llvmpipe: multisample sample mask + early/late depth pass
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_nir.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87 #include "gallivm/lp_bld_arit.h"
88 #include "gallivm/lp_bld_bitarit.h"
89 #include "gallivm/lp_bld_pack.h"
90 #include "gallivm/lp_bld_format.h"
91 #include "gallivm/lp_bld_quad.h"
92
93 #include "lp_bld_alpha.h"
94 #include "lp_bld_blend.h"
95 #include "lp_bld_depth.h"
96 #include "lp_bld_interp.h"
97 #include "lp_context.h"
98 #include "lp_debug.h"
99 #include "lp_perf.h"
100 #include "lp_setup.h"
101 #include "lp_state.h"
102 #include "lp_tex_sample.h"
103 #include "lp_flush.h"
104 #include "lp_state_fs.h"
105 #include "lp_rast.h"
106 #include "nir/nir_to_tgsi_info.h"
107
108 /** Fragment shader number (for debugging) */
109 static unsigned fs_no = 0;
110
111
112 /**
113 * Expand the relevant bits of mask_input to a n*4-dword mask for the
114 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
115 * quad mask vector to 0 or ~0.
116 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
117 * quad arguments with fs length 8.
118 *
119 * \param first_quad which quad(s) of the quad group to test, in [0,3]
120 * \param mask_input bitwise mask for the whole 4x4 stamp
121 */
122 static LLVMValueRef
123 generate_quad_mask(struct gallivm_state *gallivm,
124 struct lp_type fs_type,
125 unsigned first_quad,
126 unsigned sample,
127 LLVMValueRef mask_input) /* int64 */
128 {
129 LLVMBuilderRef builder = gallivm->builder;
130 struct lp_type mask_type;
131 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
132 LLVMValueRef bits[16];
133 LLVMValueRef mask, bits_vec;
134 int shift, i;
135
136 /*
137 * XXX: We'll need a different path for 16 x u8
138 */
139 assert(fs_type.width == 32);
140 assert(fs_type.length <= ARRAY_SIZE(bits));
141 mask_type = lp_int_type(fs_type);
142
143 /*
144 * mask_input >>= (quad * 4)
145 */
146 switch (first_quad) {
147 case 0:
148 shift = 0;
149 break;
150 case 1:
151 assert(fs_type.length == 4);
152 shift = 2;
153 break;
154 case 2:
155 shift = 8;
156 break;
157 case 3:
158 assert(fs_type.length == 4);
159 shift = 10;
160 break;
161 default:
162 assert(0);
163 shift = 0;
164 }
165
166 mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
167 mask_input = LLVMBuildTrunc(builder, mask_input,
168 i32t, "");
169 mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
170
171 mask_input = LLVMBuildLShr(builder,
172 mask_input,
173 LLVMConstInt(i32t, shift, 0),
174 "");
175
176 /*
177 * mask = { mask_input & (1 << i), for i in [0,3] }
178 */
179 mask = lp_build_broadcast(gallivm,
180 lp_build_vec_type(gallivm, mask_type),
181 mask_input);
182
183 for (i = 0; i < fs_type.length / 4; i++) {
184 unsigned j = 2 * (i % 2) + (i / 2) * 8;
185 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
186 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
187 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
188 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
189 }
190 bits_vec = LLVMConstVector(bits, fs_type.length);
191 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
192
193 /*
194 * mask = mask == bits ? ~0 : 0
195 */
196 mask = lp_build_compare(gallivm,
197 mask_type, PIPE_FUNC_EQUAL,
198 mask, bits_vec);
199
200 return mask;
201 }
202
203
204 #define EARLY_DEPTH_TEST 0x1
205 #define LATE_DEPTH_TEST 0x2
206 #define EARLY_DEPTH_WRITE 0x4
207 #define LATE_DEPTH_WRITE 0x8
208
209 static int
210 find_output_by_semantic( const struct tgsi_shader_info *info,
211 unsigned semantic,
212 unsigned index )
213 {
214 int i;
215
216 for (i = 0; i < info->num_outputs; i++)
217 if (info->output_semantic_name[i] == semantic &&
218 info->output_semantic_index[i] == index)
219 return i;
220
221 return -1;
222 }
223
224
225 /**
226 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
227 */
228 static LLVMValueRef
229 lp_llvm_viewport(LLVMValueRef context_ptr,
230 struct gallivm_state *gallivm,
231 LLVMValueRef viewport_index)
232 {
233 LLVMBuilderRef builder = gallivm->builder;
234 LLVMValueRef ptr;
235 LLVMValueRef res;
236 struct lp_type viewport_type =
237 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
238
239 ptr = lp_jit_context_viewports(gallivm, context_ptr);
240 ptr = LLVMBuildPointerCast(builder, ptr,
241 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
242
243 res = lp_build_pointer_get(builder, ptr, viewport_index);
244
245 return res;
246 }
247
248
249 static LLVMValueRef
250 lp_build_depth_clamp(struct gallivm_state *gallivm,
251 LLVMBuilderRef builder,
252 struct lp_type type,
253 LLVMValueRef context_ptr,
254 LLVMValueRef thread_data_ptr,
255 LLVMValueRef z)
256 {
257 LLVMValueRef viewport, min_depth, max_depth;
258 LLVMValueRef viewport_index;
259 struct lp_build_context f32_bld;
260
261 assert(type.floating);
262 lp_build_context_init(&f32_bld, gallivm, type);
263
264 /*
265 * Assumes clamping of the viewport index will occur in setup/gs. Value
266 * is passed through the rasterization stage via lp_rast_shader_inputs.
267 *
268 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
269 * semantics.
270 */
271 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
272 thread_data_ptr);
273
274 /*
275 * Load the min and max depth from the lp_jit_context.viewports
276 * array of lp_jit_viewport structures.
277 */
278 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
279
280 /* viewports[viewport_index].min_depth */
281 min_depth = LLVMBuildExtractElement(builder, viewport,
282 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
283 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
284
285 /* viewports[viewport_index].max_depth */
286 max_depth = LLVMBuildExtractElement(builder, viewport,
287 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
288 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
289
290 /*
291 * Clamp to the min and max depth values for the given viewport.
292 */
293 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
294 }
295
296
297 /**
298 * Generate the fragment shader, depth/stencil test, and alpha tests.
299 */
300 static void
301 generate_fs_loop(struct gallivm_state *gallivm,
302 struct lp_fragment_shader *shader,
303 const struct lp_fragment_shader_variant_key *key,
304 LLVMBuilderRef builder,
305 struct lp_type type,
306 LLVMValueRef context_ptr,
307 LLVMValueRef num_loop,
308 struct lp_build_interp_soa_context *interp,
309 const struct lp_build_sampler_soa *sampler,
310 const struct lp_build_image_soa *image,
311 LLVMValueRef mask_store,
312 LLVMValueRef (*out_color)[4],
313 LLVMValueRef depth_base_ptr,
314 LLVMValueRef depth_stride,
315 LLVMValueRef depth_sample_stride,
316 LLVMValueRef facing,
317 LLVMValueRef thread_data_ptr)
318 {
319 const struct util_format_description *zs_format_desc = NULL;
320 const struct tgsi_token *tokens = shader->base.tokens;
321 struct lp_type int_type = lp_int_type(type);
322 LLVMTypeRef vec_type, int_vec_type;
323 LLVMValueRef mask_ptr = NULL, mask_val = NULL;
324 LLVMValueRef consts_ptr, num_consts_ptr;
325 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
326 LLVMValueRef z;
327 LLVMValueRef z_value, s_value;
328 LLVMValueRef z_fb, s_fb;
329 LLVMValueRef depth_ptr;
330 LLVMValueRef stencil_refs[2];
331 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
332 struct lp_build_for_loop_state loop_state, sample_loop_state;
333 struct lp_build_mask_context mask;
334 /*
335 * TODO: figure out if simple_shader optimization is really worthwile to
336 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
337 * code since tests tend to take another codepath than real shaders.
338 */
339 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
340 shader->info.base.num_inputs < 3 &&
341 shader->info.base.num_instructions < 8) && 0;
342 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
343 util_blend_state_is_dual(&key->blend, 0);
344 unsigned attrib;
345 unsigned chan;
346 unsigned cbuf;
347 unsigned depth_mode;
348
349 struct lp_bld_tgsi_system_values system_values;
350
351 memset(&system_values, 0, sizeof(system_values));
352
353 /* truncate then sign extend. */
354 system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
355 system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
356
357 if (key->depth.enabled ||
358 key->stencil[0].enabled) {
359
360 zs_format_desc = util_format_description(key->zsbuf_format);
361 assert(zs_format_desc);
362
363 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
364 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
365 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
366 if (shader->info.base.writes_memory)
367 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
368 else if (key->alpha.enabled ||
369 key->blend.alpha_to_coverage ||
370 shader->info.base.uses_kill ||
371 shader->info.base.writes_samplemask) {
372 /* With alpha test and kill, can do the depth test early
373 * and hopefully eliminate some quads. But need to do a
374 * special deferred depth write once the final mask value
375 * is known. This only works though if there's either no
376 * stencil test or the stencil value isn't written.
377 */
378 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
379 (key->stencil[1].enabled &&
380 key->stencil[1].writemask)))
381 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
382 else
383 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
384 }
385 else
386 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
387 }
388 else {
389 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
390 }
391
392 if (!(key->depth.enabled && key->depth.writemask) &&
393 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
394 (key->stencil[1].enabled &&
395 key->stencil[1].writemask))))
396 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
397 }
398 else {
399 depth_mode = 0;
400 }
401
402 vec_type = lp_build_vec_type(gallivm, type);
403 int_vec_type = lp_build_vec_type(gallivm, int_type);
404
405 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
406 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
407 /* convert scalar stencil refs into vectors */
408 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
409 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
410
411 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
412 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
413
414 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
415 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
416
417 memset(outputs, 0, sizeof outputs);
418
419 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
420 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
421 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
422 lp_build_vec_type(gallivm,
423 type),
424 num_loop, "color");
425 }
426 }
427 if (dual_source_blend) {
428 assert(key->nr_cbufs <= 1);
429 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
430 out_color[1][chan] = lp_build_array_alloca(gallivm,
431 lp_build_vec_type(gallivm,
432 type),
433 num_loop, "color1");
434 }
435 }
436
437 lp_build_for_loop_begin(&loop_state, gallivm,
438 lp_build_const_int32(gallivm, 0),
439 LLVMIntULT,
440 num_loop,
441 lp_build_const_int32(gallivm, 1));
442
443 if (key->multisample) {
444 /* create shader execution mask by combining all sample masks. */
445 for (unsigned s = 0; s < key->coverage_samples; s++) {
446 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), "");
447 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
448 LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx);
449 if (s == 0)
450 mask_val = s_mask;
451 else
452 mask_val = LLVMBuildOr(builder, s_mask, mask_val, "");
453 }
454 } else {
455 mask_ptr = LLVMBuildGEP(builder, mask_store,
456 &loop_state.counter, 1, "mask_ptr");
457 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
458 }
459
460 /* 'mask' will control execution based on quad's pixel alive/killed state */
461 lp_build_mask_begin(&mask, gallivm, type, mask_val);
462
463 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
464 lp_build_mask_check(&mask);
465
466 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
467 z = interp->pos[2];
468
469 /* Create storage for recombining sample masks after early Z pass. */
470 LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth");
471 LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or);
472
473 LLVMValueRef s_mask = NULL, s_mask_ptr = NULL;
474 /* Run early depth once per sample */
475 if (key->multisample) {
476 lp_build_for_loop_begin(&sample_loop_state, gallivm,
477 lp_build_const_int32(gallivm, 0),
478 LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
479 lp_build_const_int32(gallivm, 1));
480
481 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
482 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
483 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
484
485 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
486 s_mask = LLVMBuildAnd(builder, s_mask, mask_val, "");
487 }
488
489 depth_ptr = depth_base_ptr;
490 if (key->multisample) {
491 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
492 depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
493 }
494
495 if (depth_mode & EARLY_DEPTH_TEST) {
496 /*
497 * Clamp according to ARB_depth_clamp semantics.
498 */
499 if (key->depth_clamp) {
500 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
501 thread_data_ptr, z);
502 }
503 lp_build_depth_stencil_load_swizzled(gallivm, type,
504 zs_format_desc, key->resource_1d,
505 depth_ptr, depth_stride,
506 &z_fb, &s_fb, loop_state.counter);
507 lp_build_depth_stencil_test(gallivm,
508 &key->depth,
509 key->stencil,
510 type,
511 zs_format_desc,
512 key->multisample ? NULL : &mask,
513 &s_mask,
514 stencil_refs,
515 z, z_fb, s_fb,
516 facing,
517 &z_value, &s_value,
518 !simple_shader);
519
520 if (depth_mode & EARLY_DEPTH_WRITE) {
521 lp_build_depth_stencil_write_swizzled(gallivm, type,
522 zs_format_desc, key->resource_1d,
523 NULL, NULL, NULL, loop_state.counter,
524 depth_ptr, depth_stride,
525 z_value, s_value);
526 }
527 /*
528 * Note mask check if stencil is enabled must be after ds write not after
529 * stencil test otherwise new stencil values may not get written if all
530 * fragments got killed by depth/stencil test.
531 */
532 if (!simple_shader && key->stencil[0].enabled && !key->multisample)
533 lp_build_mask_check(&mask);
534 }
535
536 if (key->multisample) {
537 /*
538 * Store the post-early Z coverage mask.
539 * Recombine the resulting coverage masks post early Z into the fragment
540 * shader execution mask.
541 */
542 LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
543 tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, "");
544 LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or);
545
546 LLVMBuildStore(builder, s_mask, s_mask_ptr);
547
548 lp_build_for_loop_end(&sample_loop_state);
549
550 /* recombined all the coverage masks in the shader exec mask. */
551 tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
552 lp_build_mask_update(&mask, tmp_s_mask_or);
553 }
554
555 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, NULL, NULL);
556
557 struct lp_build_tgsi_params params;
558 memset(&params, 0, sizeof(params));
559
560 params.type = type;
561 params.mask = &mask;
562 params.consts_ptr = consts_ptr;
563 params.const_sizes_ptr = num_consts_ptr;
564 params.system_values = &system_values;
565 params.inputs = interp->inputs;
566 params.context_ptr = context_ptr;
567 params.thread_data_ptr = thread_data_ptr;
568 params.sampler = sampler;
569 params.info = &shader->info.base;
570 params.ssbo_ptr = ssbo_ptr;
571 params.ssbo_sizes_ptr = num_ssbo_ptr;
572 params.image = image;
573
574 /* Build the actual shader */
575 if (shader->base.type == PIPE_SHADER_IR_TGSI)
576 lp_build_tgsi_soa(gallivm, tokens, &params,
577 outputs);
578 else
579 lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
580 outputs);
581
582 /* Alpha test */
583 if (key->alpha.enabled) {
584 int color0 = find_output_by_semantic(&shader->info.base,
585 TGSI_SEMANTIC_COLOR,
586 0);
587
588 if (color0 != -1 && outputs[color0][3]) {
589 const struct util_format_description *cbuf_format_desc;
590 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
591 LLVMValueRef alpha_ref_value;
592
593 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
594 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
595
596 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
597
598 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
599 &mask, alpha, alpha_ref_value,
600 (depth_mode & LATE_DEPTH_TEST) != 0);
601 }
602 }
603
604 /* Emulate Alpha to Coverage with Alpha test */
605 if (key->blend.alpha_to_coverage) {
606 int color0 = find_output_by_semantic(&shader->info.base,
607 TGSI_SEMANTIC_COLOR,
608 0);
609
610 if (color0 != -1 && outputs[color0][3]) {
611 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
612
613 lp_build_alpha_to_coverage(gallivm, type,
614 &mask, alpha,
615 (depth_mode & LATE_DEPTH_TEST) != 0);
616 }
617 }
618
619 if (shader->info.base.writes_samplemask) {
620 int smaski = find_output_by_semantic(&shader->info.base,
621 TGSI_SEMANTIC_SAMPLEMASK,
622 0);
623 LLVMValueRef smask;
624 struct lp_build_context smask_bld;
625 lp_build_context_init(&smask_bld, gallivm, int_type);
626
627 assert(smaski >= 0);
628 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
629 /*
630 * Pixel is alive according to the first sample in the mask.
631 */
632 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
633 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
634 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
635 lp_build_mask_update(&mask, smask);
636 }
637
638 if (key->multisample) {
639 /* execute depth test for each sample */
640 lp_build_for_loop_begin(&sample_loop_state, gallivm,
641 lp_build_const_int32(gallivm, 0),
642 LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
643 lp_build_const_int32(gallivm, 1));
644
645 /* load the per-sample coverage mask */
646 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
647 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
648 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
649
650 /* combine the execution mask post fragment shader with the coverage mask. */
651 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
652 s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), "");
653 }
654
655 depth_ptr = depth_base_ptr;
656 if (key->multisample) {
657 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
658 depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
659 }
660
661 /* Late Z test */
662 if (depth_mode & LATE_DEPTH_TEST) {
663 int pos0 = find_output_by_semantic(&shader->info.base,
664 TGSI_SEMANTIC_POSITION,
665 0);
666 int s_out = find_output_by_semantic(&shader->info.base,
667 TGSI_SEMANTIC_STENCIL,
668 0);
669 if (pos0 != -1 && outputs[pos0][2]) {
670 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
671 }
672 /*
673 * Clamp according to ARB_depth_clamp semantics.
674 */
675 if (key->depth_clamp) {
676 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
677 thread_data_ptr, z);
678 }
679
680 if (s_out != -1 && outputs[s_out][1]) {
681 /* there's only one value, and spec says to discard additional bits */
682 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
683 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
684 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
685 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
686 stencil_refs[1] = stencil_refs[0];
687 }
688
689 lp_build_depth_stencil_load_swizzled(gallivm, type,
690 zs_format_desc, key->resource_1d,
691 depth_ptr, depth_stride,
692 &z_fb, &s_fb, loop_state.counter);
693
694 lp_build_depth_stencil_test(gallivm,
695 &key->depth,
696 key->stencil,
697 type,
698 zs_format_desc,
699 key->multisample ? NULL : &mask,
700 &s_mask,
701 stencil_refs,
702 z, z_fb, s_fb,
703 facing,
704 &z_value, &s_value,
705 !simple_shader);
706 /* Late Z write */
707 if (depth_mode & LATE_DEPTH_WRITE) {
708 lp_build_depth_stencil_write_swizzled(gallivm, type,
709 zs_format_desc, key->resource_1d,
710 NULL, NULL, NULL, loop_state.counter,
711 depth_ptr, depth_stride,
712 z_value, s_value);
713 }
714 }
715 else if ((depth_mode & EARLY_DEPTH_TEST) &&
716 (depth_mode & LATE_DEPTH_WRITE))
717 {
718 /* Need to apply a reduced mask to the depth write. Reload the
719 * depth value, update from zs_value with the new mask value and
720 * write that out.
721 */
722 lp_build_depth_stencil_write_swizzled(gallivm, type,
723 zs_format_desc, key->resource_1d,
724 key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
725 depth_ptr, depth_stride,
726 z_value, s_value);
727 }
728
729 if (key->multisample) {
730 /* store the sample mask for this loop */
731 LLVMBuildStore(builder, s_mask, s_mask_ptr);
732 lp_build_for_loop_end(&sample_loop_state);
733 }
734
735 /* Color write */
736 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
737 {
738 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
739 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
740 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
741 {
742 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
743 if(outputs[attrib][chan]) {
744 /* XXX: just initialize outputs to point at colors[] and
745 * skip this.
746 */
747 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
748 LLVMValueRef color_ptr;
749 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
750 &loop_state.counter, 1, "");
751 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
752 LLVMBuildStore(builder, out, color_ptr);
753 }
754 }
755 }
756 }
757
758 if (key->occlusion_count) {
759 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
760 lp_build_name(counter, "counter");
761 lp_build_occlusion_count(gallivm, type,
762 lp_build_mask_value(&mask), counter);
763 }
764
765 mask_val = lp_build_mask_end(&mask);
766 if (!key->multisample)
767 LLVMBuildStore(builder, mask_val, mask_ptr);
768 lp_build_for_loop_end(&loop_state);
769 }
770
771
772 /**
773 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
774 *
775 * Fragment Shader outputs pixels in small 2x2 blocks
776 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
777 *
778 * However in memory pixels are stored in rows
779 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
780 *
781 * @param type fragment shader type (4x or 8x float)
782 * @param num_fs number of fs_src
783 * @param is_1d whether we're outputting to a 1d resource
784 * @param dst_channels number of output channels
785 * @param fs_src output from fragment shader
786 * @param dst pointer to store result
787 * @param pad_inline is channel padding inline or at end of row
788 * @return the number of dsts
789 */
790 static int
791 generate_fs_twiddle(struct gallivm_state *gallivm,
792 struct lp_type type,
793 unsigned num_fs,
794 unsigned dst_channels,
795 LLVMValueRef fs_src[][4],
796 LLVMValueRef* dst,
797 bool pad_inline)
798 {
799 LLVMValueRef src[16];
800
801 bool swizzle_pad;
802 bool twiddle;
803 bool split;
804
805 unsigned pixels = type.length / 4;
806 unsigned reorder_group;
807 unsigned src_channels;
808 unsigned src_count;
809 unsigned i;
810
811 src_channels = dst_channels < 3 ? dst_channels : 4;
812 src_count = num_fs * src_channels;
813
814 assert(pixels == 2 || pixels == 1);
815 assert(num_fs * src_channels <= ARRAY_SIZE(src));
816
817 /*
818 * Transpose from SoA -> AoS
819 */
820 for (i = 0; i < num_fs; ++i) {
821 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
822 }
823
824 /*
825 * Pick transformation options
826 */
827 swizzle_pad = false;
828 twiddle = false;
829 split = false;
830 reorder_group = 0;
831
832 if (dst_channels == 1) {
833 twiddle = true;
834
835 if (pixels == 2) {
836 split = true;
837 }
838 } else if (dst_channels == 2) {
839 if (pixels == 1) {
840 reorder_group = 1;
841 }
842 } else if (dst_channels > 2) {
843 if (pixels == 1) {
844 reorder_group = 2;
845 } else {
846 twiddle = true;
847 }
848
849 if (!pad_inline && dst_channels == 3 && pixels > 1) {
850 swizzle_pad = true;
851 }
852 }
853
854 /*
855 * Split the src in half
856 */
857 if (split) {
858 for (i = num_fs; i > 0; --i) {
859 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
860 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
861 }
862
863 src_count *= 2;
864 type.length = 4;
865 }
866
867 /*
868 * Ensure pixels are in memory order
869 */
870 if (reorder_group) {
871 /* Twiddle pixels by reordering the array, e.g.:
872 *
873 * src_count = 8 -> 0 2 1 3 4 6 5 7
874 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
875 */
876 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
877
878 for (i = 0; i < src_count; ++i) {
879 unsigned group = i / reorder_group;
880 unsigned block = (group / 4) * 4 * reorder_group;
881 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
882 dst[i] = src[j];
883 }
884 } else if (twiddle) {
885 /* Twiddle pixels across elements of array */
886 /*
887 * XXX: we should avoid this in some cases, but would need to tell
888 * lp_build_conv to reorder (or deal with it ourselves).
889 */
890 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
891 } else {
892 /* Do nothing */
893 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
894 }
895
896 /*
897 * Moves any padding between pixels to the end
898 * e.g. RGBXRGBX -> RGBRGBXX
899 */
900 if (swizzle_pad) {
901 unsigned char swizzles[16];
902 unsigned elems = pixels * dst_channels;
903
904 for (i = 0; i < type.length; ++i) {
905 if (i < elems)
906 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
907 else
908 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
909 }
910
911 for (i = 0; i < src_count; ++i) {
912 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
913 }
914 }
915
916 return src_count;
917 }
918
919
920 /*
921 * Untwiddle and transpose, much like the above.
922 * However, this is after conversion, so we get packed vectors.
923 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
924 * the vectors will look like:
925 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
926 * be swizzled here). Extending to 16bit should be trivial.
927 * Should also be extended to handle twice wide vectors with AVX2...
928 */
929 static void
930 fs_twiddle_transpose(struct gallivm_state *gallivm,
931 struct lp_type type,
932 LLVMValueRef *src,
933 unsigned src_count,
934 LLVMValueRef *dst)
935 {
936 unsigned i, j;
937 struct lp_type type64, type16, type32;
938 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
939 LLVMBuilderRef builder = gallivm->builder;
940 LLVMValueRef tmp[4], shuf[8];
941 for (j = 0; j < 2; j++) {
942 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
943 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
944 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
945 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
946 }
947
948 assert(src_count == 4 || src_count == 2 || src_count == 1);
949 assert(type.width == 8);
950 assert(type.length == 16);
951
952 type8_t = lp_build_vec_type(gallivm, type);
953
954 type64 = type;
955 type64.length /= 8;
956 type64.width *= 8;
957 type64_t = lp_build_vec_type(gallivm, type64);
958
959 type16 = type;
960 type16.length /= 2;
961 type16.width *= 2;
962 type16_t = lp_build_vec_type(gallivm, type16);
963
964 type32 = type;
965 type32.length /= 4;
966 type32.width *= 4;
967 type32_t = lp_build_vec_type(gallivm, type32);
968
969 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
970
971 if (src_count == 1) {
972 /* transpose was no-op, just untwiddle */
973 LLVMValueRef shuf_vec;
974 shuf_vec = LLVMConstVector(shuf, 8);
975 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
976 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
977 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
978 } else if (src_count == 2) {
979 LLVMValueRef shuf_vec;
980 shuf_vec = LLVMConstVector(shuf, 4);
981
982 for (i = 0; i < 2; i++) {
983 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
984 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
985 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
986 }
987 } else {
988 for (j = 0; j < 2; j++) {
989 LLVMValueRef lo, hi, lo2, hi2;
990 /*
991 * Note that if we only really have 3 valid channels (rgb)
992 * and we don't need alpha we could substitute a undef here
993 * for the respective channel (causing llvm to drop conversion
994 * for alpha).
995 */
996 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
997 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
998 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
999 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
1000 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
1001 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
1002 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
1003 }
1004 }
1005 }
1006
1007
1008 /**
1009 * Load an unswizzled block of pixels from memory
1010 */
1011 static void
1012 load_unswizzled_block(struct gallivm_state *gallivm,
1013 LLVMValueRef base_ptr,
1014 LLVMValueRef stride,
1015 unsigned block_width,
1016 unsigned block_height,
1017 LLVMValueRef* dst,
1018 struct lp_type dst_type,
1019 unsigned dst_count,
1020 unsigned dst_alignment)
1021 {
1022 LLVMBuilderRef builder = gallivm->builder;
1023 unsigned row_size = dst_count / block_height;
1024 unsigned i;
1025
1026 /* Ensure block exactly fits into dst */
1027 assert((block_width * block_height) % dst_count == 0);
1028
1029 for (i = 0; i < dst_count; ++i) {
1030 unsigned x = i % row_size;
1031 unsigned y = i / row_size;
1032
1033 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
1034 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1035
1036 LLVMValueRef gep[2];
1037 LLVMValueRef dst_ptr;
1038
1039 gep[0] = lp_build_const_int32(gallivm, 0);
1040 gep[1] = LLVMBuildAdd(builder, bx, by, "");
1041
1042 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1043 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
1044 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
1045
1046 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
1047
1048 LLVMSetAlignment(dst[i], dst_alignment);
1049 }
1050 }
1051
1052
1053 /**
1054 * Store an unswizzled block of pixels to memory
1055 */
1056 static void
1057 store_unswizzled_block(struct gallivm_state *gallivm,
1058 LLVMValueRef base_ptr,
1059 LLVMValueRef stride,
1060 unsigned block_width,
1061 unsigned block_height,
1062 LLVMValueRef* src,
1063 struct lp_type src_type,
1064 unsigned src_count,
1065 unsigned src_alignment)
1066 {
1067 LLVMBuilderRef builder = gallivm->builder;
1068 unsigned row_size = src_count / block_height;
1069 unsigned i;
1070
1071 /* Ensure src exactly fits into block */
1072 assert((block_width * block_height) % src_count == 0);
1073
1074 for (i = 0; i < src_count; ++i) {
1075 unsigned x = i % row_size;
1076 unsigned y = i / row_size;
1077
1078 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
1079 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1080
1081 LLVMValueRef gep[2];
1082 LLVMValueRef src_ptr;
1083
1084 gep[0] = lp_build_const_int32(gallivm, 0);
1085 gep[1] = LLVMBuildAdd(builder, bx, by, "");
1086
1087 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1088 src_ptr = LLVMBuildBitCast(builder, src_ptr,
1089 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1090
1091 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1092
1093 LLVMSetAlignment(src_ptr, src_alignment);
1094 }
1095 }
1096
1097
1098 /**
1099 * Checks if a format description is an arithmetic format
1100 *
1101 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
1102 */
1103 static inline boolean
1104 is_arithmetic_format(const struct util_format_description *format_desc)
1105 {
1106 boolean arith = false;
1107 unsigned i;
1108
1109 for (i = 0; i < format_desc->nr_channels; ++i) {
1110 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1111 arith |= (format_desc->channel[i].size % 8) != 0;
1112 }
1113
1114 return arith;
1115 }
1116
1117
1118 /**
1119 * Checks if this format requires special handling due to required expansion
1120 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1121 * SoA conversion.
1122 */
1123 static inline boolean
1124 format_expands_to_float_soa(const struct util_format_description *format_desc)
1125 {
1126 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1127 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1128 return true;
1129 }
1130 return false;
1131 }
1132
1133
1134 /**
1135 * Retrieves the type representing the memory layout for a format
1136 *
1137 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1138 */
1139 static inline void
1140 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1141 struct lp_type* type)
1142 {
1143 unsigned i;
1144 unsigned chan;
1145
1146 if (format_expands_to_float_soa(format_desc)) {
1147 /* just make this a uint with width of block */
1148 type->floating = false;
1149 type->fixed = false;
1150 type->sign = false;
1151 type->norm = false;
1152 type->width = format_desc->block.bits;
1153 type->length = 1;
1154 return;
1155 }
1156
1157 for (i = 0; i < 4; i++)
1158 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1159 break;
1160 chan = i;
1161
1162 memset(type, 0, sizeof(struct lp_type));
1163 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1164 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1165 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1166 type->norm = format_desc->channel[chan].normalized;
1167
1168 if (is_arithmetic_format(format_desc)) {
1169 type->width = 0;
1170 type->length = 1;
1171
1172 for (i = 0; i < format_desc->nr_channels; ++i) {
1173 type->width += format_desc->channel[i].size;
1174 }
1175 } else {
1176 type->width = format_desc->channel[chan].size;
1177 type->length = format_desc->nr_channels;
1178 }
1179 }
1180
1181
1182 /**
1183 * Retrieves the type for a format which is usable in the blending code.
1184 *
1185 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1186 */
1187 static inline void
1188 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1189 struct lp_type* type)
1190 {
1191 unsigned i;
1192 unsigned chan;
1193
1194 if (format_expands_to_float_soa(format_desc)) {
1195 /* always use ordinary floats for blending */
1196 type->floating = true;
1197 type->fixed = false;
1198 type->sign = true;
1199 type->norm = false;
1200 type->width = 32;
1201 type->length = 4;
1202 return;
1203 }
1204
1205 for (i = 0; i < 4; i++)
1206 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1207 break;
1208 chan = i;
1209
1210 memset(type, 0, sizeof(struct lp_type));
1211 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1212 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1213 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1214 type->norm = format_desc->channel[chan].normalized;
1215 type->width = format_desc->channel[chan].size;
1216 type->length = format_desc->nr_channels;
1217
1218 for (i = 1; i < format_desc->nr_channels; ++i) {
1219 if (format_desc->channel[i].size > type->width)
1220 type->width = format_desc->channel[i].size;
1221 }
1222
1223 if (type->floating) {
1224 type->width = 32;
1225 } else {
1226 if (type->width <= 8) {
1227 type->width = 8;
1228 } else if (type->width <= 16) {
1229 type->width = 16;
1230 } else {
1231 type->width = 32;
1232 }
1233 }
1234
1235 if (is_arithmetic_format(format_desc) && type->length == 3) {
1236 type->length = 4;
1237 }
1238 }
1239
1240
1241 /**
1242 * Scale a normalized value from src_bits to dst_bits.
1243 *
1244 * The exact calculation is
1245 *
1246 * dst = iround(src * dst_mask / src_mask)
1247 *
1248 * or with integer rounding
1249 *
1250 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1251 *
1252 * where
1253 *
1254 * src_mask = (1 << src_bits) - 1
1255 * dst_mask = (1 << dst_bits) - 1
1256 *
1257 * but we try to avoid division and multiplication through shifts.
1258 */
1259 static inline LLVMValueRef
1260 scale_bits(struct gallivm_state *gallivm,
1261 int src_bits,
1262 int dst_bits,
1263 LLVMValueRef src,
1264 struct lp_type src_type)
1265 {
1266 LLVMBuilderRef builder = gallivm->builder;
1267 LLVMValueRef result = src;
1268
1269 if (dst_bits < src_bits) {
1270 int delta_bits = src_bits - dst_bits;
1271
1272 if (delta_bits <= dst_bits) {
1273 /*
1274 * Approximate the rescaling with a single shift.
1275 *
1276 * This gives the wrong rounding.
1277 */
1278
1279 result = LLVMBuildLShr(builder,
1280 src,
1281 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1282 "");
1283
1284 } else {
1285 /*
1286 * Try more accurate rescaling.
1287 */
1288
1289 /*
1290 * Drop the least significant bits to make space for the multiplication.
1291 *
1292 * XXX: A better approach would be to use a wider integer type as intermediate. But
1293 * this is enough to convert alpha from 16bits -> 2 when rendering to
1294 * PIPE_FORMAT_R10G10B10A2_UNORM.
1295 */
1296 result = LLVMBuildLShr(builder,
1297 src,
1298 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1299 "");
1300
1301
1302 result = LLVMBuildMul(builder,
1303 result,
1304 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1305 "");
1306
1307 /*
1308 * Add a rounding term before the division.
1309 *
1310 * TODO: Handle signed integers too.
1311 */
1312 if (!src_type.sign) {
1313 result = LLVMBuildAdd(builder,
1314 result,
1315 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1316 "");
1317 }
1318
1319 /*
1320 * Approximate the division by src_mask with a src_bits shift.
1321 *
1322 * Given the src has already been shifted by dst_bits, all we need
1323 * to do is to shift by the difference.
1324 */
1325
1326 result = LLVMBuildLShr(builder,
1327 result,
1328 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1329 "");
1330 }
1331
1332 } else if (dst_bits > src_bits) {
1333 /* Scale up bits */
1334 int db = dst_bits - src_bits;
1335
1336 /* Shift left by difference in bits */
1337 result = LLVMBuildShl(builder,
1338 src,
1339 lp_build_const_int_vec(gallivm, src_type, db),
1340 "");
1341
1342 if (db <= src_bits) {
1343 /* Enough bits in src to fill the remainder */
1344 LLVMValueRef lower = LLVMBuildLShr(builder,
1345 src,
1346 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1347 "");
1348
1349 result = LLVMBuildOr(builder, result, lower, "");
1350 } else if (db > src_bits) {
1351 /* Need to repeatedly copy src bits to fill remainder in dst */
1352 unsigned n;
1353
1354 for (n = src_bits; n < dst_bits; n *= 2) {
1355 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1356
1357 result = LLVMBuildOr(builder,
1358 result,
1359 LLVMBuildLShr(builder, result, shuv, ""),
1360 "");
1361 }
1362 }
1363 }
1364
1365 return result;
1366 }
1367
1368 /**
1369 * If RT is a smallfloat (needing denorms) format
1370 */
1371 static inline int
1372 have_smallfloat_format(struct lp_type dst_type,
1373 enum pipe_format format)
1374 {
1375 return ((dst_type.floating && dst_type.width != 32) ||
1376 /* due to format handling hacks this format doesn't have floating set
1377 * here (and actually has width set to 32 too) so special case this. */
1378 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1379 }
1380
1381
1382 /**
1383 * Convert from memory format to blending format
1384 *
1385 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1386 */
1387 static void
1388 convert_to_blend_type(struct gallivm_state *gallivm,
1389 unsigned block_size,
1390 const struct util_format_description *src_fmt,
1391 struct lp_type src_type,
1392 struct lp_type dst_type,
1393 LLVMValueRef* src, // and dst
1394 unsigned num_srcs)
1395 {
1396 LLVMValueRef *dst = src;
1397 LLVMBuilderRef builder = gallivm->builder;
1398 struct lp_type blend_type;
1399 struct lp_type mem_type;
1400 unsigned i, j;
1401 unsigned pixels = block_size / num_srcs;
1402 bool is_arith;
1403
1404 /*
1405 * full custom path for packed floats and srgb formats - none of the later
1406 * functions would do anything useful, and given the lp_type representation they
1407 * can't be fixed. Should really have some SoA blend path for these kind of
1408 * formats rather than hacking them in here.
1409 */
1410 if (format_expands_to_float_soa(src_fmt)) {
1411 LLVMValueRef tmpsrc[4];
1412 /*
1413 * This is pretty suboptimal for this case blending in SoA would be much
1414 * better, since conversion gets us SoA values so need to convert back.
1415 */
1416 assert(src_type.width == 32 || src_type.width == 16);
1417 assert(dst_type.floating);
1418 assert(dst_type.width == 32);
1419 assert(dst_type.length % 4 == 0);
1420 assert(num_srcs % 4 == 0);
1421
1422 if (src_type.width == 16) {
1423 /* expand 4x16bit values to 4x32bit */
1424 struct lp_type type32x4 = src_type;
1425 LLVMTypeRef ltype32x4;
1426 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1427 type32x4.width = 32;
1428 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1429 for (i = 0; i < num_fetch; i++) {
1430 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1431 }
1432 src_type.width = 32;
1433 }
1434 for (i = 0; i < 4; i++) {
1435 tmpsrc[i] = src[i];
1436 }
1437 for (i = 0; i < num_srcs / 4; i++) {
1438 LLVMValueRef tmpsoa[4];
1439 LLVMValueRef tmps = tmpsrc[i];
1440 if (dst_type.length == 8) {
1441 LLVMValueRef shuffles[8];
1442 unsigned j;
1443 /* fetch was 4 values but need 8-wide output values */
1444 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1445 /*
1446 * for 8-wide aos transpose would give us wrong order not matching
1447 * incoming converted fs values and mask. ARGH.
1448 */
1449 for (j = 0; j < 4; j++) {
1450 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1451 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1452 }
1453 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1454 LLVMConstVector(shuffles, 8), "");
1455 }
1456 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1457 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1458 }
1459 else {
1460 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1461 }
1462 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1463 }
1464 return;
1465 }
1466
1467 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1468 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1469
1470 /* Is the format arithmetic */
1471 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1472 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1473
1474 /* Pad if necessary */
1475 if (!is_arith && src_type.length < dst_type.length) {
1476 for (i = 0; i < num_srcs; ++i) {
1477 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1478 }
1479
1480 src_type.length = dst_type.length;
1481 }
1482
1483 /* Special case for half-floats */
1484 if (mem_type.width == 16 && mem_type.floating) {
1485 assert(blend_type.width == 32 && blend_type.floating);
1486 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1487 is_arith = false;
1488 }
1489
1490 if (!is_arith) {
1491 return;
1492 }
1493
1494 src_type.width = blend_type.width * blend_type.length;
1495 blend_type.length *= pixels;
1496 src_type.length *= pixels / (src_type.length / mem_type.length);
1497
1498 for (i = 0; i < num_srcs; ++i) {
1499 LLVMValueRef chans[4];
1500 LLVMValueRef res = NULL;
1501
1502 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1503
1504 for (j = 0; j < src_fmt->nr_channels; ++j) {
1505 unsigned mask = 0;
1506 unsigned sa = src_fmt->channel[j].shift;
1507 #if UTIL_ARCH_LITTLE_ENDIAN
1508 unsigned from_lsb = j;
1509 #else
1510 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1511 #endif
1512
1513 mask = (1 << src_fmt->channel[j].size) - 1;
1514
1515 /* Extract bits from source */
1516 chans[j] = LLVMBuildLShr(builder,
1517 dst[i],
1518 lp_build_const_int_vec(gallivm, src_type, sa),
1519 "");
1520
1521 chans[j] = LLVMBuildAnd(builder,
1522 chans[j],
1523 lp_build_const_int_vec(gallivm, src_type, mask),
1524 "");
1525
1526 /* Scale bits */
1527 if (src_type.norm) {
1528 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1529 blend_type.width, chans[j], src_type);
1530 }
1531
1532 /* Insert bits into correct position */
1533 chans[j] = LLVMBuildShl(builder,
1534 chans[j],
1535 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1536 "");
1537
1538 if (j == 0) {
1539 res = chans[j];
1540 } else {
1541 res = LLVMBuildOr(builder, res, chans[j], "");
1542 }
1543 }
1544
1545 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1546 }
1547 }
1548
1549
1550 /**
1551 * Convert from blending format to memory format
1552 *
1553 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1554 */
1555 static void
1556 convert_from_blend_type(struct gallivm_state *gallivm,
1557 unsigned block_size,
1558 const struct util_format_description *src_fmt,
1559 struct lp_type src_type,
1560 struct lp_type dst_type,
1561 LLVMValueRef* src, // and dst
1562 unsigned num_srcs)
1563 {
1564 LLVMValueRef* dst = src;
1565 unsigned i, j, k;
1566 struct lp_type mem_type;
1567 struct lp_type blend_type;
1568 LLVMBuilderRef builder = gallivm->builder;
1569 unsigned pixels = block_size / num_srcs;
1570 bool is_arith;
1571
1572 /*
1573 * full custom path for packed floats and srgb formats - none of the later
1574 * functions would do anything useful, and given the lp_type representation they
1575 * can't be fixed. Should really have some SoA blend path for these kind of
1576 * formats rather than hacking them in here.
1577 */
1578 if (format_expands_to_float_soa(src_fmt)) {
1579 /*
1580 * This is pretty suboptimal for this case blending in SoA would be much
1581 * better - we need to transpose the AoS values back to SoA values for
1582 * conversion/packing.
1583 */
1584 assert(src_type.floating);
1585 assert(src_type.width == 32);
1586 assert(src_type.length % 4 == 0);
1587 assert(dst_type.width == 32 || dst_type.width == 16);
1588
1589 for (i = 0; i < num_srcs / 4; i++) {
1590 LLVMValueRef tmpsoa[4], tmpdst;
1591 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1592 /* really really need SoA here */
1593
1594 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1595 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1596 }
1597 else {
1598 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1599 src_type, tmpsoa);
1600 }
1601
1602 if (src_type.length == 8) {
1603 LLVMValueRef tmpaos, shuffles[8];
1604 unsigned j;
1605 /*
1606 * for 8-wide aos transpose has given us wrong order not matching
1607 * output order. HMPF. Also need to split the output values manually.
1608 */
1609 for (j = 0; j < 4; j++) {
1610 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1611 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1612 }
1613 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1614 LLVMConstVector(shuffles, 8), "");
1615 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1616 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1617 }
1618 else {
1619 src[i] = tmpdst;
1620 }
1621 }
1622 if (dst_type.width == 16) {
1623 struct lp_type type16x8 = dst_type;
1624 struct lp_type type32x4 = dst_type;
1625 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1626 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1627 type16x8.length = 8;
1628 type32x4.width = 32;
1629 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1630 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1631 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1632 /* We could do vector truncation but it doesn't generate very good code */
1633 for (i = 0; i < num_fetch; i++) {
1634 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1635 src[i], lp_build_zero(gallivm, type32x4));
1636 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1637 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1638 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1639 }
1640 }
1641 return;
1642 }
1643
1644 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1645 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1646
1647 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1648
1649 /* Special case for half-floats */
1650 if (mem_type.width == 16 && mem_type.floating) {
1651 int length = dst_type.length;
1652 assert(blend_type.width == 32 && blend_type.floating);
1653
1654 dst_type.length = src_type.length;
1655
1656 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1657
1658 dst_type.length = length;
1659 is_arith = false;
1660 }
1661
1662 /* Remove any padding */
1663 if (!is_arith && (src_type.length % mem_type.length)) {
1664 src_type.length -= (src_type.length % mem_type.length);
1665
1666 for (i = 0; i < num_srcs; ++i) {
1667 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1668 }
1669 }
1670
1671 /* No bit arithmetic to do */
1672 if (!is_arith) {
1673 return;
1674 }
1675
1676 src_type.length = pixels;
1677 src_type.width = blend_type.length * blend_type.width;
1678 dst_type.length = pixels;
1679
1680 for (i = 0; i < num_srcs; ++i) {
1681 LLVMValueRef chans[4];
1682 LLVMValueRef res = NULL;
1683
1684 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1685
1686 for (j = 0; j < src_fmt->nr_channels; ++j) {
1687 unsigned mask = 0;
1688 unsigned sa = src_fmt->channel[j].shift;
1689 unsigned sz_a = src_fmt->channel[j].size;
1690 #if UTIL_ARCH_LITTLE_ENDIAN
1691 unsigned from_lsb = j;
1692 #else
1693 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1694 #endif
1695
1696 assert(blend_type.width > src_fmt->channel[j].size);
1697
1698 for (k = 0; k < blend_type.width; ++k) {
1699 mask |= 1 << k;
1700 }
1701
1702 /* Extract bits */
1703 chans[j] = LLVMBuildLShr(builder,
1704 dst[i],
1705 lp_build_const_int_vec(gallivm, src_type,
1706 from_lsb * blend_type.width),
1707 "");
1708
1709 chans[j] = LLVMBuildAnd(builder,
1710 chans[j],
1711 lp_build_const_int_vec(gallivm, src_type, mask),
1712 "");
1713
1714 /* Scale down bits */
1715 if (src_type.norm) {
1716 chans[j] = scale_bits(gallivm, blend_type.width,
1717 src_fmt->channel[j].size, chans[j], src_type);
1718 } else if (!src_type.floating && sz_a < blend_type.width) {
1719 LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
1720 LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
1721 chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
1722 }
1723
1724 /* Insert bits */
1725 chans[j] = LLVMBuildShl(builder,
1726 chans[j],
1727 lp_build_const_int_vec(gallivm, src_type, sa),
1728 "");
1729
1730 sa += src_fmt->channel[j].size;
1731
1732 if (j == 0) {
1733 res = chans[j];
1734 } else {
1735 res = LLVMBuildOr(builder, res, chans[j], "");
1736 }
1737 }
1738
1739 assert (dst_type.width != 24);
1740
1741 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1742 }
1743 }
1744
1745
1746 /**
1747 * Convert alpha to same blend type as src
1748 */
1749 static void
1750 convert_alpha(struct gallivm_state *gallivm,
1751 struct lp_type row_type,
1752 struct lp_type alpha_type,
1753 const unsigned block_size,
1754 const unsigned block_height,
1755 const unsigned src_count,
1756 const unsigned dst_channels,
1757 const bool pad_inline,
1758 LLVMValueRef* src_alpha)
1759 {
1760 LLVMBuilderRef builder = gallivm->builder;
1761 unsigned i, j;
1762 unsigned length = row_type.length;
1763 row_type.length = alpha_type.length;
1764
1765 /* Twiddle the alpha to match pixels */
1766 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1767
1768 /*
1769 * TODO this should use single lp_build_conv call for
1770 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1771 */
1772 for (i = 0; i < block_height; ++i) {
1773 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1774 }
1775
1776 alpha_type = row_type;
1777 row_type.length = length;
1778
1779 /* If only one channel we can only need the single alpha value per pixel */
1780 if (src_count == 1 && dst_channels == 1) {
1781
1782 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1783 } else {
1784 /* If there are more srcs than rows then we need to split alpha up */
1785 if (src_count > block_height) {
1786 for (i = src_count; i > 0; --i) {
1787 unsigned pixels = block_size / src_count;
1788 unsigned idx = i - 1;
1789
1790 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1791 (idx * pixels) % 4, pixels);
1792 }
1793 }
1794
1795 /* If there is a src for each pixel broadcast the alpha across whole row */
1796 if (src_count == block_size) {
1797 for (i = 0; i < src_count; ++i) {
1798 src_alpha[i] = lp_build_broadcast(gallivm,
1799 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1800 }
1801 } else {
1802 unsigned pixels = block_size / src_count;
1803 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1804 unsigned alpha_span = 1;
1805 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1806
1807 /* Check if we need 2 src_alphas for our shuffles */
1808 if (pixels > alpha_type.length) {
1809 alpha_span = 2;
1810 }
1811
1812 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1813 for (j = 0; j < row_type.length; ++j) {
1814 if (j < pixels * channels) {
1815 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1816 } else {
1817 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1818 }
1819 }
1820
1821 for (i = 0; i < src_count; ++i) {
1822 unsigned idx1 = i, idx2 = i;
1823
1824 if (alpha_span > 1){
1825 idx1 *= alpha_span;
1826 idx2 = idx1 + 1;
1827 }
1828
1829 src_alpha[i] = LLVMBuildShuffleVector(builder,
1830 src_alpha[idx1],
1831 src_alpha[idx2],
1832 LLVMConstVector(shuffles, row_type.length),
1833 "");
1834 }
1835 }
1836 }
1837 }
1838
1839
1840 /**
1841 * Generates the blend function for unswizzled colour buffers
1842 * Also generates the read & write from colour buffer
1843 */
1844 static void
1845 generate_unswizzled_blend(struct gallivm_state *gallivm,
1846 unsigned rt,
1847 struct lp_fragment_shader_variant *variant,
1848 enum pipe_format out_format,
1849 unsigned int num_fs,
1850 struct lp_type fs_type,
1851 LLVMValueRef* fs_mask,
1852 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1853 LLVMValueRef context_ptr,
1854 LLVMValueRef color_ptr,
1855 LLVMValueRef stride,
1856 unsigned partial_mask,
1857 boolean do_branch)
1858 {
1859 const unsigned alpha_channel = 3;
1860 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1861 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1862 const unsigned block_size = block_width * block_height;
1863 const unsigned lp_integer_vector_width = 128;
1864
1865 LLVMBuilderRef builder = gallivm->builder;
1866 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1867 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1868 LLVMValueRef src_alpha[4 * 4];
1869 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1870 LLVMValueRef src_mask[4 * 4];
1871 LLVMValueRef src[4 * 4];
1872 LLVMValueRef src1[4 * 4];
1873 LLVMValueRef dst[4 * 4];
1874 LLVMValueRef blend_color;
1875 LLVMValueRef blend_alpha;
1876 LLVMValueRef i32_zero;
1877 LLVMValueRef check_mask;
1878 LLVMValueRef undef_src_val;
1879
1880 struct lp_build_mask_context mask_ctx;
1881 struct lp_type mask_type;
1882 struct lp_type blend_type;
1883 struct lp_type row_type;
1884 struct lp_type dst_type;
1885 struct lp_type ls_type;
1886
1887 unsigned char swizzle[TGSI_NUM_CHANNELS];
1888 unsigned vector_width;
1889 unsigned src_channels = TGSI_NUM_CHANNELS;
1890 unsigned dst_channels;
1891 unsigned dst_count;
1892 unsigned src_count;
1893 unsigned i, j;
1894
1895 const struct util_format_description* out_format_desc = util_format_description(out_format);
1896
1897 unsigned dst_alignment;
1898
1899 bool pad_inline = is_arithmetic_format(out_format_desc);
1900 bool has_alpha = false;
1901 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1902 util_blend_state_is_dual(&variant->key.blend, 0);
1903
1904 const boolean is_1d = variant->key.resource_1d;
1905 boolean twiddle_after_convert = FALSE;
1906 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1907 LLVMValueRef fpstate = 0;
1908
1909 /* Get type from output format */
1910 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1911 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1912
1913 /*
1914 * Technically this code should go into lp_build_smallfloat_to_float
1915 * and lp_build_float_to_smallfloat but due to the
1916 * http://llvm.org/bugs/show_bug.cgi?id=6393
1917 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1918 * So the ordering is important here and there shouldn't be any
1919 * llvm ir instrunctions in this function before
1920 * this, otherwise half-float format conversions won't work
1921 * (again due to llvm bug #6393).
1922 */
1923 if (have_smallfloat_format(dst_type, out_format)) {
1924 /* We need to make sure that denorms are ok for half float
1925 conversions */
1926 fpstate = lp_build_fpstate_get(gallivm);
1927 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1928 }
1929
1930 mask_type = lp_int32_vec4_type();
1931 mask_type.length = fs_type.length;
1932
1933 for (i = num_fs; i < num_fullblock_fs; i++) {
1934 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1935 }
1936
1937 /* Do not bother executing code when mask is empty.. */
1938 if (do_branch) {
1939 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1940
1941 for (i = 0; i < num_fullblock_fs; ++i) {
1942 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1943 }
1944
1945 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1946 lp_build_mask_check(&mask_ctx);
1947 }
1948
1949 partial_mask |= !variant->opaque;
1950 i32_zero = lp_build_const_int32(gallivm, 0);
1951
1952 undef_src_val = lp_build_undef(gallivm, fs_type);
1953
1954 row_type.length = fs_type.length;
1955 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1956
1957 /* Compute correct swizzle and count channels */
1958 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1959 dst_channels = 0;
1960
1961 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1962 /* Ensure channel is used */
1963 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1964 continue;
1965 }
1966
1967 /* Ensure not already written to (happens in case with GL_ALPHA) */
1968 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1969 continue;
1970 }
1971
1972 /* Ensure we havn't already found all channels */
1973 if (dst_channels >= out_format_desc->nr_channels) {
1974 continue;
1975 }
1976
1977 swizzle[out_format_desc->swizzle[i]] = i;
1978 ++dst_channels;
1979
1980 if (i == alpha_channel) {
1981 has_alpha = true;
1982 }
1983 }
1984
1985 if (format_expands_to_float_soa(out_format_desc)) {
1986 /*
1987 * the code above can't work for layout_other
1988 * for srgb it would sort of work but we short-circuit swizzles, etc.
1989 * as that is done as part of unpack / pack.
1990 */
1991 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1992 has_alpha = true;
1993 swizzle[0] = 0;
1994 swizzle[1] = 1;
1995 swizzle[2] = 2;
1996 swizzle[3] = 3;
1997 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1998 }
1999
2000 /* If 3 channels then pad to include alpha for 4 element transpose */
2001 if (dst_channels == 3) {
2002 assert (!has_alpha);
2003 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
2004 if (swizzle[i] > TGSI_NUM_CHANNELS)
2005 swizzle[i] = 3;
2006 }
2007 if (out_format_desc->nr_channels == 4) {
2008 dst_channels = 4;
2009 /*
2010 * We use alpha from the color conversion, not separate one.
2011 * We had to include it for transpose, hence it will get converted
2012 * too (albeit when doing transpose after conversion, that would
2013 * no longer be the case necessarily).
2014 * (It works only with 4 channel dsts, e.g. rgbx formats, because
2015 * otherwise we really have padding, not alpha, included.)
2016 */
2017 has_alpha = true;
2018 }
2019 }
2020
2021 /*
2022 * Load shader output
2023 */
2024 for (i = 0; i < num_fullblock_fs; ++i) {
2025 /* Always load alpha for use in blending */
2026 LLVMValueRef alpha;
2027 if (i < num_fs) {
2028 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
2029 }
2030 else {
2031 alpha = undef_src_val;
2032 }
2033
2034 /* Load each channel */
2035 for (j = 0; j < dst_channels; ++j) {
2036 assert(swizzle[j] < 4);
2037 if (i < num_fs) {
2038 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
2039 }
2040 else {
2041 fs_src[i][j] = undef_src_val;
2042 }
2043 }
2044
2045 /* If 3 channels then pad to include alpha for 4 element transpose */
2046 /*
2047 * XXX If we include that here maybe could actually use it instead of
2048 * separate alpha for blending?
2049 * (Difficult though we actually convert pad channels, not alpha.)
2050 */
2051 if (dst_channels == 3 && !has_alpha) {
2052 fs_src[i][3] = alpha;
2053 }
2054
2055 /* We split the row_mask and row_alpha as we want 128bit interleave */
2056 if (fs_type.length == 8) {
2057 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
2058 0, src_channels);
2059 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
2060 src_channels, src_channels);
2061
2062 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2063 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2064 src_channels, src_channels);
2065 } else {
2066 src_mask[i] = fs_mask[i];
2067 src_alpha[i] = alpha;
2068 }
2069 }
2070 if (dual_source_blend) {
2071 /* same as above except different src/dst, skip masks and comments... */
2072 for (i = 0; i < num_fullblock_fs; ++i) {
2073 LLVMValueRef alpha;
2074 if (i < num_fs) {
2075 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
2076 }
2077 else {
2078 alpha = undef_src_val;
2079 }
2080
2081 for (j = 0; j < dst_channels; ++j) {
2082 assert(swizzle[j] < 4);
2083 if (i < num_fs) {
2084 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
2085 }
2086 else {
2087 fs_src1[i][j] = undef_src_val;
2088 }
2089 }
2090 if (dst_channels == 3 && !has_alpha) {
2091 fs_src1[i][3] = alpha;
2092 }
2093 if (fs_type.length == 8) {
2094 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2095 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2096 src_channels, src_channels);
2097 } else {
2098 src1_alpha[i] = alpha;
2099 }
2100 }
2101 }
2102
2103 if (util_format_is_pure_integer(out_format)) {
2104 /*
2105 * In this case fs_type was really ints or uints disguised as floats,
2106 * fix that up now.
2107 */
2108 fs_type.floating = 0;
2109 fs_type.sign = dst_type.sign;
2110 for (i = 0; i < num_fullblock_fs; ++i) {
2111 for (j = 0; j < dst_channels; ++j) {
2112 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2113 lp_build_vec_type(gallivm, fs_type), "");
2114 }
2115 if (dst_channels == 3 && !has_alpha) {
2116 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2117 lp_build_vec_type(gallivm, fs_type), "");
2118 }
2119 }
2120 }
2121
2122 /*
2123 * We actually should generally do conversion first (for non-1d cases)
2124 * when the blend format is 8 or 16 bits. The reason is obvious,
2125 * there's 2 or 4 times less vectors to deal with for the interleave...
2126 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2127 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2128 * unpack only with 128bit vectors).
2129 * Note: for 16bit sizes really need matching pack conversion code
2130 */
2131 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2132 twiddle_after_convert = TRUE;
2133 }
2134
2135 /*
2136 * Pixel twiddle from fragment shader order to memory order
2137 */
2138 if (!twiddle_after_convert) {
2139 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2140 dst_channels, fs_src, src, pad_inline);
2141 if (dual_source_blend) {
2142 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2143 fs_src1, src1, pad_inline);
2144 }
2145 } else {
2146 src_count = num_fullblock_fs * dst_channels;
2147 /*
2148 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2149 * (AVX) turn out the same later when untwiddling/transpose (albeit
2150 * for true AVX2 path untwiddle needs to be different).
2151 * For now just order by colors first (so we can use unpack later).
2152 */
2153 for (j = 0; j < num_fullblock_fs; j++) {
2154 for (i = 0; i < dst_channels; i++) {
2155 src[i*num_fullblock_fs + j] = fs_src[j][i];
2156 if (dual_source_blend) {
2157 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2158 }
2159 }
2160 }
2161 }
2162
2163 src_channels = dst_channels < 3 ? dst_channels : 4;
2164 if (src_count != num_fullblock_fs * src_channels) {
2165 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2166 row_type.length /= ds;
2167 fs_type.length = row_type.length;
2168 }
2169
2170 blend_type = row_type;
2171 mask_type.length = 4;
2172
2173 /* Convert src to row_type */
2174 if (dual_source_blend) {
2175 struct lp_type old_row_type = row_type;
2176 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2177 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2178 }
2179 else {
2180 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2181 }
2182
2183 /* If the rows are not an SSE vector, combine them to become SSE size! */
2184 if ((row_type.width * row_type.length) % 128) {
2185 unsigned bits = row_type.width * row_type.length;
2186 unsigned combined;
2187
2188 assert(src_count >= (vector_width / bits));
2189
2190 dst_count = src_count / (vector_width / bits);
2191
2192 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2193 if (dual_source_blend) {
2194 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2195 }
2196
2197 row_type.length *= combined;
2198 src_count /= combined;
2199
2200 bits = row_type.width * row_type.length;
2201 assert(bits == 128 || bits == 256);
2202 }
2203
2204 if (twiddle_after_convert) {
2205 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2206 if (dual_source_blend) {
2207 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2208 }
2209 }
2210
2211 /*
2212 * Blend Colour conversion
2213 */
2214 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2215 blend_color = LLVMBuildPointerCast(builder, blend_color,
2216 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2217 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2218 &i32_zero, 1, ""), "");
2219
2220 /* Convert */
2221 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2222
2223 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2224 /*
2225 * since blending is done with floats, there was no conversion.
2226 * However, the rules according to fixed point renderbuffers still
2227 * apply, that is we must clamp inputs to 0.0/1.0.
2228 * (This would apply to separate alpha conversion too but we currently
2229 * force has_alpha to be true.)
2230 * TODO: should skip this with "fake" blend, since post-blend conversion
2231 * will clamp anyway.
2232 * TODO: could also skip this if fragment color clamping is enabled. We
2233 * don't support it natively so it gets baked into the shader however, so
2234 * can't really tell here.
2235 */
2236 struct lp_build_context f32_bld;
2237 assert(row_type.floating);
2238 lp_build_context_init(&f32_bld, gallivm, row_type);
2239 for (i = 0; i < src_count; i++) {
2240 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2241 }
2242 if (dual_source_blend) {
2243 for (i = 0; i < src_count; i++) {
2244 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2245 }
2246 }
2247 /* probably can't be different than row_type but better safe than sorry... */
2248 lp_build_context_init(&f32_bld, gallivm, blend_type);
2249 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2250 }
2251
2252 /* Extract alpha */
2253 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2254
2255 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2256 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2257 if (pad_inline) {
2258 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2259 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2260 } else {
2261 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2262 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2263 }
2264
2265 /*
2266 * Mask conversion
2267 */
2268 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2269
2270 if (src_count < block_height) {
2271 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2272 } else if (src_count > block_height) {
2273 for (i = src_count; i > 0; --i) {
2274 unsigned pixels = block_size / src_count;
2275 unsigned idx = i - 1;
2276
2277 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2278 (idx * pixels) % 4, pixels);
2279 }
2280 }
2281
2282 assert(mask_type.width == 32);
2283
2284 for (i = 0; i < src_count; ++i) {
2285 unsigned pixels = block_size / src_count;
2286 unsigned pixel_width = row_type.width * dst_channels;
2287
2288 if (pixel_width == 24) {
2289 mask_type.width = 8;
2290 mask_type.length = vector_width / mask_type.width;
2291 } else {
2292 mask_type.length = pixels;
2293 mask_type.width = row_type.width * dst_channels;
2294
2295 /*
2296 * If mask_type width is smaller than 32bit, this doesn't quite
2297 * generate the most efficient code (could use some pack).
2298 */
2299 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2300 lp_build_int_vec_type(gallivm, mask_type), "");
2301
2302 mask_type.length *= dst_channels;
2303 mask_type.width /= dst_channels;
2304 }
2305
2306 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2307 lp_build_int_vec_type(gallivm, mask_type), "");
2308 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2309 }
2310
2311 /*
2312 * Alpha conversion
2313 */
2314 if (!has_alpha) {
2315 struct lp_type alpha_type = fs_type;
2316 alpha_type.length = 4;
2317 convert_alpha(gallivm, row_type, alpha_type,
2318 block_size, block_height,
2319 src_count, dst_channels,
2320 pad_inline, src_alpha);
2321 if (dual_source_blend) {
2322 convert_alpha(gallivm, row_type, alpha_type,
2323 block_size, block_height,
2324 src_count, dst_channels,
2325 pad_inline, src1_alpha);
2326 }
2327 }
2328
2329
2330 /*
2331 * Load dst from memory
2332 */
2333 if (src_count < block_height) {
2334 dst_count = block_height;
2335 } else {
2336 dst_count = src_count;
2337 }
2338
2339 dst_type.length *= block_size / dst_count;
2340
2341 if (format_expands_to_float_soa(out_format_desc)) {
2342 /*
2343 * we need multiple values at once for the conversion, so can as well
2344 * load them vectorized here too instead of concatenating later.
2345 * (Still need concatenation later for 8-wide vectors).
2346 */
2347 dst_count = block_height;
2348 dst_type.length = block_width;
2349 }
2350
2351 /*
2352 * Compute the alignment of the destination pointer in bytes
2353 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2354 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2355 * 1d tex but can't distinguish here) so need to stick with per-pixel
2356 * alignment in this case.
2357 */
2358 if (is_1d) {
2359 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2360 }
2361 else {
2362 dst_alignment = dst_type.length * dst_type.width / 8;
2363 }
2364 /* Force power-of-two alignment by extracting only the least-significant-bit */
2365 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2366 /*
2367 * Resource base and stride pointers are aligned to 16 bytes, so that's
2368 * the maximum alignment we can guarantee
2369 */
2370 dst_alignment = MIN2(16, dst_alignment);
2371
2372 ls_type = dst_type;
2373
2374 if (dst_count > src_count) {
2375 if ((dst_type.width == 8 || dst_type.width == 16) &&
2376 util_is_power_of_two_or_zero(dst_type.length) &&
2377 dst_type.length * dst_type.width < 128) {
2378 /*
2379 * Never try to load values as 4xi8 which we will then
2380 * concatenate to larger vectors. This gives llvm a real
2381 * headache (the problem is the type legalizer (?) will
2382 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2383 * then the shuffles to concatenate are more or less impossible
2384 * - llvm is easily capable of generating a sequence of 32
2385 * pextrb/pinsrb instructions for that. Albeit it appears to
2386 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2387 * width to avoid the trouble (16bit seems not as bad, llvm
2388 * probably recognizes the load+shuffle as only one shuffle
2389 * is necessary, but we can do just the same anyway).
2390 */
2391 ls_type.length = dst_type.length * dst_type.width / 32;
2392 ls_type.width = 32;
2393 }
2394 }
2395
2396 if (is_1d) {
2397 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2398 dst, ls_type, dst_count / 4, dst_alignment);
2399 for (i = dst_count / 4; i < dst_count; i++) {
2400 dst[i] = lp_build_undef(gallivm, ls_type);
2401 }
2402
2403 }
2404 else {
2405 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2406 dst, ls_type, dst_count, dst_alignment);
2407 }
2408
2409
2410 /*
2411 * Convert from dst/output format to src/blending format.
2412 *
2413 * This is necessary as we can only read 1 row from memory at a time,
2414 * so the minimum dst_count will ever be at this point is 4.
2415 *
2416 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2417 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2418 * on all 16 pixels in that single vector at once.
2419 */
2420 if (dst_count > src_count) {
2421 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2422 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2423 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2424 for (i = 0; i < dst_count; i++) {
2425 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2426 }
2427 }
2428
2429 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2430
2431 if (ls_type.length != dst_type.length) {
2432 struct lp_type tmp_type = dst_type;
2433 tmp_type.length = dst_type.length * 4 / src_count;
2434 for (i = 0; i < src_count; i++) {
2435 dst[i] = LLVMBuildBitCast(builder, dst[i],
2436 lp_build_vec_type(gallivm, tmp_type), "");
2437 }
2438 }
2439 }
2440
2441 /*
2442 * Blending
2443 */
2444 /* XXX this is broken for RGB8 formats -
2445 * they get expanded from 12 to 16 elements (to include alpha)
2446 * by convert_to_blend_type then reduced to 15 instead of 12
2447 * by convert_from_blend_type (a simple fix though breaks A8...).
2448 * R16G16B16 also crashes differently however something going wrong
2449 * inside llvm handling npot vector sizes seemingly.
2450 * It seems some cleanup could be done here (like skipping conversion/blend
2451 * when not needed).
2452 */
2453 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2454 row_type, dst, src_count);
2455
2456 /*
2457 * FIXME: Really should get logic ops / masks out of generic blend / row
2458 * format. Logic ops will definitely not work on the blend float format
2459 * used for SRGB here and I think OpenGL expects this to work as expected
2460 * (that is incoming values converted to srgb then logic op applied).
2461 */
2462 for (i = 0; i < src_count; ++i) {
2463 dst[i] = lp_build_blend_aos(gallivm,
2464 &variant->key.blend,
2465 out_format,
2466 row_type,
2467 rt,
2468 src[i],
2469 has_alpha ? NULL : src_alpha[i],
2470 src1[i],
2471 has_alpha ? NULL : src1_alpha[i],
2472 dst[i],
2473 partial_mask ? src_mask[i] : NULL,
2474 blend_color,
2475 has_alpha ? NULL : blend_alpha,
2476 swizzle,
2477 pad_inline ? 4 : dst_channels);
2478 }
2479
2480 convert_from_blend_type(gallivm, block_size, out_format_desc,
2481 row_type, dst_type, dst, src_count);
2482
2483 /* Split the blend rows back to memory rows */
2484 if (dst_count > src_count) {
2485 row_type.length = dst_type.length * (dst_count / src_count);
2486
2487 if (src_count == 1) {
2488 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2489 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2490
2491 row_type.length /= 2;
2492 src_count *= 2;
2493 }
2494
2495 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2496 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2497 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2498 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2499
2500 row_type.length /= 2;
2501 src_count *= 2;
2502 }
2503
2504 /*
2505 * Store blend result to memory
2506 */
2507 if (is_1d) {
2508 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2509 dst, dst_type, dst_count / 4, dst_alignment);
2510 }
2511 else {
2512 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2513 dst, dst_type, dst_count, dst_alignment);
2514 }
2515
2516 if (have_smallfloat_format(dst_type, out_format)) {
2517 lp_build_fpstate_set(gallivm, fpstate);
2518 }
2519
2520 if (do_branch) {
2521 lp_build_mask_end(&mask_ctx);
2522 }
2523 }
2524
2525
2526 /**
2527 * Generate the runtime callable function for the whole fragment pipeline.
2528 * Note that the function which we generate operates on a block of 16
2529 * pixels at at time. The block contains 2x2 quads. Each quad contains
2530 * 2x2 pixels.
2531 */
2532 static void
2533 generate_fragment(struct llvmpipe_context *lp,
2534 struct lp_fragment_shader *shader,
2535 struct lp_fragment_shader_variant *variant,
2536 unsigned partial_mask)
2537 {
2538 struct gallivm_state *gallivm = variant->gallivm;
2539 struct lp_fragment_shader_variant_key *key = &variant->key;
2540 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2541 char func_name[64];
2542 struct lp_type fs_type;
2543 struct lp_type blend_type;
2544 LLVMTypeRef fs_elem_type;
2545 LLVMTypeRef blend_vec_type;
2546 LLVMTypeRef arg_types[15];
2547 LLVMTypeRef func_type;
2548 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2549 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2550 LLVMValueRef context_ptr;
2551 LLVMValueRef x;
2552 LLVMValueRef y;
2553 LLVMValueRef a0_ptr;
2554 LLVMValueRef dadx_ptr;
2555 LLVMValueRef dady_ptr;
2556 LLVMValueRef color_ptr_ptr;
2557 LLVMValueRef stride_ptr;
2558 LLVMValueRef color_sample_stride_ptr;
2559 LLVMValueRef depth_ptr;
2560 LLVMValueRef depth_stride;
2561 LLVMValueRef depth_sample_stride;
2562 LLVMValueRef mask_input;
2563 LLVMValueRef thread_data_ptr;
2564 LLVMBasicBlockRef block;
2565 LLVMBuilderRef builder;
2566 struct lp_build_sampler_soa *sampler;
2567 struct lp_build_image_soa *image;
2568 struct lp_build_interp_soa_context interp;
2569 LLVMValueRef fs_mask[16 / 4];
2570 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2571 LLVMValueRef function;
2572 LLVMValueRef facing;
2573 unsigned num_fs;
2574 unsigned i;
2575 unsigned chan;
2576 unsigned cbuf;
2577 boolean cbuf0_write_all;
2578 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2579 util_blend_state_is_dual(&key->blend, 0);
2580
2581 assert(lp_native_vector_width / 32 >= 4);
2582
2583 /* Adjust color input interpolation according to flatshade state:
2584 */
2585 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2586 for (i = 0; i < shader->info.base.num_inputs; i++) {
2587 if (inputs[i].interp == LP_INTERP_COLOR) {
2588 if (key->flatshade)
2589 inputs[i].interp = LP_INTERP_CONSTANT;
2590 else
2591 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2592 }
2593 }
2594
2595 /* check if writes to cbuf[0] are to be copied to all cbufs */
2596 cbuf0_write_all =
2597 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2598
2599 /* TODO: actually pick these based on the fs and color buffer
2600 * characteristics. */
2601
2602 memset(&fs_type, 0, sizeof fs_type);
2603 fs_type.floating = TRUE; /* floating point values */
2604 fs_type.sign = TRUE; /* values are signed */
2605 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2606 fs_type.width = 32; /* 32-bit float */
2607 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2608
2609 memset(&blend_type, 0, sizeof blend_type);
2610 blend_type.floating = FALSE; /* values are integers */
2611 blend_type.sign = FALSE; /* values are unsigned */
2612 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2613 blend_type.width = 8; /* 8-bit ubyte values */
2614 blend_type.length = 16; /* 16 elements per vector */
2615
2616 /*
2617 * Generate the function prototype. Any change here must be reflected in
2618 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2619 */
2620
2621 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2622
2623 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2624
2625 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2626 shader->no, variant->no, partial_mask ? "partial" : "whole");
2627
2628 arg_types[0] = variant->jit_context_ptr_type; /* context */
2629 arg_types[1] = int32_type; /* x */
2630 arg_types[2] = int32_type; /* y */
2631 arg_types[3] = int32_type; /* facing */
2632 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2633 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2634 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2635 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2636 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2637 arg_types[9] = LLVMInt64TypeInContext(gallivm->context); /* mask_input */
2638 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2639 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2640 arg_types[12] = int32_type; /* depth_stride */
2641 arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */
2642 arg_types[14] = int32_type; /* depth sample stride */
2643
2644 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2645 arg_types, ARRAY_SIZE(arg_types), 0);
2646
2647 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2648 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2649
2650 variant->function[partial_mask] = function;
2651
2652 /* XXX: need to propagate noalias down into color param now we are
2653 * passing a pointer-to-pointer?
2654 */
2655 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2656 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2657 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2658
2659 context_ptr = LLVMGetParam(function, 0);
2660 x = LLVMGetParam(function, 1);
2661 y = LLVMGetParam(function, 2);
2662 facing = LLVMGetParam(function, 3);
2663 a0_ptr = LLVMGetParam(function, 4);
2664 dadx_ptr = LLVMGetParam(function, 5);
2665 dady_ptr = LLVMGetParam(function, 6);
2666 color_ptr_ptr = LLVMGetParam(function, 7);
2667 depth_ptr = LLVMGetParam(function, 8);
2668 mask_input = LLVMGetParam(function, 9);
2669 thread_data_ptr = LLVMGetParam(function, 10);
2670 stride_ptr = LLVMGetParam(function, 11);
2671 depth_stride = LLVMGetParam(function, 12);
2672 color_sample_stride_ptr = LLVMGetParam(function, 13);
2673 depth_sample_stride = LLVMGetParam(function, 14);
2674
2675 lp_build_name(context_ptr, "context");
2676 lp_build_name(x, "x");
2677 lp_build_name(y, "y");
2678 lp_build_name(a0_ptr, "a0");
2679 lp_build_name(dadx_ptr, "dadx");
2680 lp_build_name(dady_ptr, "dady");
2681 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2682 lp_build_name(depth_ptr, "depth");
2683 lp_build_name(mask_input, "mask_input");
2684 lp_build_name(thread_data_ptr, "thread_data");
2685 lp_build_name(stride_ptr, "stride_ptr");
2686 lp_build_name(depth_stride, "depth_stride");
2687 lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
2688 lp_build_name(depth_sample_stride, "depth_sample_stride");
2689
2690 /*
2691 * Function body
2692 */
2693
2694 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2695 builder = gallivm->builder;
2696 assert(builder);
2697 LLVMPositionBuilderAtEnd(builder, block);
2698
2699 /*
2700 * Must not count ps invocations if there's a null shader.
2701 * (It would be ok to count with null shader if there's d/s tests,
2702 * but only if there's d/s buffers too, which is different
2703 * to implicit rasterization disable which must not depend
2704 * on the d/s buffers.)
2705 * Could use popcount on mask, but pixel accuracy is not required.
2706 * Could disable if there's no stats query, but maybe not worth it.
2707 */
2708 if (shader->info.base.num_instructions > 1) {
2709 LLVMValueRef invocs, val;
2710 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2711 val = LLVMBuildLoad(builder, invocs, "");
2712 val = LLVMBuildAdd(builder, val,
2713 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2714 "invoc_count");
2715 LLVMBuildStore(builder, val, invocs);
2716 }
2717
2718 /* code generated texture sampling */
2719 sampler = lp_llvm_sampler_soa_create(key->samplers);
2720 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2721
2722 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2723 /* for 1d resources only run "upper half" of stamp */
2724 if (key->resource_1d)
2725 num_fs /= 2;
2726
2727 {
2728 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2729 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2730 LLVMValueRef num_loop_samp = lp_build_const_int32(gallivm, num_fs * key->coverage_samples);
2731 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2732 num_loop_samp, "mask_store");
2733 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2734 boolean pixel_center_integer =
2735 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2736
2737 /*
2738 * The shader input interpolation info is not explicitely baked in the
2739 * shader key, but everything it derives from (TGSI, and flatshade) is
2740 * already included in the shader key.
2741 */
2742 lp_build_interp_soa_init(&interp,
2743 gallivm,
2744 shader->info.base.num_inputs,
2745 inputs,
2746 pixel_center_integer,
2747 1, NULL, num_loop,
2748 key->depth_clamp,
2749 builder, fs_type,
2750 a0_ptr, dadx_ptr, dady_ptr,
2751 x, y);
2752
2753 for (i = 0; i < num_fs; i++) {
2754 if (key->multisample) {
2755 LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), "");
2756
2757 /*
2758 * For multisampling, extract the per-sample mask from the incoming 64-bit mask,
2759 * store to the per sample mask storage. Or all of them together to generate
2760 * the fragment shader mask. (sample shading TODO).
2761 * Take the incoming state coverage mask into account.
2762 */
2763 for (unsigned s = 0; s < key->coverage_samples; s++) {
2764 LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs));
2765 LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store,
2766 &sindexi, 1, "sample_mask_ptr");
2767 LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type,
2768 i*fs_type.length/4, s, mask_input);
2769
2770 LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), "");
2771 LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), "");
2772 smask_bit = LLVMBuildSExt(builder, cmp, int32_type, "");
2773 smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit);
2774
2775 s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
2776 LLVMBuildStore(builder, s_mask, sample_mask_ptr);
2777 }
2778 } else {
2779 LLVMValueRef mask;
2780 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2781 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2782 &indexi, 1, "mask_ptr");
2783
2784 if (partial_mask) {
2785 mask = generate_quad_mask(gallivm, fs_type,
2786 i*fs_type.length/4, 0, mask_input);
2787 }
2788 else {
2789 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2790 }
2791 LLVMBuildStore(builder, mask, mask_ptr);
2792 }
2793 }
2794
2795 generate_fs_loop(gallivm,
2796 shader, key,
2797 builder,
2798 fs_type,
2799 context_ptr,
2800 num_loop,
2801 &interp,
2802 sampler,
2803 image,
2804 mask_store, /* output */
2805 color_store,
2806 depth_ptr,
2807 depth_stride,
2808 depth_sample_stride,
2809 facing,
2810 thread_data_ptr);
2811
2812 for (i = 0; i < num_fs; i++) {
2813 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2814 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2815 &indexi, 1, "");
2816 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2817 /* This is fucked up need to reorganize things */
2818 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2819 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2820 ptr = LLVMBuildGEP(builder,
2821 color_store[cbuf * !cbuf0_write_all][chan],
2822 &indexi, 1, "");
2823 fs_out_color[cbuf][chan][i] = ptr;
2824 }
2825 }
2826 if (dual_source_blend) {
2827 /* only support one dual source blend target hence always use output 1 */
2828 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2829 ptr = LLVMBuildGEP(builder,
2830 color_store[1][chan],
2831 &indexi, 1, "");
2832 fs_out_color[1][chan][i] = ptr;
2833 }
2834 }
2835 }
2836 }
2837
2838 sampler->destroy(sampler);
2839 image->destroy(image);
2840 /* Loop over color outputs / color buffers to do blending.
2841 */
2842 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2843 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2844 LLVMValueRef color_ptr;
2845 LLVMValueRef stride;
2846 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2847
2848 boolean do_branch = ((key->depth.enabled
2849 || key->stencil[0].enabled
2850 || key->alpha.enabled)
2851 && !shader->info.base.uses_kill);
2852
2853 color_ptr = LLVMBuildLoad(builder,
2854 LLVMBuildGEP(builder, color_ptr_ptr,
2855 &index, 1, ""),
2856 "");
2857
2858 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2859
2860 stride = LLVMBuildLoad(builder,
2861 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2862 "");
2863
2864 generate_unswizzled_blend(gallivm, cbuf, variant,
2865 key->cbuf_format[cbuf],
2866 num_fs, fs_type, fs_mask, fs_out_color,
2867 context_ptr, color_ptr, stride,
2868 partial_mask, do_branch);
2869 }
2870 }
2871
2872 LLVMBuildRetVoid(builder);
2873
2874 gallivm_verify_function(gallivm, function);
2875 }
2876
2877
2878 static void
2879 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
2880 {
2881 unsigned i;
2882
2883 debug_printf("fs variant %p:\n", (void *) key);
2884
2885 if (key->flatshade) {
2886 debug_printf("flatshade = 1\n");
2887 }
2888 if (key->multisample) {
2889 debug_printf("multisample = 1\n");
2890 debug_printf("coverage samples = %d\n", key->coverage_samples);
2891 }
2892 for (i = 0; i < key->nr_cbufs; ++i) {
2893 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2894 debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
2895 }
2896 if (key->depth.enabled || key->stencil[0].enabled) {
2897 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2898 debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
2899 }
2900 if (key->depth.enabled) {
2901 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2902 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2903 }
2904
2905 for (i = 0; i < 2; ++i) {
2906 if (key->stencil[i].enabled) {
2907 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2908 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2909 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2910 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2911 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2912 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2913 }
2914 }
2915
2916 if (key->alpha.enabled) {
2917 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2918 }
2919
2920 if (key->occlusion_count) {
2921 debug_printf("occlusion_count = 1\n");
2922 }
2923
2924 if (key->blend.logicop_enable) {
2925 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2926 }
2927 else if (key->blend.rt[0].blend_enable) {
2928 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2929 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2930 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2931 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2932 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2933 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2934 }
2935 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2936 if (key->blend.alpha_to_coverage) {
2937 debug_printf("blend.alpha_to_coverage is enabled\n");
2938 }
2939 for (i = 0; i < key->nr_samplers; ++i) {
2940 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
2941 debug_printf("sampler[%u] = \n", i);
2942 debug_printf(" .wrap = %s %s %s\n",
2943 util_str_tex_wrap(sampler->wrap_s, TRUE),
2944 util_str_tex_wrap(sampler->wrap_t, TRUE),
2945 util_str_tex_wrap(sampler->wrap_r, TRUE));
2946 debug_printf(" .min_img_filter = %s\n",
2947 util_str_tex_filter(sampler->min_img_filter, TRUE));
2948 debug_printf(" .min_mip_filter = %s\n",
2949 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2950 debug_printf(" .mag_img_filter = %s\n",
2951 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2952 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2953 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2954 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2955 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2956 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2957 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2958 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2959 }
2960 for (i = 0; i < key->nr_sampler_views; ++i) {
2961 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
2962 debug_printf("texture[%u] = \n", i);
2963 debug_printf(" .format = %s\n",
2964 util_format_name(texture->format));
2965 debug_printf(" .target = %s\n",
2966 util_str_tex_target(texture->target, TRUE));
2967 debug_printf(" .level_zero_only = %u\n",
2968 texture->level_zero_only);
2969 debug_printf(" .pot = %u %u %u\n",
2970 texture->pot_width,
2971 texture->pot_height,
2972 texture->pot_depth);
2973 }
2974 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
2975 for (i = 0; i < key->nr_images; ++i) {
2976 const struct lp_static_texture_state *image = &images[i].image_state;
2977 debug_printf("image[%u] = \n", i);
2978 debug_printf(" .format = %s\n",
2979 util_format_name(image->format));
2980 debug_printf(" .target = %s\n",
2981 util_str_tex_target(image->target, TRUE));
2982 debug_printf(" .level_zero_only = %u\n",
2983 image->level_zero_only);
2984 debug_printf(" .pot = %u %u %u\n",
2985 image->pot_width,
2986 image->pot_height,
2987 image->pot_depth);
2988 }
2989 }
2990
2991
2992 void
2993 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
2994 {
2995 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2996 variant->shader->no, variant->no);
2997 if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
2998 tgsi_dump(variant->shader->base.tokens, 0);
2999 else
3000 nir_print_shader(variant->shader->base.ir.nir, stderr);
3001 dump_fs_variant_key(&variant->key);
3002 debug_printf("variant->opaque = %u\n", variant->opaque);
3003 debug_printf("\n");
3004 }
3005
3006
3007 /**
3008 * Generate a new fragment shader variant from the shader code and
3009 * other state indicated by the key.
3010 */
3011 static struct lp_fragment_shader_variant *
3012 generate_variant(struct llvmpipe_context *lp,
3013 struct lp_fragment_shader *shader,
3014 const struct lp_fragment_shader_variant_key *key)
3015 {
3016 struct lp_fragment_shader_variant *variant;
3017 const struct util_format_description *cbuf0_format_desc = NULL;
3018 boolean fullcolormask;
3019 char module_name[64];
3020
3021 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
3022 if (!variant)
3023 return NULL;
3024
3025 memset(variant, 0, sizeof(*variant));
3026 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
3027 shader->no, shader->variants_created);
3028
3029 variant->gallivm = gallivm_create(module_name, lp->context);
3030 if (!variant->gallivm) {
3031 FREE(variant);
3032 return NULL;
3033 }
3034
3035 variant->shader = shader;
3036 variant->list_item_global.base = variant;
3037 variant->list_item_local.base = variant;
3038 variant->no = shader->variants_created++;
3039
3040 memcpy(&variant->key, key, shader->variant_key_size);
3041
3042 /*
3043 * Determine whether we are touching all channels in the color buffer.
3044 */
3045 fullcolormask = FALSE;
3046 if (key->nr_cbufs == 1) {
3047 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
3048 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
3049 }
3050
3051 variant->opaque =
3052 !key->blend.logicop_enable &&
3053 !key->blend.rt[0].blend_enable &&
3054 fullcolormask &&
3055 !key->stencil[0].enabled &&
3056 !key->alpha.enabled &&
3057 !key->blend.alpha_to_coverage &&
3058 !key->depth.enabled &&
3059 !shader->info.base.uses_kill &&
3060 !shader->info.base.writes_samplemask
3061 ? TRUE : FALSE;
3062
3063 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3064 lp_debug_fs_variant(variant);
3065 }
3066
3067 lp_jit_init_types(variant);
3068
3069 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
3070 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
3071
3072 if (variant->jit_function[RAST_WHOLE] == NULL) {
3073 if (variant->opaque) {
3074 /* Specialized shader, which doesn't need to read the color buffer. */
3075 generate_fragment(lp, shader, variant, RAST_WHOLE);
3076 }
3077 }
3078
3079 /*
3080 * Compile everything
3081 */
3082
3083 gallivm_compile_module(variant->gallivm);
3084
3085 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
3086
3087 if (variant->function[RAST_EDGE_TEST]) {
3088 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
3089 gallivm_jit_function(variant->gallivm,
3090 variant->function[RAST_EDGE_TEST]);
3091 }
3092
3093 if (variant->function[RAST_WHOLE]) {
3094 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
3095 gallivm_jit_function(variant->gallivm,
3096 variant->function[RAST_WHOLE]);
3097 } else if (!variant->jit_function[RAST_WHOLE]) {
3098 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
3099 }
3100
3101 gallivm_free_ir(variant->gallivm);
3102
3103 return variant;
3104 }
3105
3106
3107 static void *
3108 llvmpipe_create_fs_state(struct pipe_context *pipe,
3109 const struct pipe_shader_state *templ)
3110 {
3111 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3112 struct lp_fragment_shader *shader;
3113 int nr_samplers;
3114 int nr_sampler_views;
3115 int nr_images;
3116 int i;
3117
3118 shader = CALLOC_STRUCT(lp_fragment_shader);
3119 if (!shader)
3120 return NULL;
3121
3122 shader->no = fs_no++;
3123 make_empty_list(&shader->variants);
3124
3125 shader->base.type = templ->type;
3126 if (templ->type == PIPE_SHADER_IR_TGSI) {
3127 /* get/save the summary info for this shader */
3128 lp_build_tgsi_info(templ->tokens, &shader->info);
3129
3130 /* we need to keep a local copy of the tokens */
3131 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3132 } else {
3133 shader->base.ir.nir = templ->ir.nir;
3134 nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3135 }
3136
3137 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3138 if (shader->draw_data == NULL) {
3139 FREE((void *) shader->base.tokens);
3140 FREE(shader);
3141 return NULL;
3142 }
3143
3144 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3145 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3146 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3147 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3148
3149 for (i = 0; i < shader->info.base.num_inputs; i++) {
3150 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3151 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
3152 shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
3153
3154 switch (shader->info.base.input_interpolate[i]) {
3155 case TGSI_INTERPOLATE_CONSTANT:
3156 shader->inputs[i].interp = LP_INTERP_CONSTANT;
3157 break;
3158 case TGSI_INTERPOLATE_LINEAR:
3159 shader->inputs[i].interp = LP_INTERP_LINEAR;
3160 break;
3161 case TGSI_INTERPOLATE_PERSPECTIVE:
3162 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3163 break;
3164 case TGSI_INTERPOLATE_COLOR:
3165 shader->inputs[i].interp = LP_INTERP_COLOR;
3166 break;
3167 default:
3168 assert(0);
3169 break;
3170 }
3171
3172 switch (shader->info.base.input_semantic_name[i]) {
3173 case TGSI_SEMANTIC_FACE:
3174 shader->inputs[i].interp = LP_INTERP_FACING;
3175 break;
3176 case TGSI_SEMANTIC_POSITION:
3177 /* Position was already emitted above
3178 */
3179 shader->inputs[i].interp = LP_INTERP_POSITION;
3180 shader->inputs[i].src_index = 0;
3181 continue;
3182 }
3183
3184 /* XXX this is a completely pointless index map... */
3185 shader->inputs[i].src_index = i+1;
3186 }
3187
3188 if (LP_DEBUG & DEBUG_TGSI) {
3189 unsigned attrib;
3190 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3191 shader->no, (void *) shader);
3192 tgsi_dump(templ->tokens, 0);
3193 debug_printf("usage masks:\n");
3194 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3195 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3196 debug_printf(" IN[%u].%s%s%s%s\n",
3197 attrib,
3198 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3199 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3200 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3201 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3202 }
3203 debug_printf("\n");
3204 }
3205
3206 return shader;
3207 }
3208
3209
3210 static void
3211 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3212 {
3213 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3214 struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3215 if (llvmpipe->fs == lp_fs)
3216 return;
3217
3218 draw_bind_fragment_shader(llvmpipe->draw,
3219 (lp_fs ? lp_fs->draw_data : NULL));
3220
3221 llvmpipe->fs = lp_fs;
3222
3223 llvmpipe->dirty |= LP_NEW_FS;
3224 }
3225
3226
3227 /**
3228 * Remove shader variant from two lists: the shader's variant list
3229 * and the context's variant list.
3230 */
3231 static void
3232 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3233 struct lp_fragment_shader_variant *variant)
3234 {
3235 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3236 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3237 "v total cached %u inst %u total inst %u\n",
3238 variant->shader->no, variant->no,
3239 variant->shader->variants_created,
3240 variant->shader->variants_cached,
3241 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3242 }
3243
3244 gallivm_destroy(variant->gallivm);
3245
3246 /* remove from shader's list */
3247 remove_from_list(&variant->list_item_local);
3248 variant->shader->variants_cached--;
3249
3250 /* remove from context's list */
3251 remove_from_list(&variant->list_item_global);
3252 lp->nr_fs_variants--;
3253 lp->nr_fs_instrs -= variant->nr_instrs;
3254
3255 FREE(variant);
3256 }
3257
3258
3259 static void
3260 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3261 {
3262 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3263 struct lp_fragment_shader *shader = fs;
3264 struct lp_fs_variant_list_item *li;
3265
3266 assert(fs != llvmpipe->fs);
3267
3268 /*
3269 * XXX: we need to flush the context until we have some sort of reference
3270 * counting in fragment shaders as they may still be binned
3271 * Flushing alone might not sufficient we need to wait on it too.
3272 */
3273 llvmpipe_finish(pipe, __FUNCTION__);
3274
3275 /* Delete all the variants */
3276 li = first_elem(&shader->variants);
3277 while(!at_end(&shader->variants, li)) {
3278 struct lp_fs_variant_list_item *next = next_elem(li);
3279 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3280 li = next;
3281 }
3282
3283 /* Delete draw module's data */
3284 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3285
3286 if (shader->base.ir.nir)
3287 ralloc_free(shader->base.ir.nir);
3288 assert(shader->variants_cached == 0);
3289 FREE((void *) shader->base.tokens);
3290 FREE(shader);
3291 }
3292
3293
3294
3295 static void
3296 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3297 enum pipe_shader_type shader, uint index,
3298 const struct pipe_constant_buffer *cb)
3299 {
3300 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3301 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3302
3303 assert(shader < PIPE_SHADER_TYPES);
3304 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3305
3306 /* note: reference counting */
3307 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3308
3309 if (constants) {
3310 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3311 debug_printf("Illegal set constant without bind flag\n");
3312 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3313 }
3314 }
3315
3316 if (shader == PIPE_SHADER_VERTEX ||
3317 shader == PIPE_SHADER_GEOMETRY ||
3318 shader == PIPE_SHADER_TESS_CTRL ||
3319 shader == PIPE_SHADER_TESS_EVAL) {
3320 /* Pass the constants to the 'draw' module */
3321 const unsigned size = cb ? cb->buffer_size : 0;
3322 const ubyte *data;
3323
3324 if (constants) {
3325 data = (ubyte *) llvmpipe_resource_data(constants);
3326 }
3327 else if (cb && cb->user_buffer) {
3328 data = (ubyte *) cb->user_buffer;
3329 }
3330 else {
3331 data = NULL;
3332 }
3333
3334 if (data)
3335 data += cb->buffer_offset;
3336
3337 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3338 index, data, size);
3339 }
3340 else if (shader == PIPE_SHADER_COMPUTE)
3341 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3342 else
3343 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3344
3345 if (cb && cb->user_buffer) {
3346 pipe_resource_reference(&constants, NULL);
3347 }
3348 }
3349
3350 static void
3351 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3352 enum pipe_shader_type shader, unsigned start_slot,
3353 unsigned count, const struct pipe_shader_buffer *buffers,
3354 unsigned writable_bitmask)
3355 {
3356 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3357 unsigned i, idx;
3358 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3359 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3360
3361 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3362
3363 if (shader == PIPE_SHADER_VERTEX ||
3364 shader == PIPE_SHADER_GEOMETRY ||
3365 shader == PIPE_SHADER_TESS_CTRL ||
3366 shader == PIPE_SHADER_TESS_EVAL) {
3367 const unsigned size = buffer ? buffer->buffer_size : 0;
3368 const ubyte *data = NULL;
3369 if (buffer && buffer->buffer)
3370 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3371 if (data)
3372 data += buffer->buffer_offset;
3373 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3374 i, data, size);
3375 } else if (shader == PIPE_SHADER_COMPUTE) {
3376 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3377 } else if (shader == PIPE_SHADER_FRAGMENT) {
3378 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3379 }
3380 }
3381 }
3382
3383 static void
3384 llvmpipe_set_shader_images(struct pipe_context *pipe,
3385 enum pipe_shader_type shader, unsigned start_slot,
3386 unsigned count, const struct pipe_image_view *images)
3387 {
3388 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3389 unsigned i, idx;
3390
3391 draw_flush(llvmpipe->draw);
3392 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3393 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3394
3395 util_copy_image_view(&llvmpipe->images[shader][i], image);
3396 }
3397
3398 llvmpipe->num_images[shader] = start_slot + count;
3399 if (shader == PIPE_SHADER_VERTEX ||
3400 shader == PIPE_SHADER_GEOMETRY ||
3401 shader == PIPE_SHADER_TESS_CTRL ||
3402 shader == PIPE_SHADER_TESS_EVAL) {
3403 draw_set_images(llvmpipe->draw,
3404 shader,
3405 llvmpipe->images[shader],
3406 start_slot + count);
3407 } else if (shader == PIPE_SHADER_COMPUTE)
3408 llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
3409 else
3410 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3411 }
3412
3413 /**
3414 * Return the blend factor equivalent to a destination alpha of one.
3415 */
3416 static inline unsigned
3417 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3418 {
3419 switch(factor) {
3420 case PIPE_BLENDFACTOR_DST_ALPHA:
3421 return PIPE_BLENDFACTOR_ONE;
3422 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3423 return PIPE_BLENDFACTOR_ZERO;
3424 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3425 if (clamped_zero)
3426 return PIPE_BLENDFACTOR_ZERO;
3427 else
3428 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3429 }
3430
3431 return factor;
3432 }
3433
3434
3435 /**
3436 * We need to generate several variants of the fragment pipeline to match
3437 * all the combinations of the contributing state atoms.
3438 *
3439 * TODO: there is actually no reason to tie this to context state -- the
3440 * generated code could be cached globally in the screen.
3441 */
3442 static struct lp_fragment_shader_variant_key *
3443 make_variant_key(struct llvmpipe_context *lp,
3444 struct lp_fragment_shader *shader,
3445 char *store)
3446 {
3447 unsigned i;
3448 struct lp_fragment_shader_variant_key *key;
3449
3450 key = (struct lp_fragment_shader_variant_key *)store;
3451
3452 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3453
3454 if (lp->framebuffer.zsbuf) {
3455 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3456 const struct util_format_description *zsbuf_desc =
3457 util_format_description(zsbuf_format);
3458
3459 if (lp->depth_stencil->depth.enabled &&
3460 util_format_has_depth(zsbuf_desc)) {
3461 key->zsbuf_format = zsbuf_format;
3462 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3463 }
3464 if (lp->depth_stencil->stencil[0].enabled &&
3465 util_format_has_stencil(zsbuf_desc)) {
3466 key->zsbuf_format = zsbuf_format;
3467 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3468 }
3469 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3470 key->resource_1d = TRUE;
3471 }
3472 key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
3473 }
3474
3475 /*
3476 * Propagate the depth clamp setting from the rasterizer state.
3477 * depth_clip == 0 implies depth clamping is enabled.
3478 *
3479 * When clip_halfz is enabled, then always clamp the depth values.
3480 *
3481 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3482 * clamp is always active in d3d10, regardless if depth clip is
3483 * enabled or not).
3484 * (GL has an always-on [0,1] clamp on fs depth output instead
3485 * to ensure the depth values stay in range. Doesn't look like
3486 * we do that, though...)
3487 */
3488 if (lp->rasterizer->clip_halfz) {
3489 key->depth_clamp = 1;
3490 } else {
3491 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3492 }
3493
3494 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3495 if (!lp->framebuffer.nr_cbufs ||
3496 !lp->framebuffer.cbufs[0] ||
3497 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3498 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3499 }
3500 if(key->alpha.enabled)
3501 key->alpha.func = lp->depth_stencil->alpha.func;
3502 /* alpha.ref_value is passed in jit_context */
3503
3504 key->flatshade = lp->rasterizer->flatshade;
3505 key->multisample = lp->rasterizer->multisample;
3506 if (lp->active_occlusion_queries && !lp->queries_disabled) {
3507 key->occlusion_count = TRUE;
3508 }
3509
3510 if (lp->framebuffer.nr_cbufs) {
3511 memcpy(&key->blend, lp->blend, sizeof key->blend);
3512 }
3513
3514 key->coverage_samples = 1;
3515 if (key->multisample)
3516 key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
3517 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3518
3519 if (!key->blend.independent_blend_enable) {
3520 /* we always need independent blend otherwise the fixups below won't work */
3521 for (i = 1; i < key->nr_cbufs; i++) {
3522 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3523 }
3524 key->blend.independent_blend_enable = 1;
3525 }
3526
3527 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3528 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3529
3530 if (lp->framebuffer.cbufs[i]) {
3531 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3532 const struct util_format_description *format_desc;
3533
3534 key->cbuf_format[i] = format;
3535 key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
3536
3537 /*
3538 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3539 * mixing of 2d textures with height 1 and 1d textures, so make sure
3540 * we pick 1d if any cbuf or zsbuf is 1d.
3541 */
3542 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3543 key->resource_1d = TRUE;
3544 }
3545
3546 format_desc = util_format_description(format);
3547 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3548 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3549
3550 /*
3551 * Mask out color channels not present in the color buffer.
3552 */
3553 blend_rt->colormask &= util_format_colormask(format_desc);
3554
3555 /*
3556 * Disable blend for integer formats.
3557 */
3558 if (util_format_is_pure_integer(format)) {
3559 blend_rt->blend_enable = 0;
3560 }
3561
3562 /*
3563 * Our swizzled render tiles always have an alpha channel, but the
3564 * linear render target format often does not, so force here the dst
3565 * alpha to be one.
3566 *
3567 * This is not a mere optimization. Wrong results will be produced if
3568 * the dst alpha is used, the dst format does not have alpha, and the
3569 * previous rendering was not flushed from the swizzled to linear
3570 * buffer. For example, NonPowTwo DCT.
3571 *
3572 * TODO: This should be generalized to all channels for better
3573 * performance, but only alpha causes correctness issues.
3574 *
3575 * Also, force rgb/alpha func/factors match, to make AoS blending
3576 * easier.
3577 */
3578 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3579 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3580 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3581 boolean clamped_zero = !util_format_is_float(format) &&
3582 !util_format_is_snorm(format);
3583 blend_rt->rgb_src_factor =
3584 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3585 blend_rt->rgb_dst_factor =
3586 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3587 blend_rt->alpha_func = blend_rt->rgb_func;
3588 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3589 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3590 }
3591 }
3592 else {
3593 /* no color buffer for this fragment output */
3594 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3595 key->cbuf_nr_samples[i] = 0;
3596 blend_rt->colormask = 0x0;
3597 blend_rt->blend_enable = 0;
3598 }
3599 }
3600
3601 /* This value will be the same for all the variants of a given shader:
3602 */
3603 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3604
3605 struct lp_sampler_static_state *fs_sampler;
3606
3607 fs_sampler = key->samplers;
3608
3609 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3610
3611 for(i = 0; i < key->nr_samplers; ++i) {
3612 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3613 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3614 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3615 }
3616 }
3617
3618 /*
3619 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3620 * are dx10-style? Can't really have mixed opcodes, at least not
3621 * if we want to skip the holes here (without rescanning tgsi).
3622 */
3623 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3624 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3625 for(i = 0; i < key->nr_sampler_views; ++i) {
3626 /*
3627 * Note sview may exceed what's representable by file_mask.
3628 * This will still work, the only downside is that not actually
3629 * used views may be included in the shader key.
3630 */
3631 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3632 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3633 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3634 }
3635 }
3636 }
3637 else {
3638 key->nr_sampler_views = key->nr_samplers;
3639 for(i = 0; i < key->nr_sampler_views; ++i) {
3640 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3641 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3642 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3643 }
3644 }
3645 }
3646
3647 struct lp_image_static_state *lp_image;
3648 lp_image = lp_fs_variant_key_images(key);
3649 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3650 for (i = 0; i < key->nr_images; ++i) {
3651 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3652 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3653 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3654 }
3655 }
3656 return key;
3657 }
3658
3659
3660
3661 /**
3662 * Update fragment shader state. This is called just prior to drawing
3663 * something when some fragment-related state has changed.
3664 */
3665 void
3666 llvmpipe_update_fs(struct llvmpipe_context *lp)
3667 {
3668 struct lp_fragment_shader *shader = lp->fs;
3669 struct lp_fragment_shader_variant_key *key;
3670 struct lp_fragment_shader_variant *variant = NULL;
3671 struct lp_fs_variant_list_item *li;
3672 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3673
3674 key = make_variant_key(lp, shader, store);
3675
3676 /* Search the variants for one which matches the key */
3677 li = first_elem(&shader->variants);
3678 while(!at_end(&shader->variants, li)) {
3679 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3680 variant = li->base;
3681 break;
3682 }
3683 li = next_elem(li);
3684 }
3685
3686 if (variant) {
3687 /* Move this variant to the head of the list to implement LRU
3688 * deletion of shader's when we have too many.
3689 */
3690 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3691 }
3692 else {
3693 /* variant not found, create it now */
3694 int64_t t0, t1, dt;
3695 unsigned i;
3696 unsigned variants_to_cull;
3697
3698 if (LP_DEBUG & DEBUG_FS) {
3699 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3700 lp->nr_fs_variants,
3701 lp->nr_fs_instrs,
3702 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3703 }
3704
3705 /* First, check if we've exceeded the max number of shader variants.
3706 * If so, free 6.25% of them (the least recently used ones).
3707 */
3708 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3709
3710 if (variants_to_cull ||
3711 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3712 struct pipe_context *pipe = &lp->pipe;
3713
3714 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3715 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3716 "\t%u instrs,\t%u instrs/variant\n",
3717 shader->variants_cached,
3718 lp->nr_fs_variants, lp->nr_fs_instrs,
3719 lp->nr_fs_instrs / lp->nr_fs_variants);
3720 }
3721
3722 /*
3723 * XXX: we need to flush the context until we have some sort of
3724 * reference counting in fragment shaders as they may still be binned
3725 * Flushing alone might not be sufficient we need to wait on it too.
3726 */
3727 llvmpipe_finish(pipe, __FUNCTION__);
3728
3729 /*
3730 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3731 * number of shader variants (potentially all of them) could be
3732 * pending for destruction on flush.
3733 */
3734
3735 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3736 struct lp_fs_variant_list_item *item;
3737 if (is_empty_list(&lp->fs_variants_list)) {
3738 break;
3739 }
3740 item = last_elem(&lp->fs_variants_list);
3741 assert(item);
3742 assert(item->base);
3743 llvmpipe_remove_shader_variant(lp, item->base);
3744 }
3745 }
3746
3747 /*
3748 * Generate the new variant.
3749 */
3750 t0 = os_time_get();
3751 variant = generate_variant(lp, shader, key);
3752 t1 = os_time_get();
3753 dt = t1 - t0;
3754 LP_COUNT_ADD(llvm_compile_time, dt);
3755 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3756
3757 /* Put the new variant into the list */
3758 if (variant) {
3759 insert_at_head(&shader->variants, &variant->list_item_local);
3760 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3761 lp->nr_fs_variants++;
3762 lp->nr_fs_instrs += variant->nr_instrs;
3763 shader->variants_cached++;
3764 }
3765 }
3766
3767 /* Bind this variant */
3768 lp_setup_set_fs_variant(lp->setup, variant);
3769 }
3770
3771
3772
3773
3774
3775 void
3776 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3777 {
3778 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3779 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3780 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3781
3782 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3783
3784 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3785 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3786 }
3787
3788