llvmpipe: use scalar load instead of vectors for small vectors in fs backend
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_pack.h"
88 #include "gallivm/lp_bld_format.h"
89 #include "gallivm/lp_bld_quad.h"
90
91 #include "lp_bld_alpha.h"
92 #include "lp_bld_blend.h"
93 #include "lp_bld_depth.h"
94 #include "lp_bld_interp.h"
95 #include "lp_context.h"
96 #include "lp_debug.h"
97 #include "lp_perf.h"
98 #include "lp_setup.h"
99 #include "lp_state.h"
100 #include "lp_tex_sample.h"
101 #include "lp_flush.h"
102 #include "lp_state_fs.h"
103 #include "lp_rast.h"
104
105
106 /** Fragment shader number (for debugging) */
107 static unsigned fs_no = 0;
108
109
110 /**
111 * Expand the relevant bits of mask_input to a n*4-dword mask for the
112 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
113 * quad mask vector to 0 or ~0.
114 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
115 * quad arguments with fs length 8.
116 *
117 * \param first_quad which quad(s) of the quad group to test, in [0,3]
118 * \param mask_input bitwise mask for the whole 4x4 stamp
119 */
120 static LLVMValueRef
121 generate_quad_mask(struct gallivm_state *gallivm,
122 struct lp_type fs_type,
123 unsigned first_quad,
124 LLVMValueRef mask_input) /* int32 */
125 {
126 LLVMBuilderRef builder = gallivm->builder;
127 struct lp_type mask_type;
128 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
129 LLVMValueRef bits[16];
130 LLVMValueRef mask, bits_vec;
131 int shift, i;
132
133 /*
134 * XXX: We'll need a different path for 16 x u8
135 */
136 assert(fs_type.width == 32);
137 assert(fs_type.length <= ARRAY_SIZE(bits));
138 mask_type = lp_int_type(fs_type);
139
140 /*
141 * mask_input >>= (quad * 4)
142 */
143 switch (first_quad) {
144 case 0:
145 shift = 0;
146 break;
147 case 1:
148 assert(fs_type.length == 4);
149 shift = 2;
150 break;
151 case 2:
152 shift = 8;
153 break;
154 case 3:
155 assert(fs_type.length == 4);
156 shift = 10;
157 break;
158 default:
159 assert(0);
160 shift = 0;
161 }
162
163 mask_input = LLVMBuildLShr(builder,
164 mask_input,
165 LLVMConstInt(i32t, shift, 0),
166 "");
167
168 /*
169 * mask = { mask_input & (1 << i), for i in [0,3] }
170 */
171 mask = lp_build_broadcast(gallivm,
172 lp_build_vec_type(gallivm, mask_type),
173 mask_input);
174
175 for (i = 0; i < fs_type.length / 4; i++) {
176 unsigned j = 2 * (i % 2) + (i / 2) * 8;
177 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
178 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
179 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
180 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
181 }
182 bits_vec = LLVMConstVector(bits, fs_type.length);
183 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
184
185 /*
186 * mask = mask == bits ? ~0 : 0
187 */
188 mask = lp_build_compare(gallivm,
189 mask_type, PIPE_FUNC_EQUAL,
190 mask, bits_vec);
191
192 return mask;
193 }
194
195
196 #define EARLY_DEPTH_TEST 0x1
197 #define LATE_DEPTH_TEST 0x2
198 #define EARLY_DEPTH_WRITE 0x4
199 #define LATE_DEPTH_WRITE 0x8
200
201 static int
202 find_output_by_semantic( const struct tgsi_shader_info *info,
203 unsigned semantic,
204 unsigned index )
205 {
206 int i;
207
208 for (i = 0; i < info->num_outputs; i++)
209 if (info->output_semantic_name[i] == semantic &&
210 info->output_semantic_index[i] == index)
211 return i;
212
213 return -1;
214 }
215
216
217 /**
218 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
219 */
220 static LLVMValueRef
221 lp_llvm_viewport(LLVMValueRef context_ptr,
222 struct gallivm_state *gallivm,
223 LLVMValueRef viewport_index)
224 {
225 LLVMBuilderRef builder = gallivm->builder;
226 LLVMValueRef ptr;
227 LLVMValueRef res;
228 struct lp_type viewport_type =
229 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
230
231 ptr = lp_jit_context_viewports(gallivm, context_ptr);
232 ptr = LLVMBuildPointerCast(builder, ptr,
233 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
234
235 res = lp_build_pointer_get(builder, ptr, viewport_index);
236
237 return res;
238 }
239
240
241 static LLVMValueRef
242 lp_build_depth_clamp(struct gallivm_state *gallivm,
243 LLVMBuilderRef builder,
244 struct lp_type type,
245 LLVMValueRef context_ptr,
246 LLVMValueRef thread_data_ptr,
247 LLVMValueRef z)
248 {
249 LLVMValueRef viewport, min_depth, max_depth;
250 LLVMValueRef viewport_index;
251 struct lp_build_context f32_bld;
252
253 assert(type.floating);
254 lp_build_context_init(&f32_bld, gallivm, type);
255
256 /*
257 * Assumes clamping of the viewport index will occur in setup/gs. Value
258 * is passed through the rasterization stage via lp_rast_shader_inputs.
259 *
260 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
261 * semantics.
262 */
263 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
264 thread_data_ptr);
265
266 /*
267 * Load the min and max depth from the lp_jit_context.viewports
268 * array of lp_jit_viewport structures.
269 */
270 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
271
272 /* viewports[viewport_index].min_depth */
273 min_depth = LLVMBuildExtractElement(builder, viewport,
274 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
275 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
276
277 /* viewports[viewport_index].max_depth */
278 max_depth = LLVMBuildExtractElement(builder, viewport,
279 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
280 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
281
282 /*
283 * Clamp to the min and max depth values for the given viewport.
284 */
285 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
286 }
287
288
289 /**
290 * Generate the fragment shader, depth/stencil test, and alpha tests.
291 */
292 static void
293 generate_fs_loop(struct gallivm_state *gallivm,
294 struct lp_fragment_shader *shader,
295 const struct lp_fragment_shader_variant_key *key,
296 LLVMBuilderRef builder,
297 struct lp_type type,
298 LLVMValueRef context_ptr,
299 LLVMValueRef num_loop,
300 struct lp_build_interp_soa_context *interp,
301 struct lp_build_sampler_soa *sampler,
302 LLVMValueRef mask_store,
303 LLVMValueRef (*out_color)[4],
304 LLVMValueRef depth_ptr,
305 LLVMValueRef depth_stride,
306 LLVMValueRef facing,
307 LLVMValueRef thread_data_ptr)
308 {
309 const struct util_format_description *zs_format_desc = NULL;
310 const struct tgsi_token *tokens = shader->base.tokens;
311 struct lp_type int_type = lp_int_type(type);
312 LLVMTypeRef vec_type, int_vec_type;
313 LLVMValueRef mask_ptr, mask_val;
314 LLVMValueRef consts_ptr, num_consts_ptr;
315 LLVMValueRef z;
316 LLVMValueRef z_value, s_value;
317 LLVMValueRef z_fb, s_fb;
318 LLVMValueRef stencil_refs[2];
319 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
320 struct lp_build_for_loop_state loop_state;
321 struct lp_build_mask_context mask;
322 /*
323 * TODO: figure out if simple_shader optimization is really worthwile to
324 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
325 * code since tests tend to take another codepath than real shaders.
326 */
327 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
328 shader->info.base.num_inputs < 3 &&
329 shader->info.base.num_instructions < 8) && 0;
330 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
331 util_blend_state_is_dual(&key->blend, 0);
332 unsigned attrib;
333 unsigned chan;
334 unsigned cbuf;
335 unsigned depth_mode;
336
337 struct lp_bld_tgsi_system_values system_values;
338
339 memset(&system_values, 0, sizeof(system_values));
340
341 if (key->depth.enabled ||
342 key->stencil[0].enabled) {
343
344 zs_format_desc = util_format_description(key->zsbuf_format);
345 assert(zs_format_desc);
346
347 if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
348 if (key->alpha.enabled ||
349 key->blend.alpha_to_coverage ||
350 shader->info.base.uses_kill) {
351 /* With alpha test and kill, can do the depth test early
352 * and hopefully eliminate some quads. But need to do a
353 * special deferred depth write once the final mask value
354 * is known. This only works though if there's either no
355 * stencil test or the stencil value isn't written.
356 */
357 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
358 (key->stencil[1].enabled &&
359 key->stencil[1].writemask)))
360 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
361 else
362 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
363 }
364 else
365 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
366 }
367 else {
368 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
369 }
370
371 if (!(key->depth.enabled && key->depth.writemask) &&
372 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
373 (key->stencil[1].enabled &&
374 key->stencil[1].writemask))))
375 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
376 }
377 else {
378 depth_mode = 0;
379 }
380
381 vec_type = lp_build_vec_type(gallivm, type);
382 int_vec_type = lp_build_vec_type(gallivm, int_type);
383
384 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
385 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
386 /* convert scalar stencil refs into vectors */
387 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
388 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
389
390 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
391 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
392
393 lp_build_for_loop_begin(&loop_state, gallivm,
394 lp_build_const_int32(gallivm, 0),
395 LLVMIntULT,
396 num_loop,
397 lp_build_const_int32(gallivm, 1));
398
399 mask_ptr = LLVMBuildGEP(builder, mask_store,
400 &loop_state.counter, 1, "mask_ptr");
401 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
402
403 memset(outputs, 0, sizeof outputs);
404
405 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
406 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
407 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
408 lp_build_vec_type(gallivm,
409 type),
410 num_loop, "color");
411 }
412 }
413 if (dual_source_blend) {
414 assert(key->nr_cbufs <= 1);
415 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
416 out_color[1][chan] = lp_build_array_alloca(gallivm,
417 lp_build_vec_type(gallivm,
418 type),
419 num_loop, "color1");
420 }
421 }
422
423
424 /* 'mask' will control execution based on quad's pixel alive/killed state */
425 lp_build_mask_begin(&mask, gallivm, type, mask_val);
426
427 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
428 lp_build_mask_check(&mask);
429
430 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
431 z = interp->pos[2];
432
433 if (depth_mode & EARLY_DEPTH_TEST) {
434 /*
435 * Clamp according to ARB_depth_clamp semantics.
436 */
437 if (key->depth_clamp) {
438 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
439 thread_data_ptr, z);
440 }
441 lp_build_depth_stencil_load_swizzled(gallivm, type,
442 zs_format_desc, key->resource_1d,
443 depth_ptr, depth_stride,
444 &z_fb, &s_fb, loop_state.counter);
445 lp_build_depth_stencil_test(gallivm,
446 &key->depth,
447 key->stencil,
448 type,
449 zs_format_desc,
450 &mask,
451 stencil_refs,
452 z, z_fb, s_fb,
453 facing,
454 &z_value, &s_value,
455 !simple_shader);
456
457 if (depth_mode & EARLY_DEPTH_WRITE) {
458 lp_build_depth_stencil_write_swizzled(gallivm, type,
459 zs_format_desc, key->resource_1d,
460 NULL, NULL, NULL, loop_state.counter,
461 depth_ptr, depth_stride,
462 z_value, s_value);
463 }
464 /*
465 * Note mask check if stencil is enabled must be after ds write not after
466 * stencil test otherwise new stencil values may not get written if all
467 * fragments got killed by depth/stencil test.
468 */
469 if (!simple_shader && key->stencil[0].enabled)
470 lp_build_mask_check(&mask);
471 }
472
473 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
474
475 /* Build the actual shader */
476 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
477 consts_ptr, num_consts_ptr, &system_values,
478 interp->inputs,
479 outputs, context_ptr, thread_data_ptr,
480 sampler, &shader->info.base, NULL);
481
482 /* Alpha test */
483 if (key->alpha.enabled) {
484 int color0 = find_output_by_semantic(&shader->info.base,
485 TGSI_SEMANTIC_COLOR,
486 0);
487
488 if (color0 != -1 && outputs[color0][3]) {
489 const struct util_format_description *cbuf_format_desc;
490 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
491 LLVMValueRef alpha_ref_value;
492
493 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
494 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
495
496 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
497
498 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
499 &mask, alpha, alpha_ref_value,
500 (depth_mode & LATE_DEPTH_TEST) != 0);
501 }
502 }
503
504 /* Emulate Alpha to Coverage with Alpha test */
505 if (key->blend.alpha_to_coverage) {
506 int color0 = find_output_by_semantic(&shader->info.base,
507 TGSI_SEMANTIC_COLOR,
508 0);
509
510 if (color0 != -1 && outputs[color0][3]) {
511 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
512
513 lp_build_alpha_to_coverage(gallivm, type,
514 &mask, alpha,
515 (depth_mode & LATE_DEPTH_TEST) != 0);
516 }
517 }
518
519 /* Late Z test */
520 if (depth_mode & LATE_DEPTH_TEST) {
521 int pos0 = find_output_by_semantic(&shader->info.base,
522 TGSI_SEMANTIC_POSITION,
523 0);
524 int s_out = find_output_by_semantic(&shader->info.base,
525 TGSI_SEMANTIC_STENCIL,
526 0);
527 if (pos0 != -1 && outputs[pos0][2]) {
528 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
529 }
530 /*
531 * Clamp according to ARB_depth_clamp semantics.
532 */
533 if (key->depth_clamp) {
534 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
535 thread_data_ptr, z);
536 }
537
538 if (s_out != -1 && outputs[s_out][1]) {
539 /* there's only one value, and spec says to discard additional bits */
540 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
541 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
542 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
543 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
544 stencil_refs[1] = stencil_refs[0];
545 }
546
547 lp_build_depth_stencil_load_swizzled(gallivm, type,
548 zs_format_desc, key->resource_1d,
549 depth_ptr, depth_stride,
550 &z_fb, &s_fb, loop_state.counter);
551
552 lp_build_depth_stencil_test(gallivm,
553 &key->depth,
554 key->stencil,
555 type,
556 zs_format_desc,
557 &mask,
558 stencil_refs,
559 z, z_fb, s_fb,
560 facing,
561 &z_value, &s_value,
562 !simple_shader);
563 /* Late Z write */
564 if (depth_mode & LATE_DEPTH_WRITE) {
565 lp_build_depth_stencil_write_swizzled(gallivm, type,
566 zs_format_desc, key->resource_1d,
567 NULL, NULL, NULL, loop_state.counter,
568 depth_ptr, depth_stride,
569 z_value, s_value);
570 }
571 }
572 else if ((depth_mode & EARLY_DEPTH_TEST) &&
573 (depth_mode & LATE_DEPTH_WRITE))
574 {
575 /* Need to apply a reduced mask to the depth write. Reload the
576 * depth value, update from zs_value with the new mask value and
577 * write that out.
578 */
579 lp_build_depth_stencil_write_swizzled(gallivm, type,
580 zs_format_desc, key->resource_1d,
581 &mask, z_fb, s_fb, loop_state.counter,
582 depth_ptr, depth_stride,
583 z_value, s_value);
584 }
585
586
587 /* Color write */
588 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
589 {
590 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
591 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
592 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
593 {
594 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
595 if(outputs[attrib][chan]) {
596 /* XXX: just initialize outputs to point at colors[] and
597 * skip this.
598 */
599 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
600 LLVMValueRef color_ptr;
601 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
602 &loop_state.counter, 1, "");
603 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
604 LLVMBuildStore(builder, out, color_ptr);
605 }
606 }
607 }
608 }
609
610 if (key->occlusion_count) {
611 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
612 lp_build_name(counter, "counter");
613 lp_build_occlusion_count(gallivm, type,
614 lp_build_mask_value(&mask), counter);
615 }
616
617 mask_val = lp_build_mask_end(&mask);
618 LLVMBuildStore(builder, mask_val, mask_ptr);
619 lp_build_for_loop_end(&loop_state);
620 }
621
622
623 /**
624 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
625 *
626 * Fragment Shader outputs pixels in small 2x2 blocks
627 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
628 *
629 * However in memory pixels are stored in rows
630 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
631 *
632 * @param type fragment shader type (4x or 8x float)
633 * @param num_fs number of fs_src
634 * @param is_1d whether we're outputting to a 1d resource
635 * @param dst_channels number of output channels
636 * @param fs_src output from fragment shader
637 * @param dst pointer to store result
638 * @param pad_inline is channel padding inline or at end of row
639 * @return the number of dsts
640 */
641 static int
642 generate_fs_twiddle(struct gallivm_state *gallivm,
643 struct lp_type type,
644 unsigned num_fs,
645 unsigned dst_channels,
646 LLVMValueRef fs_src[][4],
647 LLVMValueRef* dst,
648 bool pad_inline)
649 {
650 LLVMValueRef src[16];
651
652 bool swizzle_pad;
653 bool twiddle;
654 bool split;
655
656 unsigned pixels = type.length / 4;
657 unsigned reorder_group;
658 unsigned src_channels;
659 unsigned src_count;
660 unsigned i;
661
662 src_channels = dst_channels < 3 ? dst_channels : 4;
663 src_count = num_fs * src_channels;
664
665 assert(pixels == 2 || pixels == 1);
666 assert(num_fs * src_channels <= ARRAY_SIZE(src));
667
668 /*
669 * Transpose from SoA -> AoS
670 */
671 for (i = 0; i < num_fs; ++i) {
672 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
673 }
674
675 /*
676 * Pick transformation options
677 */
678 swizzle_pad = false;
679 twiddle = false;
680 split = false;
681 reorder_group = 0;
682
683 if (dst_channels == 1) {
684 twiddle = true;
685
686 if (pixels == 2) {
687 split = true;
688 }
689 } else if (dst_channels == 2) {
690 if (pixels == 1) {
691 reorder_group = 1;
692 }
693 } else if (dst_channels > 2) {
694 if (pixels == 1) {
695 reorder_group = 2;
696 } else {
697 twiddle = true;
698 }
699
700 if (!pad_inline && dst_channels == 3 && pixels > 1) {
701 swizzle_pad = true;
702 }
703 }
704
705 /*
706 * Split the src in half
707 */
708 if (split) {
709 for (i = num_fs; i > 0; --i) {
710 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
711 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
712 }
713
714 src_count *= 2;
715 type.length = 4;
716 }
717
718 /*
719 * Ensure pixels are in memory order
720 */
721 if (reorder_group) {
722 /* Twiddle pixels by reordering the array, e.g.:
723 *
724 * src_count = 8 -> 0 2 1 3 4 6 5 7
725 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
726 */
727 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
728
729 for (i = 0; i < src_count; ++i) {
730 unsigned group = i / reorder_group;
731 unsigned block = (group / 4) * 4 * reorder_group;
732 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
733 dst[i] = src[j];
734 }
735 } else if (twiddle) {
736 /* Twiddle pixels across elements of array */
737 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
738 } else {
739 /* Do nothing */
740 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
741 }
742
743 /*
744 * Moves any padding between pixels to the end
745 * e.g. RGBXRGBX -> RGBRGBXX
746 */
747 if (swizzle_pad) {
748 unsigned char swizzles[16];
749 unsigned elems = pixels * dst_channels;
750
751 for (i = 0; i < type.length; ++i) {
752 if (i < elems)
753 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
754 else
755 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
756 }
757
758 for (i = 0; i < src_count; ++i) {
759 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
760 }
761 }
762
763 return src_count;
764 }
765
766
767 /**
768 * Load an unswizzled block of pixels from memory
769 */
770 static void
771 load_unswizzled_block(struct gallivm_state *gallivm,
772 LLVMValueRef base_ptr,
773 LLVMValueRef stride,
774 unsigned block_width,
775 unsigned block_height,
776 LLVMValueRef* dst,
777 struct lp_type dst_type,
778 unsigned dst_count,
779 unsigned dst_alignment)
780 {
781 LLVMBuilderRef builder = gallivm->builder;
782 unsigned row_size = dst_count / block_height;
783 unsigned i;
784
785 /* Ensure block exactly fits into dst */
786 assert((block_width * block_height) % dst_count == 0);
787
788 for (i = 0; i < dst_count; ++i) {
789 unsigned x = i % row_size;
790 unsigned y = i / row_size;
791
792 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
793 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
794
795 LLVMValueRef gep[2];
796 LLVMValueRef dst_ptr;
797
798 gep[0] = lp_build_const_int32(gallivm, 0);
799 gep[1] = LLVMBuildAdd(builder, bx, by, "");
800
801 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
802 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
803 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
804
805 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
806
807 LLVMSetAlignment(dst[i], dst_alignment);
808 }
809 }
810
811
812 /**
813 * Store an unswizzled block of pixels to memory
814 */
815 static void
816 store_unswizzled_block(struct gallivm_state *gallivm,
817 LLVMValueRef base_ptr,
818 LLVMValueRef stride,
819 unsigned block_width,
820 unsigned block_height,
821 LLVMValueRef* src,
822 struct lp_type src_type,
823 unsigned src_count,
824 unsigned src_alignment)
825 {
826 LLVMBuilderRef builder = gallivm->builder;
827 unsigned row_size = src_count / block_height;
828 unsigned i;
829
830 /* Ensure src exactly fits into block */
831 assert((block_width * block_height) % src_count == 0);
832
833 for (i = 0; i < src_count; ++i) {
834 unsigned x = i % row_size;
835 unsigned y = i / row_size;
836
837 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
838 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
839
840 LLVMValueRef gep[2];
841 LLVMValueRef src_ptr;
842
843 gep[0] = lp_build_const_int32(gallivm, 0);
844 gep[1] = LLVMBuildAdd(builder, bx, by, "");
845
846 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
847 src_ptr = LLVMBuildBitCast(builder, src_ptr,
848 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
849
850 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
851
852 LLVMSetAlignment(src_ptr, src_alignment);
853 }
854 }
855
856
857 /**
858 * Checks if a format description is an arithmetic format
859 *
860 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
861 */
862 static inline boolean
863 is_arithmetic_format(const struct util_format_description *format_desc)
864 {
865 boolean arith = false;
866 unsigned i;
867
868 for (i = 0; i < format_desc->nr_channels; ++i) {
869 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
870 arith |= (format_desc->channel[i].size % 8) != 0;
871 }
872
873 return arith;
874 }
875
876
877 /**
878 * Checks if this format requires special handling due to required expansion
879 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
880 * SoA conversion.
881 */
882 static inline boolean
883 format_expands_to_float_soa(const struct util_format_description *format_desc)
884 {
885 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
886 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
887 return true;
888 }
889 return false;
890 }
891
892
893 /**
894 * Retrieves the type representing the memory layout for a format
895 *
896 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
897 */
898 static inline void
899 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
900 struct lp_type* type)
901 {
902 unsigned i;
903 unsigned chan;
904
905 if (format_expands_to_float_soa(format_desc)) {
906 /* just make this a uint with width of block */
907 type->floating = false;
908 type->fixed = false;
909 type->sign = false;
910 type->norm = false;
911 type->width = format_desc->block.bits;
912 type->length = 1;
913 return;
914 }
915
916 for (i = 0; i < 4; i++)
917 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
918 break;
919 chan = i;
920
921 memset(type, 0, sizeof(struct lp_type));
922 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
923 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
924 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
925 type->norm = format_desc->channel[chan].normalized;
926
927 if (is_arithmetic_format(format_desc)) {
928 type->width = 0;
929 type->length = 1;
930
931 for (i = 0; i < format_desc->nr_channels; ++i) {
932 type->width += format_desc->channel[i].size;
933 }
934 } else {
935 type->width = format_desc->channel[chan].size;
936 type->length = format_desc->nr_channels;
937 }
938 }
939
940
941 /**
942 * Retrieves the type for a format which is usable in the blending code.
943 *
944 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
945 */
946 static inline void
947 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
948 struct lp_type* type)
949 {
950 unsigned i;
951 unsigned chan;
952
953 if (format_expands_to_float_soa(format_desc)) {
954 /* always use ordinary floats for blending */
955 type->floating = true;
956 type->fixed = false;
957 type->sign = true;
958 type->norm = false;
959 type->width = 32;
960 type->length = 4;
961 return;
962 }
963
964 for (i = 0; i < 4; i++)
965 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
966 break;
967 chan = i;
968
969 memset(type, 0, sizeof(struct lp_type));
970 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
971 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
972 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
973 type->norm = format_desc->channel[chan].normalized;
974 type->width = format_desc->channel[chan].size;
975 type->length = format_desc->nr_channels;
976
977 for (i = 1; i < format_desc->nr_channels; ++i) {
978 if (format_desc->channel[i].size > type->width)
979 type->width = format_desc->channel[i].size;
980 }
981
982 if (type->floating) {
983 type->width = 32;
984 } else {
985 if (type->width <= 8) {
986 type->width = 8;
987 } else if (type->width <= 16) {
988 type->width = 16;
989 } else {
990 type->width = 32;
991 }
992 }
993
994 if (is_arithmetic_format(format_desc) && type->length == 3) {
995 type->length = 4;
996 }
997 }
998
999
1000 /**
1001 * Scale a normalized value from src_bits to dst_bits.
1002 *
1003 * The exact calculation is
1004 *
1005 * dst = iround(src * dst_mask / src_mask)
1006 *
1007 * or with integer rounding
1008 *
1009 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1010 *
1011 * where
1012 *
1013 * src_mask = (1 << src_bits) - 1
1014 * dst_mask = (1 << dst_bits) - 1
1015 *
1016 * but we try to avoid division and multiplication through shifts.
1017 */
1018 static inline LLVMValueRef
1019 scale_bits(struct gallivm_state *gallivm,
1020 int src_bits,
1021 int dst_bits,
1022 LLVMValueRef src,
1023 struct lp_type src_type)
1024 {
1025 LLVMBuilderRef builder = gallivm->builder;
1026 LLVMValueRef result = src;
1027
1028 if (dst_bits < src_bits) {
1029 int delta_bits = src_bits - dst_bits;
1030
1031 if (delta_bits <= dst_bits) {
1032 /*
1033 * Approximate the rescaling with a single shift.
1034 *
1035 * This gives the wrong rounding.
1036 */
1037
1038 result = LLVMBuildLShr(builder,
1039 src,
1040 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1041 "");
1042
1043 } else {
1044 /*
1045 * Try more accurate rescaling.
1046 */
1047
1048 /*
1049 * Drop the least significant bits to make space for the multiplication.
1050 *
1051 * XXX: A better approach would be to use a wider integer type as intermediate. But
1052 * this is enough to convert alpha from 16bits -> 2 when rendering to
1053 * PIPE_FORMAT_R10G10B10A2_UNORM.
1054 */
1055 result = LLVMBuildLShr(builder,
1056 src,
1057 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1058 "");
1059
1060
1061 result = LLVMBuildMul(builder,
1062 result,
1063 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1064 "");
1065
1066 /*
1067 * Add a rounding term before the division.
1068 *
1069 * TODO: Handle signed integers too.
1070 */
1071 if (!src_type.sign) {
1072 result = LLVMBuildAdd(builder,
1073 result,
1074 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1075 "");
1076 }
1077
1078 /*
1079 * Approximate the division by src_mask with a src_bits shift.
1080 *
1081 * Given the src has already been shifted by dst_bits, all we need
1082 * to do is to shift by the difference.
1083 */
1084
1085 result = LLVMBuildLShr(builder,
1086 result,
1087 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1088 "");
1089 }
1090
1091 } else if (dst_bits > src_bits) {
1092 /* Scale up bits */
1093 int db = dst_bits - src_bits;
1094
1095 /* Shift left by difference in bits */
1096 result = LLVMBuildShl(builder,
1097 src,
1098 lp_build_const_int_vec(gallivm, src_type, db),
1099 "");
1100
1101 if (db <= src_bits) {
1102 /* Enough bits in src to fill the remainder */
1103 LLVMValueRef lower = LLVMBuildLShr(builder,
1104 src,
1105 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1106 "");
1107
1108 result = LLVMBuildOr(builder, result, lower, "");
1109 } else if (db > src_bits) {
1110 /* Need to repeatedly copy src bits to fill remainder in dst */
1111 unsigned n;
1112
1113 for (n = src_bits; n < dst_bits; n *= 2) {
1114 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1115
1116 result = LLVMBuildOr(builder,
1117 result,
1118 LLVMBuildLShr(builder, result, shuv, ""),
1119 "");
1120 }
1121 }
1122 }
1123
1124 return result;
1125 }
1126
1127 /**
1128 * If RT is a smallfloat (needing denorms) format
1129 */
1130 static inline int
1131 have_smallfloat_format(struct lp_type dst_type,
1132 enum pipe_format format)
1133 {
1134 return ((dst_type.floating && dst_type.width != 32) ||
1135 /* due to format handling hacks this format doesn't have floating set
1136 * here (and actually has width set to 32 too) so special case this. */
1137 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1138 }
1139
1140
1141 /**
1142 * Convert from memory format to blending format
1143 *
1144 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1145 */
1146 static void
1147 convert_to_blend_type(struct gallivm_state *gallivm,
1148 unsigned block_size,
1149 const struct util_format_description *src_fmt,
1150 struct lp_type src_type,
1151 struct lp_type dst_type,
1152 LLVMValueRef* src, // and dst
1153 unsigned num_srcs)
1154 {
1155 LLVMValueRef *dst = src;
1156 LLVMBuilderRef builder = gallivm->builder;
1157 struct lp_type blend_type;
1158 struct lp_type mem_type;
1159 unsigned i, j;
1160 unsigned pixels = block_size / num_srcs;
1161 bool is_arith;
1162
1163 /*
1164 * full custom path for packed floats and srgb formats - none of the later
1165 * functions would do anything useful, and given the lp_type representation they
1166 * can't be fixed. Should really have some SoA blend path for these kind of
1167 * formats rather than hacking them in here.
1168 */
1169 if (format_expands_to_float_soa(src_fmt)) {
1170 LLVMValueRef tmpsrc[4];
1171 /*
1172 * This is pretty suboptimal for this case blending in SoA would be much
1173 * better, since conversion gets us SoA values so need to convert back.
1174 */
1175 assert(src_type.width == 32 || src_type.width == 16);
1176 assert(dst_type.floating);
1177 assert(dst_type.width == 32);
1178 assert(dst_type.length % 4 == 0);
1179 assert(num_srcs % 4 == 0);
1180
1181 if (src_type.width == 16) {
1182 /* expand 4x16bit values to 4x32bit */
1183 struct lp_type type32x4 = src_type;
1184 LLVMTypeRef ltype32x4;
1185 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1186 type32x4.width = 32;
1187 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1188 for (i = 0; i < num_fetch; i++) {
1189 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1190 }
1191 src_type.width = 32;
1192 }
1193 for (i = 0; i < 4; i++) {
1194 tmpsrc[i] = src[i];
1195 }
1196 for (i = 0; i < num_srcs / 4; i++) {
1197 LLVMValueRef tmpsoa[4];
1198 LLVMValueRef tmps = tmpsrc[i];
1199 if (dst_type.length == 8) {
1200 LLVMValueRef shuffles[8];
1201 unsigned j;
1202 /* fetch was 4 values but need 8-wide output values */
1203 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1204 /*
1205 * for 8-wide aos transpose would give us wrong order not matching
1206 * incoming converted fs values and mask. ARGH.
1207 */
1208 for (j = 0; j < 4; j++) {
1209 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1210 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1211 }
1212 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1213 LLVMConstVector(shuffles, 8), "");
1214 }
1215 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1216 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1217 }
1218 else {
1219 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1220 }
1221 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1222 }
1223 return;
1224 }
1225
1226 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1227 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1228
1229 /* Is the format arithmetic */
1230 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1231 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1232
1233 /* Pad if necessary */
1234 if (!is_arith && src_type.length < dst_type.length) {
1235 for (i = 0; i < num_srcs; ++i) {
1236 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1237 }
1238
1239 src_type.length = dst_type.length;
1240 }
1241
1242 /* Special case for half-floats */
1243 if (mem_type.width == 16 && mem_type.floating) {
1244 assert(blend_type.width == 32 && blend_type.floating);
1245 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1246 is_arith = false;
1247 }
1248
1249 if (!is_arith) {
1250 return;
1251 }
1252
1253 src_type.width = blend_type.width * blend_type.length;
1254 blend_type.length *= pixels;
1255 src_type.length *= pixels / (src_type.length / mem_type.length);
1256
1257 for (i = 0; i < num_srcs; ++i) {
1258 LLVMValueRef chans[4];
1259 LLVMValueRef res = NULL;
1260
1261 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1262
1263 for (j = 0; j < src_fmt->nr_channels; ++j) {
1264 unsigned mask = 0;
1265 unsigned sa = src_fmt->channel[j].shift;
1266 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1267 unsigned from_lsb = j;
1268 #else
1269 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1270 #endif
1271
1272 mask = (1 << src_fmt->channel[j].size) - 1;
1273
1274 /* Extract bits from source */
1275 chans[j] = LLVMBuildLShr(builder,
1276 dst[i],
1277 lp_build_const_int_vec(gallivm, src_type, sa),
1278 "");
1279
1280 chans[j] = LLVMBuildAnd(builder,
1281 chans[j],
1282 lp_build_const_int_vec(gallivm, src_type, mask),
1283 "");
1284
1285 /* Scale bits */
1286 if (src_type.norm) {
1287 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1288 blend_type.width, chans[j], src_type);
1289 }
1290
1291 /* Insert bits into correct position */
1292 chans[j] = LLVMBuildShl(builder,
1293 chans[j],
1294 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1295 "");
1296
1297 if (j == 0) {
1298 res = chans[j];
1299 } else {
1300 res = LLVMBuildOr(builder, res, chans[j], "");
1301 }
1302 }
1303
1304 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1305 }
1306 }
1307
1308
1309 /**
1310 * Convert from blending format to memory format
1311 *
1312 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1313 */
1314 static void
1315 convert_from_blend_type(struct gallivm_state *gallivm,
1316 unsigned block_size,
1317 const struct util_format_description *src_fmt,
1318 struct lp_type src_type,
1319 struct lp_type dst_type,
1320 LLVMValueRef* src, // and dst
1321 unsigned num_srcs)
1322 {
1323 LLVMValueRef* dst = src;
1324 unsigned i, j, k;
1325 struct lp_type mem_type;
1326 struct lp_type blend_type;
1327 LLVMBuilderRef builder = gallivm->builder;
1328 unsigned pixels = block_size / num_srcs;
1329 bool is_arith;
1330
1331 /*
1332 * full custom path for packed floats and srgb formats - none of the later
1333 * functions would do anything useful, and given the lp_type representation they
1334 * can't be fixed. Should really have some SoA blend path for these kind of
1335 * formats rather than hacking them in here.
1336 */
1337 if (format_expands_to_float_soa(src_fmt)) {
1338 /*
1339 * This is pretty suboptimal for this case blending in SoA would be much
1340 * better - we need to transpose the AoS values back to SoA values for
1341 * conversion/packing.
1342 */
1343 assert(src_type.floating);
1344 assert(src_type.width == 32);
1345 assert(src_type.length % 4 == 0);
1346 assert(dst_type.width == 32 || dst_type.width == 16);
1347
1348 for (i = 0; i < num_srcs / 4; i++) {
1349 LLVMValueRef tmpsoa[4], tmpdst;
1350 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1351 /* really really need SoA here */
1352
1353 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1354 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1355 }
1356 else {
1357 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1358 src_type, tmpsoa);
1359 }
1360
1361 if (src_type.length == 8) {
1362 LLVMValueRef tmpaos, shuffles[8];
1363 unsigned j;
1364 /*
1365 * for 8-wide aos transpose has given us wrong order not matching
1366 * output order. HMPF. Also need to split the output values manually.
1367 */
1368 for (j = 0; j < 4; j++) {
1369 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1370 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1371 }
1372 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1373 LLVMConstVector(shuffles, 8), "");
1374 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1375 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1376 }
1377 else {
1378 src[i] = tmpdst;
1379 }
1380 }
1381 if (dst_type.width == 16) {
1382 struct lp_type type16x8 = dst_type;
1383 struct lp_type type32x4 = dst_type;
1384 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1385 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1386 type16x8.length = 8;
1387 type32x4.width = 32;
1388 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1389 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1390 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1391 /* We could do vector truncation but it doesn't generate very good code */
1392 for (i = 0; i < num_fetch; i++) {
1393 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1394 src[i], lp_build_zero(gallivm, type32x4));
1395 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1396 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1397 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1398 }
1399 }
1400 return;
1401 }
1402
1403 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1404 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1405
1406 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1407
1408 /* Special case for half-floats */
1409 if (mem_type.width == 16 && mem_type.floating) {
1410 int length = dst_type.length;
1411 assert(blend_type.width == 32 && blend_type.floating);
1412
1413 dst_type.length = src_type.length;
1414
1415 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1416
1417 dst_type.length = length;
1418 is_arith = false;
1419 }
1420
1421 /* Remove any padding */
1422 if (!is_arith && (src_type.length % mem_type.length)) {
1423 src_type.length -= (src_type.length % mem_type.length);
1424
1425 for (i = 0; i < num_srcs; ++i) {
1426 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1427 }
1428 }
1429
1430 /* No bit arithmetic to do */
1431 if (!is_arith) {
1432 return;
1433 }
1434
1435 src_type.length = pixels;
1436 src_type.width = blend_type.length * blend_type.width;
1437 dst_type.length = pixels;
1438
1439 for (i = 0; i < num_srcs; ++i) {
1440 LLVMValueRef chans[4];
1441 LLVMValueRef res = NULL;
1442
1443 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1444
1445 for (j = 0; j < src_fmt->nr_channels; ++j) {
1446 unsigned mask = 0;
1447 unsigned sa = src_fmt->channel[j].shift;
1448 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1449 unsigned from_lsb = j;
1450 #else
1451 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1452 #endif
1453
1454 assert(blend_type.width > src_fmt->channel[j].size);
1455
1456 for (k = 0; k < blend_type.width; ++k) {
1457 mask |= 1 << k;
1458 }
1459
1460 /* Extract bits */
1461 chans[j] = LLVMBuildLShr(builder,
1462 dst[i],
1463 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1464 "");
1465
1466 chans[j] = LLVMBuildAnd(builder,
1467 chans[j],
1468 lp_build_const_int_vec(gallivm, src_type, mask),
1469 "");
1470
1471 /* Scale down bits */
1472 if (src_type.norm) {
1473 chans[j] = scale_bits(gallivm, blend_type.width,
1474 src_fmt->channel[j].size, chans[j], src_type);
1475 }
1476
1477 /* Insert bits */
1478 chans[j] = LLVMBuildShl(builder,
1479 chans[j],
1480 lp_build_const_int_vec(gallivm, src_type, sa),
1481 "");
1482
1483 sa += src_fmt->channel[j].size;
1484
1485 if (j == 0) {
1486 res = chans[j];
1487 } else {
1488 res = LLVMBuildOr(builder, res, chans[j], "");
1489 }
1490 }
1491
1492 assert (dst_type.width != 24);
1493
1494 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1495 }
1496 }
1497
1498
1499 /**
1500 * Convert alpha to same blend type as src
1501 */
1502 static void
1503 convert_alpha(struct gallivm_state *gallivm,
1504 struct lp_type row_type,
1505 struct lp_type alpha_type,
1506 const unsigned block_size,
1507 const unsigned block_height,
1508 const unsigned src_count,
1509 const unsigned dst_channels,
1510 const bool pad_inline,
1511 LLVMValueRef* src_alpha)
1512 {
1513 LLVMBuilderRef builder = gallivm->builder;
1514 unsigned i, j;
1515 unsigned length = row_type.length;
1516 row_type.length = alpha_type.length;
1517
1518 /* Twiddle the alpha to match pixels */
1519 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1520
1521 /*
1522 * TODO this should use single lp_build_conv call for
1523 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1524 */
1525 for (i = 0; i < block_height; ++i) {
1526 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1527 }
1528
1529 alpha_type = row_type;
1530 row_type.length = length;
1531
1532 /* If only one channel we can only need the single alpha value per pixel */
1533 if (src_count == 1 && dst_channels == 1) {
1534
1535 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1536 } else {
1537 /* If there are more srcs than rows then we need to split alpha up */
1538 if (src_count > block_height) {
1539 for (i = src_count; i > 0; --i) {
1540 unsigned pixels = block_size / src_count;
1541 unsigned idx = i - 1;
1542
1543 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1544 (idx * pixels) % 4, pixels);
1545 }
1546 }
1547
1548 /* If there is a src for each pixel broadcast the alpha across whole row */
1549 if (src_count == block_size) {
1550 for (i = 0; i < src_count; ++i) {
1551 src_alpha[i] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1552 }
1553 } else {
1554 unsigned pixels = block_size / src_count;
1555 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1556 unsigned alpha_span = 1;
1557 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1558
1559 /* Check if we need 2 src_alphas for our shuffles */
1560 if (pixels > alpha_type.length) {
1561 alpha_span = 2;
1562 }
1563
1564 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1565 for (j = 0; j < row_type.length; ++j) {
1566 if (j < pixels * channels) {
1567 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1568 } else {
1569 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1570 }
1571 }
1572
1573 for (i = 0; i < src_count; ++i) {
1574 unsigned idx1 = i, idx2 = i;
1575
1576 if (alpha_span > 1){
1577 idx1 *= alpha_span;
1578 idx2 = idx1 + 1;
1579 }
1580
1581 src_alpha[i] = LLVMBuildShuffleVector(builder,
1582 src_alpha[idx1],
1583 src_alpha[idx2],
1584 LLVMConstVector(shuffles, row_type.length),
1585 "");
1586 }
1587 }
1588 }
1589 }
1590
1591
1592 /**
1593 * Generates the blend function for unswizzled colour buffers
1594 * Also generates the read & write from colour buffer
1595 */
1596 static void
1597 generate_unswizzled_blend(struct gallivm_state *gallivm,
1598 unsigned rt,
1599 struct lp_fragment_shader_variant *variant,
1600 enum pipe_format out_format,
1601 unsigned int num_fs,
1602 struct lp_type fs_type,
1603 LLVMValueRef* fs_mask,
1604 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1605 LLVMValueRef context_ptr,
1606 LLVMValueRef color_ptr,
1607 LLVMValueRef stride,
1608 unsigned partial_mask,
1609 boolean do_branch)
1610 {
1611 const unsigned alpha_channel = 3;
1612 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1613 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1614 const unsigned block_size = block_width * block_height;
1615 const unsigned lp_integer_vector_width = 128;
1616
1617 LLVMBuilderRef builder = gallivm->builder;
1618 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1619 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1620 LLVMValueRef src_alpha[4 * 4];
1621 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1622 LLVMValueRef src_mask[4 * 4];
1623 LLVMValueRef src[4 * 4];
1624 LLVMValueRef src1[4 * 4];
1625 LLVMValueRef dst[4 * 4];
1626 LLVMValueRef blend_color;
1627 LLVMValueRef blend_alpha;
1628 LLVMValueRef i32_zero;
1629 LLVMValueRef check_mask;
1630 LLVMValueRef undef_src_val;
1631
1632 struct lp_build_mask_context mask_ctx;
1633 struct lp_type mask_type;
1634 struct lp_type blend_type;
1635 struct lp_type row_type;
1636 struct lp_type dst_type;
1637 struct lp_type ls_type;
1638
1639 unsigned char swizzle[TGSI_NUM_CHANNELS];
1640 unsigned vector_width;
1641 unsigned src_channels = TGSI_NUM_CHANNELS;
1642 unsigned dst_channels;
1643 unsigned dst_count;
1644 unsigned src_count;
1645 unsigned i, j;
1646
1647 const struct util_format_description* out_format_desc = util_format_description(out_format);
1648
1649 unsigned dst_alignment;
1650
1651 bool pad_inline = is_arithmetic_format(out_format_desc);
1652 bool has_alpha = false;
1653 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1654 util_blend_state_is_dual(&variant->key.blend, 0);
1655
1656 const boolean is_1d = variant->key.resource_1d;
1657 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1658 LLVMValueRef fpstate = 0;
1659
1660 /* Get type from output format */
1661 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1662 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1663
1664 /*
1665 * Technically this code should go into lp_build_smallfloat_to_float
1666 * and lp_build_float_to_smallfloat but due to the
1667 * http://llvm.org/bugs/show_bug.cgi?id=6393
1668 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1669 * So the ordering is important here and there shouldn't be any
1670 * llvm ir instrunctions in this function before
1671 * this, otherwise half-float format conversions won't work
1672 * (again due to llvm bug #6393).
1673 */
1674 if (have_smallfloat_format(dst_type, out_format)) {
1675 /* We need to make sure that denorms are ok for half float
1676 conversions */
1677 fpstate = lp_build_fpstate_get(gallivm);
1678 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1679 }
1680
1681 mask_type = lp_int32_vec4_type();
1682 mask_type.length = fs_type.length;
1683
1684 for (i = num_fs; i < num_fullblock_fs; i++) {
1685 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1686 }
1687
1688 /* Do not bother executing code when mask is empty.. */
1689 if (do_branch) {
1690 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1691
1692 for (i = 0; i < num_fullblock_fs; ++i) {
1693 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1694 }
1695
1696 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1697 lp_build_mask_check(&mask_ctx);
1698 }
1699
1700 partial_mask |= !variant->opaque;
1701 i32_zero = lp_build_const_int32(gallivm, 0);
1702
1703 undef_src_val = lp_build_undef(gallivm, fs_type);
1704
1705 row_type.length = fs_type.length;
1706 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1707
1708 /* Compute correct swizzle and count channels */
1709 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1710 dst_channels = 0;
1711
1712 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1713 /* Ensure channel is used */
1714 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1715 continue;
1716 }
1717
1718 /* Ensure not already written to (happens in case with GL_ALPHA) */
1719 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1720 continue;
1721 }
1722
1723 /* Ensure we havn't already found all channels */
1724 if (dst_channels >= out_format_desc->nr_channels) {
1725 continue;
1726 }
1727
1728 swizzle[out_format_desc->swizzle[i]] = i;
1729 ++dst_channels;
1730
1731 if (i == alpha_channel) {
1732 has_alpha = true;
1733 }
1734 }
1735
1736 if (format_expands_to_float_soa(out_format_desc)) {
1737 /*
1738 * the code above can't work for layout_other
1739 * for srgb it would sort of work but we short-circuit swizzles, etc.
1740 * as that is done as part of unpack / pack.
1741 */
1742 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1743 has_alpha = true;
1744 swizzle[0] = 0;
1745 swizzle[1] = 1;
1746 swizzle[2] = 2;
1747 swizzle[3] = 3;
1748 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1749 }
1750
1751 /* If 3 channels then pad to include alpha for 4 element transpose */
1752 if (dst_channels == 3 && !has_alpha) {
1753 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1754 if (swizzle[i] > TGSI_NUM_CHANNELS)
1755 swizzle[i] = 3;
1756 }
1757 if (out_format_desc->nr_channels == 4) {
1758 dst_channels = 4;
1759 }
1760 }
1761
1762 /*
1763 * Load shader output
1764 */
1765 for (i = 0; i < num_fullblock_fs; ++i) {
1766 /* Always load alpha for use in blending */
1767 LLVMValueRef alpha;
1768 if (i < num_fs) {
1769 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1770 }
1771 else {
1772 alpha = undef_src_val;
1773 }
1774
1775 /* Load each channel */
1776 for (j = 0; j < dst_channels; ++j) {
1777 assert(swizzle[j] < 4);
1778 if (i < num_fs) {
1779 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1780 }
1781 else {
1782 fs_src[i][j] = undef_src_val;
1783 }
1784 }
1785
1786 /* If 3 channels then pad to include alpha for 4 element transpose */
1787 /*
1788 * XXX If we include that here maybe could actually use it instead of
1789 * separate alpha for blending?
1790 */
1791 if (dst_channels == 3 && !has_alpha) {
1792 fs_src[i][3] = alpha;
1793 }
1794
1795 /* We split the row_mask and row_alpha as we want 128bit interleave */
1796 if (fs_type.length == 8) {
1797 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i], 0, src_channels);
1798 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i], src_channels, src_channels);
1799
1800 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1801 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1802 } else {
1803 src_mask[i] = fs_mask[i];
1804 src_alpha[i] = alpha;
1805 }
1806 }
1807 if (dual_source_blend) {
1808 /* same as above except different src/dst, skip masks and comments... */
1809 for (i = 0; i < num_fullblock_fs; ++i) {
1810 LLVMValueRef alpha;
1811 if (i < num_fs) {
1812 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1813 }
1814 else {
1815 alpha = undef_src_val;
1816 }
1817
1818 for (j = 0; j < dst_channels; ++j) {
1819 assert(swizzle[j] < 4);
1820 if (i < num_fs) {
1821 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1822 }
1823 else {
1824 fs_src1[i][j] = undef_src_val;
1825 }
1826 }
1827 if (dst_channels == 3 && !has_alpha) {
1828 fs_src1[i][3] = alpha;
1829 }
1830 if (fs_type.length == 8) {
1831 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1832 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1833 } else {
1834 src1_alpha[i] = alpha;
1835 }
1836 }
1837 }
1838
1839 if (util_format_is_pure_integer(out_format)) {
1840 /*
1841 * In this case fs_type was really ints or uints disguised as floats,
1842 * fix that up now.
1843 */
1844 fs_type.floating = 0;
1845 fs_type.sign = dst_type.sign;
1846 for (i = 0; i < num_fullblock_fs; ++i) {
1847 for (j = 0; j < dst_channels; ++j) {
1848 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1849 lp_build_vec_type(gallivm, fs_type), "");
1850 }
1851 if (dst_channels == 3 && !has_alpha) {
1852 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1853 lp_build_vec_type(gallivm, fs_type), "");
1854 }
1855 }
1856 }
1857
1858 /*
1859 * Pixel twiddle from fragment shader order to memory order
1860 */
1861 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
1862 dst_channels, fs_src, src, pad_inline);
1863 if (dual_source_blend) {
1864 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
1865 fs_src1, src1, pad_inline);
1866 }
1867
1868 src_channels = dst_channels < 3 ? dst_channels : 4;
1869 if (src_count != num_fullblock_fs * src_channels) {
1870 unsigned ds = src_count / (num_fullblock_fs * src_channels);
1871 row_type.length /= ds;
1872 fs_type.length = row_type.length;
1873 }
1874
1875 blend_type = row_type;
1876 mask_type.length = 4;
1877
1878 /* Convert src to row_type */
1879 if (dual_source_blend) {
1880 struct lp_type old_row_type = row_type;
1881 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1882 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
1883 }
1884 else {
1885 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1886 }
1887
1888 /* If the rows are not an SSE vector, combine them to become SSE size! */
1889 if ((row_type.width * row_type.length) % 128) {
1890 unsigned bits = row_type.width * row_type.length;
1891 unsigned combined;
1892
1893 assert(src_count >= (vector_width / bits));
1894
1895 dst_count = src_count / (vector_width / bits);
1896
1897 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
1898 if (dual_source_blend) {
1899 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
1900 }
1901
1902 row_type.length *= combined;
1903 src_count /= combined;
1904
1905 bits = row_type.width * row_type.length;
1906 assert(bits == 128 || bits == 256);
1907 }
1908
1909
1910 /*
1911 * Blend Colour conversion
1912 */
1913 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
1914 blend_color = LLVMBuildPointerCast(builder, blend_color, LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
1915 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color, &i32_zero, 1, ""), "");
1916
1917 /* Convert */
1918 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
1919
1920 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1921 /*
1922 * since blending is done with floats, there was no conversion.
1923 * However, the rules according to fixed point renderbuffers still
1924 * apply, that is we must clamp inputs to 0.0/1.0.
1925 * (This would apply to separate alpha conversion too but we currently
1926 * force has_alpha to be true.)
1927 * TODO: should skip this with "fake" blend, since post-blend conversion
1928 * will clamp anyway.
1929 * TODO: could also skip this if fragment color clamping is enabled. We
1930 * don't support it natively so it gets baked into the shader however, so
1931 * can't really tell here.
1932 */
1933 struct lp_build_context f32_bld;
1934 assert(row_type.floating);
1935 lp_build_context_init(&f32_bld, gallivm, row_type);
1936 for (i = 0; i < src_count; i++) {
1937 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
1938 }
1939 if (dual_source_blend) {
1940 for (i = 0; i < src_count; i++) {
1941 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
1942 }
1943 }
1944 /* probably can't be different than row_type but better safe than sorry... */
1945 lp_build_context_init(&f32_bld, gallivm, blend_type);
1946 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
1947 }
1948
1949 /* Extract alpha */
1950 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
1951
1952 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
1953 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
1954 if (pad_inline) {
1955 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
1956 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
1957 } else {
1958 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
1959 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
1960 }
1961
1962 /*
1963 * Mask conversion
1964 */
1965 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
1966
1967 if (src_count < block_height) {
1968 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
1969 } else if (src_count > block_height) {
1970 for (i = src_count; i > 0; --i) {
1971 unsigned pixels = block_size / src_count;
1972 unsigned idx = i - 1;
1973
1974 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
1975 (idx * pixels) % 4, pixels);
1976 }
1977 }
1978
1979 assert(mask_type.width == 32);
1980
1981 for (i = 0; i < src_count; ++i) {
1982 unsigned pixels = block_size / src_count;
1983 unsigned pixel_width = row_type.width * dst_channels;
1984
1985 if (pixel_width == 24) {
1986 mask_type.width = 8;
1987 mask_type.length = vector_width / mask_type.width;
1988 } else {
1989 mask_type.length = pixels;
1990 mask_type.width = row_type.width * dst_channels;
1991
1992 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1993
1994 mask_type.length *= dst_channels;
1995 mask_type.width /= dst_channels;
1996 }
1997
1998 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1999 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2000 }
2001
2002 /*
2003 * Alpha conversion
2004 */
2005 if (!has_alpha) {
2006 struct lp_type alpha_type = fs_type;
2007 alpha_type.length = 4;
2008 convert_alpha(gallivm, row_type, alpha_type,
2009 block_size, block_height,
2010 src_count, dst_channels,
2011 pad_inline, src_alpha);
2012 if (dual_source_blend) {
2013 convert_alpha(gallivm, row_type, alpha_type,
2014 block_size, block_height,
2015 src_count, dst_channels,
2016 pad_inline, src1_alpha);
2017 }
2018 }
2019
2020
2021 /*
2022 * Load dst from memory
2023 */
2024 if (src_count < block_height) {
2025 dst_count = block_height;
2026 } else {
2027 dst_count = src_count;
2028 }
2029
2030 dst_type.length *= block_size / dst_count;
2031
2032 if (format_expands_to_float_soa(out_format_desc)) {
2033 /*
2034 * we need multiple values at once for the conversion, so can as well
2035 * load them vectorized here too instead of concatenating later.
2036 * (Still need concatenation later for 8-wide vectors).
2037 */
2038 dst_count = block_height;
2039 dst_type.length = block_width;
2040 }
2041
2042 /*
2043 * Compute the alignment of the destination pointer in bytes
2044 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2045 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2046 * 1d tex but can't distinguish here) so need to stick with per-pixel
2047 * alignment in this case.
2048 */
2049 if (is_1d) {
2050 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2051 }
2052 else {
2053 dst_alignment = dst_type.length * dst_type.width / 8;
2054 }
2055 /* Force power-of-two alignment by extracting only the least-significant-bit */
2056 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2057 /*
2058 * Resource base and stride pointers are aligned to 16 bytes, so that's
2059 * the maximum alignment we can guarantee
2060 */
2061 dst_alignment = MIN2(16, dst_alignment);
2062
2063 ls_type = dst_type;
2064
2065 if (dst_count > src_count) {
2066 if ((dst_type.width == 8 || dst_type.width == 16) &&
2067 util_is_power_of_two(dst_type.length) &&
2068 dst_type.length * dst_type.width < 128) {
2069 /*
2070 * Never try to load values as 4xi8 which we will then
2071 * concatenate to larger vectors. This gives llvm a real
2072 * headache (the problem is the type legalizer (?) will
2073 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2074 * then the shuffles to concatenate are more or less impossible
2075 * - llvm is easily capable of generating a sequence of 32
2076 * pextrb/pinsrb instructions for that. Albeit it appears to
2077 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2078 * width to avoid the trouble (16bit seems not as bad, llvm
2079 * probably recognizes the load+shuffle as only one shuffle
2080 * is necessary, but we can do just the same anyway).
2081 */
2082 ls_type.length = dst_type.length * dst_type.width / 32;
2083 ls_type.width = 32;
2084 }
2085 }
2086
2087 if (is_1d) {
2088 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2089 dst, ls_type, dst_count / 4, dst_alignment);
2090 for (i = dst_count / 4; i < dst_count; i++) {
2091 dst[i] = lp_build_undef(gallivm, ls_type);
2092 }
2093
2094 }
2095 else {
2096 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2097 dst, ls_type, dst_count, dst_alignment);
2098 }
2099
2100
2101 /*
2102 * Convert from dst/output format to src/blending format.
2103 *
2104 * This is necessary as we can only read 1 row from memory at a time,
2105 * so the minimum dst_count will ever be at this point is 4.
2106 *
2107 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2108 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2109 * on all 16 pixels in that single vector at once.
2110 */
2111 if (dst_count > src_count) {
2112 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2113 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2114 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2115 for (i = 0; i < dst_count; i++) {
2116 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2117 }
2118 }
2119
2120 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2121
2122 if (ls_type.length != dst_type.length) {
2123 struct lp_type tmp_type = dst_type;
2124 tmp_type.length = dst_type.length * 4 / src_count;
2125 for (i = 0; i < src_count; i++) {
2126 dst[i] = LLVMBuildBitCast(builder, dst[i],
2127 lp_build_vec_type(gallivm, tmp_type), "");
2128 }
2129 }
2130 }
2131
2132 /*
2133 * Blending
2134 */
2135 /* XXX this is broken for RGB8 formats -
2136 * they get expanded from 12 to 16 elements (to include alpha)
2137 * by convert_to_blend_type then reduced to 15 instead of 12
2138 * by convert_from_blend_type (a simple fix though breaks A8...).
2139 * R16G16B16 also crashes differently however something going wrong
2140 * inside llvm handling npot vector sizes seemingly.
2141 * It seems some cleanup could be done here (like skipping conversion/blend
2142 * when not needed).
2143 */
2144 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type, row_type, dst, src_count);
2145
2146 /*
2147 * FIXME: Really should get logic ops / masks out of generic blend / row
2148 * format. Logic ops will definitely not work on the blend float format
2149 * used for SRGB here and I think OpenGL expects this to work as expected
2150 * (that is incoming values converted to srgb then logic op applied).
2151 */
2152 for (i = 0; i < src_count; ++i) {
2153 dst[i] = lp_build_blend_aos(gallivm,
2154 &variant->key.blend,
2155 out_format,
2156 row_type,
2157 rt,
2158 src[i],
2159 has_alpha ? NULL : src_alpha[i],
2160 src1[i],
2161 has_alpha ? NULL : src1_alpha[i],
2162 dst[i],
2163 partial_mask ? src_mask[i] : NULL,
2164 blend_color,
2165 has_alpha ? NULL : blend_alpha,
2166 swizzle,
2167 pad_inline ? 4 : dst_channels);
2168 }
2169
2170 convert_from_blend_type(gallivm, block_size, out_format_desc, row_type, dst_type, dst, src_count);
2171
2172 /* Split the blend rows back to memory rows */
2173 if (dst_count > src_count) {
2174 row_type.length = dst_type.length * (dst_count / src_count);
2175
2176 if (src_count == 1) {
2177 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2178 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2179
2180 row_type.length /= 2;
2181 src_count *= 2;
2182 }
2183
2184 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2185 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2186 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2187 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2188
2189 row_type.length /= 2;
2190 src_count *= 2;
2191 }
2192
2193 /*
2194 * Store blend result to memory
2195 */
2196 if (is_1d) {
2197 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2198 dst, dst_type, dst_count / 4, dst_alignment);
2199 }
2200 else {
2201 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2202 dst, dst_type, dst_count, dst_alignment);
2203 }
2204
2205 if (have_smallfloat_format(dst_type, out_format)) {
2206 lp_build_fpstate_set(gallivm, fpstate);
2207 }
2208
2209 if (do_branch) {
2210 lp_build_mask_end(&mask_ctx);
2211 }
2212 }
2213
2214
2215 /**
2216 * Generate the runtime callable function for the whole fragment pipeline.
2217 * Note that the function which we generate operates on a block of 16
2218 * pixels at at time. The block contains 2x2 quads. Each quad contains
2219 * 2x2 pixels.
2220 */
2221 static void
2222 generate_fragment(struct llvmpipe_context *lp,
2223 struct lp_fragment_shader *shader,
2224 struct lp_fragment_shader_variant *variant,
2225 unsigned partial_mask)
2226 {
2227 struct gallivm_state *gallivm = variant->gallivm;
2228 const struct lp_fragment_shader_variant_key *key = &variant->key;
2229 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2230 char func_name[64];
2231 struct lp_type fs_type;
2232 struct lp_type blend_type;
2233 LLVMTypeRef fs_elem_type;
2234 LLVMTypeRef blend_vec_type;
2235 LLVMTypeRef arg_types[13];
2236 LLVMTypeRef func_type;
2237 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2238 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2239 LLVMValueRef context_ptr;
2240 LLVMValueRef x;
2241 LLVMValueRef y;
2242 LLVMValueRef a0_ptr;
2243 LLVMValueRef dadx_ptr;
2244 LLVMValueRef dady_ptr;
2245 LLVMValueRef color_ptr_ptr;
2246 LLVMValueRef stride_ptr;
2247 LLVMValueRef depth_ptr;
2248 LLVMValueRef depth_stride;
2249 LLVMValueRef mask_input;
2250 LLVMValueRef thread_data_ptr;
2251 LLVMBasicBlockRef block;
2252 LLVMBuilderRef builder;
2253 struct lp_build_sampler_soa *sampler;
2254 struct lp_build_interp_soa_context interp;
2255 LLVMValueRef fs_mask[16 / 4];
2256 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2257 LLVMValueRef function;
2258 LLVMValueRef facing;
2259 unsigned num_fs;
2260 unsigned i;
2261 unsigned chan;
2262 unsigned cbuf;
2263 boolean cbuf0_write_all;
2264 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2265 util_blend_state_is_dual(&key->blend, 0);
2266
2267 assert(lp_native_vector_width / 32 >= 4);
2268
2269 /* Adjust color input interpolation according to flatshade state:
2270 */
2271 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2272 for (i = 0; i < shader->info.base.num_inputs; i++) {
2273 if (inputs[i].interp == LP_INTERP_COLOR) {
2274 if (key->flatshade)
2275 inputs[i].interp = LP_INTERP_CONSTANT;
2276 else
2277 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2278 }
2279 }
2280
2281 /* check if writes to cbuf[0] are to be copied to all cbufs */
2282 cbuf0_write_all =
2283 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2284
2285 /* TODO: actually pick these based on the fs and color buffer
2286 * characteristics. */
2287
2288 memset(&fs_type, 0, sizeof fs_type);
2289 fs_type.floating = TRUE; /* floating point values */
2290 fs_type.sign = TRUE; /* values are signed */
2291 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2292 fs_type.width = 32; /* 32-bit float */
2293 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2294
2295 memset(&blend_type, 0, sizeof blend_type);
2296 blend_type.floating = FALSE; /* values are integers */
2297 blend_type.sign = FALSE; /* values are unsigned */
2298 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2299 blend_type.width = 8; /* 8-bit ubyte values */
2300 blend_type.length = 16; /* 16 elements per vector */
2301
2302 /*
2303 * Generate the function prototype. Any change here must be reflected in
2304 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2305 */
2306
2307 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2308
2309 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2310
2311 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2312 shader->no, variant->no, partial_mask ? "partial" : "whole");
2313
2314 arg_types[0] = variant->jit_context_ptr_type; /* context */
2315 arg_types[1] = int32_type; /* x */
2316 arg_types[2] = int32_type; /* y */
2317 arg_types[3] = int32_type; /* facing */
2318 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2319 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2320 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2321 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2322 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2323 arg_types[9] = int32_type; /* mask_input */
2324 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2325 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2326 arg_types[12] = int32_type; /* depth_stride */
2327
2328 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2329 arg_types, ARRAY_SIZE(arg_types), 0);
2330
2331 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2332 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2333
2334 variant->function[partial_mask] = function;
2335
2336 /* XXX: need to propagate noalias down into color param now we are
2337 * passing a pointer-to-pointer?
2338 */
2339 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2340 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2341 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2342
2343 context_ptr = LLVMGetParam(function, 0);
2344 x = LLVMGetParam(function, 1);
2345 y = LLVMGetParam(function, 2);
2346 facing = LLVMGetParam(function, 3);
2347 a0_ptr = LLVMGetParam(function, 4);
2348 dadx_ptr = LLVMGetParam(function, 5);
2349 dady_ptr = LLVMGetParam(function, 6);
2350 color_ptr_ptr = LLVMGetParam(function, 7);
2351 depth_ptr = LLVMGetParam(function, 8);
2352 mask_input = LLVMGetParam(function, 9);
2353 thread_data_ptr = LLVMGetParam(function, 10);
2354 stride_ptr = LLVMGetParam(function, 11);
2355 depth_stride = LLVMGetParam(function, 12);
2356
2357 lp_build_name(context_ptr, "context");
2358 lp_build_name(x, "x");
2359 lp_build_name(y, "y");
2360 lp_build_name(a0_ptr, "a0");
2361 lp_build_name(dadx_ptr, "dadx");
2362 lp_build_name(dady_ptr, "dady");
2363 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2364 lp_build_name(depth_ptr, "depth");
2365 lp_build_name(mask_input, "mask_input");
2366 lp_build_name(thread_data_ptr, "thread_data");
2367 lp_build_name(stride_ptr, "stride_ptr");
2368 lp_build_name(depth_stride, "depth_stride");
2369
2370 /*
2371 * Function body
2372 */
2373
2374 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2375 builder = gallivm->builder;
2376 assert(builder);
2377 LLVMPositionBuilderAtEnd(builder, block);
2378
2379 /* code generated texture sampling */
2380 sampler = lp_llvm_sampler_soa_create(key->state);
2381
2382 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2383 /* for 1d resources only run "upper half" of stamp */
2384 if (key->resource_1d)
2385 num_fs /= 2;
2386
2387 {
2388 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2389 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2390 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2391 num_loop, "mask_store");
2392 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2393 boolean pixel_center_integer =
2394 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2395
2396 /*
2397 * The shader input interpolation info is not explicitely baked in the
2398 * shader key, but everything it derives from (TGSI, and flatshade) is
2399 * already included in the shader key.
2400 */
2401 lp_build_interp_soa_init(&interp,
2402 gallivm,
2403 shader->info.base.num_inputs,
2404 inputs,
2405 pixel_center_integer,
2406 key->depth_clamp,
2407 builder, fs_type,
2408 a0_ptr, dadx_ptr, dady_ptr,
2409 x, y);
2410
2411 for (i = 0; i < num_fs; i++) {
2412 LLVMValueRef mask;
2413 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2414 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2415 &indexi, 1, "mask_ptr");
2416
2417 if (partial_mask) {
2418 mask = generate_quad_mask(gallivm, fs_type,
2419 i*fs_type.length/4, mask_input);
2420 }
2421 else {
2422 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2423 }
2424 LLVMBuildStore(builder, mask, mask_ptr);
2425 }
2426
2427 generate_fs_loop(gallivm,
2428 shader, key,
2429 builder,
2430 fs_type,
2431 context_ptr,
2432 num_loop,
2433 &interp,
2434 sampler,
2435 mask_store, /* output */
2436 color_store,
2437 depth_ptr,
2438 depth_stride,
2439 facing,
2440 thread_data_ptr);
2441
2442 for (i = 0; i < num_fs; i++) {
2443 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2444 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2445 &indexi, 1, "");
2446 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2447 /* This is fucked up need to reorganize things */
2448 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2449 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2450 ptr = LLVMBuildGEP(builder,
2451 color_store[cbuf * !cbuf0_write_all][chan],
2452 &indexi, 1, "");
2453 fs_out_color[cbuf][chan][i] = ptr;
2454 }
2455 }
2456 if (dual_source_blend) {
2457 /* only support one dual source blend target hence always use output 1 */
2458 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2459 ptr = LLVMBuildGEP(builder,
2460 color_store[1][chan],
2461 &indexi, 1, "");
2462 fs_out_color[1][chan][i] = ptr;
2463 }
2464 }
2465 }
2466 }
2467
2468 sampler->destroy(sampler);
2469
2470 /* Loop over color outputs / color buffers to do blending.
2471 */
2472 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2473 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2474 LLVMValueRef color_ptr;
2475 LLVMValueRef stride;
2476 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2477
2478 boolean do_branch = ((key->depth.enabled
2479 || key->stencil[0].enabled
2480 || key->alpha.enabled)
2481 && !shader->info.base.uses_kill);
2482
2483 color_ptr = LLVMBuildLoad(builder,
2484 LLVMBuildGEP(builder, color_ptr_ptr,
2485 &index, 1, ""),
2486 "");
2487
2488 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2489
2490 stride = LLVMBuildLoad(builder,
2491 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2492 "");
2493
2494 generate_unswizzled_blend(gallivm, cbuf, variant,
2495 key->cbuf_format[cbuf],
2496 num_fs, fs_type, fs_mask, fs_out_color,
2497 context_ptr, color_ptr, stride,
2498 partial_mask, do_branch);
2499 }
2500 }
2501
2502 LLVMBuildRetVoid(builder);
2503
2504 gallivm_verify_function(gallivm, function);
2505 }
2506
2507
2508 static void
2509 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2510 {
2511 unsigned i;
2512
2513 debug_printf("fs variant %p:\n", (void *) key);
2514
2515 if (key->flatshade) {
2516 debug_printf("flatshade = 1\n");
2517 }
2518 for (i = 0; i < key->nr_cbufs; ++i) {
2519 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2520 }
2521 if (key->depth.enabled || key->stencil[0].enabled) {
2522 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2523 }
2524 if (key->depth.enabled) {
2525 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
2526 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2527 }
2528
2529 for (i = 0; i < 2; ++i) {
2530 if (key->stencil[i].enabled) {
2531 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
2532 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
2533 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
2534 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
2535 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2536 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2537 }
2538 }
2539
2540 if (key->alpha.enabled) {
2541 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
2542 }
2543
2544 if (key->occlusion_count) {
2545 debug_printf("occlusion_count = 1\n");
2546 }
2547
2548 if (key->blend.logicop_enable) {
2549 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
2550 }
2551 else if (key->blend.rt[0].blend_enable) {
2552 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
2553 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2554 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2555 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
2556 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2557 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2558 }
2559 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2560 if (key->blend.alpha_to_coverage) {
2561 debug_printf("blend.alpha_to_coverage is enabled\n");
2562 }
2563 for (i = 0; i < key->nr_samplers; ++i) {
2564 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2565 debug_printf("sampler[%u] = \n", i);
2566 debug_printf(" .wrap = %s %s %s\n",
2567 util_dump_tex_wrap(sampler->wrap_s, TRUE),
2568 util_dump_tex_wrap(sampler->wrap_t, TRUE),
2569 util_dump_tex_wrap(sampler->wrap_r, TRUE));
2570 debug_printf(" .min_img_filter = %s\n",
2571 util_dump_tex_filter(sampler->min_img_filter, TRUE));
2572 debug_printf(" .min_mip_filter = %s\n",
2573 util_dump_tex_mipfilter(sampler->min_mip_filter, TRUE));
2574 debug_printf(" .mag_img_filter = %s\n",
2575 util_dump_tex_filter(sampler->mag_img_filter, TRUE));
2576 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2577 debug_printf(" .compare_func = %s\n", util_dump_func(sampler->compare_func, TRUE));
2578 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2579 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2580 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2581 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2582 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2583 }
2584 for (i = 0; i < key->nr_sampler_views; ++i) {
2585 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2586 debug_printf("texture[%u] = \n", i);
2587 debug_printf(" .format = %s\n",
2588 util_format_name(texture->format));
2589 debug_printf(" .target = %s\n",
2590 util_dump_tex_target(texture->target, TRUE));
2591 debug_printf(" .level_zero_only = %u\n",
2592 texture->level_zero_only);
2593 debug_printf(" .pot = %u %u %u\n",
2594 texture->pot_width,
2595 texture->pot_height,
2596 texture->pot_depth);
2597 }
2598 }
2599
2600
2601 void
2602 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2603 {
2604 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2605 variant->shader->no, variant->no);
2606 tgsi_dump(variant->shader->base.tokens, 0);
2607 dump_fs_variant_key(&variant->key);
2608 debug_printf("variant->opaque = %u\n", variant->opaque);
2609 debug_printf("\n");
2610 }
2611
2612
2613 /**
2614 * Generate a new fragment shader variant from the shader code and
2615 * other state indicated by the key.
2616 */
2617 static struct lp_fragment_shader_variant *
2618 generate_variant(struct llvmpipe_context *lp,
2619 struct lp_fragment_shader *shader,
2620 const struct lp_fragment_shader_variant_key *key)
2621 {
2622 struct lp_fragment_shader_variant *variant;
2623 const struct util_format_description *cbuf0_format_desc;
2624 boolean fullcolormask;
2625 char module_name[64];
2626
2627 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2628 if (!variant)
2629 return NULL;
2630
2631 util_snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2632 shader->no, shader->variants_created);
2633
2634 variant->gallivm = gallivm_create(module_name, lp->context);
2635 if (!variant->gallivm) {
2636 FREE(variant);
2637 return NULL;
2638 }
2639
2640 variant->shader = shader;
2641 variant->list_item_global.base = variant;
2642 variant->list_item_local.base = variant;
2643 variant->no = shader->variants_created++;
2644
2645 memcpy(&variant->key, key, shader->variant_key_size);
2646
2647 /*
2648 * Determine whether we are touching all channels in the color buffer.
2649 */
2650 fullcolormask = FALSE;
2651 if (key->nr_cbufs == 1) {
2652 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2653 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2654 }
2655
2656 variant->opaque =
2657 !key->blend.logicop_enable &&
2658 !key->blend.rt[0].blend_enable &&
2659 fullcolormask &&
2660 !key->stencil[0].enabled &&
2661 !key->alpha.enabled &&
2662 !key->blend.alpha_to_coverage &&
2663 !key->depth.enabled &&
2664 !shader->info.base.uses_kill
2665 ? TRUE : FALSE;
2666
2667 if ((shader->info.base.num_tokens <= 1) &&
2668 !key->depth.enabled && !key->stencil[0].enabled) {
2669 variant->ps_inv_multiplier = 0;
2670 } else {
2671 variant->ps_inv_multiplier = 1;
2672 }
2673
2674 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2675 lp_debug_fs_variant(variant);
2676 }
2677
2678 lp_jit_init_types(variant);
2679
2680 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2681 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2682
2683 if (variant->jit_function[RAST_WHOLE] == NULL) {
2684 if (variant->opaque) {
2685 /* Specialized shader, which doesn't need to read the color buffer. */
2686 generate_fragment(lp, shader, variant, RAST_WHOLE);
2687 }
2688 }
2689
2690 /*
2691 * Compile everything
2692 */
2693
2694 gallivm_compile_module(variant->gallivm);
2695
2696 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2697
2698 if (variant->function[RAST_EDGE_TEST]) {
2699 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2700 gallivm_jit_function(variant->gallivm,
2701 variant->function[RAST_EDGE_TEST]);
2702 }
2703
2704 if (variant->function[RAST_WHOLE]) {
2705 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2706 gallivm_jit_function(variant->gallivm,
2707 variant->function[RAST_WHOLE]);
2708 } else if (!variant->jit_function[RAST_WHOLE]) {
2709 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2710 }
2711
2712 gallivm_free_ir(variant->gallivm);
2713
2714 return variant;
2715 }
2716
2717
2718 static void *
2719 llvmpipe_create_fs_state(struct pipe_context *pipe,
2720 const struct pipe_shader_state *templ)
2721 {
2722 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2723 struct lp_fragment_shader *shader;
2724 int nr_samplers;
2725 int nr_sampler_views;
2726 int i;
2727
2728 shader = CALLOC_STRUCT(lp_fragment_shader);
2729 if (!shader)
2730 return NULL;
2731
2732 shader->no = fs_no++;
2733 make_empty_list(&shader->variants);
2734
2735 /* get/save the summary info for this shader */
2736 lp_build_tgsi_info(templ->tokens, &shader->info);
2737
2738 /* we need to keep a local copy of the tokens */
2739 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2740
2741 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2742 if (shader->draw_data == NULL) {
2743 FREE((void *) shader->base.tokens);
2744 FREE(shader);
2745 return NULL;
2746 }
2747
2748 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2749 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2750
2751 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2752 state[MAX2(nr_samplers, nr_sampler_views)]);
2753
2754 for (i = 0; i < shader->info.base.num_inputs; i++) {
2755 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2756 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2757
2758 switch (shader->info.base.input_interpolate[i]) {
2759 case TGSI_INTERPOLATE_CONSTANT:
2760 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2761 break;
2762 case TGSI_INTERPOLATE_LINEAR:
2763 shader->inputs[i].interp = LP_INTERP_LINEAR;
2764 break;
2765 case TGSI_INTERPOLATE_PERSPECTIVE:
2766 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2767 break;
2768 case TGSI_INTERPOLATE_COLOR:
2769 shader->inputs[i].interp = LP_INTERP_COLOR;
2770 break;
2771 default:
2772 assert(0);
2773 break;
2774 }
2775
2776 switch (shader->info.base.input_semantic_name[i]) {
2777 case TGSI_SEMANTIC_FACE:
2778 shader->inputs[i].interp = LP_INTERP_FACING;
2779 break;
2780 case TGSI_SEMANTIC_POSITION:
2781 /* Position was already emitted above
2782 */
2783 shader->inputs[i].interp = LP_INTERP_POSITION;
2784 shader->inputs[i].src_index = 0;
2785 continue;
2786 }
2787
2788 /* XXX this is a completely pointless index map... */
2789 shader->inputs[i].src_index = i+1;
2790 }
2791
2792 if (LP_DEBUG & DEBUG_TGSI) {
2793 unsigned attrib;
2794 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2795 shader->no, (void *) shader);
2796 tgsi_dump(templ->tokens, 0);
2797 debug_printf("usage masks:\n");
2798 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2799 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2800 debug_printf(" IN[%u].%s%s%s%s\n",
2801 attrib,
2802 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2803 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2804 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2805 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2806 }
2807 debug_printf("\n");
2808 }
2809
2810 return shader;
2811 }
2812
2813
2814 static void
2815 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2816 {
2817 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2818
2819 if (llvmpipe->fs == fs)
2820 return;
2821
2822 llvmpipe->fs = (struct lp_fragment_shader *) fs;
2823
2824 draw_bind_fragment_shader(llvmpipe->draw,
2825 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
2826
2827 llvmpipe->dirty |= LP_NEW_FS;
2828 }
2829
2830
2831 /**
2832 * Remove shader variant from two lists: the shader's variant list
2833 * and the context's variant list.
2834 */
2835 void
2836 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
2837 struct lp_fragment_shader_variant *variant)
2838 {
2839 if (gallivm_debug & GALLIVM_DEBUG_IR) {
2840 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
2841 " #%u v total cached #%u\n",
2842 variant->shader->no,
2843 variant->no,
2844 variant->shader->variants_created,
2845 variant->shader->variants_cached,
2846 lp->nr_fs_variants);
2847 }
2848
2849 gallivm_destroy(variant->gallivm);
2850
2851 /* remove from shader's list */
2852 remove_from_list(&variant->list_item_local);
2853 variant->shader->variants_cached--;
2854
2855 /* remove from context's list */
2856 remove_from_list(&variant->list_item_global);
2857 lp->nr_fs_variants--;
2858 lp->nr_fs_instrs -= variant->nr_instrs;
2859
2860 FREE(variant);
2861 }
2862
2863
2864 static void
2865 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
2866 {
2867 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2868 struct lp_fragment_shader *shader = fs;
2869 struct lp_fs_variant_list_item *li;
2870
2871 assert(fs != llvmpipe->fs);
2872
2873 /*
2874 * XXX: we need to flush the context until we have some sort of reference
2875 * counting in fragment shaders as they may still be binned
2876 * Flushing alone might not sufficient we need to wait on it too.
2877 */
2878 llvmpipe_finish(pipe, __FUNCTION__);
2879
2880 /* Delete all the variants */
2881 li = first_elem(&shader->variants);
2882 while(!at_end(&shader->variants, li)) {
2883 struct lp_fs_variant_list_item *next = next_elem(li);
2884 llvmpipe_remove_shader_variant(llvmpipe, li->base);
2885 li = next;
2886 }
2887
2888 /* Delete draw module's data */
2889 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
2890
2891 assert(shader->variants_cached == 0);
2892 FREE((void *) shader->base.tokens);
2893 FREE(shader);
2894 }
2895
2896
2897
2898 static void
2899 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
2900 uint shader, uint index,
2901 const struct pipe_constant_buffer *cb)
2902 {
2903 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2904 struct pipe_resource *constants = cb ? cb->buffer : NULL;
2905
2906 assert(shader < PIPE_SHADER_TYPES);
2907 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
2908
2909 /* note: reference counting */
2910 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
2911
2912 if (constants) {
2913 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
2914 debug_printf("Illegal set constant without bind flag\n");
2915 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
2916 }
2917 }
2918
2919 if (shader == PIPE_SHADER_VERTEX ||
2920 shader == PIPE_SHADER_GEOMETRY) {
2921 /* Pass the constants to the 'draw' module */
2922 const unsigned size = cb ? cb->buffer_size : 0;
2923 const ubyte *data;
2924
2925 if (constants) {
2926 data = (ubyte *) llvmpipe_resource_data(constants);
2927 }
2928 else if (cb && cb->user_buffer) {
2929 data = (ubyte *) cb->user_buffer;
2930 }
2931 else {
2932 data = NULL;
2933 }
2934
2935 if (data)
2936 data += cb->buffer_offset;
2937
2938 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
2939 index, data, size);
2940 }
2941 else {
2942 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
2943 }
2944
2945 if (cb && cb->user_buffer) {
2946 pipe_resource_reference(&constants, NULL);
2947 }
2948 }
2949
2950
2951 /**
2952 * Return the blend factor equivalent to a destination alpha of one.
2953 */
2954 static inline unsigned
2955 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
2956 {
2957 switch(factor) {
2958 case PIPE_BLENDFACTOR_DST_ALPHA:
2959 return PIPE_BLENDFACTOR_ONE;
2960 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
2961 return PIPE_BLENDFACTOR_ZERO;
2962 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
2963 if (clamped_zero)
2964 return PIPE_BLENDFACTOR_ZERO;
2965 else
2966 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
2967 }
2968
2969 return factor;
2970 }
2971
2972
2973 /**
2974 * We need to generate several variants of the fragment pipeline to match
2975 * all the combinations of the contributing state atoms.
2976 *
2977 * TODO: there is actually no reason to tie this to context state -- the
2978 * generated code could be cached globally in the screen.
2979 */
2980 static void
2981 make_variant_key(struct llvmpipe_context *lp,
2982 struct lp_fragment_shader *shader,
2983 struct lp_fragment_shader_variant_key *key)
2984 {
2985 unsigned i;
2986
2987 memset(key, 0, shader->variant_key_size);
2988
2989 if (lp->framebuffer.zsbuf) {
2990 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
2991 const struct util_format_description *zsbuf_desc =
2992 util_format_description(zsbuf_format);
2993
2994 if (lp->depth_stencil->depth.enabled &&
2995 util_format_has_depth(zsbuf_desc)) {
2996 key->zsbuf_format = zsbuf_format;
2997 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
2998 }
2999 if (lp->depth_stencil->stencil[0].enabled &&
3000 util_format_has_stencil(zsbuf_desc)) {
3001 key->zsbuf_format = zsbuf_format;
3002 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3003 }
3004 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3005 key->resource_1d = TRUE;
3006 }
3007 }
3008
3009 /*
3010 * Propagate the depth clamp setting from the rasterizer state.
3011 * depth_clip == 0 implies depth clamping is enabled.
3012 *
3013 * When clip_halfz is enabled, then always clamp the depth values.
3014 *
3015 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3016 * clamp is always active in d3d10, regardless if depth clip is
3017 * enabled or not).
3018 * (GL has an always-on [0,1] clamp on fs depth output instead
3019 * to ensure the depth values stay in range. Doesn't look like
3020 * we do that, though...)
3021 */
3022 if (lp->rasterizer->clip_halfz) {
3023 key->depth_clamp = 1;
3024 } else {
3025 key->depth_clamp = (lp->rasterizer->depth_clip == 0) ? 1 : 0;
3026 }
3027
3028 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3029 if (!lp->framebuffer.nr_cbufs ||
3030 !lp->framebuffer.cbufs[0] ||
3031 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3032 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3033 }
3034 if(key->alpha.enabled)
3035 key->alpha.func = lp->depth_stencil->alpha.func;
3036 /* alpha.ref_value is passed in jit_context */
3037
3038 key->flatshade = lp->rasterizer->flatshade;
3039 if (lp->active_occlusion_queries) {
3040 key->occlusion_count = TRUE;
3041 }
3042
3043 if (lp->framebuffer.nr_cbufs) {
3044 memcpy(&key->blend, lp->blend, sizeof key->blend);
3045 }
3046
3047 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3048
3049 if (!key->blend.independent_blend_enable) {
3050 /* we always need independent blend otherwise the fixups below won't work */
3051 for (i = 1; i < key->nr_cbufs; i++) {
3052 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3053 }
3054 key->blend.independent_blend_enable = 1;
3055 }
3056
3057 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3058 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3059
3060 if (lp->framebuffer.cbufs[i]) {
3061 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3062 const struct util_format_description *format_desc;
3063
3064 key->cbuf_format[i] = format;
3065
3066 /*
3067 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3068 * mixing of 2d textures with height 1 and 1d textures, so make sure
3069 * we pick 1d if any cbuf or zsbuf is 1d.
3070 */
3071 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3072 key->resource_1d = TRUE;
3073 }
3074
3075 format_desc = util_format_description(format);
3076 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3077 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3078
3079 /*
3080 * Mask out color channels not present in the color buffer.
3081 */
3082 blend_rt->colormask &= util_format_colormask(format_desc);
3083
3084 /*
3085 * Disable blend for integer formats.
3086 */
3087 if (util_format_is_pure_integer(format)) {
3088 blend_rt->blend_enable = 0;
3089 }
3090
3091 /*
3092 * Our swizzled render tiles always have an alpha channel, but the
3093 * linear render target format often does not, so force here the dst
3094 * alpha to be one.
3095 *
3096 * This is not a mere optimization. Wrong results will be produced if
3097 * the dst alpha is used, the dst format does not have alpha, and the
3098 * previous rendering was not flushed from the swizzled to linear
3099 * buffer. For example, NonPowTwo DCT.
3100 *
3101 * TODO: This should be generalized to all channels for better
3102 * performance, but only alpha causes correctness issues.
3103 *
3104 * Also, force rgb/alpha func/factors match, to make AoS blending
3105 * easier.
3106 */
3107 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3108 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3109 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3110 boolean clamped_zero = !util_format_is_float(format) &&
3111 !util_format_is_snorm(format);
3112 blend_rt->rgb_src_factor =
3113 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3114 blend_rt->rgb_dst_factor =
3115 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3116 blend_rt->alpha_func = blend_rt->rgb_func;
3117 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3118 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3119 }
3120 }
3121 else {
3122 /* no color buffer for this fragment output */
3123 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3124 blend_rt->colormask = 0x0;
3125 blend_rt->blend_enable = 0;
3126 }
3127 }
3128
3129 /* This value will be the same for all the variants of a given shader:
3130 */
3131 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3132
3133 for(i = 0; i < key->nr_samplers; ++i) {
3134 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3135 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3136 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3137 }
3138 }
3139
3140 /*
3141 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3142 * are dx10-style? Can't really have mixed opcodes, at least not
3143 * if we want to skip the holes here (without rescanning tgsi).
3144 */
3145 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3146 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3147 for(i = 0; i < key->nr_sampler_views; ++i) {
3148 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
3149 lp_sampler_static_texture_state(&key->state[i].texture_state,
3150 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3151 }
3152 }
3153 }
3154 else {
3155 key->nr_sampler_views = key->nr_samplers;
3156 for(i = 0; i < key->nr_sampler_views; ++i) {
3157 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3158 lp_sampler_static_texture_state(&key->state[i].texture_state,
3159 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3160 }
3161 }
3162 }
3163 }
3164
3165
3166
3167 /**
3168 * Update fragment shader state. This is called just prior to drawing
3169 * something when some fragment-related state has changed.
3170 */
3171 void
3172 llvmpipe_update_fs(struct llvmpipe_context *lp)
3173 {
3174 struct lp_fragment_shader *shader = lp->fs;
3175 struct lp_fragment_shader_variant_key key;
3176 struct lp_fragment_shader_variant *variant = NULL;
3177 struct lp_fs_variant_list_item *li;
3178
3179 make_variant_key(lp, shader, &key);
3180
3181 /* Search the variants for one which matches the key */
3182 li = first_elem(&shader->variants);
3183 while(!at_end(&shader->variants, li)) {
3184 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3185 variant = li->base;
3186 break;
3187 }
3188 li = next_elem(li);
3189 }
3190
3191 if (variant) {
3192 /* Move this variant to the head of the list to implement LRU
3193 * deletion of shader's when we have too many.
3194 */
3195 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3196 }
3197 else {
3198 /* variant not found, create it now */
3199 int64_t t0, t1, dt;
3200 unsigned i;
3201 unsigned variants_to_cull;
3202
3203 if (0) {
3204 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3205 lp->nr_fs_variants,
3206 lp->nr_fs_instrs,
3207 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3208 }
3209
3210 /* First, check if we've exceeded the max number of shader variants.
3211 * If so, free 25% of them (the least recently used ones).
3212 */
3213 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
3214
3215 if (variants_to_cull ||
3216 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3217 struct pipe_context *pipe = &lp->pipe;
3218
3219 /*
3220 * XXX: we need to flush the context until we have some sort of
3221 * reference counting in fragment shaders as they may still be binned
3222 * Flushing alone might not be sufficient we need to wait on it too.
3223 */
3224 llvmpipe_finish(pipe, __FUNCTION__);
3225
3226 /*
3227 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3228 * number of shader variants (potentially all of them) could be
3229 * pending for destruction on flush.
3230 */
3231
3232 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3233 struct lp_fs_variant_list_item *item;
3234 if (is_empty_list(&lp->fs_variants_list)) {
3235 break;
3236 }
3237 item = last_elem(&lp->fs_variants_list);
3238 assert(item);
3239 assert(item->base);
3240 llvmpipe_remove_shader_variant(lp, item->base);
3241 }
3242 }
3243
3244 /*
3245 * Generate the new variant.
3246 */
3247 t0 = os_time_get();
3248 variant = generate_variant(lp, shader, &key);
3249 t1 = os_time_get();
3250 dt = t1 - t0;
3251 LP_COUNT_ADD(llvm_compile_time, dt);
3252 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3253
3254 /* Put the new variant into the list */
3255 if (variant) {
3256 insert_at_head(&shader->variants, &variant->list_item_local);
3257 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3258 lp->nr_fs_variants++;
3259 lp->nr_fs_instrs += variant->nr_instrs;
3260 shader->variants_cached++;
3261 }
3262 }
3263
3264 /* Bind this variant */
3265 lp_setup_set_fs_variant(lp->setup, variant);
3266 }
3267
3268
3269
3270
3271
3272 void
3273 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3274 {
3275 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3276 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3277 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3278
3279 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3280 }
3281
3282 /*
3283 * Rasterization is disabled if there is no pixel shader and
3284 * both depth and stencil testing are disabled:
3285 * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3286 */
3287 boolean
3288 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3289 {
3290 boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3291
3292 return (null_fs &&
3293 !lp->depth_stencil->depth.enabled &&
3294 !lp->depth_stencil->stencil[0].enabled);
3295 }