llvmpipe: add multisample bit to fragment shader key.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_nir.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87 #include "gallivm/lp_bld_arit.h"
88 #include "gallivm/lp_bld_bitarit.h"
89 #include "gallivm/lp_bld_pack.h"
90 #include "gallivm/lp_bld_format.h"
91 #include "gallivm/lp_bld_quad.h"
92
93 #include "lp_bld_alpha.h"
94 #include "lp_bld_blend.h"
95 #include "lp_bld_depth.h"
96 #include "lp_bld_interp.h"
97 #include "lp_context.h"
98 #include "lp_debug.h"
99 #include "lp_perf.h"
100 #include "lp_setup.h"
101 #include "lp_state.h"
102 #include "lp_tex_sample.h"
103 #include "lp_flush.h"
104 #include "lp_state_fs.h"
105 #include "lp_rast.h"
106 #include "nir/nir_to_tgsi_info.h"
107
108 /** Fragment shader number (for debugging) */
109 static unsigned fs_no = 0;
110
111
112 /**
113 * Expand the relevant bits of mask_input to a n*4-dword mask for the
114 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
115 * quad mask vector to 0 or ~0.
116 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
117 * quad arguments with fs length 8.
118 *
119 * \param first_quad which quad(s) of the quad group to test, in [0,3]
120 * \param mask_input bitwise mask for the whole 4x4 stamp
121 */
122 static LLVMValueRef
123 generate_quad_mask(struct gallivm_state *gallivm,
124 struct lp_type fs_type,
125 unsigned first_quad,
126 LLVMValueRef mask_input) /* int32 */
127 {
128 LLVMBuilderRef builder = gallivm->builder;
129 struct lp_type mask_type;
130 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
131 LLVMValueRef bits[16];
132 LLVMValueRef mask, bits_vec;
133 int shift, i;
134
135 /*
136 * XXX: We'll need a different path for 16 x u8
137 */
138 assert(fs_type.width == 32);
139 assert(fs_type.length <= ARRAY_SIZE(bits));
140 mask_type = lp_int_type(fs_type);
141
142 /*
143 * mask_input >>= (quad * 4)
144 */
145 switch (first_quad) {
146 case 0:
147 shift = 0;
148 break;
149 case 1:
150 assert(fs_type.length == 4);
151 shift = 2;
152 break;
153 case 2:
154 shift = 8;
155 break;
156 case 3:
157 assert(fs_type.length == 4);
158 shift = 10;
159 break;
160 default:
161 assert(0);
162 shift = 0;
163 }
164
165 mask_input = LLVMBuildLShr(builder,
166 mask_input,
167 LLVMConstInt(i32t, shift, 0),
168 "");
169
170 /*
171 * mask = { mask_input & (1 << i), for i in [0,3] }
172 */
173 mask = lp_build_broadcast(gallivm,
174 lp_build_vec_type(gallivm, mask_type),
175 mask_input);
176
177 for (i = 0; i < fs_type.length / 4; i++) {
178 unsigned j = 2 * (i % 2) + (i / 2) * 8;
179 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
180 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
181 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
182 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
183 }
184 bits_vec = LLVMConstVector(bits, fs_type.length);
185 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
186
187 /*
188 * mask = mask == bits ? ~0 : 0
189 */
190 mask = lp_build_compare(gallivm,
191 mask_type, PIPE_FUNC_EQUAL,
192 mask, bits_vec);
193
194 return mask;
195 }
196
197
198 #define EARLY_DEPTH_TEST 0x1
199 #define LATE_DEPTH_TEST 0x2
200 #define EARLY_DEPTH_WRITE 0x4
201 #define LATE_DEPTH_WRITE 0x8
202
203 static int
204 find_output_by_semantic( const struct tgsi_shader_info *info,
205 unsigned semantic,
206 unsigned index )
207 {
208 int i;
209
210 for (i = 0; i < info->num_outputs; i++)
211 if (info->output_semantic_name[i] == semantic &&
212 info->output_semantic_index[i] == index)
213 return i;
214
215 return -1;
216 }
217
218
219 /**
220 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
221 */
222 static LLVMValueRef
223 lp_llvm_viewport(LLVMValueRef context_ptr,
224 struct gallivm_state *gallivm,
225 LLVMValueRef viewport_index)
226 {
227 LLVMBuilderRef builder = gallivm->builder;
228 LLVMValueRef ptr;
229 LLVMValueRef res;
230 struct lp_type viewport_type =
231 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
232
233 ptr = lp_jit_context_viewports(gallivm, context_ptr);
234 ptr = LLVMBuildPointerCast(builder, ptr,
235 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
236
237 res = lp_build_pointer_get(builder, ptr, viewport_index);
238
239 return res;
240 }
241
242
243 static LLVMValueRef
244 lp_build_depth_clamp(struct gallivm_state *gallivm,
245 LLVMBuilderRef builder,
246 struct lp_type type,
247 LLVMValueRef context_ptr,
248 LLVMValueRef thread_data_ptr,
249 LLVMValueRef z)
250 {
251 LLVMValueRef viewport, min_depth, max_depth;
252 LLVMValueRef viewport_index;
253 struct lp_build_context f32_bld;
254
255 assert(type.floating);
256 lp_build_context_init(&f32_bld, gallivm, type);
257
258 /*
259 * Assumes clamping of the viewport index will occur in setup/gs. Value
260 * is passed through the rasterization stage via lp_rast_shader_inputs.
261 *
262 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
263 * semantics.
264 */
265 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
266 thread_data_ptr);
267
268 /*
269 * Load the min and max depth from the lp_jit_context.viewports
270 * array of lp_jit_viewport structures.
271 */
272 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
273
274 /* viewports[viewport_index].min_depth */
275 min_depth = LLVMBuildExtractElement(builder, viewport,
276 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
277 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
278
279 /* viewports[viewport_index].max_depth */
280 max_depth = LLVMBuildExtractElement(builder, viewport,
281 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
282 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
283
284 /*
285 * Clamp to the min and max depth values for the given viewport.
286 */
287 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
288 }
289
290
291 /**
292 * Generate the fragment shader, depth/stencil test, and alpha tests.
293 */
294 static void
295 generate_fs_loop(struct gallivm_state *gallivm,
296 struct lp_fragment_shader *shader,
297 const struct lp_fragment_shader_variant_key *key,
298 LLVMBuilderRef builder,
299 struct lp_type type,
300 LLVMValueRef context_ptr,
301 LLVMValueRef num_loop,
302 struct lp_build_interp_soa_context *interp,
303 const struct lp_build_sampler_soa *sampler,
304 const struct lp_build_image_soa *image,
305 LLVMValueRef mask_store,
306 LLVMValueRef (*out_color)[4],
307 LLVMValueRef depth_ptr,
308 LLVMValueRef depth_stride,
309 LLVMValueRef facing,
310 LLVMValueRef thread_data_ptr)
311 {
312 const struct util_format_description *zs_format_desc = NULL;
313 const struct tgsi_token *tokens = shader->base.tokens;
314 struct lp_type int_type = lp_int_type(type);
315 LLVMTypeRef vec_type, int_vec_type;
316 LLVMValueRef mask_ptr, mask_val;
317 LLVMValueRef consts_ptr, num_consts_ptr;
318 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
319 LLVMValueRef z;
320 LLVMValueRef z_value, s_value;
321 LLVMValueRef z_fb, s_fb;
322 LLVMValueRef stencil_refs[2];
323 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
324 struct lp_build_for_loop_state loop_state;
325 struct lp_build_mask_context mask;
326 /*
327 * TODO: figure out if simple_shader optimization is really worthwile to
328 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
329 * code since tests tend to take another codepath than real shaders.
330 */
331 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
332 shader->info.base.num_inputs < 3 &&
333 shader->info.base.num_instructions < 8) && 0;
334 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
335 util_blend_state_is_dual(&key->blend, 0);
336 unsigned attrib;
337 unsigned chan;
338 unsigned cbuf;
339 unsigned depth_mode;
340
341 struct lp_bld_tgsi_system_values system_values;
342
343 memset(&system_values, 0, sizeof(system_values));
344
345 /* truncate then sign extend. */
346 system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
347 system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
348
349 if (key->depth.enabled ||
350 key->stencil[0].enabled) {
351
352 zs_format_desc = util_format_description(key->zsbuf_format);
353 assert(zs_format_desc);
354
355 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
356 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
357 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
358 if (shader->info.base.writes_memory)
359 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
360 else if (key->alpha.enabled ||
361 key->blend.alpha_to_coverage ||
362 shader->info.base.uses_kill ||
363 shader->info.base.writes_samplemask) {
364 /* With alpha test and kill, can do the depth test early
365 * and hopefully eliminate some quads. But need to do a
366 * special deferred depth write once the final mask value
367 * is known. This only works though if there's either no
368 * stencil test or the stencil value isn't written.
369 */
370 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
371 (key->stencil[1].enabled &&
372 key->stencil[1].writemask)))
373 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
374 else
375 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
376 }
377 else
378 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
379 }
380 else {
381 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
382 }
383
384 if (!(key->depth.enabled && key->depth.writemask) &&
385 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
386 (key->stencil[1].enabled &&
387 key->stencil[1].writemask))))
388 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
389 }
390 else {
391 depth_mode = 0;
392 }
393
394 vec_type = lp_build_vec_type(gallivm, type);
395 int_vec_type = lp_build_vec_type(gallivm, int_type);
396
397 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
398 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
399 /* convert scalar stencil refs into vectors */
400 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
401 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
402
403 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
404 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
405
406 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
407 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
408
409 lp_build_for_loop_begin(&loop_state, gallivm,
410 lp_build_const_int32(gallivm, 0),
411 LLVMIntULT,
412 num_loop,
413 lp_build_const_int32(gallivm, 1));
414
415 mask_ptr = LLVMBuildGEP(builder, mask_store,
416 &loop_state.counter, 1, "mask_ptr");
417 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
418
419 memset(outputs, 0, sizeof outputs);
420
421 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
422 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
423 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
424 lp_build_vec_type(gallivm,
425 type),
426 num_loop, "color");
427 }
428 }
429 if (dual_source_blend) {
430 assert(key->nr_cbufs <= 1);
431 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
432 out_color[1][chan] = lp_build_array_alloca(gallivm,
433 lp_build_vec_type(gallivm,
434 type),
435 num_loop, "color1");
436 }
437 }
438
439
440 /* 'mask' will control execution based on quad's pixel alive/killed state */
441 lp_build_mask_begin(&mask, gallivm, type, mask_val);
442
443 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
444 lp_build_mask_check(&mask);
445
446 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
447 z = interp->pos[2];
448
449 if (depth_mode & EARLY_DEPTH_TEST) {
450 /*
451 * Clamp according to ARB_depth_clamp semantics.
452 */
453 if (key->depth_clamp) {
454 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
455 thread_data_ptr, z);
456 }
457 lp_build_depth_stencil_load_swizzled(gallivm, type,
458 zs_format_desc, key->resource_1d,
459 depth_ptr, depth_stride,
460 &z_fb, &s_fb, loop_state.counter);
461 lp_build_depth_stencil_test(gallivm,
462 &key->depth,
463 key->stencil,
464 type,
465 zs_format_desc,
466 &mask,
467 stencil_refs,
468 z, z_fb, s_fb,
469 facing,
470 &z_value, &s_value,
471 !simple_shader);
472
473 if (depth_mode & EARLY_DEPTH_WRITE) {
474 lp_build_depth_stencil_write_swizzled(gallivm, type,
475 zs_format_desc, key->resource_1d,
476 NULL, NULL, NULL, loop_state.counter,
477 depth_ptr, depth_stride,
478 z_value, s_value);
479 }
480 /*
481 * Note mask check if stencil is enabled must be after ds write not after
482 * stencil test otherwise new stencil values may not get written if all
483 * fragments got killed by depth/stencil test.
484 */
485 if (!simple_shader && key->stencil[0].enabled)
486 lp_build_mask_check(&mask);
487 }
488
489 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
490
491 struct lp_build_tgsi_params params;
492 memset(&params, 0, sizeof(params));
493
494 params.type = type;
495 params.mask = &mask;
496 params.consts_ptr = consts_ptr;
497 params.const_sizes_ptr = num_consts_ptr;
498 params.system_values = &system_values;
499 params.inputs = interp->inputs;
500 params.context_ptr = context_ptr;
501 params.thread_data_ptr = thread_data_ptr;
502 params.sampler = sampler;
503 params.info = &shader->info.base;
504 params.ssbo_ptr = ssbo_ptr;
505 params.ssbo_sizes_ptr = num_ssbo_ptr;
506 params.image = image;
507
508 /* Build the actual shader */
509 if (shader->base.type == PIPE_SHADER_IR_TGSI)
510 lp_build_tgsi_soa(gallivm, tokens, &params,
511 outputs);
512 else
513 lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
514 outputs);
515
516 /* Alpha test */
517 if (key->alpha.enabled) {
518 int color0 = find_output_by_semantic(&shader->info.base,
519 TGSI_SEMANTIC_COLOR,
520 0);
521
522 if (color0 != -1 && outputs[color0][3]) {
523 const struct util_format_description *cbuf_format_desc;
524 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
525 LLVMValueRef alpha_ref_value;
526
527 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
528 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
529
530 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
531
532 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
533 &mask, alpha, alpha_ref_value,
534 (depth_mode & LATE_DEPTH_TEST) != 0);
535 }
536 }
537
538 /* Emulate Alpha to Coverage with Alpha test */
539 if (key->blend.alpha_to_coverage) {
540 int color0 = find_output_by_semantic(&shader->info.base,
541 TGSI_SEMANTIC_COLOR,
542 0);
543
544 if (color0 != -1 && outputs[color0][3]) {
545 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
546
547 lp_build_alpha_to_coverage(gallivm, type,
548 &mask, alpha,
549 (depth_mode & LATE_DEPTH_TEST) != 0);
550 }
551 }
552
553 if (shader->info.base.writes_samplemask) {
554 int smaski = find_output_by_semantic(&shader->info.base,
555 TGSI_SEMANTIC_SAMPLEMASK,
556 0);
557 LLVMValueRef smask;
558 struct lp_build_context smask_bld;
559 lp_build_context_init(&smask_bld, gallivm, int_type);
560
561 assert(smaski >= 0);
562 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
563 /*
564 * Pixel is alive according to the first sample in the mask.
565 */
566 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
567 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
568 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
569 lp_build_mask_update(&mask, smask);
570 }
571
572 /* Late Z test */
573 if (depth_mode & LATE_DEPTH_TEST) {
574 int pos0 = find_output_by_semantic(&shader->info.base,
575 TGSI_SEMANTIC_POSITION,
576 0);
577 int s_out = find_output_by_semantic(&shader->info.base,
578 TGSI_SEMANTIC_STENCIL,
579 0);
580 if (pos0 != -1 && outputs[pos0][2]) {
581 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
582 }
583 /*
584 * Clamp according to ARB_depth_clamp semantics.
585 */
586 if (key->depth_clamp) {
587 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
588 thread_data_ptr, z);
589 }
590
591 if (s_out != -1 && outputs[s_out][1]) {
592 /* there's only one value, and spec says to discard additional bits */
593 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
594 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
595 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
596 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
597 stencil_refs[1] = stencil_refs[0];
598 }
599
600 lp_build_depth_stencil_load_swizzled(gallivm, type,
601 zs_format_desc, key->resource_1d,
602 depth_ptr, depth_stride,
603 &z_fb, &s_fb, loop_state.counter);
604
605 lp_build_depth_stencil_test(gallivm,
606 &key->depth,
607 key->stencil,
608 type,
609 zs_format_desc,
610 &mask,
611 stencil_refs,
612 z, z_fb, s_fb,
613 facing,
614 &z_value, &s_value,
615 !simple_shader);
616 /* Late Z write */
617 if (depth_mode & LATE_DEPTH_WRITE) {
618 lp_build_depth_stencil_write_swizzled(gallivm, type,
619 zs_format_desc, key->resource_1d,
620 NULL, NULL, NULL, loop_state.counter,
621 depth_ptr, depth_stride,
622 z_value, s_value);
623 }
624 }
625 else if ((depth_mode & EARLY_DEPTH_TEST) &&
626 (depth_mode & LATE_DEPTH_WRITE))
627 {
628 /* Need to apply a reduced mask to the depth write. Reload the
629 * depth value, update from zs_value with the new mask value and
630 * write that out.
631 */
632 lp_build_depth_stencil_write_swizzled(gallivm, type,
633 zs_format_desc, key->resource_1d,
634 &mask, z_fb, s_fb, loop_state.counter,
635 depth_ptr, depth_stride,
636 z_value, s_value);
637 }
638
639
640 /* Color write */
641 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
642 {
643 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
644 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
645 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
646 {
647 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
648 if(outputs[attrib][chan]) {
649 /* XXX: just initialize outputs to point at colors[] and
650 * skip this.
651 */
652 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
653 LLVMValueRef color_ptr;
654 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
655 &loop_state.counter, 1, "");
656 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
657 LLVMBuildStore(builder, out, color_ptr);
658 }
659 }
660 }
661 }
662
663 if (key->occlusion_count) {
664 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
665 lp_build_name(counter, "counter");
666 lp_build_occlusion_count(gallivm, type,
667 lp_build_mask_value(&mask), counter);
668 }
669
670 mask_val = lp_build_mask_end(&mask);
671 LLVMBuildStore(builder, mask_val, mask_ptr);
672 lp_build_for_loop_end(&loop_state);
673 }
674
675
676 /**
677 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
678 *
679 * Fragment Shader outputs pixels in small 2x2 blocks
680 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
681 *
682 * However in memory pixels are stored in rows
683 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
684 *
685 * @param type fragment shader type (4x or 8x float)
686 * @param num_fs number of fs_src
687 * @param is_1d whether we're outputting to a 1d resource
688 * @param dst_channels number of output channels
689 * @param fs_src output from fragment shader
690 * @param dst pointer to store result
691 * @param pad_inline is channel padding inline or at end of row
692 * @return the number of dsts
693 */
694 static int
695 generate_fs_twiddle(struct gallivm_state *gallivm,
696 struct lp_type type,
697 unsigned num_fs,
698 unsigned dst_channels,
699 LLVMValueRef fs_src[][4],
700 LLVMValueRef* dst,
701 bool pad_inline)
702 {
703 LLVMValueRef src[16];
704
705 bool swizzle_pad;
706 bool twiddle;
707 bool split;
708
709 unsigned pixels = type.length / 4;
710 unsigned reorder_group;
711 unsigned src_channels;
712 unsigned src_count;
713 unsigned i;
714
715 src_channels = dst_channels < 3 ? dst_channels : 4;
716 src_count = num_fs * src_channels;
717
718 assert(pixels == 2 || pixels == 1);
719 assert(num_fs * src_channels <= ARRAY_SIZE(src));
720
721 /*
722 * Transpose from SoA -> AoS
723 */
724 for (i = 0; i < num_fs; ++i) {
725 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
726 }
727
728 /*
729 * Pick transformation options
730 */
731 swizzle_pad = false;
732 twiddle = false;
733 split = false;
734 reorder_group = 0;
735
736 if (dst_channels == 1) {
737 twiddle = true;
738
739 if (pixels == 2) {
740 split = true;
741 }
742 } else if (dst_channels == 2) {
743 if (pixels == 1) {
744 reorder_group = 1;
745 }
746 } else if (dst_channels > 2) {
747 if (pixels == 1) {
748 reorder_group = 2;
749 } else {
750 twiddle = true;
751 }
752
753 if (!pad_inline && dst_channels == 3 && pixels > 1) {
754 swizzle_pad = true;
755 }
756 }
757
758 /*
759 * Split the src in half
760 */
761 if (split) {
762 for (i = num_fs; i > 0; --i) {
763 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
764 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
765 }
766
767 src_count *= 2;
768 type.length = 4;
769 }
770
771 /*
772 * Ensure pixels are in memory order
773 */
774 if (reorder_group) {
775 /* Twiddle pixels by reordering the array, e.g.:
776 *
777 * src_count = 8 -> 0 2 1 3 4 6 5 7
778 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
779 */
780 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
781
782 for (i = 0; i < src_count; ++i) {
783 unsigned group = i / reorder_group;
784 unsigned block = (group / 4) * 4 * reorder_group;
785 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
786 dst[i] = src[j];
787 }
788 } else if (twiddle) {
789 /* Twiddle pixels across elements of array */
790 /*
791 * XXX: we should avoid this in some cases, but would need to tell
792 * lp_build_conv to reorder (or deal with it ourselves).
793 */
794 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
795 } else {
796 /* Do nothing */
797 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
798 }
799
800 /*
801 * Moves any padding between pixels to the end
802 * e.g. RGBXRGBX -> RGBRGBXX
803 */
804 if (swizzle_pad) {
805 unsigned char swizzles[16];
806 unsigned elems = pixels * dst_channels;
807
808 for (i = 0; i < type.length; ++i) {
809 if (i < elems)
810 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
811 else
812 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
813 }
814
815 for (i = 0; i < src_count; ++i) {
816 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
817 }
818 }
819
820 return src_count;
821 }
822
823
824 /*
825 * Untwiddle and transpose, much like the above.
826 * However, this is after conversion, so we get packed vectors.
827 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
828 * the vectors will look like:
829 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
830 * be swizzled here). Extending to 16bit should be trivial.
831 * Should also be extended to handle twice wide vectors with AVX2...
832 */
833 static void
834 fs_twiddle_transpose(struct gallivm_state *gallivm,
835 struct lp_type type,
836 LLVMValueRef *src,
837 unsigned src_count,
838 LLVMValueRef *dst)
839 {
840 unsigned i, j;
841 struct lp_type type64, type16, type32;
842 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
843 LLVMBuilderRef builder = gallivm->builder;
844 LLVMValueRef tmp[4], shuf[8];
845 for (j = 0; j < 2; j++) {
846 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
847 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
848 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
849 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
850 }
851
852 assert(src_count == 4 || src_count == 2 || src_count == 1);
853 assert(type.width == 8);
854 assert(type.length == 16);
855
856 type8_t = lp_build_vec_type(gallivm, type);
857
858 type64 = type;
859 type64.length /= 8;
860 type64.width *= 8;
861 type64_t = lp_build_vec_type(gallivm, type64);
862
863 type16 = type;
864 type16.length /= 2;
865 type16.width *= 2;
866 type16_t = lp_build_vec_type(gallivm, type16);
867
868 type32 = type;
869 type32.length /= 4;
870 type32.width *= 4;
871 type32_t = lp_build_vec_type(gallivm, type32);
872
873 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
874
875 if (src_count == 1) {
876 /* transpose was no-op, just untwiddle */
877 LLVMValueRef shuf_vec;
878 shuf_vec = LLVMConstVector(shuf, 8);
879 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
880 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
881 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
882 } else if (src_count == 2) {
883 LLVMValueRef shuf_vec;
884 shuf_vec = LLVMConstVector(shuf, 4);
885
886 for (i = 0; i < 2; i++) {
887 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
888 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
889 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
890 }
891 } else {
892 for (j = 0; j < 2; j++) {
893 LLVMValueRef lo, hi, lo2, hi2;
894 /*
895 * Note that if we only really have 3 valid channels (rgb)
896 * and we don't need alpha we could substitute a undef here
897 * for the respective channel (causing llvm to drop conversion
898 * for alpha).
899 */
900 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
901 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
902 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
903 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
904 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
905 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
906 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
907 }
908 }
909 }
910
911
912 /**
913 * Load an unswizzled block of pixels from memory
914 */
915 static void
916 load_unswizzled_block(struct gallivm_state *gallivm,
917 LLVMValueRef base_ptr,
918 LLVMValueRef stride,
919 unsigned block_width,
920 unsigned block_height,
921 LLVMValueRef* dst,
922 struct lp_type dst_type,
923 unsigned dst_count,
924 unsigned dst_alignment)
925 {
926 LLVMBuilderRef builder = gallivm->builder;
927 unsigned row_size = dst_count / block_height;
928 unsigned i;
929
930 /* Ensure block exactly fits into dst */
931 assert((block_width * block_height) % dst_count == 0);
932
933 for (i = 0; i < dst_count; ++i) {
934 unsigned x = i % row_size;
935 unsigned y = i / row_size;
936
937 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
938 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
939
940 LLVMValueRef gep[2];
941 LLVMValueRef dst_ptr;
942
943 gep[0] = lp_build_const_int32(gallivm, 0);
944 gep[1] = LLVMBuildAdd(builder, bx, by, "");
945
946 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
947 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
948 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
949
950 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
951
952 LLVMSetAlignment(dst[i], dst_alignment);
953 }
954 }
955
956
957 /**
958 * Store an unswizzled block of pixels to memory
959 */
960 static void
961 store_unswizzled_block(struct gallivm_state *gallivm,
962 LLVMValueRef base_ptr,
963 LLVMValueRef stride,
964 unsigned block_width,
965 unsigned block_height,
966 LLVMValueRef* src,
967 struct lp_type src_type,
968 unsigned src_count,
969 unsigned src_alignment)
970 {
971 LLVMBuilderRef builder = gallivm->builder;
972 unsigned row_size = src_count / block_height;
973 unsigned i;
974
975 /* Ensure src exactly fits into block */
976 assert((block_width * block_height) % src_count == 0);
977
978 for (i = 0; i < src_count; ++i) {
979 unsigned x = i % row_size;
980 unsigned y = i / row_size;
981
982 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
983 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
984
985 LLVMValueRef gep[2];
986 LLVMValueRef src_ptr;
987
988 gep[0] = lp_build_const_int32(gallivm, 0);
989 gep[1] = LLVMBuildAdd(builder, bx, by, "");
990
991 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
992 src_ptr = LLVMBuildBitCast(builder, src_ptr,
993 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
994
995 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
996
997 LLVMSetAlignment(src_ptr, src_alignment);
998 }
999 }
1000
1001
1002 /**
1003 * Checks if a format description is an arithmetic format
1004 *
1005 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
1006 */
1007 static inline boolean
1008 is_arithmetic_format(const struct util_format_description *format_desc)
1009 {
1010 boolean arith = false;
1011 unsigned i;
1012
1013 for (i = 0; i < format_desc->nr_channels; ++i) {
1014 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1015 arith |= (format_desc->channel[i].size % 8) != 0;
1016 }
1017
1018 return arith;
1019 }
1020
1021
1022 /**
1023 * Checks if this format requires special handling due to required expansion
1024 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1025 * SoA conversion.
1026 */
1027 static inline boolean
1028 format_expands_to_float_soa(const struct util_format_description *format_desc)
1029 {
1030 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1031 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1032 return true;
1033 }
1034 return false;
1035 }
1036
1037
1038 /**
1039 * Retrieves the type representing the memory layout for a format
1040 *
1041 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1042 */
1043 static inline void
1044 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1045 struct lp_type* type)
1046 {
1047 unsigned i;
1048 unsigned chan;
1049
1050 if (format_expands_to_float_soa(format_desc)) {
1051 /* just make this a uint with width of block */
1052 type->floating = false;
1053 type->fixed = false;
1054 type->sign = false;
1055 type->norm = false;
1056 type->width = format_desc->block.bits;
1057 type->length = 1;
1058 return;
1059 }
1060
1061 for (i = 0; i < 4; i++)
1062 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1063 break;
1064 chan = i;
1065
1066 memset(type, 0, sizeof(struct lp_type));
1067 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1068 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1069 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1070 type->norm = format_desc->channel[chan].normalized;
1071
1072 if (is_arithmetic_format(format_desc)) {
1073 type->width = 0;
1074 type->length = 1;
1075
1076 for (i = 0; i < format_desc->nr_channels; ++i) {
1077 type->width += format_desc->channel[i].size;
1078 }
1079 } else {
1080 type->width = format_desc->channel[chan].size;
1081 type->length = format_desc->nr_channels;
1082 }
1083 }
1084
1085
1086 /**
1087 * Retrieves the type for a format which is usable in the blending code.
1088 *
1089 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1090 */
1091 static inline void
1092 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1093 struct lp_type* type)
1094 {
1095 unsigned i;
1096 unsigned chan;
1097
1098 if (format_expands_to_float_soa(format_desc)) {
1099 /* always use ordinary floats for blending */
1100 type->floating = true;
1101 type->fixed = false;
1102 type->sign = true;
1103 type->norm = false;
1104 type->width = 32;
1105 type->length = 4;
1106 return;
1107 }
1108
1109 for (i = 0; i < 4; i++)
1110 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1111 break;
1112 chan = i;
1113
1114 memset(type, 0, sizeof(struct lp_type));
1115 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1116 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1117 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1118 type->norm = format_desc->channel[chan].normalized;
1119 type->width = format_desc->channel[chan].size;
1120 type->length = format_desc->nr_channels;
1121
1122 for (i = 1; i < format_desc->nr_channels; ++i) {
1123 if (format_desc->channel[i].size > type->width)
1124 type->width = format_desc->channel[i].size;
1125 }
1126
1127 if (type->floating) {
1128 type->width = 32;
1129 } else {
1130 if (type->width <= 8) {
1131 type->width = 8;
1132 } else if (type->width <= 16) {
1133 type->width = 16;
1134 } else {
1135 type->width = 32;
1136 }
1137 }
1138
1139 if (is_arithmetic_format(format_desc) && type->length == 3) {
1140 type->length = 4;
1141 }
1142 }
1143
1144
1145 /**
1146 * Scale a normalized value from src_bits to dst_bits.
1147 *
1148 * The exact calculation is
1149 *
1150 * dst = iround(src * dst_mask / src_mask)
1151 *
1152 * or with integer rounding
1153 *
1154 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1155 *
1156 * where
1157 *
1158 * src_mask = (1 << src_bits) - 1
1159 * dst_mask = (1 << dst_bits) - 1
1160 *
1161 * but we try to avoid division and multiplication through shifts.
1162 */
1163 static inline LLVMValueRef
1164 scale_bits(struct gallivm_state *gallivm,
1165 int src_bits,
1166 int dst_bits,
1167 LLVMValueRef src,
1168 struct lp_type src_type)
1169 {
1170 LLVMBuilderRef builder = gallivm->builder;
1171 LLVMValueRef result = src;
1172
1173 if (dst_bits < src_bits) {
1174 int delta_bits = src_bits - dst_bits;
1175
1176 if (delta_bits <= dst_bits) {
1177 /*
1178 * Approximate the rescaling with a single shift.
1179 *
1180 * This gives the wrong rounding.
1181 */
1182
1183 result = LLVMBuildLShr(builder,
1184 src,
1185 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1186 "");
1187
1188 } else {
1189 /*
1190 * Try more accurate rescaling.
1191 */
1192
1193 /*
1194 * Drop the least significant bits to make space for the multiplication.
1195 *
1196 * XXX: A better approach would be to use a wider integer type as intermediate. But
1197 * this is enough to convert alpha from 16bits -> 2 when rendering to
1198 * PIPE_FORMAT_R10G10B10A2_UNORM.
1199 */
1200 result = LLVMBuildLShr(builder,
1201 src,
1202 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1203 "");
1204
1205
1206 result = LLVMBuildMul(builder,
1207 result,
1208 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1209 "");
1210
1211 /*
1212 * Add a rounding term before the division.
1213 *
1214 * TODO: Handle signed integers too.
1215 */
1216 if (!src_type.sign) {
1217 result = LLVMBuildAdd(builder,
1218 result,
1219 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1220 "");
1221 }
1222
1223 /*
1224 * Approximate the division by src_mask with a src_bits shift.
1225 *
1226 * Given the src has already been shifted by dst_bits, all we need
1227 * to do is to shift by the difference.
1228 */
1229
1230 result = LLVMBuildLShr(builder,
1231 result,
1232 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1233 "");
1234 }
1235
1236 } else if (dst_bits > src_bits) {
1237 /* Scale up bits */
1238 int db = dst_bits - src_bits;
1239
1240 /* Shift left by difference in bits */
1241 result = LLVMBuildShl(builder,
1242 src,
1243 lp_build_const_int_vec(gallivm, src_type, db),
1244 "");
1245
1246 if (db <= src_bits) {
1247 /* Enough bits in src to fill the remainder */
1248 LLVMValueRef lower = LLVMBuildLShr(builder,
1249 src,
1250 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1251 "");
1252
1253 result = LLVMBuildOr(builder, result, lower, "");
1254 } else if (db > src_bits) {
1255 /* Need to repeatedly copy src bits to fill remainder in dst */
1256 unsigned n;
1257
1258 for (n = src_bits; n < dst_bits; n *= 2) {
1259 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1260
1261 result = LLVMBuildOr(builder,
1262 result,
1263 LLVMBuildLShr(builder, result, shuv, ""),
1264 "");
1265 }
1266 }
1267 }
1268
1269 return result;
1270 }
1271
1272 /**
1273 * If RT is a smallfloat (needing denorms) format
1274 */
1275 static inline int
1276 have_smallfloat_format(struct lp_type dst_type,
1277 enum pipe_format format)
1278 {
1279 return ((dst_type.floating && dst_type.width != 32) ||
1280 /* due to format handling hacks this format doesn't have floating set
1281 * here (and actually has width set to 32 too) so special case this. */
1282 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1283 }
1284
1285
1286 /**
1287 * Convert from memory format to blending format
1288 *
1289 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1290 */
1291 static void
1292 convert_to_blend_type(struct gallivm_state *gallivm,
1293 unsigned block_size,
1294 const struct util_format_description *src_fmt,
1295 struct lp_type src_type,
1296 struct lp_type dst_type,
1297 LLVMValueRef* src, // and dst
1298 unsigned num_srcs)
1299 {
1300 LLVMValueRef *dst = src;
1301 LLVMBuilderRef builder = gallivm->builder;
1302 struct lp_type blend_type;
1303 struct lp_type mem_type;
1304 unsigned i, j;
1305 unsigned pixels = block_size / num_srcs;
1306 bool is_arith;
1307
1308 /*
1309 * full custom path for packed floats and srgb formats - none of the later
1310 * functions would do anything useful, and given the lp_type representation they
1311 * can't be fixed. Should really have some SoA blend path for these kind of
1312 * formats rather than hacking them in here.
1313 */
1314 if (format_expands_to_float_soa(src_fmt)) {
1315 LLVMValueRef tmpsrc[4];
1316 /*
1317 * This is pretty suboptimal for this case blending in SoA would be much
1318 * better, since conversion gets us SoA values so need to convert back.
1319 */
1320 assert(src_type.width == 32 || src_type.width == 16);
1321 assert(dst_type.floating);
1322 assert(dst_type.width == 32);
1323 assert(dst_type.length % 4 == 0);
1324 assert(num_srcs % 4 == 0);
1325
1326 if (src_type.width == 16) {
1327 /* expand 4x16bit values to 4x32bit */
1328 struct lp_type type32x4 = src_type;
1329 LLVMTypeRef ltype32x4;
1330 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1331 type32x4.width = 32;
1332 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1333 for (i = 0; i < num_fetch; i++) {
1334 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1335 }
1336 src_type.width = 32;
1337 }
1338 for (i = 0; i < 4; i++) {
1339 tmpsrc[i] = src[i];
1340 }
1341 for (i = 0; i < num_srcs / 4; i++) {
1342 LLVMValueRef tmpsoa[4];
1343 LLVMValueRef tmps = tmpsrc[i];
1344 if (dst_type.length == 8) {
1345 LLVMValueRef shuffles[8];
1346 unsigned j;
1347 /* fetch was 4 values but need 8-wide output values */
1348 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1349 /*
1350 * for 8-wide aos transpose would give us wrong order not matching
1351 * incoming converted fs values and mask. ARGH.
1352 */
1353 for (j = 0; j < 4; j++) {
1354 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1355 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1356 }
1357 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1358 LLVMConstVector(shuffles, 8), "");
1359 }
1360 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1361 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1362 }
1363 else {
1364 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1365 }
1366 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1367 }
1368 return;
1369 }
1370
1371 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1372 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1373
1374 /* Is the format arithmetic */
1375 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1376 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1377
1378 /* Pad if necessary */
1379 if (!is_arith && src_type.length < dst_type.length) {
1380 for (i = 0; i < num_srcs; ++i) {
1381 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1382 }
1383
1384 src_type.length = dst_type.length;
1385 }
1386
1387 /* Special case for half-floats */
1388 if (mem_type.width == 16 && mem_type.floating) {
1389 assert(blend_type.width == 32 && blend_type.floating);
1390 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1391 is_arith = false;
1392 }
1393
1394 if (!is_arith) {
1395 return;
1396 }
1397
1398 src_type.width = blend_type.width * blend_type.length;
1399 blend_type.length *= pixels;
1400 src_type.length *= pixels / (src_type.length / mem_type.length);
1401
1402 for (i = 0; i < num_srcs; ++i) {
1403 LLVMValueRef chans[4];
1404 LLVMValueRef res = NULL;
1405
1406 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1407
1408 for (j = 0; j < src_fmt->nr_channels; ++j) {
1409 unsigned mask = 0;
1410 unsigned sa = src_fmt->channel[j].shift;
1411 #if UTIL_ARCH_LITTLE_ENDIAN
1412 unsigned from_lsb = j;
1413 #else
1414 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1415 #endif
1416
1417 mask = (1 << src_fmt->channel[j].size) - 1;
1418
1419 /* Extract bits from source */
1420 chans[j] = LLVMBuildLShr(builder,
1421 dst[i],
1422 lp_build_const_int_vec(gallivm, src_type, sa),
1423 "");
1424
1425 chans[j] = LLVMBuildAnd(builder,
1426 chans[j],
1427 lp_build_const_int_vec(gallivm, src_type, mask),
1428 "");
1429
1430 /* Scale bits */
1431 if (src_type.norm) {
1432 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1433 blend_type.width, chans[j], src_type);
1434 }
1435
1436 /* Insert bits into correct position */
1437 chans[j] = LLVMBuildShl(builder,
1438 chans[j],
1439 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1440 "");
1441
1442 if (j == 0) {
1443 res = chans[j];
1444 } else {
1445 res = LLVMBuildOr(builder, res, chans[j], "");
1446 }
1447 }
1448
1449 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1450 }
1451 }
1452
1453
1454 /**
1455 * Convert from blending format to memory format
1456 *
1457 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1458 */
1459 static void
1460 convert_from_blend_type(struct gallivm_state *gallivm,
1461 unsigned block_size,
1462 const struct util_format_description *src_fmt,
1463 struct lp_type src_type,
1464 struct lp_type dst_type,
1465 LLVMValueRef* src, // and dst
1466 unsigned num_srcs)
1467 {
1468 LLVMValueRef* dst = src;
1469 unsigned i, j, k;
1470 struct lp_type mem_type;
1471 struct lp_type blend_type;
1472 LLVMBuilderRef builder = gallivm->builder;
1473 unsigned pixels = block_size / num_srcs;
1474 bool is_arith;
1475
1476 /*
1477 * full custom path for packed floats and srgb formats - none of the later
1478 * functions would do anything useful, and given the lp_type representation they
1479 * can't be fixed. Should really have some SoA blend path for these kind of
1480 * formats rather than hacking them in here.
1481 */
1482 if (format_expands_to_float_soa(src_fmt)) {
1483 /*
1484 * This is pretty suboptimal for this case blending in SoA would be much
1485 * better - we need to transpose the AoS values back to SoA values for
1486 * conversion/packing.
1487 */
1488 assert(src_type.floating);
1489 assert(src_type.width == 32);
1490 assert(src_type.length % 4 == 0);
1491 assert(dst_type.width == 32 || dst_type.width == 16);
1492
1493 for (i = 0; i < num_srcs / 4; i++) {
1494 LLVMValueRef tmpsoa[4], tmpdst;
1495 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1496 /* really really need SoA here */
1497
1498 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1499 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1500 }
1501 else {
1502 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1503 src_type, tmpsoa);
1504 }
1505
1506 if (src_type.length == 8) {
1507 LLVMValueRef tmpaos, shuffles[8];
1508 unsigned j;
1509 /*
1510 * for 8-wide aos transpose has given us wrong order not matching
1511 * output order. HMPF. Also need to split the output values manually.
1512 */
1513 for (j = 0; j < 4; j++) {
1514 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1515 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1516 }
1517 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1518 LLVMConstVector(shuffles, 8), "");
1519 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1520 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1521 }
1522 else {
1523 src[i] = tmpdst;
1524 }
1525 }
1526 if (dst_type.width == 16) {
1527 struct lp_type type16x8 = dst_type;
1528 struct lp_type type32x4 = dst_type;
1529 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1530 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1531 type16x8.length = 8;
1532 type32x4.width = 32;
1533 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1534 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1535 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1536 /* We could do vector truncation but it doesn't generate very good code */
1537 for (i = 0; i < num_fetch; i++) {
1538 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1539 src[i], lp_build_zero(gallivm, type32x4));
1540 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1541 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1542 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1543 }
1544 }
1545 return;
1546 }
1547
1548 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1549 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1550
1551 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1552
1553 /* Special case for half-floats */
1554 if (mem_type.width == 16 && mem_type.floating) {
1555 int length = dst_type.length;
1556 assert(blend_type.width == 32 && blend_type.floating);
1557
1558 dst_type.length = src_type.length;
1559
1560 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1561
1562 dst_type.length = length;
1563 is_arith = false;
1564 }
1565
1566 /* Remove any padding */
1567 if (!is_arith && (src_type.length % mem_type.length)) {
1568 src_type.length -= (src_type.length % mem_type.length);
1569
1570 for (i = 0; i < num_srcs; ++i) {
1571 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1572 }
1573 }
1574
1575 /* No bit arithmetic to do */
1576 if (!is_arith) {
1577 return;
1578 }
1579
1580 src_type.length = pixels;
1581 src_type.width = blend_type.length * blend_type.width;
1582 dst_type.length = pixels;
1583
1584 for (i = 0; i < num_srcs; ++i) {
1585 LLVMValueRef chans[4];
1586 LLVMValueRef res = NULL;
1587
1588 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1589
1590 for (j = 0; j < src_fmt->nr_channels; ++j) {
1591 unsigned mask = 0;
1592 unsigned sa = src_fmt->channel[j].shift;
1593 unsigned sz_a = src_fmt->channel[j].size;
1594 #if UTIL_ARCH_LITTLE_ENDIAN
1595 unsigned from_lsb = j;
1596 #else
1597 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1598 #endif
1599
1600 assert(blend_type.width > src_fmt->channel[j].size);
1601
1602 for (k = 0; k < blend_type.width; ++k) {
1603 mask |= 1 << k;
1604 }
1605
1606 /* Extract bits */
1607 chans[j] = LLVMBuildLShr(builder,
1608 dst[i],
1609 lp_build_const_int_vec(gallivm, src_type,
1610 from_lsb * blend_type.width),
1611 "");
1612
1613 chans[j] = LLVMBuildAnd(builder,
1614 chans[j],
1615 lp_build_const_int_vec(gallivm, src_type, mask),
1616 "");
1617
1618 /* Scale down bits */
1619 if (src_type.norm) {
1620 chans[j] = scale_bits(gallivm, blend_type.width,
1621 src_fmt->channel[j].size, chans[j], src_type);
1622 } else if (!src_type.floating && sz_a < blend_type.width) {
1623 LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
1624 LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
1625 chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
1626 }
1627
1628 /* Insert bits */
1629 chans[j] = LLVMBuildShl(builder,
1630 chans[j],
1631 lp_build_const_int_vec(gallivm, src_type, sa),
1632 "");
1633
1634 sa += src_fmt->channel[j].size;
1635
1636 if (j == 0) {
1637 res = chans[j];
1638 } else {
1639 res = LLVMBuildOr(builder, res, chans[j], "");
1640 }
1641 }
1642
1643 assert (dst_type.width != 24);
1644
1645 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1646 }
1647 }
1648
1649
1650 /**
1651 * Convert alpha to same blend type as src
1652 */
1653 static void
1654 convert_alpha(struct gallivm_state *gallivm,
1655 struct lp_type row_type,
1656 struct lp_type alpha_type,
1657 const unsigned block_size,
1658 const unsigned block_height,
1659 const unsigned src_count,
1660 const unsigned dst_channels,
1661 const bool pad_inline,
1662 LLVMValueRef* src_alpha)
1663 {
1664 LLVMBuilderRef builder = gallivm->builder;
1665 unsigned i, j;
1666 unsigned length = row_type.length;
1667 row_type.length = alpha_type.length;
1668
1669 /* Twiddle the alpha to match pixels */
1670 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1671
1672 /*
1673 * TODO this should use single lp_build_conv call for
1674 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1675 */
1676 for (i = 0; i < block_height; ++i) {
1677 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1678 }
1679
1680 alpha_type = row_type;
1681 row_type.length = length;
1682
1683 /* If only one channel we can only need the single alpha value per pixel */
1684 if (src_count == 1 && dst_channels == 1) {
1685
1686 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1687 } else {
1688 /* If there are more srcs than rows then we need to split alpha up */
1689 if (src_count > block_height) {
1690 for (i = src_count; i > 0; --i) {
1691 unsigned pixels = block_size / src_count;
1692 unsigned idx = i - 1;
1693
1694 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1695 (idx * pixels) % 4, pixels);
1696 }
1697 }
1698
1699 /* If there is a src for each pixel broadcast the alpha across whole row */
1700 if (src_count == block_size) {
1701 for (i = 0; i < src_count; ++i) {
1702 src_alpha[i] = lp_build_broadcast(gallivm,
1703 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1704 }
1705 } else {
1706 unsigned pixels = block_size / src_count;
1707 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1708 unsigned alpha_span = 1;
1709 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1710
1711 /* Check if we need 2 src_alphas for our shuffles */
1712 if (pixels > alpha_type.length) {
1713 alpha_span = 2;
1714 }
1715
1716 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1717 for (j = 0; j < row_type.length; ++j) {
1718 if (j < pixels * channels) {
1719 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1720 } else {
1721 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1722 }
1723 }
1724
1725 for (i = 0; i < src_count; ++i) {
1726 unsigned idx1 = i, idx2 = i;
1727
1728 if (alpha_span > 1){
1729 idx1 *= alpha_span;
1730 idx2 = idx1 + 1;
1731 }
1732
1733 src_alpha[i] = LLVMBuildShuffleVector(builder,
1734 src_alpha[idx1],
1735 src_alpha[idx2],
1736 LLVMConstVector(shuffles, row_type.length),
1737 "");
1738 }
1739 }
1740 }
1741 }
1742
1743
1744 /**
1745 * Generates the blend function for unswizzled colour buffers
1746 * Also generates the read & write from colour buffer
1747 */
1748 static void
1749 generate_unswizzled_blend(struct gallivm_state *gallivm,
1750 unsigned rt,
1751 struct lp_fragment_shader_variant *variant,
1752 enum pipe_format out_format,
1753 unsigned int num_fs,
1754 struct lp_type fs_type,
1755 LLVMValueRef* fs_mask,
1756 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1757 LLVMValueRef context_ptr,
1758 LLVMValueRef color_ptr,
1759 LLVMValueRef stride,
1760 unsigned partial_mask,
1761 boolean do_branch)
1762 {
1763 const unsigned alpha_channel = 3;
1764 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1765 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1766 const unsigned block_size = block_width * block_height;
1767 const unsigned lp_integer_vector_width = 128;
1768
1769 LLVMBuilderRef builder = gallivm->builder;
1770 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1771 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1772 LLVMValueRef src_alpha[4 * 4];
1773 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1774 LLVMValueRef src_mask[4 * 4];
1775 LLVMValueRef src[4 * 4];
1776 LLVMValueRef src1[4 * 4];
1777 LLVMValueRef dst[4 * 4];
1778 LLVMValueRef blend_color;
1779 LLVMValueRef blend_alpha;
1780 LLVMValueRef i32_zero;
1781 LLVMValueRef check_mask;
1782 LLVMValueRef undef_src_val;
1783
1784 struct lp_build_mask_context mask_ctx;
1785 struct lp_type mask_type;
1786 struct lp_type blend_type;
1787 struct lp_type row_type;
1788 struct lp_type dst_type;
1789 struct lp_type ls_type;
1790
1791 unsigned char swizzle[TGSI_NUM_CHANNELS];
1792 unsigned vector_width;
1793 unsigned src_channels = TGSI_NUM_CHANNELS;
1794 unsigned dst_channels;
1795 unsigned dst_count;
1796 unsigned src_count;
1797 unsigned i, j;
1798
1799 const struct util_format_description* out_format_desc = util_format_description(out_format);
1800
1801 unsigned dst_alignment;
1802
1803 bool pad_inline = is_arithmetic_format(out_format_desc);
1804 bool has_alpha = false;
1805 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1806 util_blend_state_is_dual(&variant->key.blend, 0);
1807
1808 const boolean is_1d = variant->key.resource_1d;
1809 boolean twiddle_after_convert = FALSE;
1810 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1811 LLVMValueRef fpstate = 0;
1812
1813 /* Get type from output format */
1814 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1815 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1816
1817 /*
1818 * Technically this code should go into lp_build_smallfloat_to_float
1819 * and lp_build_float_to_smallfloat but due to the
1820 * http://llvm.org/bugs/show_bug.cgi?id=6393
1821 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1822 * So the ordering is important here and there shouldn't be any
1823 * llvm ir instrunctions in this function before
1824 * this, otherwise half-float format conversions won't work
1825 * (again due to llvm bug #6393).
1826 */
1827 if (have_smallfloat_format(dst_type, out_format)) {
1828 /* We need to make sure that denorms are ok for half float
1829 conversions */
1830 fpstate = lp_build_fpstate_get(gallivm);
1831 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1832 }
1833
1834 mask_type = lp_int32_vec4_type();
1835 mask_type.length = fs_type.length;
1836
1837 for (i = num_fs; i < num_fullblock_fs; i++) {
1838 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1839 }
1840
1841 /* Do not bother executing code when mask is empty.. */
1842 if (do_branch) {
1843 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1844
1845 for (i = 0; i < num_fullblock_fs; ++i) {
1846 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1847 }
1848
1849 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1850 lp_build_mask_check(&mask_ctx);
1851 }
1852
1853 partial_mask |= !variant->opaque;
1854 i32_zero = lp_build_const_int32(gallivm, 0);
1855
1856 undef_src_val = lp_build_undef(gallivm, fs_type);
1857
1858 row_type.length = fs_type.length;
1859 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1860
1861 /* Compute correct swizzle and count channels */
1862 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1863 dst_channels = 0;
1864
1865 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1866 /* Ensure channel is used */
1867 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1868 continue;
1869 }
1870
1871 /* Ensure not already written to (happens in case with GL_ALPHA) */
1872 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1873 continue;
1874 }
1875
1876 /* Ensure we havn't already found all channels */
1877 if (dst_channels >= out_format_desc->nr_channels) {
1878 continue;
1879 }
1880
1881 swizzle[out_format_desc->swizzle[i]] = i;
1882 ++dst_channels;
1883
1884 if (i == alpha_channel) {
1885 has_alpha = true;
1886 }
1887 }
1888
1889 if (format_expands_to_float_soa(out_format_desc)) {
1890 /*
1891 * the code above can't work for layout_other
1892 * for srgb it would sort of work but we short-circuit swizzles, etc.
1893 * as that is done as part of unpack / pack.
1894 */
1895 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1896 has_alpha = true;
1897 swizzle[0] = 0;
1898 swizzle[1] = 1;
1899 swizzle[2] = 2;
1900 swizzle[3] = 3;
1901 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1902 }
1903
1904 /* If 3 channels then pad to include alpha for 4 element transpose */
1905 if (dst_channels == 3) {
1906 assert (!has_alpha);
1907 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1908 if (swizzle[i] > TGSI_NUM_CHANNELS)
1909 swizzle[i] = 3;
1910 }
1911 if (out_format_desc->nr_channels == 4) {
1912 dst_channels = 4;
1913 /*
1914 * We use alpha from the color conversion, not separate one.
1915 * We had to include it for transpose, hence it will get converted
1916 * too (albeit when doing transpose after conversion, that would
1917 * no longer be the case necessarily).
1918 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1919 * otherwise we really have padding, not alpha, included.)
1920 */
1921 has_alpha = true;
1922 }
1923 }
1924
1925 /*
1926 * Load shader output
1927 */
1928 for (i = 0; i < num_fullblock_fs; ++i) {
1929 /* Always load alpha for use in blending */
1930 LLVMValueRef alpha;
1931 if (i < num_fs) {
1932 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1933 }
1934 else {
1935 alpha = undef_src_val;
1936 }
1937
1938 /* Load each channel */
1939 for (j = 0; j < dst_channels; ++j) {
1940 assert(swizzle[j] < 4);
1941 if (i < num_fs) {
1942 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1943 }
1944 else {
1945 fs_src[i][j] = undef_src_val;
1946 }
1947 }
1948
1949 /* If 3 channels then pad to include alpha for 4 element transpose */
1950 /*
1951 * XXX If we include that here maybe could actually use it instead of
1952 * separate alpha for blending?
1953 * (Difficult though we actually convert pad channels, not alpha.)
1954 */
1955 if (dst_channels == 3 && !has_alpha) {
1956 fs_src[i][3] = alpha;
1957 }
1958
1959 /* We split the row_mask and row_alpha as we want 128bit interleave */
1960 if (fs_type.length == 8) {
1961 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1962 0, src_channels);
1963 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1964 src_channels, src_channels);
1965
1966 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1967 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1968 src_channels, src_channels);
1969 } else {
1970 src_mask[i] = fs_mask[i];
1971 src_alpha[i] = alpha;
1972 }
1973 }
1974 if (dual_source_blend) {
1975 /* same as above except different src/dst, skip masks and comments... */
1976 for (i = 0; i < num_fullblock_fs; ++i) {
1977 LLVMValueRef alpha;
1978 if (i < num_fs) {
1979 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1980 }
1981 else {
1982 alpha = undef_src_val;
1983 }
1984
1985 for (j = 0; j < dst_channels; ++j) {
1986 assert(swizzle[j] < 4);
1987 if (i < num_fs) {
1988 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1989 }
1990 else {
1991 fs_src1[i][j] = undef_src_val;
1992 }
1993 }
1994 if (dst_channels == 3 && !has_alpha) {
1995 fs_src1[i][3] = alpha;
1996 }
1997 if (fs_type.length == 8) {
1998 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1999 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2000 src_channels, src_channels);
2001 } else {
2002 src1_alpha[i] = alpha;
2003 }
2004 }
2005 }
2006
2007 if (util_format_is_pure_integer(out_format)) {
2008 /*
2009 * In this case fs_type was really ints or uints disguised as floats,
2010 * fix that up now.
2011 */
2012 fs_type.floating = 0;
2013 fs_type.sign = dst_type.sign;
2014 for (i = 0; i < num_fullblock_fs; ++i) {
2015 for (j = 0; j < dst_channels; ++j) {
2016 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2017 lp_build_vec_type(gallivm, fs_type), "");
2018 }
2019 if (dst_channels == 3 && !has_alpha) {
2020 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2021 lp_build_vec_type(gallivm, fs_type), "");
2022 }
2023 }
2024 }
2025
2026 /*
2027 * We actually should generally do conversion first (for non-1d cases)
2028 * when the blend format is 8 or 16 bits. The reason is obvious,
2029 * there's 2 or 4 times less vectors to deal with for the interleave...
2030 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2031 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2032 * unpack only with 128bit vectors).
2033 * Note: for 16bit sizes really need matching pack conversion code
2034 */
2035 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2036 twiddle_after_convert = TRUE;
2037 }
2038
2039 /*
2040 * Pixel twiddle from fragment shader order to memory order
2041 */
2042 if (!twiddle_after_convert) {
2043 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2044 dst_channels, fs_src, src, pad_inline);
2045 if (dual_source_blend) {
2046 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2047 fs_src1, src1, pad_inline);
2048 }
2049 } else {
2050 src_count = num_fullblock_fs * dst_channels;
2051 /*
2052 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2053 * (AVX) turn out the same later when untwiddling/transpose (albeit
2054 * for true AVX2 path untwiddle needs to be different).
2055 * For now just order by colors first (so we can use unpack later).
2056 */
2057 for (j = 0; j < num_fullblock_fs; j++) {
2058 for (i = 0; i < dst_channels; i++) {
2059 src[i*num_fullblock_fs + j] = fs_src[j][i];
2060 if (dual_source_blend) {
2061 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2062 }
2063 }
2064 }
2065 }
2066
2067 src_channels = dst_channels < 3 ? dst_channels : 4;
2068 if (src_count != num_fullblock_fs * src_channels) {
2069 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2070 row_type.length /= ds;
2071 fs_type.length = row_type.length;
2072 }
2073
2074 blend_type = row_type;
2075 mask_type.length = 4;
2076
2077 /* Convert src to row_type */
2078 if (dual_source_blend) {
2079 struct lp_type old_row_type = row_type;
2080 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2081 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2082 }
2083 else {
2084 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2085 }
2086
2087 /* If the rows are not an SSE vector, combine them to become SSE size! */
2088 if ((row_type.width * row_type.length) % 128) {
2089 unsigned bits = row_type.width * row_type.length;
2090 unsigned combined;
2091
2092 assert(src_count >= (vector_width / bits));
2093
2094 dst_count = src_count / (vector_width / bits);
2095
2096 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2097 if (dual_source_blend) {
2098 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2099 }
2100
2101 row_type.length *= combined;
2102 src_count /= combined;
2103
2104 bits = row_type.width * row_type.length;
2105 assert(bits == 128 || bits == 256);
2106 }
2107
2108 if (twiddle_after_convert) {
2109 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2110 if (dual_source_blend) {
2111 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2112 }
2113 }
2114
2115 /*
2116 * Blend Colour conversion
2117 */
2118 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2119 blend_color = LLVMBuildPointerCast(builder, blend_color,
2120 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2121 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2122 &i32_zero, 1, ""), "");
2123
2124 /* Convert */
2125 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2126
2127 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2128 /*
2129 * since blending is done with floats, there was no conversion.
2130 * However, the rules according to fixed point renderbuffers still
2131 * apply, that is we must clamp inputs to 0.0/1.0.
2132 * (This would apply to separate alpha conversion too but we currently
2133 * force has_alpha to be true.)
2134 * TODO: should skip this with "fake" blend, since post-blend conversion
2135 * will clamp anyway.
2136 * TODO: could also skip this if fragment color clamping is enabled. We
2137 * don't support it natively so it gets baked into the shader however, so
2138 * can't really tell here.
2139 */
2140 struct lp_build_context f32_bld;
2141 assert(row_type.floating);
2142 lp_build_context_init(&f32_bld, gallivm, row_type);
2143 for (i = 0; i < src_count; i++) {
2144 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2145 }
2146 if (dual_source_blend) {
2147 for (i = 0; i < src_count; i++) {
2148 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2149 }
2150 }
2151 /* probably can't be different than row_type but better safe than sorry... */
2152 lp_build_context_init(&f32_bld, gallivm, blend_type);
2153 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2154 }
2155
2156 /* Extract alpha */
2157 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2158
2159 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2160 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2161 if (pad_inline) {
2162 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2163 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2164 } else {
2165 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2166 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2167 }
2168
2169 /*
2170 * Mask conversion
2171 */
2172 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2173
2174 if (src_count < block_height) {
2175 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2176 } else if (src_count > block_height) {
2177 for (i = src_count; i > 0; --i) {
2178 unsigned pixels = block_size / src_count;
2179 unsigned idx = i - 1;
2180
2181 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2182 (idx * pixels) % 4, pixels);
2183 }
2184 }
2185
2186 assert(mask_type.width == 32);
2187
2188 for (i = 0; i < src_count; ++i) {
2189 unsigned pixels = block_size / src_count;
2190 unsigned pixel_width = row_type.width * dst_channels;
2191
2192 if (pixel_width == 24) {
2193 mask_type.width = 8;
2194 mask_type.length = vector_width / mask_type.width;
2195 } else {
2196 mask_type.length = pixels;
2197 mask_type.width = row_type.width * dst_channels;
2198
2199 /*
2200 * If mask_type width is smaller than 32bit, this doesn't quite
2201 * generate the most efficient code (could use some pack).
2202 */
2203 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2204 lp_build_int_vec_type(gallivm, mask_type), "");
2205
2206 mask_type.length *= dst_channels;
2207 mask_type.width /= dst_channels;
2208 }
2209
2210 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2211 lp_build_int_vec_type(gallivm, mask_type), "");
2212 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2213 }
2214
2215 /*
2216 * Alpha conversion
2217 */
2218 if (!has_alpha) {
2219 struct lp_type alpha_type = fs_type;
2220 alpha_type.length = 4;
2221 convert_alpha(gallivm, row_type, alpha_type,
2222 block_size, block_height,
2223 src_count, dst_channels,
2224 pad_inline, src_alpha);
2225 if (dual_source_blend) {
2226 convert_alpha(gallivm, row_type, alpha_type,
2227 block_size, block_height,
2228 src_count, dst_channels,
2229 pad_inline, src1_alpha);
2230 }
2231 }
2232
2233
2234 /*
2235 * Load dst from memory
2236 */
2237 if (src_count < block_height) {
2238 dst_count = block_height;
2239 } else {
2240 dst_count = src_count;
2241 }
2242
2243 dst_type.length *= block_size / dst_count;
2244
2245 if (format_expands_to_float_soa(out_format_desc)) {
2246 /*
2247 * we need multiple values at once for the conversion, so can as well
2248 * load them vectorized here too instead of concatenating later.
2249 * (Still need concatenation later for 8-wide vectors).
2250 */
2251 dst_count = block_height;
2252 dst_type.length = block_width;
2253 }
2254
2255 /*
2256 * Compute the alignment of the destination pointer in bytes
2257 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2258 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2259 * 1d tex but can't distinguish here) so need to stick with per-pixel
2260 * alignment in this case.
2261 */
2262 if (is_1d) {
2263 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2264 }
2265 else {
2266 dst_alignment = dst_type.length * dst_type.width / 8;
2267 }
2268 /* Force power-of-two alignment by extracting only the least-significant-bit */
2269 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2270 /*
2271 * Resource base and stride pointers are aligned to 16 bytes, so that's
2272 * the maximum alignment we can guarantee
2273 */
2274 dst_alignment = MIN2(16, dst_alignment);
2275
2276 ls_type = dst_type;
2277
2278 if (dst_count > src_count) {
2279 if ((dst_type.width == 8 || dst_type.width == 16) &&
2280 util_is_power_of_two_or_zero(dst_type.length) &&
2281 dst_type.length * dst_type.width < 128) {
2282 /*
2283 * Never try to load values as 4xi8 which we will then
2284 * concatenate to larger vectors. This gives llvm a real
2285 * headache (the problem is the type legalizer (?) will
2286 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2287 * then the shuffles to concatenate are more or less impossible
2288 * - llvm is easily capable of generating a sequence of 32
2289 * pextrb/pinsrb instructions for that. Albeit it appears to
2290 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2291 * width to avoid the trouble (16bit seems not as bad, llvm
2292 * probably recognizes the load+shuffle as only one shuffle
2293 * is necessary, but we can do just the same anyway).
2294 */
2295 ls_type.length = dst_type.length * dst_type.width / 32;
2296 ls_type.width = 32;
2297 }
2298 }
2299
2300 if (is_1d) {
2301 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2302 dst, ls_type, dst_count / 4, dst_alignment);
2303 for (i = dst_count / 4; i < dst_count; i++) {
2304 dst[i] = lp_build_undef(gallivm, ls_type);
2305 }
2306
2307 }
2308 else {
2309 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2310 dst, ls_type, dst_count, dst_alignment);
2311 }
2312
2313
2314 /*
2315 * Convert from dst/output format to src/blending format.
2316 *
2317 * This is necessary as we can only read 1 row from memory at a time,
2318 * so the minimum dst_count will ever be at this point is 4.
2319 *
2320 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2321 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2322 * on all 16 pixels in that single vector at once.
2323 */
2324 if (dst_count > src_count) {
2325 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2326 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2327 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2328 for (i = 0; i < dst_count; i++) {
2329 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2330 }
2331 }
2332
2333 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2334
2335 if (ls_type.length != dst_type.length) {
2336 struct lp_type tmp_type = dst_type;
2337 tmp_type.length = dst_type.length * 4 / src_count;
2338 for (i = 0; i < src_count; i++) {
2339 dst[i] = LLVMBuildBitCast(builder, dst[i],
2340 lp_build_vec_type(gallivm, tmp_type), "");
2341 }
2342 }
2343 }
2344
2345 /*
2346 * Blending
2347 */
2348 /* XXX this is broken for RGB8 formats -
2349 * they get expanded from 12 to 16 elements (to include alpha)
2350 * by convert_to_blend_type then reduced to 15 instead of 12
2351 * by convert_from_blend_type (a simple fix though breaks A8...).
2352 * R16G16B16 also crashes differently however something going wrong
2353 * inside llvm handling npot vector sizes seemingly.
2354 * It seems some cleanup could be done here (like skipping conversion/blend
2355 * when not needed).
2356 */
2357 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2358 row_type, dst, src_count);
2359
2360 /*
2361 * FIXME: Really should get logic ops / masks out of generic blend / row
2362 * format. Logic ops will definitely not work on the blend float format
2363 * used for SRGB here and I think OpenGL expects this to work as expected
2364 * (that is incoming values converted to srgb then logic op applied).
2365 */
2366 for (i = 0; i < src_count; ++i) {
2367 dst[i] = lp_build_blend_aos(gallivm,
2368 &variant->key.blend,
2369 out_format,
2370 row_type,
2371 rt,
2372 src[i],
2373 has_alpha ? NULL : src_alpha[i],
2374 src1[i],
2375 has_alpha ? NULL : src1_alpha[i],
2376 dst[i],
2377 partial_mask ? src_mask[i] : NULL,
2378 blend_color,
2379 has_alpha ? NULL : blend_alpha,
2380 swizzle,
2381 pad_inline ? 4 : dst_channels);
2382 }
2383
2384 convert_from_blend_type(gallivm, block_size, out_format_desc,
2385 row_type, dst_type, dst, src_count);
2386
2387 /* Split the blend rows back to memory rows */
2388 if (dst_count > src_count) {
2389 row_type.length = dst_type.length * (dst_count / src_count);
2390
2391 if (src_count == 1) {
2392 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2393 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2394
2395 row_type.length /= 2;
2396 src_count *= 2;
2397 }
2398
2399 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2400 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2401 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2402 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2403
2404 row_type.length /= 2;
2405 src_count *= 2;
2406 }
2407
2408 /*
2409 * Store blend result to memory
2410 */
2411 if (is_1d) {
2412 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2413 dst, dst_type, dst_count / 4, dst_alignment);
2414 }
2415 else {
2416 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2417 dst, dst_type, dst_count, dst_alignment);
2418 }
2419
2420 if (have_smallfloat_format(dst_type, out_format)) {
2421 lp_build_fpstate_set(gallivm, fpstate);
2422 }
2423
2424 if (do_branch) {
2425 lp_build_mask_end(&mask_ctx);
2426 }
2427 }
2428
2429
2430 /**
2431 * Generate the runtime callable function for the whole fragment pipeline.
2432 * Note that the function which we generate operates on a block of 16
2433 * pixels at at time. The block contains 2x2 quads. Each quad contains
2434 * 2x2 pixels.
2435 */
2436 static void
2437 generate_fragment(struct llvmpipe_context *lp,
2438 struct lp_fragment_shader *shader,
2439 struct lp_fragment_shader_variant *variant,
2440 unsigned partial_mask)
2441 {
2442 struct gallivm_state *gallivm = variant->gallivm;
2443 struct lp_fragment_shader_variant_key *key = &variant->key;
2444 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2445 char func_name[64];
2446 struct lp_type fs_type;
2447 struct lp_type blend_type;
2448 LLVMTypeRef fs_elem_type;
2449 LLVMTypeRef blend_vec_type;
2450 LLVMTypeRef arg_types[15];
2451 LLVMTypeRef func_type;
2452 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2453 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2454 LLVMValueRef context_ptr;
2455 LLVMValueRef x;
2456 LLVMValueRef y;
2457 LLVMValueRef a0_ptr;
2458 LLVMValueRef dadx_ptr;
2459 LLVMValueRef dady_ptr;
2460 LLVMValueRef color_ptr_ptr;
2461 LLVMValueRef stride_ptr;
2462 LLVMValueRef color_sample_stride_ptr;
2463 LLVMValueRef depth_ptr;
2464 LLVMValueRef depth_stride;
2465 LLVMValueRef depth_sample_stride;
2466 LLVMValueRef mask_input;
2467 LLVMValueRef thread_data_ptr;
2468 LLVMBasicBlockRef block;
2469 LLVMBuilderRef builder;
2470 struct lp_build_sampler_soa *sampler;
2471 struct lp_build_image_soa *image;
2472 struct lp_build_interp_soa_context interp;
2473 LLVMValueRef fs_mask[16 / 4];
2474 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2475 LLVMValueRef function;
2476 LLVMValueRef facing;
2477 unsigned num_fs;
2478 unsigned i;
2479 unsigned chan;
2480 unsigned cbuf;
2481 boolean cbuf0_write_all;
2482 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2483 util_blend_state_is_dual(&key->blend, 0);
2484
2485 assert(lp_native_vector_width / 32 >= 4);
2486
2487 /* Adjust color input interpolation according to flatshade state:
2488 */
2489 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2490 for (i = 0; i < shader->info.base.num_inputs; i++) {
2491 if (inputs[i].interp == LP_INTERP_COLOR) {
2492 if (key->flatshade)
2493 inputs[i].interp = LP_INTERP_CONSTANT;
2494 else
2495 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2496 }
2497 }
2498
2499 /* check if writes to cbuf[0] are to be copied to all cbufs */
2500 cbuf0_write_all =
2501 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2502
2503 /* TODO: actually pick these based on the fs and color buffer
2504 * characteristics. */
2505
2506 memset(&fs_type, 0, sizeof fs_type);
2507 fs_type.floating = TRUE; /* floating point values */
2508 fs_type.sign = TRUE; /* values are signed */
2509 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2510 fs_type.width = 32; /* 32-bit float */
2511 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2512
2513 memset(&blend_type, 0, sizeof blend_type);
2514 blend_type.floating = FALSE; /* values are integers */
2515 blend_type.sign = FALSE; /* values are unsigned */
2516 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2517 blend_type.width = 8; /* 8-bit ubyte values */
2518 blend_type.length = 16; /* 16 elements per vector */
2519
2520 /*
2521 * Generate the function prototype. Any change here must be reflected in
2522 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2523 */
2524
2525 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2526
2527 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2528
2529 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2530 shader->no, variant->no, partial_mask ? "partial" : "whole");
2531
2532 arg_types[0] = variant->jit_context_ptr_type; /* context */
2533 arg_types[1] = int32_type; /* x */
2534 arg_types[2] = int32_type; /* y */
2535 arg_types[3] = int32_type; /* facing */
2536 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2537 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2538 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2539 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2540 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2541 arg_types[9] = int32_type; /* mask_input */
2542 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2543 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2544 arg_types[12] = int32_type; /* depth_stride */
2545 arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */
2546 arg_types[14] = int32_type; /* depth sample stride */
2547
2548 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2549 arg_types, ARRAY_SIZE(arg_types), 0);
2550
2551 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2552 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2553
2554 variant->function[partial_mask] = function;
2555
2556 /* XXX: need to propagate noalias down into color param now we are
2557 * passing a pointer-to-pointer?
2558 */
2559 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2560 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2561 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2562
2563 context_ptr = LLVMGetParam(function, 0);
2564 x = LLVMGetParam(function, 1);
2565 y = LLVMGetParam(function, 2);
2566 facing = LLVMGetParam(function, 3);
2567 a0_ptr = LLVMGetParam(function, 4);
2568 dadx_ptr = LLVMGetParam(function, 5);
2569 dady_ptr = LLVMGetParam(function, 6);
2570 color_ptr_ptr = LLVMGetParam(function, 7);
2571 depth_ptr = LLVMGetParam(function, 8);
2572 mask_input = LLVMGetParam(function, 9);
2573 thread_data_ptr = LLVMGetParam(function, 10);
2574 stride_ptr = LLVMGetParam(function, 11);
2575 depth_stride = LLVMGetParam(function, 12);
2576 color_sample_stride_ptr = LLVMGetParam(function, 13);
2577 depth_sample_stride = LLVMGetParam(function, 14);
2578
2579 lp_build_name(context_ptr, "context");
2580 lp_build_name(x, "x");
2581 lp_build_name(y, "y");
2582 lp_build_name(a0_ptr, "a0");
2583 lp_build_name(dadx_ptr, "dadx");
2584 lp_build_name(dady_ptr, "dady");
2585 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2586 lp_build_name(depth_ptr, "depth");
2587 lp_build_name(mask_input, "mask_input");
2588 lp_build_name(thread_data_ptr, "thread_data");
2589 lp_build_name(stride_ptr, "stride_ptr");
2590 lp_build_name(depth_stride, "depth_stride");
2591 lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
2592 lp_build_name(depth_sample_stride, "depth_sample_stride");
2593
2594 /*
2595 * Function body
2596 */
2597
2598 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2599 builder = gallivm->builder;
2600 assert(builder);
2601 LLVMPositionBuilderAtEnd(builder, block);
2602
2603 /*
2604 * Must not count ps invocations if there's a null shader.
2605 * (It would be ok to count with null shader if there's d/s tests,
2606 * but only if there's d/s buffers too, which is different
2607 * to implicit rasterization disable which must not depend
2608 * on the d/s buffers.)
2609 * Could use popcount on mask, but pixel accuracy is not required.
2610 * Could disable if there's no stats query, but maybe not worth it.
2611 */
2612 if (shader->info.base.num_instructions > 1) {
2613 LLVMValueRef invocs, val;
2614 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2615 val = LLVMBuildLoad(builder, invocs, "");
2616 val = LLVMBuildAdd(builder, val,
2617 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2618 "invoc_count");
2619 LLVMBuildStore(builder, val, invocs);
2620 }
2621
2622 /* code generated texture sampling */
2623 sampler = lp_llvm_sampler_soa_create(key->samplers);
2624 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2625
2626 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2627 /* for 1d resources only run "upper half" of stamp */
2628 if (key->resource_1d)
2629 num_fs /= 2;
2630
2631 {
2632 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2633 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2634 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2635 num_loop, "mask_store");
2636 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2637 boolean pixel_center_integer =
2638 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2639
2640 /*
2641 * The shader input interpolation info is not explicitely baked in the
2642 * shader key, but everything it derives from (TGSI, and flatshade) is
2643 * already included in the shader key.
2644 */
2645 lp_build_interp_soa_init(&interp,
2646 gallivm,
2647 shader->info.base.num_inputs,
2648 inputs,
2649 pixel_center_integer,
2650 key->depth_clamp,
2651 builder, fs_type,
2652 a0_ptr, dadx_ptr, dady_ptr,
2653 x, y);
2654
2655 for (i = 0; i < num_fs; i++) {
2656 LLVMValueRef mask;
2657 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2658 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2659 &indexi, 1, "mask_ptr");
2660
2661 if (partial_mask) {
2662 mask = generate_quad_mask(gallivm, fs_type,
2663 i*fs_type.length/4, mask_input);
2664 }
2665 else {
2666 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2667 }
2668 LLVMBuildStore(builder, mask, mask_ptr);
2669 }
2670
2671 generate_fs_loop(gallivm,
2672 shader, key,
2673 builder,
2674 fs_type,
2675 context_ptr,
2676 num_loop,
2677 &interp,
2678 sampler,
2679 image,
2680 mask_store, /* output */
2681 color_store,
2682 depth_ptr,
2683 depth_stride,
2684 facing,
2685 thread_data_ptr);
2686
2687 for (i = 0; i < num_fs; i++) {
2688 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2689 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2690 &indexi, 1, "");
2691 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2692 /* This is fucked up need to reorganize things */
2693 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2694 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2695 ptr = LLVMBuildGEP(builder,
2696 color_store[cbuf * !cbuf0_write_all][chan],
2697 &indexi, 1, "");
2698 fs_out_color[cbuf][chan][i] = ptr;
2699 }
2700 }
2701 if (dual_source_blend) {
2702 /* only support one dual source blend target hence always use output 1 */
2703 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2704 ptr = LLVMBuildGEP(builder,
2705 color_store[1][chan],
2706 &indexi, 1, "");
2707 fs_out_color[1][chan][i] = ptr;
2708 }
2709 }
2710 }
2711 }
2712
2713 sampler->destroy(sampler);
2714 image->destroy(image);
2715 /* Loop over color outputs / color buffers to do blending.
2716 */
2717 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2718 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2719 LLVMValueRef color_ptr;
2720 LLVMValueRef stride;
2721 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2722
2723 boolean do_branch = ((key->depth.enabled
2724 || key->stencil[0].enabled
2725 || key->alpha.enabled)
2726 && !shader->info.base.uses_kill);
2727
2728 color_ptr = LLVMBuildLoad(builder,
2729 LLVMBuildGEP(builder, color_ptr_ptr,
2730 &index, 1, ""),
2731 "");
2732
2733 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2734
2735 stride = LLVMBuildLoad(builder,
2736 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2737 "");
2738
2739 generate_unswizzled_blend(gallivm, cbuf, variant,
2740 key->cbuf_format[cbuf],
2741 num_fs, fs_type, fs_mask, fs_out_color,
2742 context_ptr, color_ptr, stride,
2743 partial_mask, do_branch);
2744 }
2745 }
2746
2747 LLVMBuildRetVoid(builder);
2748
2749 gallivm_verify_function(gallivm, function);
2750 }
2751
2752
2753 static void
2754 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
2755 {
2756 unsigned i;
2757
2758 debug_printf("fs variant %p:\n", (void *) key);
2759
2760 if (key->flatshade) {
2761 debug_printf("flatshade = 1\n");
2762 }
2763 if (key->multisample) {
2764 debug_printf("multisample = 1\n");
2765 }
2766 for (i = 0; i < key->nr_cbufs; ++i) {
2767 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2768 }
2769 if (key->depth.enabled || key->stencil[0].enabled) {
2770 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2771 }
2772 if (key->depth.enabled) {
2773 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2774 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2775 }
2776
2777 for (i = 0; i < 2; ++i) {
2778 if (key->stencil[i].enabled) {
2779 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2780 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2781 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2782 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2783 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2784 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2785 }
2786 }
2787
2788 if (key->alpha.enabled) {
2789 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2790 }
2791
2792 if (key->occlusion_count) {
2793 debug_printf("occlusion_count = 1\n");
2794 }
2795
2796 if (key->blend.logicop_enable) {
2797 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2798 }
2799 else if (key->blend.rt[0].blend_enable) {
2800 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2801 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2802 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2803 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2804 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2805 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2806 }
2807 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2808 if (key->blend.alpha_to_coverage) {
2809 debug_printf("blend.alpha_to_coverage is enabled\n");
2810 }
2811 for (i = 0; i < key->nr_samplers; ++i) {
2812 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
2813 debug_printf("sampler[%u] = \n", i);
2814 debug_printf(" .wrap = %s %s %s\n",
2815 util_str_tex_wrap(sampler->wrap_s, TRUE),
2816 util_str_tex_wrap(sampler->wrap_t, TRUE),
2817 util_str_tex_wrap(sampler->wrap_r, TRUE));
2818 debug_printf(" .min_img_filter = %s\n",
2819 util_str_tex_filter(sampler->min_img_filter, TRUE));
2820 debug_printf(" .min_mip_filter = %s\n",
2821 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2822 debug_printf(" .mag_img_filter = %s\n",
2823 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2824 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2825 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2826 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2827 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2828 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2829 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2830 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2831 }
2832 for (i = 0; i < key->nr_sampler_views; ++i) {
2833 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
2834 debug_printf("texture[%u] = \n", i);
2835 debug_printf(" .format = %s\n",
2836 util_format_name(texture->format));
2837 debug_printf(" .target = %s\n",
2838 util_str_tex_target(texture->target, TRUE));
2839 debug_printf(" .level_zero_only = %u\n",
2840 texture->level_zero_only);
2841 debug_printf(" .pot = %u %u %u\n",
2842 texture->pot_width,
2843 texture->pot_height,
2844 texture->pot_depth);
2845 }
2846 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
2847 for (i = 0; i < key->nr_images; ++i) {
2848 const struct lp_static_texture_state *image = &images[i].image_state;
2849 debug_printf("image[%u] = \n", i);
2850 debug_printf(" .format = %s\n",
2851 util_format_name(image->format));
2852 debug_printf(" .target = %s\n",
2853 util_str_tex_target(image->target, TRUE));
2854 debug_printf(" .level_zero_only = %u\n",
2855 image->level_zero_only);
2856 debug_printf(" .pot = %u %u %u\n",
2857 image->pot_width,
2858 image->pot_height,
2859 image->pot_depth);
2860 }
2861 }
2862
2863
2864 void
2865 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
2866 {
2867 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2868 variant->shader->no, variant->no);
2869 if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
2870 tgsi_dump(variant->shader->base.tokens, 0);
2871 else
2872 nir_print_shader(variant->shader->base.ir.nir, stderr);
2873 dump_fs_variant_key(&variant->key);
2874 debug_printf("variant->opaque = %u\n", variant->opaque);
2875 debug_printf("\n");
2876 }
2877
2878
2879 /**
2880 * Generate a new fragment shader variant from the shader code and
2881 * other state indicated by the key.
2882 */
2883 static struct lp_fragment_shader_variant *
2884 generate_variant(struct llvmpipe_context *lp,
2885 struct lp_fragment_shader *shader,
2886 const struct lp_fragment_shader_variant_key *key)
2887 {
2888 struct lp_fragment_shader_variant *variant;
2889 const struct util_format_description *cbuf0_format_desc = NULL;
2890 boolean fullcolormask;
2891 char module_name[64];
2892
2893 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
2894 if (!variant)
2895 return NULL;
2896
2897 memset(variant, 0, sizeof(*variant));
2898 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2899 shader->no, shader->variants_created);
2900
2901 variant->gallivm = gallivm_create(module_name, lp->context);
2902 if (!variant->gallivm) {
2903 FREE(variant);
2904 return NULL;
2905 }
2906
2907 variant->shader = shader;
2908 variant->list_item_global.base = variant;
2909 variant->list_item_local.base = variant;
2910 variant->no = shader->variants_created++;
2911
2912 memcpy(&variant->key, key, shader->variant_key_size);
2913
2914 /*
2915 * Determine whether we are touching all channels in the color buffer.
2916 */
2917 fullcolormask = FALSE;
2918 if (key->nr_cbufs == 1) {
2919 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2920 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2921 }
2922
2923 variant->opaque =
2924 !key->blend.logicop_enable &&
2925 !key->blend.rt[0].blend_enable &&
2926 fullcolormask &&
2927 !key->stencil[0].enabled &&
2928 !key->alpha.enabled &&
2929 !key->blend.alpha_to_coverage &&
2930 !key->depth.enabled &&
2931 !shader->info.base.uses_kill &&
2932 !shader->info.base.writes_samplemask
2933 ? TRUE : FALSE;
2934
2935 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2936 lp_debug_fs_variant(variant);
2937 }
2938
2939 lp_jit_init_types(variant);
2940
2941 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2942 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2943
2944 if (variant->jit_function[RAST_WHOLE] == NULL) {
2945 if (variant->opaque) {
2946 /* Specialized shader, which doesn't need to read the color buffer. */
2947 generate_fragment(lp, shader, variant, RAST_WHOLE);
2948 }
2949 }
2950
2951 /*
2952 * Compile everything
2953 */
2954
2955 gallivm_compile_module(variant->gallivm);
2956
2957 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2958
2959 if (variant->function[RAST_EDGE_TEST]) {
2960 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2961 gallivm_jit_function(variant->gallivm,
2962 variant->function[RAST_EDGE_TEST]);
2963 }
2964
2965 if (variant->function[RAST_WHOLE]) {
2966 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2967 gallivm_jit_function(variant->gallivm,
2968 variant->function[RAST_WHOLE]);
2969 } else if (!variant->jit_function[RAST_WHOLE]) {
2970 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2971 }
2972
2973 gallivm_free_ir(variant->gallivm);
2974
2975 return variant;
2976 }
2977
2978
2979 static void *
2980 llvmpipe_create_fs_state(struct pipe_context *pipe,
2981 const struct pipe_shader_state *templ)
2982 {
2983 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2984 struct lp_fragment_shader *shader;
2985 int nr_samplers;
2986 int nr_sampler_views;
2987 int nr_images;
2988 int i;
2989
2990 shader = CALLOC_STRUCT(lp_fragment_shader);
2991 if (!shader)
2992 return NULL;
2993
2994 shader->no = fs_no++;
2995 make_empty_list(&shader->variants);
2996
2997 shader->base.type = templ->type;
2998 if (templ->type == PIPE_SHADER_IR_TGSI) {
2999 /* get/save the summary info for this shader */
3000 lp_build_tgsi_info(templ->tokens, &shader->info);
3001
3002 /* we need to keep a local copy of the tokens */
3003 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3004 } else {
3005 shader->base.ir.nir = templ->ir.nir;
3006 nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3007 }
3008
3009 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3010 if (shader->draw_data == NULL) {
3011 FREE((void *) shader->base.tokens);
3012 FREE(shader);
3013 return NULL;
3014 }
3015
3016 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3017 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3018 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3019 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3020
3021 for (i = 0; i < shader->info.base.num_inputs; i++) {
3022 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3023 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
3024
3025 switch (shader->info.base.input_interpolate[i]) {
3026 case TGSI_INTERPOLATE_CONSTANT:
3027 shader->inputs[i].interp = LP_INTERP_CONSTANT;
3028 break;
3029 case TGSI_INTERPOLATE_LINEAR:
3030 shader->inputs[i].interp = LP_INTERP_LINEAR;
3031 break;
3032 case TGSI_INTERPOLATE_PERSPECTIVE:
3033 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3034 break;
3035 case TGSI_INTERPOLATE_COLOR:
3036 shader->inputs[i].interp = LP_INTERP_COLOR;
3037 break;
3038 default:
3039 assert(0);
3040 break;
3041 }
3042
3043 switch (shader->info.base.input_semantic_name[i]) {
3044 case TGSI_SEMANTIC_FACE:
3045 shader->inputs[i].interp = LP_INTERP_FACING;
3046 break;
3047 case TGSI_SEMANTIC_POSITION:
3048 /* Position was already emitted above
3049 */
3050 shader->inputs[i].interp = LP_INTERP_POSITION;
3051 shader->inputs[i].src_index = 0;
3052 continue;
3053 }
3054
3055 /* XXX this is a completely pointless index map... */
3056 shader->inputs[i].src_index = i+1;
3057 }
3058
3059 if (LP_DEBUG & DEBUG_TGSI) {
3060 unsigned attrib;
3061 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3062 shader->no, (void *) shader);
3063 tgsi_dump(templ->tokens, 0);
3064 debug_printf("usage masks:\n");
3065 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3066 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3067 debug_printf(" IN[%u].%s%s%s%s\n",
3068 attrib,
3069 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3070 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3071 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3072 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3073 }
3074 debug_printf("\n");
3075 }
3076
3077 return shader;
3078 }
3079
3080
3081 static void
3082 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3083 {
3084 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3085 struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3086 if (llvmpipe->fs == lp_fs)
3087 return;
3088
3089 draw_bind_fragment_shader(llvmpipe->draw,
3090 (lp_fs ? lp_fs->draw_data : NULL));
3091
3092 llvmpipe->fs = lp_fs;
3093
3094 llvmpipe->dirty |= LP_NEW_FS;
3095 }
3096
3097
3098 /**
3099 * Remove shader variant from two lists: the shader's variant list
3100 * and the context's variant list.
3101 */
3102 static void
3103 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3104 struct lp_fragment_shader_variant *variant)
3105 {
3106 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3107 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3108 "v total cached %u inst %u total inst %u\n",
3109 variant->shader->no, variant->no,
3110 variant->shader->variants_created,
3111 variant->shader->variants_cached,
3112 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3113 }
3114
3115 gallivm_destroy(variant->gallivm);
3116
3117 /* remove from shader's list */
3118 remove_from_list(&variant->list_item_local);
3119 variant->shader->variants_cached--;
3120
3121 /* remove from context's list */
3122 remove_from_list(&variant->list_item_global);
3123 lp->nr_fs_variants--;
3124 lp->nr_fs_instrs -= variant->nr_instrs;
3125
3126 FREE(variant);
3127 }
3128
3129
3130 static void
3131 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3132 {
3133 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3134 struct lp_fragment_shader *shader = fs;
3135 struct lp_fs_variant_list_item *li;
3136
3137 assert(fs != llvmpipe->fs);
3138
3139 /*
3140 * XXX: we need to flush the context until we have some sort of reference
3141 * counting in fragment shaders as they may still be binned
3142 * Flushing alone might not sufficient we need to wait on it too.
3143 */
3144 llvmpipe_finish(pipe, __FUNCTION__);
3145
3146 /* Delete all the variants */
3147 li = first_elem(&shader->variants);
3148 while(!at_end(&shader->variants, li)) {
3149 struct lp_fs_variant_list_item *next = next_elem(li);
3150 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3151 li = next;
3152 }
3153
3154 /* Delete draw module's data */
3155 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3156
3157 if (shader->base.ir.nir)
3158 ralloc_free(shader->base.ir.nir);
3159 assert(shader->variants_cached == 0);
3160 FREE((void *) shader->base.tokens);
3161 FREE(shader);
3162 }
3163
3164
3165
3166 static void
3167 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3168 enum pipe_shader_type shader, uint index,
3169 const struct pipe_constant_buffer *cb)
3170 {
3171 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3172 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3173
3174 assert(shader < PIPE_SHADER_TYPES);
3175 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3176
3177 /* note: reference counting */
3178 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3179
3180 if (constants) {
3181 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3182 debug_printf("Illegal set constant without bind flag\n");
3183 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3184 }
3185 }
3186
3187 if (shader == PIPE_SHADER_VERTEX ||
3188 shader == PIPE_SHADER_GEOMETRY ||
3189 shader == PIPE_SHADER_TESS_CTRL ||
3190 shader == PIPE_SHADER_TESS_EVAL) {
3191 /* Pass the constants to the 'draw' module */
3192 const unsigned size = cb ? cb->buffer_size : 0;
3193 const ubyte *data;
3194
3195 if (constants) {
3196 data = (ubyte *) llvmpipe_resource_data(constants);
3197 }
3198 else if (cb && cb->user_buffer) {
3199 data = (ubyte *) cb->user_buffer;
3200 }
3201 else {
3202 data = NULL;
3203 }
3204
3205 if (data)
3206 data += cb->buffer_offset;
3207
3208 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3209 index, data, size);
3210 }
3211 else if (shader == PIPE_SHADER_COMPUTE)
3212 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3213 else
3214 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3215
3216 if (cb && cb->user_buffer) {
3217 pipe_resource_reference(&constants, NULL);
3218 }
3219 }
3220
3221 static void
3222 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3223 enum pipe_shader_type shader, unsigned start_slot,
3224 unsigned count, const struct pipe_shader_buffer *buffers,
3225 unsigned writable_bitmask)
3226 {
3227 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3228 unsigned i, idx;
3229 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3230 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3231
3232 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3233
3234 if (shader == PIPE_SHADER_VERTEX ||
3235 shader == PIPE_SHADER_GEOMETRY ||
3236 shader == PIPE_SHADER_TESS_CTRL ||
3237 shader == PIPE_SHADER_TESS_EVAL) {
3238 const unsigned size = buffer ? buffer->buffer_size : 0;
3239 const ubyte *data = NULL;
3240 if (buffer && buffer->buffer)
3241 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3242 if (data)
3243 data += buffer->buffer_offset;
3244 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3245 i, data, size);
3246 } else if (shader == PIPE_SHADER_COMPUTE) {
3247 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3248 } else if (shader == PIPE_SHADER_FRAGMENT) {
3249 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3250 }
3251 }
3252 }
3253
3254 static void
3255 llvmpipe_set_shader_images(struct pipe_context *pipe,
3256 enum pipe_shader_type shader, unsigned start_slot,
3257 unsigned count, const struct pipe_image_view *images)
3258 {
3259 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3260 unsigned i, idx;
3261
3262 draw_flush(llvmpipe->draw);
3263 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3264 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3265
3266 util_copy_image_view(&llvmpipe->images[shader][i], image);
3267 }
3268
3269 llvmpipe->num_images[shader] = start_slot + count;
3270 if (shader == PIPE_SHADER_VERTEX ||
3271 shader == PIPE_SHADER_GEOMETRY ||
3272 shader == PIPE_SHADER_TESS_CTRL ||
3273 shader == PIPE_SHADER_TESS_EVAL) {
3274 draw_set_images(llvmpipe->draw,
3275 shader,
3276 llvmpipe->images[shader],
3277 start_slot + count);
3278 } else if (shader == PIPE_SHADER_COMPUTE)
3279 llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
3280 else
3281 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3282 }
3283
3284 /**
3285 * Return the blend factor equivalent to a destination alpha of one.
3286 */
3287 static inline unsigned
3288 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3289 {
3290 switch(factor) {
3291 case PIPE_BLENDFACTOR_DST_ALPHA:
3292 return PIPE_BLENDFACTOR_ONE;
3293 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3294 return PIPE_BLENDFACTOR_ZERO;
3295 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3296 if (clamped_zero)
3297 return PIPE_BLENDFACTOR_ZERO;
3298 else
3299 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3300 }
3301
3302 return factor;
3303 }
3304
3305
3306 /**
3307 * We need to generate several variants of the fragment pipeline to match
3308 * all the combinations of the contributing state atoms.
3309 *
3310 * TODO: there is actually no reason to tie this to context state -- the
3311 * generated code could be cached globally in the screen.
3312 */
3313 static struct lp_fragment_shader_variant_key *
3314 make_variant_key(struct llvmpipe_context *lp,
3315 struct lp_fragment_shader *shader,
3316 char *store)
3317 {
3318 unsigned i;
3319 struct lp_fragment_shader_variant_key *key;
3320
3321 key = (struct lp_fragment_shader_variant_key *)store;
3322
3323 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3324
3325 if (lp->framebuffer.zsbuf) {
3326 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3327 const struct util_format_description *zsbuf_desc =
3328 util_format_description(zsbuf_format);
3329
3330 if (lp->depth_stencil->depth.enabled &&
3331 util_format_has_depth(zsbuf_desc)) {
3332 key->zsbuf_format = zsbuf_format;
3333 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3334 }
3335 if (lp->depth_stencil->stencil[0].enabled &&
3336 util_format_has_stencil(zsbuf_desc)) {
3337 key->zsbuf_format = zsbuf_format;
3338 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3339 }
3340 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3341 key->resource_1d = TRUE;
3342 }
3343 }
3344
3345 /*
3346 * Propagate the depth clamp setting from the rasterizer state.
3347 * depth_clip == 0 implies depth clamping is enabled.
3348 *
3349 * When clip_halfz is enabled, then always clamp the depth values.
3350 *
3351 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3352 * clamp is always active in d3d10, regardless if depth clip is
3353 * enabled or not).
3354 * (GL has an always-on [0,1] clamp on fs depth output instead
3355 * to ensure the depth values stay in range. Doesn't look like
3356 * we do that, though...)
3357 */
3358 if (lp->rasterizer->clip_halfz) {
3359 key->depth_clamp = 1;
3360 } else {
3361 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3362 }
3363
3364 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3365 if (!lp->framebuffer.nr_cbufs ||
3366 !lp->framebuffer.cbufs[0] ||
3367 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3368 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3369 }
3370 if(key->alpha.enabled)
3371 key->alpha.func = lp->depth_stencil->alpha.func;
3372 /* alpha.ref_value is passed in jit_context */
3373
3374 key->flatshade = lp->rasterizer->flatshade;
3375 key->multisample = lp->rasterizer->multisample;
3376 if (lp->active_occlusion_queries && !lp->queries_disabled) {
3377 key->occlusion_count = TRUE;
3378 }
3379
3380 if (lp->framebuffer.nr_cbufs) {
3381 memcpy(&key->blend, lp->blend, sizeof key->blend);
3382 }
3383
3384 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3385
3386 if (!key->blend.independent_blend_enable) {
3387 /* we always need independent blend otherwise the fixups below won't work */
3388 for (i = 1; i < key->nr_cbufs; i++) {
3389 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3390 }
3391 key->blend.independent_blend_enable = 1;
3392 }
3393
3394 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3395 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3396
3397 if (lp->framebuffer.cbufs[i]) {
3398 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3399 const struct util_format_description *format_desc;
3400
3401 key->cbuf_format[i] = format;
3402
3403 /*
3404 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3405 * mixing of 2d textures with height 1 and 1d textures, so make sure
3406 * we pick 1d if any cbuf or zsbuf is 1d.
3407 */
3408 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3409 key->resource_1d = TRUE;
3410 }
3411
3412 format_desc = util_format_description(format);
3413 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3414 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3415
3416 /*
3417 * Mask out color channels not present in the color buffer.
3418 */
3419 blend_rt->colormask &= util_format_colormask(format_desc);
3420
3421 /*
3422 * Disable blend for integer formats.
3423 */
3424 if (util_format_is_pure_integer(format)) {
3425 blend_rt->blend_enable = 0;
3426 }
3427
3428 /*
3429 * Our swizzled render tiles always have an alpha channel, but the
3430 * linear render target format often does not, so force here the dst
3431 * alpha to be one.
3432 *
3433 * This is not a mere optimization. Wrong results will be produced if
3434 * the dst alpha is used, the dst format does not have alpha, and the
3435 * previous rendering was not flushed from the swizzled to linear
3436 * buffer. For example, NonPowTwo DCT.
3437 *
3438 * TODO: This should be generalized to all channels for better
3439 * performance, but only alpha causes correctness issues.
3440 *
3441 * Also, force rgb/alpha func/factors match, to make AoS blending
3442 * easier.
3443 */
3444 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3445 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3446 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3447 boolean clamped_zero = !util_format_is_float(format) &&
3448 !util_format_is_snorm(format);
3449 blend_rt->rgb_src_factor =
3450 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3451 blend_rt->rgb_dst_factor =
3452 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3453 blend_rt->alpha_func = blend_rt->rgb_func;
3454 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3455 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3456 }
3457 }
3458 else {
3459 /* no color buffer for this fragment output */
3460 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3461 blend_rt->colormask = 0x0;
3462 blend_rt->blend_enable = 0;
3463 }
3464 }
3465
3466 /* This value will be the same for all the variants of a given shader:
3467 */
3468 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3469
3470 struct lp_sampler_static_state *fs_sampler;
3471
3472 fs_sampler = key->samplers;
3473
3474 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3475
3476 for(i = 0; i < key->nr_samplers; ++i) {
3477 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3478 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3479 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3480 }
3481 }
3482
3483 /*
3484 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3485 * are dx10-style? Can't really have mixed opcodes, at least not
3486 * if we want to skip the holes here (without rescanning tgsi).
3487 */
3488 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3489 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3490 for(i = 0; i < key->nr_sampler_views; ++i) {
3491 /*
3492 * Note sview may exceed what's representable by file_mask.
3493 * This will still work, the only downside is that not actually
3494 * used views may be included in the shader key.
3495 */
3496 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3497 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3498 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3499 }
3500 }
3501 }
3502 else {
3503 key->nr_sampler_views = key->nr_samplers;
3504 for(i = 0; i < key->nr_sampler_views; ++i) {
3505 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3506 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3507 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3508 }
3509 }
3510 }
3511
3512 struct lp_image_static_state *lp_image;
3513 lp_image = lp_fs_variant_key_images(key);
3514 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3515 for (i = 0; i < key->nr_images; ++i) {
3516 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3517 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3518 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3519 }
3520 }
3521 return key;
3522 }
3523
3524
3525
3526 /**
3527 * Update fragment shader state. This is called just prior to drawing
3528 * something when some fragment-related state has changed.
3529 */
3530 void
3531 llvmpipe_update_fs(struct llvmpipe_context *lp)
3532 {
3533 struct lp_fragment_shader *shader = lp->fs;
3534 struct lp_fragment_shader_variant_key *key;
3535 struct lp_fragment_shader_variant *variant = NULL;
3536 struct lp_fs_variant_list_item *li;
3537 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3538
3539 key = make_variant_key(lp, shader, store);
3540
3541 /* Search the variants for one which matches the key */
3542 li = first_elem(&shader->variants);
3543 while(!at_end(&shader->variants, li)) {
3544 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3545 variant = li->base;
3546 break;
3547 }
3548 li = next_elem(li);
3549 }
3550
3551 if (variant) {
3552 /* Move this variant to the head of the list to implement LRU
3553 * deletion of shader's when we have too many.
3554 */
3555 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3556 }
3557 else {
3558 /* variant not found, create it now */
3559 int64_t t0, t1, dt;
3560 unsigned i;
3561 unsigned variants_to_cull;
3562
3563 if (LP_DEBUG & DEBUG_FS) {
3564 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3565 lp->nr_fs_variants,
3566 lp->nr_fs_instrs,
3567 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3568 }
3569
3570 /* First, check if we've exceeded the max number of shader variants.
3571 * If so, free 6.25% of them (the least recently used ones).
3572 */
3573 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3574
3575 if (variants_to_cull ||
3576 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3577 struct pipe_context *pipe = &lp->pipe;
3578
3579 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3580 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3581 "\t%u instrs,\t%u instrs/variant\n",
3582 shader->variants_cached,
3583 lp->nr_fs_variants, lp->nr_fs_instrs,
3584 lp->nr_fs_instrs / lp->nr_fs_variants);
3585 }
3586
3587 /*
3588 * XXX: we need to flush the context until we have some sort of
3589 * reference counting in fragment shaders as they may still be binned
3590 * Flushing alone might not be sufficient we need to wait on it too.
3591 */
3592 llvmpipe_finish(pipe, __FUNCTION__);
3593
3594 /*
3595 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3596 * number of shader variants (potentially all of them) could be
3597 * pending for destruction on flush.
3598 */
3599
3600 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3601 struct lp_fs_variant_list_item *item;
3602 if (is_empty_list(&lp->fs_variants_list)) {
3603 break;
3604 }
3605 item = last_elem(&lp->fs_variants_list);
3606 assert(item);
3607 assert(item->base);
3608 llvmpipe_remove_shader_variant(lp, item->base);
3609 }
3610 }
3611
3612 /*
3613 * Generate the new variant.
3614 */
3615 t0 = os_time_get();
3616 variant = generate_variant(lp, shader, key);
3617 t1 = os_time_get();
3618 dt = t1 - t0;
3619 LP_COUNT_ADD(llvm_compile_time, dt);
3620 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3621
3622 /* Put the new variant into the list */
3623 if (variant) {
3624 insert_at_head(&shader->variants, &variant->list_item_local);
3625 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3626 lp->nr_fs_variants++;
3627 lp->nr_fs_instrs += variant->nr_instrs;
3628 shader->variants_cached++;
3629 }
3630 }
3631
3632 /* Bind this variant */
3633 lp_setup_set_fs_variant(lp->setup, variant);
3634 }
3635
3636
3637
3638
3639
3640 void
3641 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3642 {
3643 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3644 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3645 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3646
3647 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3648
3649 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3650 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3651 }
3652
3653