder, mask, mask_ptr);
2647 }
2648
2649 generate_fs_loop(gallivm,
2650 shader, key,
2651 builder,
2652 fs_type,
2653 context_ptr,
2654 num_loop,
2655 &interp,
2656 sampler,
2657 image,
2658 mask_store, /* output */
2659 color_store,
2660 depth_ptr,
2661 depth_stride,
2662 facing,
2663 thread_data_ptr);
2664
2665 for (i = 0; i < num_fs; i++) {
2666 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2667 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2668 &indexi, 1, "");
2669 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2670 /* This is fucked up need to reorganize things */
2671 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2672 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2673 ptr = LLVMBuildGEP(builder,
2674 color_store[cbuf * !cbuf0_write_all][chan],
2675 &indexi, 1, "");
2676 fs_out_color[cbuf][chan][i] = ptr;
2677 }
2678 }
2679 if (dual_source_blend) {
2680 /* only support one dual source blend target hence always use output 1 */
2681 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2682 ptr = LLVMBuildGEP(builder,
2683 color_store[1][chan],
2684 &indexi, 1, "");
2685 fs_out_color[1][chan][i] = ptr;
2686 }
2687 }
2688 }
2689 }
2690
2691 sampler->destroy(sampler);
2692 image->destroy(image);
2693 /* Loop over color outputs / color buffers to do blending.
2694 */
2695 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2696 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2697 LLVMValueRef color_ptr;
2698 LLVMValueRef stride;
2699 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2700
2701 boolean do_branch = ((key->depth.enabled
2702 || key->stencil[0].enabled
2703 || key->alpha.enabled)
2704 && !shader->info.base.uses_kill);
2705
2706 color_ptr = LLVMBuildLoad(builder,
2707 LLVMBuildGEP(builder, color_ptr_ptr,
2708 &index, 1, ""),
2709 "");
2710
2711 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2712
2713 stride = LLVMBuildLoad(builder,
2714 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2715 "");
2716
2717 generate_unswizzled_blend(gallivm, cbuf, variant,
2718 key->cbuf_format[cbuf],
2719 num_fs, fs_type, fs_mask, fs_out_color,
2720 context_ptr, color_ptr, stride,
2721 partial_mask, do_branch);
2722 }
2723 }
2724
2725 LLVMBuildRetVoid(builder);
2726
2727 gallivm_verify_function(gallivm, function);
2728 }
2729
2730
2731 static void
2732 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
2733 {
2734 unsigned i;
2735
2736 debug_printf("fs variant %p:\n", (void *) key);
2737
2738 if (key->flatshade) {
2739 debug_printf("flatshade = 1\n");
2740 }
2741 for (i = 0; i < key->nr_cbufs; ++i) {
2742 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2743 }
2744 if (key->depth.enabled || key->stencil[0].enabled) {
2745 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2746 }
2747 if (key->depth.enabled) {
2748 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2749 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2750 }
2751
2752 for (i = 0; i < 2; ++i) {
2753 if (key->stencil[i].enabled) {
2754 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2755 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2756 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2757 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2758 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2759 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2760 }
2761 }
2762
2763 if (key->alpha.enabled) {
2764 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2765 }
2766
2767 if (key->occlusion_count) {
2768 debug_printf("occlusion_count = 1\n");
2769 }
2770
2771 if (key->blend.logicop_enable) {
2772 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2773 }
2774 else if (key->blend.rt[0].blend_enable) {
2775 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2776 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2777 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2778 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2779 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2780 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2781 }
2782 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2783 if (key->blend.alpha_to_coverage) {
2784 debug_printf("blend.alpha_to_coverage is enabled\n");
2785 }
2786 for (i = 0; i < key->nr_samplers; ++i) {
2787 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
2788 debug_printf("sampler[%u] = \n", i);
2789 debug_printf(" .wrap = %s %s %s\n",
2790 util_str_tex_wrap(sampler->wrap_s, TRUE),
2791 util_str_tex_wrap(sampler->wrap_t, TRUE),
2792 util_str_tex_wrap(sampler->wrap_r, TRUE));
2793 debug_printf(" .min_img_filter = %s\n",
2794 util_str_tex_filter(sampler->min_img_filter, TRUE));
2795 debug_printf(" .min_mip_filter = %s\n",
2796 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2797 debug_printf(" .mag_img_filter = %s\n",
2798 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2799 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2800 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2801 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2802 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2803 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2804 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2805 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2806 }
2807 for (i = 0; i < key->nr_sampler_views; ++i) {
2808 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
2809 debug_printf("texture[%u] = \n", i);
2810 debug_printf(" .format = %s\n",
2811 util_format_name(texture->format));
2812 debug_printf(" .target = %s\n",
2813 util_str_tex_target(texture->target, TRUE));
2814 debug_printf(" .level_zero_only = %u\n",
2815 texture->level_zero_only);
2816 debug_printf(" .pot = %u %u %u\n",
2817 texture->pot_width,
2818 texture->pot_height,
2819 texture->pot_depth);
2820 }
2821 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
2822 for (i = 0; i < key->nr_images; ++i) {
2823 const struct lp_static_texture_state *image = &images[i].image_state;
2824 debug_printf("image[%u] = \n", i);
2825 debug_printf(" .format = %s\n",
2826 util_format_name(image->format));
2827 debug_printf(" .target = %s\n",
2828 util_str_tex_target(image->target, TRUE));
2829 debug_printf(" .level_zero_only = %u\n",
2830 image->level_zero_only);
2831 debug_printf(" .pot = %u %u %u\n",
2832 image->pot_width,
2833 image->pot_height,
2834 image->pot_depth);
2835 }
2836 }
2837
2838
2839 void
2840 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
2841 {
2842 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2843 variant->shader->no, variant->no);
2844 tgsi_dump(variant->shader->base.tokens, 0);
2845 dump_fs_variant_key(&variant->key);
2846 debug_printf("variant->opaque = %u\n", variant->opaque);
2847 debug_printf("\n");
2848 }
2849
2850
2851 /**
2852 * Generate a new fragment shader variant from the shader code and
2853 * other state indicated by the key.
2854 */
2855 static struct lp_fragment_shader_variant *
2856 generate_variant(struct llvmpipe_context *lp,
2857 struct lp_fragment_shader *shader,
2858 const struct lp_fragment_shader_variant_key *key)
2859 {
2860 struct lp_fragment_shader_variant *variant;
2861 const struct util_format_description *cbuf0_format_desc = NULL;
2862 boolean fullcolormask;
2863 char module_name[64];
2864
2865 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
2866 if (!variant)
2867 return NULL;
2868
2869 memset(variant, 0, sizeof(*variant));
2870 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2871 shader->no, shader->variants_created);
2872
2873 variant->gallivm = gallivm_create(module_name, lp->context);
2874 if (!variant->gallivm) {
2875 FREE(variant);
2876 return NULL;
2877 }
2878
2879 variant->shader = shader;
2880 variant->list_item_global.base = variant;
2881 variant->list_item_local.base = variant;
2882 variant->no = shader->variants_created++;
2883
2884 memcpy(&variant->key, key, shader->variant_key_size);
2885
2886 /*
2887 * Determine whether we are touching all channels in the color buffer.
2888 */
2889 fullcolormask = FALSE;
2890 if (key->nr_cbufs == 1) {
2891 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2892 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2893 }
2894
2895 variant->opaque =
2896 !key->blend.logicop_enable &&
2897 !key->blend.rt[0].blend_enable &&
2898 fullcolormask &&
2899 !key->stencil[0].enabled &&
2900 !key->alpha.enabled &&
2901 !key->blend.alpha_to_coverage &&
2902 !key->depth.enabled &&
2903 !shader->info.base.uses_kill &&
2904 !shader->info.base.writes_samplemask
2905 ? TRUE : FALSE;
2906
2907 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2908 lp_debug_fs_variant(variant);
2909 }
2910
2911 lp_jit_init_types(variant);
2912
2913 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2914 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2915
2916 if (variant->jit_function[RAST_WHOLE] == NULL) {
2917 if (variant->opaque) {
2918 /* Specialized shader, which doesn't need to read the color buffer. */
2919 generate_fragment(lp, shader, variant, RAST_WHOLE);
2920 }
2921 }
2922
2923 /*
2924 * Compile everything
2925 */
2926
2927 gallivm_compile_module(variant->gallivm);
2928
2929 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2930
2931 if (variant->function[RAST_EDGE_TEST]) {
2932 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2933 gallivm_jit_function(variant->gallivm,
2934 variant->function[RAST_EDGE_TEST]);
2935 }
2936
2937 if (variant->function[RAST_WHOLE]) {
2938 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2939 gallivm_jit_function(variant->gallivm,
2940 variant->function[RAST_WHOLE]);
2941 } else if (!variant->jit_function[RAST_WHOLE]) {
2942 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2943 }
2944
2945 gallivm_free_ir(variant->gallivm);
2946
2947 return variant;
2948 }
2949
2950
2951 static void *
2952 llvmpipe_create_fs_state(struct pipe_context *pipe,
2953 const struct pipe_shader_state *templ)
2954 {
2955 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2956 struct lp_fragment_shader *shader;
2957 int nr_samplers;
2958 int nr_sampler_views;
2959 int nr_images;
2960 int i;
2961
2962 shader = CALLOC_STRUCT(lp_fragment_shader);
2963 if (!shader)
2964 return NULL;
2965
2966 shader->no = fs_no++;
2967 make_empty_list(&shader->variants);
2968
2969 /* get/save the summary info for this shader */
2970 lp_build_tgsi_info(templ->tokens, &shader->info);
2971
2972 /* we need to keep a local copy of the tokens */
2973 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2974
2975 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2976 if (shader->draw_data == NULL) {
2977 FREE((void *) shader->base.tokens);
2978 FREE(shader);
2979 return NULL;
2980 }
2981
2982 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2983 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2984 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
2985 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
2986
2987 for (i = 0; i < shader->info.base.num_inputs; i++) {
2988 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2989 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2990
2991 switch (shader->info.base.input_interpolate[i]) {
2992 case TGSI_INTERPOLATE_CONSTANT:
2993 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2994 break;
2995 case TGSI_INTERPOLATE_LINEAR:
2996 shader->inputs[i].interp = LP_INTERP_LINEAR;
2997 break;
2998 case TGSI_INTERPOLATE_PERSPECTIVE:
2999 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3000 break;
3001 case TGSI_INTERPOLATE_COLOR:
3002 shader->inputs[i].interp = LP_INTERP_COLOR;
3003 break;
3004 default:
3005 assert(0);
3006 break;
3007 }
3008
3009 switch (shader->info.base.input_semantic_name[i]) {
3010 case TGSI_SEMANTIC_FACE:
3011 shader->inputs[i].interp = LP_INTERP_FACING;
3012 break;
3013 case TGSI_SEMANTIC_POSITION:
3014 /* Position was already emitted above
3015 */
3016 shader->inputs[i].interp = LP_INTERP_POSITION;
3017 shader->inputs[i].src_index = 0;
3018 continue;
3019 }
3020
3021 /* XXX this is a completely pointless index map... */
3022 shader->inputs[i].src_index = i+1;
3023 }
3024
3025 if (LP_DEBUG & DEBUG_TGSI) {
3026 unsigned attrib;
3027 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3028 shader->no, (void *) shader);
3029 tgsi_dump(templ->tokens, 0);
3030 debug_printf("usage masks:\n");
3031 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3032 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3033 debug_printf(" IN[%u].%s%s%s%s\n",
3034 attrib,
3035 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3036 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3037 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3038 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3039 }
3040 debug_printf("\n");
3041 }
3042
3043 return shader;
3044 }
3045
3046
3047 static void
3048 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3049 {
3050 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3051
3052 if (llvmpipe->fs == fs)
3053 return;
3054
3055 llvmpipe->fs = (struct lp_fragment_shader *) fs;
3056
3057 draw_bind_fragment_shader(llvmpipe->draw,
3058 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
3059
3060 llvmpipe->dirty |= LP_NEW_FS;
3061 }
3062
3063
3064 /**
3065 * Remove shader variant from two lists: the shader's variant list
3066 * and the context's variant list.
3067 */
3068 static void
3069 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3070 struct lp_fragment_shader_variant *variant)
3071 {
3072 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3073 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3074 "v total cached %u inst %u total inst %u\n",
3075 variant->shader->no, variant->no,
3076 variant->shader->variants_created,
3077 variant->shader->variants_cached,
3078 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3079 }
3080
3081 gallivm_destroy(variant->gallivm);
3082
3083 /* remove from shader's list */
3084 remove_from_list(&variant->list_item_local);
3085 variant->shader->variants_cached--;
3086
3087 /* remove from context's list */
3088 remove_from_list(&variant->list_item_global);
3089 lp->nr_fs_variants--;
3090 lp->nr_fs_instrs -= variant->nr_instrs;
3091
3092 FREE(variant);
3093 }
3094
3095
3096 static void
3097 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3098 {
3099 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3100 struct lp_fragment_shader *shader = fs;
3101 struct lp_fs_variant_list_item *li;
3102
3103 assert(fs != llvmpipe->fs);
3104
3105 /*
3106 * XXX: we need to flush the context until we have some sort of reference
3107 * counting in fragment shaders as they may still be binned
3108 * Flushing alone might not sufficient we need to wait on it too.
3109 */
3110 llvmpipe_finish(pipe, __FUNCTION__);
3111
3112 /* Delete all the variants */
3113 li = first_elem(&shader->variants);
3114 while(!at_end(&shader->variants, li)) {
3115 struct lp_fs_variant_list_item *next = next_elem(li);
3116 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3117 li = next;
3118 }
3119
3120 /* Delete draw module's data */
3121 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3122
3123 assert(shader->variants_cached == 0);
3124 FREE((void *) shader->base.tokens);
3125 FREE(shader);
3126 }
3127
3128
3129
3130 static void
3131 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3132 enum pipe_shader_type shader, uint index,
3133 const struct pipe_constant_buffer *cb)
3134 {
3135 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3136 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3137
3138 assert(shader < PIPE_SHADER_TYPES);
3139 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3140
3141 /* note: reference counting */
3142 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3143
3144 if (constants) {
3145 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3146 debug_printf("Illegal set constant without bind flag\n");
3147 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3148 }
3149 }
3150
3151 if (shader == PIPE_SHADER_VERTEX ||
3152 shader == PIPE_SHADER_GEOMETRY) {
3153 /* Pass the constants to the 'draw' module */
3154 const unsigned size = cb ? cb->buffer_size : 0;
3155 const ubyte *data;
3156
3157 if (constants) {
3158 data = (ubyte *) llvmpipe_resource_data(constants);
3159 }
3160 else if (cb && cb->user_buffer) {
3161 data = (ubyte *) cb->user_buffer;
3162 }
3163 else {
3164 data = NULL;
3165 }
3166
3167 if (data)
3168 data += cb->buffer_offset;
3169
3170 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3171 index, data, size);
3172 }
3173 else if (shader == PIPE_SHADER_COMPUTE)
3174 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3175 else
3176 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3177
3178 if (cb && cb->user_buffer) {
3179 pipe_resource_reference(&constants, NULL);
3180 }
3181 }
3182
3183 static void
3184 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3185 enum pipe_shader_type shader, unsigned start_slot,
3186 unsigned count, const struct pipe_shader_buffer *buffers,
3187 unsigned writable_bitmask)
3188 {
3189 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3190 unsigned i, idx;
3191 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3192 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3193
3194 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3195
3196 if (shader == PIPE_SHADER_VERTEX ||
3197 shader == PIPE_SHADER_GEOMETRY) {
3198 const unsigned size = buffer ? buffer->buffer_size : 0;
3199 const ubyte *data = NULL;
3200 if (buffer && buffer->buffer)
3201 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3202 if (data)
3203 data += buffer->buffer_offset;
3204 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3205 i, data, size);
3206 } else if (shader == PIPE_SHADER_COMPUTE) {
3207 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3208 } else if (shader == PIPE_SHADER_FRAGMENT) {
3209 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3210 }
3211 }
3212 }
3213
3214 static void
3215 llvmpipe_set_shader_images(struct pipe_context *pipe,
3216 enum pipe_shader_type shader, unsigned start_slot,
3217 unsigned count, const struct pipe_image_view *images)
3218 {
3219 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3220 unsigned i, idx;
3221
3222 draw_flush(llvmpipe->draw);
3223 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3224 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3225
3226 util_copy_image_view(&llvmpipe->images[shader][i], image);
3227 }
3228
3229 llvmpipe->num_images[shader] = start_slot + count;
3230 if (shader == PIPE_SHADER_VERTEX ||
3231 shader == PIPE_SHADER_GEOMETRY) {
3232 draw_set_images(llvmpipe->draw,
3233 shader,
3234 llvmpipe->images[shader],
3235 start_slot + count);
3236 } else
3237 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3238 }
3239
3240 /**
3241 * Return the blend factor equivalent to a destination alpha of one.
3242 */
3243 static inline unsigned
3244 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3245 {
3246 switch(factor) {
3247 case PIPE_BLENDFACTOR_DST_ALPHA:
3248 return PIPE_BLENDFACTOR_ONE;
3249 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3250 return PIPE_BLENDFACTOR_ZERO;
3251 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3252 if (clamped_zero)
3253 return PIPE_BLENDFACTOR_ZERO;
3254 else
3255 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3256 }
3257
3258 return factor;
3259 }
3260
3261
3262 /**
3263 * We need to generate several variants of the fragment pipeline to match
3264 * all the combinations of the contributing state atoms.
3265 *
3266 * TODO: there is actually no reason to tie this to context state -- the
3267 * generated code could be cached globally in the screen.
3268 */
3269 static struct lp_fragment_shader_variant_key *
3270 make_variant_key(struct llvmpipe_context *lp,
3271 struct lp_fragment_shader *shader,
3272 char *store)
3273 {
3274 unsigned i;
3275 struct lp_fragment_shader_variant_key *key;
3276
3277 key = (struct lp_fragment_shader_variant_key *)store;
3278
3279 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3280
3281 if (lp->framebuffer.zsbuf) {
3282 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3283 const struct util_format_description *zsbuf_desc =
3284 util_format_description(zsbuf_format);
3285
3286 if (lp->depth_stencil->depth.enabled &&
3287 util_format_has_depth(zsbuf_desc)) {
3288 key->zsbuf_format = zsbuf_format;
3289 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3290 }
3291 if (lp->depth_stencil->stencil[0].enabled &&
3292 util_format_has_stencil(zsbuf_desc)) {
3293 key->zsbuf_format = zsbuf_format;
3294 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3295 }
3296 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3297 key->resource_1d = TRUE;
3298 }
3299 }
3300
3301 /*
3302 * Propagate the depth clamp setting from the rasterizer state.
3303 * depth_clip == 0 implies depth clamping is enabled.
3304 *
3305 * When clip_halfz is enabled, then always clamp the depth values.
3306 *
3307 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3308 * clamp is always active in d3d10, regardless if depth clip is
3309 * enabled or not).
3310 * (GL has an always-on [0,1] clamp on fs depth output instead
3311 * to ensure the depth values stay in range. Doesn't look like
3312 * we do that, though...)
3313 */
3314 if (lp->rasterizer->clip_halfz) {
3315 key->depth_clamp = 1;
3316 } else {
3317 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3318 }
3319
3320 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3321 if (!lp->framebuffer.nr_cbufs ||
3322 !lp->framebuffer.cbufs[0] ||
3323 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3324 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3325 }
3326 if(key->alpha.enabled)
3327 key->alpha.func = lp->depth_stencil->alpha.func;
3328 /* alpha.ref_value is passed in jit_context */
3329
3330 key->flatshade = lp->rasterizer->flatshade;
3331 if (lp->active_occlusion_queries) {
3332 key->occlusion_count = TRUE;
3333 }
3334
3335 if (lp->framebuffer.nr_cbufs) {
3336 memcpy(&key->blend, lp->blend, sizeof key->blend);
3337 }
3338
3339 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3340
3341 if (!key->blend.independent_blend_enable) {
3342 /* we always need independent blend otherwise the fixups below won't work */
3343 for (i = 1; i < key->nr_cbufs; i++) {
3344 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3345 }
3346 key->blend.independent_blend_enable = 1;
3347 }
3348
3349 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3350 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3351
3352 if (lp->framebuffer.cbufs[i]) {
3353 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3354 const struct util_format_description *format_desc;
3355
3356 key->cbuf_format[i] = format;
3357
3358 /*
3359 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3360 * mixing of 2d textures with height 1 and 1d textures, so make sure
3361 * we pick 1d if any cbuf or zsbuf is 1d.
3362 */
3363 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3364 key->resource_1d = TRUE;
3365 }
3366
3367 format_desc = util_format_description(format);
3368 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3369 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3370
3371 /*
3372 * Mask out color channels not present in the color buffer.
3373 */
3374 blend_rt->colormask &= util_format_colormask(format_desc);
3375
3376 /*
3377 * Disable blend for integer formats.
3378 */
3379 if (util_format_is_pure_integer(format)) {
3380 blend_rt->blend_enable = 0;
3381 }
3382
3383 /*
3384 * Our swizzled render tiles always have an alpha channel, but the
3385 * linear render target format often does not, so force here the dst
3386 * alpha to be one.
3387 *
3388 * This is not a mere optimization. Wrong results will be produced if
3389 * the dst alpha is used, the dst format does not have alpha, and the
3390 * previous rendering was not flushed from the swizzled to linear
3391 * buffer. For example, NonPowTwo DCT.
3392 *
3393 * TODO: This should be generalized to all channels for better
3394 * performance, but only alpha causes correctness issues.
3395 *
3396 * Also, force rgb/alpha func/factors match, to make AoS blending
3397 * easier.
3398 */
3399 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3400 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3401 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3402 boolean clamped_zero = !util_format_is_float(format) &&
3403 !util_format_is_snorm(format);
3404 blend_rt->rgb_src_factor =
3405 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3406 blend_rt->rgb_dst_factor =
3407 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3408 blend_rt->alpha_func = blend_rt->rgb_func;
3409 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3410 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3411 }
3412 }
3413 else {
3414 /* no color buffer for this fragment output */
3415 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3416 blend_rt->colormask = 0x0;
3417 blend_rt->blend_enable = 0;
3418 }
3419 }
3420
3421 /* This value will be the same for all the variants of a given shader:
3422 */
3423 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3424
3425 struct lp_sampler_static_state *fs_sampler;
3426
3427 fs_sampler = key->samplers;
3428
3429 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3430
3431 for(i = 0; i < key->nr_samplers; ++i) {
3432 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3433 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3434 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3435 }
3436 }
3437
3438 /*
3439 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3440 * are dx10-style? Can't really have mixed opcodes, at least not
3441 * if we want to skip the holes here (without rescanning tgsi).
3442 */
3443 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3444 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3445 for(i = 0; i < key->nr_sampler_views; ++i) {
3446 /*
3447 * Note sview may exceed what's representable by file_mask.
3448 * This will still work, the only downside is that not actually
3449 * used views may be included in the shader key.
3450 */
3451 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3452 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3453 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3454 }
3455 }
3456 }
3457 else {
3458 key->nr_sampler_views = key->nr_samplers;
3459 for(i = 0; i < key->nr_sampler_views; ++i) {
3460 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3461 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3462 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3463 }
3464 }
3465 }
3466
3467 struct lp_image_static_state *lp_image;
3468 lp_image = lp_fs_variant_key_images(key);
3469 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3470 for (i = 0; i < key->nr_images; ++i) {
3471 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3472 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3473 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3474 }
3475 }
3476 return key;
3477 }
3478
3479
3480
3481 /**
3482 * Update fragment shader state. This is called just prior to drawing
3483 * something when some fragment-related state has changed.
3484 */
3485 void
3486 llvmpipe_update_fs(struct llvmpipe_context *lp)
3487 {
3488 struct lp_fragment_shader *shader = lp->fs;
3489 struct lp_fragment_shader_variant_key *key;
3490 struct lp_fragment_shader_variant *variant = NULL;
3491 struct lp_fs_variant_list_item *li;
3492 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3493
3494 key = make_variant_key(lp, shader, store);
3495
3496 /* Search the variants for one which matches the key */
3497 li = first_elem(&shader->variants);
3498 while(!at_end(&shader->variants, li)) {
3499 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3500 variant = li->base;
3501 break;
3502 }
3503 li = next_elem(li);
3504 }
3505
3506 if (variant) {
3507 /* Move this variant to the head of the list to implement LRU
3508 * deletion of shader's when we have too many.
3509 */
3510 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3511 }
3512 else {
3513 /* variant not found, create it now */
3514 int64_t t0, t1, dt;
3515 unsigned i;
3516 unsigned variants_to_cull;
3517
3518 if (LP_DEBUG & DEBUG_FS) {
3519 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3520 lp->nr_fs_variants,
3521 lp->nr_fs_instrs,
3522 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3523 }
3524
3525 /* First, check if we've exceeded the max number of shader variants.
3526 * If so, free 6.25% of them (the least recently used ones).
3527 */
3528 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3529
3530 if (variants_to_cull ||
3531 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3532 struct pipe_context *pipe = &lp->pipe;
3533
3534 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3535 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3536 "\t%u instrs,\t%u instrs/variant\n",
3537 shader->variants_cached,
3538 lp->nr_fs_variants, lp->nr_fs_instrs,
3539 lp->nr_fs_instrs / lp->nr_fs_variants);
3540 }
3541
3542 /*
3543 * XXX: we need to flush the context until we have some sort of
3544 * reference counting in fragment shaders as they may still be binned
3545 * Flushing alone might not be sufficient we need to wait on it too.
3546 */
3547 llvmpipe_finish(pipe, __FUNCTION__);
3548
3549 /*
3550 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3551 * number of shader variants (potentially all of them) could be
3552 * pending for destruction on flush.
3553 */
3554
3555 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3556 struct lp_fs_variant_list_item *item;
3557 if (is_empty_list(&lp->fs_variants_list)) {
3558 break;
3559 }
3560 item = last_elem(&lp->fs_variants_list);
3561 assert(item);
3562 assert(item->base);
3563 llvmpipe_remove_shader_variant(lp, item->base);
3564 }
3565 }
3566
3567 /*
3568 * Generate the new variant.
3569 */
3570 t0 = os_time_get();
3571 variant = generate_variant(lp, shader, key);
3572 t1 = os_time_get();
3573 dt = t1 - t0;
3574 LP_COUNT_ADD(llvm_compile_time, dt);
3575 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3576
3577 /* Put the new variant into the list */
3578 if (variant) {
3579 insert_at_head(&shader->variants, &variant->list_item_local);
3580 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3581 lp->nr_fs_variants++;
3582 lp->nr_fs_instrs += variant->nr_instrs;
3583 shader->variants_cached++;
3584 }
3585 }
3586
3587 /* Bind this variant */
3588 lp_setup_set_fs_variant(lp->setup, variant);
3589 }
3590
3591
3592
3593
3594
3595 void
3596 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3597 {
3598 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3599 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3600 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3601
3602 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3603
3604 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3605 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3606 }
3607
3608