llvmpipe: handle early test property.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_bitarit.h"
88 #include "gallivm/lp_bld_pack.h"
89 #include "gallivm/lp_bld_format.h"
90 #include "gallivm/lp_bld_quad.h"
91
92 #include "lp_bld_alpha.h"
93 #include "lp_bld_blend.h"
94 #include "lp_bld_depth.h"
95 #include "lp_bld_interp.h"
96 #include "lp_context.h"
97 #include "lp_debug.h"
98 #include "lp_perf.h"
99 #include "lp_setup.h"
100 #include "lp_state.h"
101 #include "lp_tex_sample.h"
102 #include "lp_flush.h"
103 #include "lp_state_fs.h"
104 #include "lp_rast.h"
105
106
107 /** Fragment shader number (for debugging) */
108 static unsigned fs_no = 0;
109
110
111 /**
112 * Expand the relevant bits of mask_input to a n*4-dword mask for the
113 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
114 * quad mask vector to 0 or ~0.
115 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
116 * quad arguments with fs length 8.
117 *
118 * \param first_quad which quad(s) of the quad group to test, in [0,3]
119 * \param mask_input bitwise mask for the whole 4x4 stamp
120 */
121 static LLVMValueRef
122 generate_quad_mask(struct gallivm_state *gallivm,
123 struct lp_type fs_type,
124 unsigned first_quad,
125 LLVMValueRef mask_input) /* int32 */
126 {
127 LLVMBuilderRef builder = gallivm->builder;
128 struct lp_type mask_type;
129 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
130 LLVMValueRef bits[16];
131 LLVMValueRef mask, bits_vec;
132 int shift, i;
133
134 /*
135 * XXX: We'll need a different path for 16 x u8
136 */
137 assert(fs_type.width == 32);
138 assert(fs_type.length <= ARRAY_SIZE(bits));
139 mask_type = lp_int_type(fs_type);
140
141 /*
142 * mask_input >>= (quad * 4)
143 */
144 switch (first_quad) {
145 case 0:
146 shift = 0;
147 break;
148 case 1:
149 assert(fs_type.length == 4);
150 shift = 2;
151 break;
152 case 2:
153 shift = 8;
154 break;
155 case 3:
156 assert(fs_type.length == 4);
157 shift = 10;
158 break;
159 default:
160 assert(0);
161 shift = 0;
162 }
163
164 mask_input = LLVMBuildLShr(builder,
165 mask_input,
166 LLVMConstInt(i32t, shift, 0),
167 "");
168
169 /*
170 * mask = { mask_input & (1 << i), for i in [0,3] }
171 */
172 mask = lp_build_broadcast(gallivm,
173 lp_build_vec_type(gallivm, mask_type),
174 mask_input);
175
176 for (i = 0; i < fs_type.length / 4; i++) {
177 unsigned j = 2 * (i % 2) + (i / 2) * 8;
178 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
179 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
180 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
181 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
182 }
183 bits_vec = LLVMConstVector(bits, fs_type.length);
184 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
185
186 /*
187 * mask = mask == bits ? ~0 : 0
188 */
189 mask = lp_build_compare(gallivm,
190 mask_type, PIPE_FUNC_EQUAL,
191 mask, bits_vec);
192
193 return mask;
194 }
195
196
197 #define EARLY_DEPTH_TEST 0x1
198 #define LATE_DEPTH_TEST 0x2
199 #define EARLY_DEPTH_WRITE 0x4
200 #define LATE_DEPTH_WRITE 0x8
201
202 static int
203 find_output_by_semantic( const struct tgsi_shader_info *info,
204 unsigned semantic,
205 unsigned index )
206 {
207 int i;
208
209 for (i = 0; i < info->num_outputs; i++)
210 if (info->output_semantic_name[i] == semantic &&
211 info->output_semantic_index[i] == index)
212 return i;
213
214 return -1;
215 }
216
217
218 /**
219 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
220 */
221 static LLVMValueRef
222 lp_llvm_viewport(LLVMValueRef context_ptr,
223 struct gallivm_state *gallivm,
224 LLVMValueRef viewport_index)
225 {
226 LLVMBuilderRef builder = gallivm->builder;
227 LLVMValueRef ptr;
228 LLVMValueRef res;
229 struct lp_type viewport_type =
230 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
231
232 ptr = lp_jit_context_viewports(gallivm, context_ptr);
233 ptr = LLVMBuildPointerCast(builder, ptr,
234 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
235
236 res = lp_build_pointer_get(builder, ptr, viewport_index);
237
238 return res;
239 }
240
241
242 static LLVMValueRef
243 lp_build_depth_clamp(struct gallivm_state *gallivm,
244 LLVMBuilderRef builder,
245 struct lp_type type,
246 LLVMValueRef context_ptr,
247 LLVMValueRef thread_data_ptr,
248 LLVMValueRef z)
249 {
250 LLVMValueRef viewport, min_depth, max_depth;
251 LLVMValueRef viewport_index;
252 struct lp_build_context f32_bld;
253
254 assert(type.floating);
255 lp_build_context_init(&f32_bld, gallivm, type);
256
257 /*
258 * Assumes clamping of the viewport index will occur in setup/gs. Value
259 * is passed through the rasterization stage via lp_rast_shader_inputs.
260 *
261 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
262 * semantics.
263 */
264 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
265 thread_data_ptr);
266
267 /*
268 * Load the min and max depth from the lp_jit_context.viewports
269 * array of lp_jit_viewport structures.
270 */
271 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
272
273 /* viewports[viewport_index].min_depth */
274 min_depth = LLVMBuildExtractElement(builder, viewport,
275 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
276 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
277
278 /* viewports[viewport_index].max_depth */
279 max_depth = LLVMBuildExtractElement(builder, viewport,
280 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
281 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
282
283 /*
284 * Clamp to the min and max depth values for the given viewport.
285 */
286 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
287 }
288
289
290 /**
291 * Generate the fragment shader, depth/stencil test, and alpha tests.
292 */
293 static void
294 generate_fs_loop(struct gallivm_state *gallivm,
295 struct lp_fragment_shader *shader,
296 const struct lp_fragment_shader_variant_key *key,
297 LLVMBuilderRef builder,
298 struct lp_type type,
299 LLVMValueRef context_ptr,
300 LLVMValueRef num_loop,
301 struct lp_build_interp_soa_context *interp,
302 const struct lp_build_sampler_soa *sampler,
303 LLVMValueRef mask_store,
304 LLVMValueRef (*out_color)[4],
305 LLVMValueRef depth_ptr,
306 LLVMValueRef depth_stride,
307 LLVMValueRef facing,
308 LLVMValueRef thread_data_ptr)
309 {
310 const struct util_format_description *zs_format_desc = NULL;
311 const struct tgsi_token *tokens = shader->base.tokens;
312 struct lp_type int_type = lp_int_type(type);
313 LLVMTypeRef vec_type, int_vec_type;
314 LLVMValueRef mask_ptr, mask_val;
315 LLVMValueRef consts_ptr, num_consts_ptr;
316 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
317 LLVMValueRef z;
318 LLVMValueRef z_value, s_value;
319 LLVMValueRef z_fb, s_fb;
320 LLVMValueRef stencil_refs[2];
321 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
322 struct lp_build_for_loop_state loop_state;
323 struct lp_build_mask_context mask;
324 /*
325 * TODO: figure out if simple_shader optimization is really worthwile to
326 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
327 * code since tests tend to take another codepath than real shaders.
328 */
329 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
330 shader->info.base.num_inputs < 3 &&
331 shader->info.base.num_instructions < 8) && 0;
332 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
333 util_blend_state_is_dual(&key->blend, 0);
334 unsigned attrib;
335 unsigned chan;
336 unsigned cbuf;
337 unsigned depth_mode;
338
339 struct lp_bld_tgsi_system_values system_values;
340
341 memset(&system_values, 0, sizeof(system_values));
342
343 if (key->depth.enabled ||
344 key->stencil[0].enabled) {
345
346 zs_format_desc = util_format_description(key->zsbuf_format);
347 assert(zs_format_desc);
348
349 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
350 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
351 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
352 if (shader->info.base.writes_memory)
353 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
354 else if (key->alpha.enabled ||
355 key->blend.alpha_to_coverage ||
356 shader->info.base.uses_kill ||
357 shader->info.base.writes_samplemask) {
358 /* With alpha test and kill, can do the depth test early
359 * and hopefully eliminate some quads. But need to do a
360 * special deferred depth write once the final mask value
361 * is known. This only works though if there's either no
362 * stencil test or the stencil value isn't written.
363 */
364 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
365 (key->stencil[1].enabled &&
366 key->stencil[1].writemask)))
367 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
368 else
369 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
370 }
371 else
372 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
373 }
374 else {
375 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
376 }
377
378 if (!(key->depth.enabled && key->depth.writemask) &&
379 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
380 (key->stencil[1].enabled &&
381 key->stencil[1].writemask))))
382 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
383 }
384 else {
385 depth_mode = 0;
386 }
387
388 vec_type = lp_build_vec_type(gallivm, type);
389 int_vec_type = lp_build_vec_type(gallivm, int_type);
390
391 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
392 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
393 /* convert scalar stencil refs into vectors */
394 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
395 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
396
397 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
398 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
399
400 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
401 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
402
403 lp_build_for_loop_begin(&loop_state, gallivm,
404 lp_build_const_int32(gallivm, 0),
405 LLVMIntULT,
406 num_loop,
407 lp_build_const_int32(gallivm, 1));
408
409 mask_ptr = LLVMBuildGEP(builder, mask_store,
410 &loop_state.counter, 1, "mask_ptr");
411 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
412
413 memset(outputs, 0, sizeof outputs);
414
415 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
416 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
417 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
418 lp_build_vec_type(gallivm,
419 type),
420 num_loop, "color");
421 }
422 }
423 if (dual_source_blend) {
424 assert(key->nr_cbufs <= 1);
425 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
426 out_color[1][chan] = lp_build_array_alloca(gallivm,
427 lp_build_vec_type(gallivm,
428 type),
429 num_loop, "color1");
430 }
431 }
432
433
434 /* 'mask' will control execution based on quad's pixel alive/killed state */
435 lp_build_mask_begin(&mask, gallivm, type, mask_val);
436
437 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
438 lp_build_mask_check(&mask);
439
440 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
441 z = interp->pos[2];
442
443 if (depth_mode & EARLY_DEPTH_TEST) {
444 /*
445 * Clamp according to ARB_depth_clamp semantics.
446 */
447 if (key->depth_clamp) {
448 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
449 thread_data_ptr, z);
450 }
451 lp_build_depth_stencil_load_swizzled(gallivm, type,
452 zs_format_desc, key->resource_1d,
453 depth_ptr, depth_stride,
454 &z_fb, &s_fb, loop_state.counter);
455 lp_build_depth_stencil_test(gallivm,
456 &key->depth,
457 key->stencil,
458 type,
459 zs_format_desc,
460 &mask,
461 stencil_refs,
462 z, z_fb, s_fb,
463 facing,
464 &z_value, &s_value,
465 !simple_shader);
466
467 if (depth_mode & EARLY_DEPTH_WRITE) {
468 lp_build_depth_stencil_write_swizzled(gallivm, type,
469 zs_format_desc, key->resource_1d,
470 NULL, NULL, NULL, loop_state.counter,
471 depth_ptr, depth_stride,
472 z_value, s_value);
473 }
474 /*
475 * Note mask check if stencil is enabled must be after ds write not after
476 * stencil test otherwise new stencil values may not get written if all
477 * fragments got killed by depth/stencil test.
478 */
479 if (!simple_shader && key->stencil[0].enabled)
480 lp_build_mask_check(&mask);
481 }
482
483 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
484
485 struct lp_build_tgsi_params params;
486 memset(&params, 0, sizeof(params));
487
488 params.type = type;
489 params.mask = &mask;
490 params.consts_ptr = consts_ptr;
491 params.const_sizes_ptr = num_consts_ptr;
492 params.system_values = &system_values;
493 params.inputs = interp->inputs;
494 params.context_ptr = context_ptr;
495 params.thread_data_ptr = thread_data_ptr;
496 params.sampler = sampler;
497 params.info = &shader->info.base;
498 params.ssbo_ptr = ssbo_ptr;
499 params.ssbo_sizes_ptr = num_ssbo_ptr;
500
501 /* Build the actual shader */
502 lp_build_tgsi_soa(gallivm, tokens, &params,
503 outputs);
504
505 /* Alpha test */
506 if (key->alpha.enabled) {
507 int color0 = find_output_by_semantic(&shader->info.base,
508 TGSI_SEMANTIC_COLOR,
509 0);
510
511 if (color0 != -1 && outputs[color0][3]) {
512 const struct util_format_description *cbuf_format_desc;
513 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
514 LLVMValueRef alpha_ref_value;
515
516 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
517 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
518
519 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
520
521 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
522 &mask, alpha, alpha_ref_value,
523 (depth_mode & LATE_DEPTH_TEST) != 0);
524 }
525 }
526
527 /* Emulate Alpha to Coverage with Alpha test */
528 if (key->blend.alpha_to_coverage) {
529 int color0 = find_output_by_semantic(&shader->info.base,
530 TGSI_SEMANTIC_COLOR,
531 0);
532
533 if (color0 != -1 && outputs[color0][3]) {
534 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
535
536 lp_build_alpha_to_coverage(gallivm, type,
537 &mask, alpha,
538 (depth_mode & LATE_DEPTH_TEST) != 0);
539 }
540 }
541
542 if (shader->info.base.writes_samplemask) {
543 int smaski = find_output_by_semantic(&shader->info.base,
544 TGSI_SEMANTIC_SAMPLEMASK,
545 0);
546 LLVMValueRef smask;
547 struct lp_build_context smask_bld;
548 lp_build_context_init(&smask_bld, gallivm, int_type);
549
550 assert(smaski >= 0);
551 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
552 /*
553 * Pixel is alive according to the first sample in the mask.
554 */
555 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
556 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
557 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
558 lp_build_mask_update(&mask, smask);
559 }
560
561 /* Late Z test */
562 if (depth_mode & LATE_DEPTH_TEST) {
563 int pos0 = find_output_by_semantic(&shader->info.base,
564 TGSI_SEMANTIC_POSITION,
565 0);
566 int s_out = find_output_by_semantic(&shader->info.base,
567 TGSI_SEMANTIC_STENCIL,
568 0);
569 if (pos0 != -1 && outputs[pos0][2]) {
570 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
571 }
572 /*
573 * Clamp according to ARB_depth_clamp semantics.
574 */
575 if (key->depth_clamp) {
576 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
577 thread_data_ptr, z);
578 }
579
580 if (s_out != -1 && outputs[s_out][1]) {
581 /* there's only one value, and spec says to discard additional bits */
582 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
583 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
584 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
585 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
586 stencil_refs[1] = stencil_refs[0];
587 }
588
589 lp_build_depth_stencil_load_swizzled(gallivm, type,
590 zs_format_desc, key->resource_1d,
591 depth_ptr, depth_stride,
592 &z_fb, &s_fb, loop_state.counter);
593
594 lp_build_depth_stencil_test(gallivm,
595 &key->depth,
596 key->stencil,
597 type,
598 zs_format_desc,
599 &mask,
600 stencil_refs,
601 z, z_fb, s_fb,
602 facing,
603 &z_value, &s_value,
604 !simple_shader);
605 /* Late Z write */
606 if (depth_mode & LATE_DEPTH_WRITE) {
607 lp_build_depth_stencil_write_swizzled(gallivm, type,
608 zs_format_desc, key->resource_1d,
609 NULL, NULL, NULL, loop_state.counter,
610 depth_ptr, depth_stride,
611 z_value, s_value);
612 }
613 }
614 else if ((depth_mode & EARLY_DEPTH_TEST) &&
615 (depth_mode & LATE_DEPTH_WRITE))
616 {
617 /* Need to apply a reduced mask to the depth write. Reload the
618 * depth value, update from zs_value with the new mask value and
619 * write that out.
620 */
621 lp_build_depth_stencil_write_swizzled(gallivm, type,
622 zs_format_desc, key->resource_1d,
623 &mask, z_fb, s_fb, loop_state.counter,
624 depth_ptr, depth_stride,
625 z_value, s_value);
626 }
627
628
629 /* Color write */
630 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
631 {
632 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
633 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
634 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
635 {
636 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
637 if(outputs[attrib][chan]) {
638 /* XXX: just initialize outputs to point at colors[] and
639 * skip this.
640 */
641 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
642 LLVMValueRef color_ptr;
643 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
644 &loop_state.counter, 1, "");
645 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
646 LLVMBuildStore(builder, out, color_ptr);
647 }
648 }
649 }
650 }
651
652 if (key->occlusion_count) {
653 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
654 lp_build_name(counter, "counter");
655 lp_build_occlusion_count(gallivm, type,
656 lp_build_mask_value(&mask), counter);
657 }
658
659 mask_val = lp_build_mask_end(&mask);
660 LLVMBuildStore(builder, mask_val, mask_ptr);
661 lp_build_for_loop_end(&loop_state);
662 }
663
664
665 /**
666 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
667 *
668 * Fragment Shader outputs pixels in small 2x2 blocks
669 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
670 *
671 * However in memory pixels are stored in rows
672 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
673 *
674 * @param type fragment shader type (4x or 8x float)
675 * @param num_fs number of fs_src
676 * @param is_1d whether we're outputting to a 1d resource
677 * @param dst_channels number of output channels
678 * @param fs_src output from fragment shader
679 * @param dst pointer to store result
680 * @param pad_inline is channel padding inline or at end of row
681 * @return the number of dsts
682 */
683 static int
684 generate_fs_twiddle(struct gallivm_state *gallivm,
685 struct lp_type type,
686 unsigned num_fs,
687 unsigned dst_channels,
688 LLVMValueRef fs_src[][4],
689 LLVMValueRef* dst,
690 bool pad_inline)
691 {
692 LLVMValueRef src[16];
693
694 bool swizzle_pad;
695 bool twiddle;
696 bool split;
697
698 unsigned pixels = type.length / 4;
699 unsigned reorder_group;
700 unsigned src_channels;
701 unsigned src_count;
702 unsigned i;
703
704 src_channels = dst_channels < 3 ? dst_channels : 4;
705 src_count = num_fs * src_channels;
706
707 assert(pixels == 2 || pixels == 1);
708 assert(num_fs * src_channels <= ARRAY_SIZE(src));
709
710 /*
711 * Transpose from SoA -> AoS
712 */
713 for (i = 0; i < num_fs; ++i) {
714 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
715 }
716
717 /*
718 * Pick transformation options
719 */
720 swizzle_pad = false;
721 twiddle = false;
722 split = false;
723 reorder_group = 0;
724
725 if (dst_channels == 1) {
726 twiddle = true;
727
728 if (pixels == 2) {
729 split = true;
730 }
731 } else if (dst_channels == 2) {
732 if (pixels == 1) {
733 reorder_group = 1;
734 }
735 } else if (dst_channels > 2) {
736 if (pixels == 1) {
737 reorder_group = 2;
738 } else {
739 twiddle = true;
740 }
741
742 if (!pad_inline && dst_channels == 3 && pixels > 1) {
743 swizzle_pad = true;
744 }
745 }
746
747 /*
748 * Split the src in half
749 */
750 if (split) {
751 for (i = num_fs; i > 0; --i) {
752 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
753 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
754 }
755
756 src_count *= 2;
757 type.length = 4;
758 }
759
760 /*
761 * Ensure pixels are in memory order
762 */
763 if (reorder_group) {
764 /* Twiddle pixels by reordering the array, e.g.:
765 *
766 * src_count = 8 -> 0 2 1 3 4 6 5 7
767 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
768 */
769 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
770
771 for (i = 0; i < src_count; ++i) {
772 unsigned group = i / reorder_group;
773 unsigned block = (group / 4) * 4 * reorder_group;
774 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
775 dst[i] = src[j];
776 }
777 } else if (twiddle) {
778 /* Twiddle pixels across elements of array */
779 /*
780 * XXX: we should avoid this in some cases, but would need to tell
781 * lp_build_conv to reorder (or deal with it ourselves).
782 */
783 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
784 } else {
785 /* Do nothing */
786 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
787 }
788
789 /*
790 * Moves any padding between pixels to the end
791 * e.g. RGBXRGBX -> RGBRGBXX
792 */
793 if (swizzle_pad) {
794 unsigned char swizzles[16];
795 unsigned elems = pixels * dst_channels;
796
797 for (i = 0; i < type.length; ++i) {
798 if (i < elems)
799 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
800 else
801 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
802 }
803
804 for (i = 0; i < src_count; ++i) {
805 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
806 }
807 }
808
809 return src_count;
810 }
811
812
813 /*
814 * Untwiddle and transpose, much like the above.
815 * However, this is after conversion, so we get packed vectors.
816 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
817 * the vectors will look like:
818 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
819 * be swizzled here). Extending to 16bit should be trivial.
820 * Should also be extended to handle twice wide vectors with AVX2...
821 */
822 static void
823 fs_twiddle_transpose(struct gallivm_state *gallivm,
824 struct lp_type type,
825 LLVMValueRef *src,
826 unsigned src_count,
827 LLVMValueRef *dst)
828 {
829 unsigned i, j;
830 struct lp_type type64, type16, type32;
831 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
832 LLVMBuilderRef builder = gallivm->builder;
833 LLVMValueRef tmp[4], shuf[8];
834 for (j = 0; j < 2; j++) {
835 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
836 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
837 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
838 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
839 }
840
841 assert(src_count == 4 || src_count == 2 || src_count == 1);
842 assert(type.width == 8);
843 assert(type.length == 16);
844
845 type8_t = lp_build_vec_type(gallivm, type);
846
847 type64 = type;
848 type64.length /= 8;
849 type64.width *= 8;
850 type64_t = lp_build_vec_type(gallivm, type64);
851
852 type16 = type;
853 type16.length /= 2;
854 type16.width *= 2;
855 type16_t = lp_build_vec_type(gallivm, type16);
856
857 type32 = type;
858 type32.length /= 4;
859 type32.width *= 4;
860 type32_t = lp_build_vec_type(gallivm, type32);
861
862 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
863
864 if (src_count == 1) {
865 /* transpose was no-op, just untwiddle */
866 LLVMValueRef shuf_vec;
867 shuf_vec = LLVMConstVector(shuf, 8);
868 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
869 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
870 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
871 } else if (src_count == 2) {
872 LLVMValueRef shuf_vec;
873 shuf_vec = LLVMConstVector(shuf, 4);
874
875 for (i = 0; i < 2; i++) {
876 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
877 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
878 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
879 }
880 } else {
881 for (j = 0; j < 2; j++) {
882 LLVMValueRef lo, hi, lo2, hi2;
883 /*
884 * Note that if we only really have 3 valid channels (rgb)
885 * and we don't need alpha we could substitute a undef here
886 * for the respective channel (causing llvm to drop conversion
887 * for alpha).
888 */
889 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
890 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
891 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
892 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
893 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
894 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
895 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
896 }
897 }
898 }
899
900
901 /**
902 * Load an unswizzled block of pixels from memory
903 */
904 static void
905 load_unswizzled_block(struct gallivm_state *gallivm,
906 LLVMValueRef base_ptr,
907 LLVMValueRef stride,
908 unsigned block_width,
909 unsigned block_height,
910 LLVMValueRef* dst,
911 struct lp_type dst_type,
912 unsigned dst_count,
913 unsigned dst_alignment)
914 {
915 LLVMBuilderRef builder = gallivm->builder;
916 unsigned row_size = dst_count / block_height;
917 unsigned i;
918
919 /* Ensure block exactly fits into dst */
920 assert((block_width * block_height) % dst_count == 0);
921
922 for (i = 0; i < dst_count; ++i) {
923 unsigned x = i % row_size;
924 unsigned y = i / row_size;
925
926 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
927 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
928
929 LLVMValueRef gep[2];
930 LLVMValueRef dst_ptr;
931
932 gep[0] = lp_build_const_int32(gallivm, 0);
933 gep[1] = LLVMBuildAdd(builder, bx, by, "");
934
935 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
936 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
937 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
938
939 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
940
941 LLVMSetAlignment(dst[i], dst_alignment);
942 }
943 }
944
945
946 /**
947 * Store an unswizzled block of pixels to memory
948 */
949 static void
950 store_unswizzled_block(struct gallivm_state *gallivm,
951 LLVMValueRef base_ptr,
952 LLVMValueRef stride,
953 unsigned block_width,
954 unsigned block_height,
955 LLVMValueRef* src,
956 struct lp_type src_type,
957 unsigned src_count,
958 unsigned src_alignment)
959 {
960 LLVMBuilderRef builder = gallivm->builder;
961 unsigned row_size = src_count / block_height;
962 unsigned i;
963
964 /* Ensure src exactly fits into block */
965 assert((block_width * block_height) % src_count == 0);
966
967 for (i = 0; i < src_count; ++i) {
968 unsigned x = i % row_size;
969 unsigned y = i / row_size;
970
971 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
972 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
973
974 LLVMValueRef gep[2];
975 LLVMValueRef src_ptr;
976
977 gep[0] = lp_build_const_int32(gallivm, 0);
978 gep[1] = LLVMBuildAdd(builder, bx, by, "");
979
980 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
981 src_ptr = LLVMBuildBitCast(builder, src_ptr,
982 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
983
984 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
985
986 LLVMSetAlignment(src_ptr, src_alignment);
987 }
988 }
989
990
991 /**
992 * Checks if a format description is an arithmetic format
993 *
994 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
995 */
996 static inline boolean
997 is_arithmetic_format(const struct util_format_description *format_desc)
998 {
999 boolean arith = false;
1000 unsigned i;
1001
1002 for (i = 0; i < format_desc->nr_channels; ++i) {
1003 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1004 arith |= (format_desc->channel[i].size % 8) != 0;
1005 }
1006
1007 return arith;
1008 }
1009
1010
1011 /**
1012 * Checks if this format requires special handling due to required expansion
1013 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1014 * SoA conversion.
1015 */
1016 static inline boolean
1017 format_expands_to_float_soa(const struct util_format_description *format_desc)
1018 {
1019 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1020 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1021 return true;
1022 }
1023 return false;
1024 }
1025
1026
1027 /**
1028 * Retrieves the type representing the memory layout for a format
1029 *
1030 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1031 */
1032 static inline void
1033 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1034 struct lp_type* type)
1035 {
1036 unsigned i;
1037 unsigned chan;
1038
1039 if (format_expands_to_float_soa(format_desc)) {
1040 /* just make this a uint with width of block */
1041 type->floating = false;
1042 type->fixed = false;
1043 type->sign = false;
1044 type->norm = false;
1045 type->width = format_desc->block.bits;
1046 type->length = 1;
1047 return;
1048 }
1049
1050 for (i = 0; i < 4; i++)
1051 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1052 break;
1053 chan = i;
1054
1055 memset(type, 0, sizeof(struct lp_type));
1056 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1057 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1058 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1059 type->norm = format_desc->channel[chan].normalized;
1060
1061 if (is_arithmetic_format(format_desc)) {
1062 type->width = 0;
1063 type->length = 1;
1064
1065 for (i = 0; i < format_desc->nr_channels; ++i) {
1066 type->width += format_desc->channel[i].size;
1067 }
1068 } else {
1069 type->width = format_desc->channel[chan].size;
1070 type->length = format_desc->nr_channels;
1071 }
1072 }
1073
1074
1075 /**
1076 * Retrieves the type for a format which is usable in the blending code.
1077 *
1078 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1079 */
1080 static inline void
1081 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1082 struct lp_type* type)
1083 {
1084 unsigned i;
1085 unsigned chan;
1086
1087 if (format_expands_to_float_soa(format_desc)) {
1088 /* always use ordinary floats for blending */
1089 type->floating = true;
1090 type->fixed = false;
1091 type->sign = true;
1092 type->norm = false;
1093 type->width = 32;
1094 type->length = 4;
1095 return;
1096 }
1097
1098 for (i = 0; i < 4; i++)
1099 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1100 break;
1101 chan = i;
1102
1103 memset(type, 0, sizeof(struct lp_type));
1104 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1105 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1106 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1107 type->norm = format_desc->channel[chan].normalized;
1108 type->width = format_desc->channel[chan].size;
1109 type->length = format_desc->nr_channels;
1110
1111 for (i = 1; i < format_desc->nr_channels; ++i) {
1112 if (format_desc->channel[i].size > type->width)
1113 type->width = format_desc->channel[i].size;
1114 }
1115
1116 if (type->floating) {
1117 type->width = 32;
1118 } else {
1119 if (type->width <= 8) {
1120 type->width = 8;
1121 } else if (type->width <= 16) {
1122 type->width = 16;
1123 } else {
1124 type->width = 32;
1125 }
1126 }
1127
1128 if (is_arithmetic_format(format_desc) && type->length == 3) {
1129 type->length = 4;
1130 }
1131 }
1132
1133
1134 /**
1135 * Scale a normalized value from src_bits to dst_bits.
1136 *
1137 * The exact calculation is
1138 *
1139 * dst = iround(src * dst_mask / src_mask)
1140 *
1141 * or with integer rounding
1142 *
1143 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1144 *
1145 * where
1146 *
1147 * src_mask = (1 << src_bits) - 1
1148 * dst_mask = (1 << dst_bits) - 1
1149 *
1150 * but we try to avoid division and multiplication through shifts.
1151 */
1152 static inline LLVMValueRef
1153 scale_bits(struct gallivm_state *gallivm,
1154 int src_bits,
1155 int dst_bits,
1156 LLVMValueRef src,
1157 struct lp_type src_type)
1158 {
1159 LLVMBuilderRef builder = gallivm->builder;
1160 LLVMValueRef result = src;
1161
1162 if (dst_bits < src_bits) {
1163 int delta_bits = src_bits - dst_bits;
1164
1165 if (delta_bits <= dst_bits) {
1166 /*
1167 * Approximate the rescaling with a single shift.
1168 *
1169 * This gives the wrong rounding.
1170 */
1171
1172 result = LLVMBuildLShr(builder,
1173 src,
1174 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1175 "");
1176
1177 } else {
1178 /*
1179 * Try more accurate rescaling.
1180 */
1181
1182 /*
1183 * Drop the least significant bits to make space for the multiplication.
1184 *
1185 * XXX: A better approach would be to use a wider integer type as intermediate. But
1186 * this is enough to convert alpha from 16bits -> 2 when rendering to
1187 * PIPE_FORMAT_R10G10B10A2_UNORM.
1188 */
1189 result = LLVMBuildLShr(builder,
1190 src,
1191 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1192 "");
1193
1194
1195 result = LLVMBuildMul(builder,
1196 result,
1197 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1198 "");
1199
1200 /*
1201 * Add a rounding term before the division.
1202 *
1203 * TODO: Handle signed integers too.
1204 */
1205 if (!src_type.sign) {
1206 result = LLVMBuildAdd(builder,
1207 result,
1208 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1209 "");
1210 }
1211
1212 /*
1213 * Approximate the division by src_mask with a src_bits shift.
1214 *
1215 * Given the src has already been shifted by dst_bits, all we need
1216 * to do is to shift by the difference.
1217 */
1218
1219 result = LLVMBuildLShr(builder,
1220 result,
1221 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1222 "");
1223 }
1224
1225 } else if (dst_bits > src_bits) {
1226 /* Scale up bits */
1227 int db = dst_bits - src_bits;
1228
1229 /* Shift left by difference in bits */
1230 result = LLVMBuildShl(builder,
1231 src,
1232 lp_build_const_int_vec(gallivm, src_type, db),
1233 "");
1234
1235 if (db <= src_bits) {
1236 /* Enough bits in src to fill the remainder */
1237 LLVMValueRef lower = LLVMBuildLShr(builder,
1238 src,
1239 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1240 "");
1241
1242 result = LLVMBuildOr(builder, result, lower, "");
1243 } else if (db > src_bits) {
1244 /* Need to repeatedly copy src bits to fill remainder in dst */
1245 unsigned n;
1246
1247 for (n = src_bits; n < dst_bits; n *= 2) {
1248 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1249
1250 result = LLVMBuildOr(builder,
1251 result,
1252 LLVMBuildLShr(builder, result, shuv, ""),
1253 "");
1254 }
1255 }
1256 }
1257
1258 return result;
1259 }
1260
1261 /**
1262 * If RT is a smallfloat (needing denorms) format
1263 */
1264 static inline int
1265 have_smallfloat_format(struct lp_type dst_type,
1266 enum pipe_format format)
1267 {
1268 return ((dst_type.floating && dst_type.width != 32) ||
1269 /* due to format handling hacks this format doesn't have floating set
1270 * here (and actually has width set to 32 too) so special case this. */
1271 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1272 }
1273
1274
1275 /**
1276 * Convert from memory format to blending format
1277 *
1278 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1279 */
1280 static void
1281 convert_to_blend_type(struct gallivm_state *gallivm,
1282 unsigned block_size,
1283 const struct util_format_description *src_fmt,
1284 struct lp_type src_type,
1285 struct lp_type dst_type,
1286 LLVMValueRef* src, // and dst
1287 unsigned num_srcs)
1288 {
1289 LLVMValueRef *dst = src;
1290 LLVMBuilderRef builder = gallivm->builder;
1291 struct lp_type blend_type;
1292 struct lp_type mem_type;
1293 unsigned i, j;
1294 unsigned pixels = block_size / num_srcs;
1295 bool is_arith;
1296
1297 /*
1298 * full custom path for packed floats and srgb formats - none of the later
1299 * functions would do anything useful, and given the lp_type representation they
1300 * can't be fixed. Should really have some SoA blend path for these kind of
1301 * formats rather than hacking them in here.
1302 */
1303 if (format_expands_to_float_soa(src_fmt)) {
1304 LLVMValueRef tmpsrc[4];
1305 /*
1306 * This is pretty suboptimal for this case blending in SoA would be much
1307 * better, since conversion gets us SoA values so need to convert back.
1308 */
1309 assert(src_type.width == 32 || src_type.width == 16);
1310 assert(dst_type.floating);
1311 assert(dst_type.width == 32);
1312 assert(dst_type.length % 4 == 0);
1313 assert(num_srcs % 4 == 0);
1314
1315 if (src_type.width == 16) {
1316 /* expand 4x16bit values to 4x32bit */
1317 struct lp_type type32x4 = src_type;
1318 LLVMTypeRef ltype32x4;
1319 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1320 type32x4.width = 32;
1321 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1322 for (i = 0; i < num_fetch; i++) {
1323 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1324 }
1325 src_type.width = 32;
1326 }
1327 for (i = 0; i < 4; i++) {
1328 tmpsrc[i] = src[i];
1329 }
1330 for (i = 0; i < num_srcs / 4; i++) {
1331 LLVMValueRef tmpsoa[4];
1332 LLVMValueRef tmps = tmpsrc[i];
1333 if (dst_type.length == 8) {
1334 LLVMValueRef shuffles[8];
1335 unsigned j;
1336 /* fetch was 4 values but need 8-wide output values */
1337 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1338 /*
1339 * for 8-wide aos transpose would give us wrong order not matching
1340 * incoming converted fs values and mask. ARGH.
1341 */
1342 for (j = 0; j < 4; j++) {
1343 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1344 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1345 }
1346 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1347 LLVMConstVector(shuffles, 8), "");
1348 }
1349 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1350 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1351 }
1352 else {
1353 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1354 }
1355 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1356 }
1357 return;
1358 }
1359
1360 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1361 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1362
1363 /* Is the format arithmetic */
1364 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1365 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1366
1367 /* Pad if necessary */
1368 if (!is_arith && src_type.length < dst_type.length) {
1369 for (i = 0; i < num_srcs; ++i) {
1370 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1371 }
1372
1373 src_type.length = dst_type.length;
1374 }
1375
1376 /* Special case for half-floats */
1377 if (mem_type.width == 16 && mem_type.floating) {
1378 assert(blend_type.width == 32 && blend_type.floating);
1379 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1380 is_arith = false;
1381 }
1382
1383 if (!is_arith) {
1384 return;
1385 }
1386
1387 src_type.width = blend_type.width * blend_type.length;
1388 blend_type.length *= pixels;
1389 src_type.length *= pixels / (src_type.length / mem_type.length);
1390
1391 for (i = 0; i < num_srcs; ++i) {
1392 LLVMValueRef chans[4];
1393 LLVMValueRef res = NULL;
1394
1395 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1396
1397 for (j = 0; j < src_fmt->nr_channels; ++j) {
1398 unsigned mask = 0;
1399 unsigned sa = src_fmt->channel[j].shift;
1400 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1401 unsigned from_lsb = j;
1402 #else
1403 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1404 #endif
1405
1406 mask = (1 << src_fmt->channel[j].size) - 1;
1407
1408 /* Extract bits from source */
1409 chans[j] = LLVMBuildLShr(builder,
1410 dst[i],
1411 lp_build_const_int_vec(gallivm, src_type, sa),
1412 "");
1413
1414 chans[j] = LLVMBuildAnd(builder,
1415 chans[j],
1416 lp_build_const_int_vec(gallivm, src_type, mask),
1417 "");
1418
1419 /* Scale bits */
1420 if (src_type.norm) {
1421 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1422 blend_type.width, chans[j], src_type);
1423 }
1424
1425 /* Insert bits into correct position */
1426 chans[j] = LLVMBuildShl(builder,
1427 chans[j],
1428 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1429 "");
1430
1431 if (j == 0) {
1432 res = chans[j];
1433 } else {
1434 res = LLVMBuildOr(builder, res, chans[j], "");
1435 }
1436 }
1437
1438 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1439 }
1440 }
1441
1442
1443 /**
1444 * Convert from blending format to memory format
1445 *
1446 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1447 */
1448 static void
1449 convert_from_blend_type(struct gallivm_state *gallivm,
1450 unsigned block_size,
1451 const struct util_format_description *src_fmt,
1452 struct lp_type src_type,
1453 struct lp_type dst_type,
1454 LLVMValueRef* src, // and dst
1455 unsigned num_srcs)
1456 {
1457 LLVMValueRef* dst = src;
1458 unsigned i, j, k;
1459 struct lp_type mem_type;
1460 struct lp_type blend_type;
1461 LLVMBuilderRef builder = gallivm->builder;
1462 unsigned pixels = block_size / num_srcs;
1463 bool is_arith;
1464
1465 /*
1466 * full custom path for packed floats and srgb formats - none of the later
1467 * functions would do anything useful, and given the lp_type representation they
1468 * can't be fixed. Should really have some SoA blend path for these kind of
1469 * formats rather than hacking them in here.
1470 */
1471 if (format_expands_to_float_soa(src_fmt)) {
1472 /*
1473 * This is pretty suboptimal for this case blending in SoA would be much
1474 * better - we need to transpose the AoS values back to SoA values for
1475 * conversion/packing.
1476 */
1477 assert(src_type.floating);
1478 assert(src_type.width == 32);
1479 assert(src_type.length % 4 == 0);
1480 assert(dst_type.width == 32 || dst_type.width == 16);
1481
1482 for (i = 0; i < num_srcs / 4; i++) {
1483 LLVMValueRef tmpsoa[4], tmpdst;
1484 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1485 /* really really need SoA here */
1486
1487 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1488 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1489 }
1490 else {
1491 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1492 src_type, tmpsoa);
1493 }
1494
1495 if (src_type.length == 8) {
1496 LLVMValueRef tmpaos, shuffles[8];
1497 unsigned j;
1498 /*
1499 * for 8-wide aos transpose has given us wrong order not matching
1500 * output order. HMPF. Also need to split the output values manually.
1501 */
1502 for (j = 0; j < 4; j++) {
1503 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1504 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1505 }
1506 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1507 LLVMConstVector(shuffles, 8), "");
1508 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1509 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1510 }
1511 else {
1512 src[i] = tmpdst;
1513 }
1514 }
1515 if (dst_type.width == 16) {
1516 struct lp_type type16x8 = dst_type;
1517 struct lp_type type32x4 = dst_type;
1518 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1519 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1520 type16x8.length = 8;
1521 type32x4.width = 32;
1522 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1523 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1524 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1525 /* We could do vector truncation but it doesn't generate very good code */
1526 for (i = 0; i < num_fetch; i++) {
1527 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1528 src[i], lp_build_zero(gallivm, type32x4));
1529 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1530 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1531 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1532 }
1533 }
1534 return;
1535 }
1536
1537 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1538 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1539
1540 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1541
1542 /* Special case for half-floats */
1543 if (mem_type.width == 16 && mem_type.floating) {
1544 int length = dst_type.length;
1545 assert(blend_type.width == 32 && blend_type.floating);
1546
1547 dst_type.length = src_type.length;
1548
1549 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1550
1551 dst_type.length = length;
1552 is_arith = false;
1553 }
1554
1555 /* Remove any padding */
1556 if (!is_arith && (src_type.length % mem_type.length)) {
1557 src_type.length -= (src_type.length % mem_type.length);
1558
1559 for (i = 0; i < num_srcs; ++i) {
1560 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1561 }
1562 }
1563
1564 /* No bit arithmetic to do */
1565 if (!is_arith) {
1566 return;
1567 }
1568
1569 src_type.length = pixels;
1570 src_type.width = blend_type.length * blend_type.width;
1571 dst_type.length = pixels;
1572
1573 for (i = 0; i < num_srcs; ++i) {
1574 LLVMValueRef chans[4];
1575 LLVMValueRef res = NULL;
1576
1577 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1578
1579 for (j = 0; j < src_fmt->nr_channels; ++j) {
1580 unsigned mask = 0;
1581 unsigned sa = src_fmt->channel[j].shift;
1582 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1583 unsigned from_lsb = j;
1584 #else
1585 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1586 #endif
1587
1588 assert(blend_type.width > src_fmt->channel[j].size);
1589
1590 for (k = 0; k < blend_type.width; ++k) {
1591 mask |= 1 << k;
1592 }
1593
1594 /* Extract bits */
1595 chans[j] = LLVMBuildLShr(builder,
1596 dst[i],
1597 lp_build_const_int_vec(gallivm, src_type,
1598 from_lsb * blend_type.width),
1599 "");
1600
1601 chans[j] = LLVMBuildAnd(builder,
1602 chans[j],
1603 lp_build_const_int_vec(gallivm, src_type, mask),
1604 "");
1605
1606 /* Scale down bits */
1607 if (src_type.norm) {
1608 chans[j] = scale_bits(gallivm, blend_type.width,
1609 src_fmt->channel[j].size, chans[j], src_type);
1610 }
1611
1612 /* Insert bits */
1613 chans[j] = LLVMBuildShl(builder,
1614 chans[j],
1615 lp_build_const_int_vec(gallivm, src_type, sa),
1616 "");
1617
1618 sa += src_fmt->channel[j].size;
1619
1620 if (j == 0) {
1621 res = chans[j];
1622 } else {
1623 res = LLVMBuildOr(builder, res, chans[j], "");
1624 }
1625 }
1626
1627 assert (dst_type.width != 24);
1628
1629 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1630 }
1631 }
1632
1633
1634 /**
1635 * Convert alpha to same blend type as src
1636 */
1637 static void
1638 convert_alpha(struct gallivm_state *gallivm,
1639 struct lp_type row_type,
1640 struct lp_type alpha_type,
1641 const unsigned block_size,
1642 const unsigned block_height,
1643 const unsigned src_count,
1644 const unsigned dst_channels,
1645 const bool pad_inline,
1646 LLVMValueRef* src_alpha)
1647 {
1648 LLVMBuilderRef builder = gallivm->builder;
1649 unsigned i, j;
1650 unsigned length = row_type.length;
1651 row_type.length = alpha_type.length;
1652
1653 /* Twiddle the alpha to match pixels */
1654 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1655
1656 /*
1657 * TODO this should use single lp_build_conv call for
1658 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1659 */
1660 for (i = 0; i < block_height; ++i) {
1661 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1662 }
1663
1664 alpha_type = row_type;
1665 row_type.length = length;
1666
1667 /* If only one channel we can only need the single alpha value per pixel */
1668 if (src_count == 1 && dst_channels == 1) {
1669
1670 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1671 } else {
1672 /* If there are more srcs than rows then we need to split alpha up */
1673 if (src_count > block_height) {
1674 for (i = src_count; i > 0; --i) {
1675 unsigned pixels = block_size / src_count;
1676 unsigned idx = i - 1;
1677
1678 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1679 (idx * pixels) % 4, pixels);
1680 }
1681 }
1682
1683 /* If there is a src for each pixel broadcast the alpha across whole row */
1684 if (src_count == block_size) {
1685 for (i = 0; i < src_count; ++i) {
1686 src_alpha[i] = lp_build_broadcast(gallivm,
1687 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1688 }
1689 } else {
1690 unsigned pixels = block_size / src_count;
1691 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1692 unsigned alpha_span = 1;
1693 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1694
1695 /* Check if we need 2 src_alphas for our shuffles */
1696 if (pixels > alpha_type.length) {
1697 alpha_span = 2;
1698 }
1699
1700 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1701 for (j = 0; j < row_type.length; ++j) {
1702 if (j < pixels * channels) {
1703 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1704 } else {
1705 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1706 }
1707 }
1708
1709 for (i = 0; i < src_count; ++i) {
1710 unsigned idx1 = i, idx2 = i;
1711
1712 if (alpha_span > 1){
1713 idx1 *= alpha_span;
1714 idx2 = idx1 + 1;
1715 }
1716
1717 src_alpha[i] = LLVMBuildShuffleVector(builder,
1718 src_alpha[idx1],
1719 src_alpha[idx2],
1720 LLVMConstVector(shuffles, row_type.length),
1721 "");
1722 }
1723 }
1724 }
1725 }
1726
1727
1728 /**
1729 * Generates the blend function for unswizzled colour buffers
1730 * Also generates the read & write from colour buffer
1731 */
1732 static void
1733 generate_unswizzled_blend(struct gallivm_state *gallivm,
1734 unsigned rt,
1735 struct lp_fragment_shader_variant *variant,
1736 enum pipe_format out_format,
1737 unsigned int num_fs,
1738 struct lp_type fs_type,
1739 LLVMValueRef* fs_mask,
1740 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1741 LLVMValueRef context_ptr,
1742 LLVMValueRef color_ptr,
1743 LLVMValueRef stride,
1744 unsigned partial_mask,
1745 boolean do_branch)
1746 {
1747 const unsigned alpha_channel = 3;
1748 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1749 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1750 const unsigned block_size = block_width * block_height;
1751 const unsigned lp_integer_vector_width = 128;
1752
1753 LLVMBuilderRef builder = gallivm->builder;
1754 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1755 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1756 LLVMValueRef src_alpha[4 * 4];
1757 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1758 LLVMValueRef src_mask[4 * 4];
1759 LLVMValueRef src[4 * 4];
1760 LLVMValueRef src1[4 * 4];
1761 LLVMValueRef dst[4 * 4];
1762 LLVMValueRef blend_color;
1763 LLVMValueRef blend_alpha;
1764 LLVMValueRef i32_zero;
1765 LLVMValueRef check_mask;
1766 LLVMValueRef undef_src_val;
1767
1768 struct lp_build_mask_context mask_ctx;
1769 struct lp_type mask_type;
1770 struct lp_type blend_type;
1771 struct lp_type row_type;
1772 struct lp_type dst_type;
1773 struct lp_type ls_type;
1774
1775 unsigned char swizzle[TGSI_NUM_CHANNELS];
1776 unsigned vector_width;
1777 unsigned src_channels = TGSI_NUM_CHANNELS;
1778 unsigned dst_channels;
1779 unsigned dst_count;
1780 unsigned src_count;
1781 unsigned i, j;
1782
1783 const struct util_format_description* out_format_desc = util_format_description(out_format);
1784
1785 unsigned dst_alignment;
1786
1787 bool pad_inline = is_arithmetic_format(out_format_desc);
1788 bool has_alpha = false;
1789 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1790 util_blend_state_is_dual(&variant->key.blend, 0);
1791
1792 const boolean is_1d = variant->key.resource_1d;
1793 boolean twiddle_after_convert = FALSE;
1794 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1795 LLVMValueRef fpstate = 0;
1796
1797 /* Get type from output format */
1798 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1799 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1800
1801 /*
1802 * Technically this code should go into lp_build_smallfloat_to_float
1803 * and lp_build_float_to_smallfloat but due to the
1804 * http://llvm.org/bugs/show_bug.cgi?id=6393
1805 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1806 * So the ordering is important here and there shouldn't be any
1807 * llvm ir instrunctions in this function before
1808 * this, otherwise half-float format conversions won't work
1809 * (again due to llvm bug #6393).
1810 */
1811 if (have_smallfloat_format(dst_type, out_format)) {
1812 /* We need to make sure that denorms are ok for half float
1813 conversions */
1814 fpstate = lp_build_fpstate_get(gallivm);
1815 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1816 }
1817
1818 mask_type = lp_int32_vec4_type();
1819 mask_type.length = fs_type.length;
1820
1821 for (i = num_fs; i < num_fullblock_fs; i++) {
1822 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1823 }
1824
1825 /* Do not bother executing code when mask is empty.. */
1826 if (do_branch) {
1827 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1828
1829 for (i = 0; i < num_fullblock_fs; ++i) {
1830 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1831 }
1832
1833 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1834 lp_build_mask_check(&mask_ctx);
1835 }
1836
1837 partial_mask |= !variant->opaque;
1838 i32_zero = lp_build_const_int32(gallivm, 0);
1839
1840 undef_src_val = lp_build_undef(gallivm, fs_type);
1841
1842 row_type.length = fs_type.length;
1843 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1844
1845 /* Compute correct swizzle and count channels */
1846 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1847 dst_channels = 0;
1848
1849 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1850 /* Ensure channel is used */
1851 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1852 continue;
1853 }
1854
1855 /* Ensure not already written to (happens in case with GL_ALPHA) */
1856 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1857 continue;
1858 }
1859
1860 /* Ensure we havn't already found all channels */
1861 if (dst_channels >= out_format_desc->nr_channels) {
1862 continue;
1863 }
1864
1865 swizzle[out_format_desc->swizzle[i]] = i;
1866 ++dst_channels;
1867
1868 if (i == alpha_channel) {
1869 has_alpha = true;
1870 }
1871 }
1872
1873 if (format_expands_to_float_soa(out_format_desc)) {
1874 /*
1875 * the code above can't work for layout_other
1876 * for srgb it would sort of work but we short-circuit swizzles, etc.
1877 * as that is done as part of unpack / pack.
1878 */
1879 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1880 has_alpha = true;
1881 swizzle[0] = 0;
1882 swizzle[1] = 1;
1883 swizzle[2] = 2;
1884 swizzle[3] = 3;
1885 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1886 }
1887
1888 /* If 3 channels then pad to include alpha for 4 element transpose */
1889 if (dst_channels == 3) {
1890 assert (!has_alpha);
1891 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1892 if (swizzle[i] > TGSI_NUM_CHANNELS)
1893 swizzle[i] = 3;
1894 }
1895 if (out_format_desc->nr_channels == 4) {
1896 dst_channels = 4;
1897 /*
1898 * We use alpha from the color conversion, not separate one.
1899 * We had to include it for transpose, hence it will get converted
1900 * too (albeit when doing transpose after conversion, that would
1901 * no longer be the case necessarily).
1902 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1903 * otherwise we really have padding, not alpha, included.)
1904 */
1905 has_alpha = true;
1906 }
1907 }
1908
1909 /*
1910 * Load shader output
1911 */
1912 for (i = 0; i < num_fullblock_fs; ++i) {
1913 /* Always load alpha for use in blending */
1914 LLVMValueRef alpha;
1915 if (i < num_fs) {
1916 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1917 }
1918 else {
1919 alpha = undef_src_val;
1920 }
1921
1922 /* Load each channel */
1923 for (j = 0; j < dst_channels; ++j) {
1924 assert(swizzle[j] < 4);
1925 if (i < num_fs) {
1926 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1927 }
1928 else {
1929 fs_src[i][j] = undef_src_val;
1930 }
1931 }
1932
1933 /* If 3 channels then pad to include alpha for 4 element transpose */
1934 /*
1935 * XXX If we include that here maybe could actually use it instead of
1936 * separate alpha for blending?
1937 * (Difficult though we actually convert pad channels, not alpha.)
1938 */
1939 if (dst_channels == 3 && !has_alpha) {
1940 fs_src[i][3] = alpha;
1941 }
1942
1943 /* We split the row_mask and row_alpha as we want 128bit interleave */
1944 if (fs_type.length == 8) {
1945 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1946 0, src_channels);
1947 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1948 src_channels, src_channels);
1949
1950 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1951 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1952 src_channels, src_channels);
1953 } else {
1954 src_mask[i] = fs_mask[i];
1955 src_alpha[i] = alpha;
1956 }
1957 }
1958 if (dual_source_blend) {
1959 /* same as above except different src/dst, skip masks and comments... */
1960 for (i = 0; i < num_fullblock_fs; ++i) {
1961 LLVMValueRef alpha;
1962 if (i < num_fs) {
1963 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1964 }
1965 else {
1966 alpha = undef_src_val;
1967 }
1968
1969 for (j = 0; j < dst_channels; ++j) {
1970 assert(swizzle[j] < 4);
1971 if (i < num_fs) {
1972 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1973 }
1974 else {
1975 fs_src1[i][j] = undef_src_val;
1976 }
1977 }
1978 if (dst_channels == 3 && !has_alpha) {
1979 fs_src1[i][3] = alpha;
1980 }
1981 if (fs_type.length == 8) {
1982 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1983 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1984 src_channels, src_channels);
1985 } else {
1986 src1_alpha[i] = alpha;
1987 }
1988 }
1989 }
1990
1991 if (util_format_is_pure_integer(out_format)) {
1992 /*
1993 * In this case fs_type was really ints or uints disguised as floats,
1994 * fix that up now.
1995 */
1996 fs_type.floating = 0;
1997 fs_type.sign = dst_type.sign;
1998 for (i = 0; i < num_fullblock_fs; ++i) {
1999 for (j = 0; j < dst_channels; ++j) {
2000 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2001 lp_build_vec_type(gallivm, fs_type), "");
2002 }
2003 if (dst_channels == 3 && !has_alpha) {
2004 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2005 lp_build_vec_type(gallivm, fs_type), "");
2006 }
2007 }
2008 }
2009
2010 /*
2011 * We actually should generally do conversion first (for non-1d cases)
2012 * when the blend format is 8 or 16 bits. The reason is obvious,
2013 * there's 2 or 4 times less vectors to deal with for the interleave...
2014 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2015 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2016 * unpack only with 128bit vectors).
2017 * Note: for 16bit sizes really need matching pack conversion code
2018 */
2019 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2020 twiddle_after_convert = TRUE;
2021 }
2022
2023 /*
2024 * Pixel twiddle from fragment shader order to memory order
2025 */
2026 if (!twiddle_after_convert) {
2027 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2028 dst_channels, fs_src, src, pad_inline);
2029 if (dual_source_blend) {
2030 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2031 fs_src1, src1, pad_inline);
2032 }
2033 } else {
2034 src_count = num_fullblock_fs * dst_channels;
2035 /*
2036 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2037 * (AVX) turn out the same later when untwiddling/transpose (albeit
2038 * for true AVX2 path untwiddle needs to be different).
2039 * For now just order by colors first (so we can use unpack later).
2040 */
2041 for (j = 0; j < num_fullblock_fs; j++) {
2042 for (i = 0; i < dst_channels; i++) {
2043 src[i*num_fullblock_fs + j] = fs_src[j][i];
2044 if (dual_source_blend) {
2045 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2046 }
2047 }
2048 }
2049 }
2050
2051 src_channels = dst_channels < 3 ? dst_channels : 4;
2052 if (src_count != num_fullblock_fs * src_channels) {
2053 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2054 row_type.length /= ds;
2055 fs_type.length = row_type.length;
2056 }
2057
2058 blend_type = row_type;
2059 mask_type.length = 4;
2060
2061 /* Convert src to row_type */
2062 if (dual_source_blend) {
2063 struct lp_type old_row_type = row_type;
2064 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2065 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2066 }
2067 else {
2068 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2069 }
2070
2071 /* If the rows are not an SSE vector, combine them to become SSE size! */
2072 if ((row_type.width * row_type.length) % 128) {
2073 unsigned bits = row_type.width * row_type.length;
2074 unsigned combined;
2075
2076 assert(src_count >= (vector_width / bits));
2077
2078 dst_count = src_count / (vector_width / bits);
2079
2080 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2081 if (dual_source_blend) {
2082 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2083 }
2084
2085 row_type.length *= combined;
2086 src_count /= combined;
2087
2088 bits = row_type.width * row_type.length;
2089 assert(bits == 128 || bits == 256);
2090 }
2091
2092 if (twiddle_after_convert) {
2093 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2094 if (dual_source_blend) {
2095 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2096 }
2097 }
2098
2099 /*
2100 * Blend Colour conversion
2101 */
2102 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2103 blend_color = LLVMBuildPointerCast(builder, blend_color,
2104 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2105 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2106 &i32_zero, 1, ""), "");
2107
2108 /* Convert */
2109 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2110
2111 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2112 /*
2113 * since blending is done with floats, there was no conversion.
2114 * However, the rules according to fixed point renderbuffers still
2115 * apply, that is we must clamp inputs to 0.0/1.0.
2116 * (This would apply to separate alpha conversion too but we currently
2117 * force has_alpha to be true.)
2118 * TODO: should skip this with "fake" blend, since post-blend conversion
2119 * will clamp anyway.
2120 * TODO: could also skip this if fragment color clamping is enabled. We
2121 * don't support it natively so it gets baked into the shader however, so
2122 * can't really tell here.
2123 */
2124 struct lp_build_context f32_bld;
2125 assert(row_type.floating);
2126 lp_build_context_init(&f32_bld, gallivm, row_type);
2127 for (i = 0; i < src_count; i++) {
2128 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2129 }
2130 if (dual_source_blend) {
2131 for (i = 0; i < src_count; i++) {
2132 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2133 }
2134 }
2135 /* probably can't be different than row_type but better safe than sorry... */
2136 lp_build_context_init(&f32_bld, gallivm, blend_type);
2137 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2138 }
2139
2140 /* Extract alpha */
2141 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2142
2143 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2144 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2145 if (pad_inline) {
2146 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2147 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2148 } else {
2149 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2150 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2151 }
2152
2153 /*
2154 * Mask conversion
2155 */
2156 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2157
2158 if (src_count < block_height) {
2159 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2160 } else if (src_count > block_height) {
2161 for (i = src_count; i > 0; --i) {
2162 unsigned pixels = block_size / src_count;
2163 unsigned idx = i - 1;
2164
2165 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2166 (idx * pixels) % 4, pixels);
2167 }
2168 }
2169
2170 assert(mask_type.width == 32);
2171
2172 for (i = 0; i < src_count; ++i) {
2173 unsigned pixels = block_size / src_count;
2174 unsigned pixel_width = row_type.width * dst_channels;
2175
2176 if (pixel_width == 24) {
2177 mask_type.width = 8;
2178 mask_type.length = vector_width / mask_type.width;
2179 } else {
2180 mask_type.length = pixels;
2181 mask_type.width = row_type.width * dst_channels;
2182
2183 /*
2184 * If mask_type width is smaller than 32bit, this doesn't quite
2185 * generate the most efficient code (could use some pack).
2186 */
2187 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2188 lp_build_int_vec_type(gallivm, mask_type), "");
2189
2190 mask_type.length *= dst_channels;
2191 mask_type.width /= dst_channels;
2192 }
2193
2194 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2195 lp_build_int_vec_type(gallivm, mask_type), "");
2196 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2197 }
2198
2199 /*
2200 * Alpha conversion
2201 */
2202 if (!has_alpha) {
2203 struct lp_type alpha_type = fs_type;
2204 alpha_type.length = 4;
2205 convert_alpha(gallivm, row_type, alpha_type,
2206 block_size, block_height,
2207 src_count, dst_channels,
2208 pad_inline, src_alpha);
2209 if (dual_source_blend) {
2210 convert_alpha(gallivm, row_type, alpha_type,
2211 block_size, block_height,
2212 src_count, dst_channels,
2213 pad_inline, src1_alpha);
2214 }
2215 }
2216
2217
2218 /*
2219 * Load dst from memory
2220 */
2221 if (src_count < block_height) {
2222 dst_count = block_height;
2223 } else {
2224 dst_count = src_count;
2225 }
2226
2227 dst_type.length *= block_size / dst_count;
2228
2229 if (format_expands_to_float_soa(out_format_desc)) {
2230 /*
2231 * we need multiple values at once for the conversion, so can as well
2232 * load them vectorized here too instead of concatenating later.
2233 * (Still need concatenation later for 8-wide vectors).
2234 */
2235 dst_count = block_height;
2236 dst_type.length = block_width;
2237 }
2238
2239 /*
2240 * Compute the alignment of the destination pointer in bytes
2241 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2242 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2243 * 1d tex but can't distinguish here) so need to stick with per-pixel
2244 * alignment in this case.
2245 */
2246 if (is_1d) {
2247 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2248 }
2249 else {
2250 dst_alignment = dst_type.length * dst_type.width / 8;
2251 }
2252 /* Force power-of-two alignment by extracting only the least-significant-bit */
2253 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2254 /*
2255 * Resource base and stride pointers are aligned to 16 bytes, so that's
2256 * the maximum alignment we can guarantee
2257 */
2258 dst_alignment = MIN2(16, dst_alignment);
2259
2260 ls_type = dst_type;
2261
2262 if (dst_count > src_count) {
2263 if ((dst_type.width == 8 || dst_type.width == 16) &&
2264 util_is_power_of_two_or_zero(dst_type.length) &&
2265 dst_type.length * dst_type.width < 128) {
2266 /*
2267 * Never try to load values as 4xi8 which we will then
2268 * concatenate to larger vectors. This gives llvm a real
2269 * headache (the problem is the type legalizer (?) will
2270 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2271 * then the shuffles to concatenate are more or less impossible
2272 * - llvm is easily capable of generating a sequence of 32
2273 * pextrb/pinsrb instructions for that. Albeit it appears to
2274 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2275 * width to avoid the trouble (16bit seems not as bad, llvm
2276 * probably recognizes the load+shuffle as only one shuffle
2277 * is necessary, but we can do just the same anyway).
2278 */
2279 ls_type.length = dst_type.length * dst_type.width / 32;
2280 ls_type.width = 32;
2281 }
2282 }
2283
2284 if (is_1d) {
2285 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2286 dst, ls_type, dst_count / 4, dst_alignment);
2287 for (i = dst_count / 4; i < dst_count; i++) {
2288 dst[i] = lp_build_undef(gallivm, ls_type);
2289 }
2290
2291 }
2292 else {
2293 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2294 dst, ls_type, dst_count, dst_alignment);
2295 }
2296
2297
2298 /*
2299 * Convert from dst/output format to src/blending format.
2300 *
2301 * This is necessary as we can only read 1 row from memory at a time,
2302 * so the minimum dst_count will ever be at this point is 4.
2303 *
2304 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2305 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2306 * on all 16 pixels in that single vector at once.
2307 */
2308 if (dst_count > src_count) {
2309 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2310 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2311 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2312 for (i = 0; i < dst_count; i++) {
2313 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2314 }
2315 }
2316
2317 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2318
2319 if (ls_type.length != dst_type.length) {
2320 struct lp_type tmp_type = dst_type;
2321 tmp_type.length = dst_type.length * 4 / src_count;
2322 for (i = 0; i < src_count; i++) {
2323 dst[i] = LLVMBuildBitCast(builder, dst[i],
2324 lp_build_vec_type(gallivm, tmp_type), "");
2325 }
2326 }
2327 }
2328
2329 /*
2330 * Blending
2331 */
2332 /* XXX this is broken for RGB8 formats -
2333 * they get expanded from 12 to 16 elements (to include alpha)
2334 * by convert_to_blend_type then reduced to 15 instead of 12
2335 * by convert_from_blend_type (a simple fix though breaks A8...).
2336 * R16G16B16 also crashes differently however something going wrong
2337 * inside llvm handling npot vector sizes seemingly.
2338 * It seems some cleanup could be done here (like skipping conversion/blend
2339 * when not needed).
2340 */
2341 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2342 row_type, dst, src_count);
2343
2344 /*
2345 * FIXME: Really should get logic ops / masks out of generic blend / row
2346 * format. Logic ops will definitely not work on the blend float format
2347 * used for SRGB here and I think OpenGL expects this to work as expected
2348 * (that is incoming values converted to srgb then logic op applied).
2349 */
2350 for (i = 0; i < src_count; ++i) {
2351 dst[i] = lp_build_blend_aos(gallivm,
2352 &variant->key.blend,
2353 out_format,
2354 row_type,
2355 rt,
2356 src[i],
2357 has_alpha ? NULL : src_alpha[i],
2358 src1[i],
2359 has_alpha ? NULL : src1_alpha[i],
2360 dst[i],
2361 partial_mask ? src_mask[i] : NULL,
2362 blend_color,
2363 has_alpha ? NULL : blend_alpha,
2364 swizzle,
2365 pad_inline ? 4 : dst_channels);
2366 }
2367
2368 convert_from_blend_type(gallivm, block_size, out_format_desc,
2369 row_type, dst_type, dst, src_count);
2370
2371 /* Split the blend rows back to memory rows */
2372 if (dst_count > src_count) {
2373 row_type.length = dst_type.length * (dst_count / src_count);
2374
2375 if (src_count == 1) {
2376 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2377 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2378
2379 row_type.length /= 2;
2380 src_count *= 2;
2381 }
2382
2383 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2384 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2385 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2386 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2387
2388 row_type.length /= 2;
2389 src_count *= 2;
2390 }
2391
2392 /*
2393 * Store blend result to memory
2394 */
2395 if (is_1d) {
2396 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2397 dst, dst_type, dst_count / 4, dst_alignment);
2398 }
2399 else {
2400 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2401 dst, dst_type, dst_count, dst_alignment);
2402 }
2403
2404 if (have_smallfloat_format(dst_type, out_format)) {
2405 lp_build_fpstate_set(gallivm, fpstate);
2406 }
2407
2408 if (do_branch) {
2409 lp_build_mask_end(&mask_ctx);
2410 }
2411 }
2412
2413
2414 /**
2415 * Generate the runtime callable function for the whole fragment pipeline.
2416 * Note that the function which we generate operates on a block of 16
2417 * pixels at at time. The block contains 2x2 quads. Each quad contains
2418 * 2x2 pixels.
2419 */
2420 static void
2421 generate_fragment(struct llvmpipe_context *lp,
2422 struct lp_fragment_shader *shader,
2423 struct lp_fragment_shader_variant *variant,
2424 unsigned partial_mask)
2425 {
2426 struct gallivm_state *gallivm = variant->gallivm;
2427 const struct lp_fragment_shader_variant_key *key = &variant->key;
2428 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2429 char func_name[64];
2430 struct lp_type fs_type;
2431 struct lp_type blend_type;
2432 LLVMTypeRef fs_elem_type;
2433 LLVMTypeRef blend_vec_type;
2434 LLVMTypeRef arg_types[13];
2435 LLVMTypeRef func_type;
2436 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2437 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2438 LLVMValueRef context_ptr;
2439 LLVMValueRef x;
2440 LLVMValueRef y;
2441 LLVMValueRef a0_ptr;
2442 LLVMValueRef dadx_ptr;
2443 LLVMValueRef dady_ptr;
2444 LLVMValueRef color_ptr_ptr;
2445 LLVMValueRef stride_ptr;
2446 LLVMValueRef depth_ptr;
2447 LLVMValueRef depth_stride;
2448 LLVMValueRef mask_input;
2449 LLVMValueRef thread_data_ptr;
2450 LLVMBasicBlockRef block;
2451 LLVMBuilderRef builder;
2452 struct lp_build_sampler_soa *sampler;
2453 struct lp_build_interp_soa_context interp;
2454 LLVMValueRef fs_mask[16 / 4];
2455 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2456 LLVMValueRef function;
2457 LLVMValueRef facing;
2458 unsigned num_fs;
2459 unsigned i;
2460 unsigned chan;
2461 unsigned cbuf;
2462 boolean cbuf0_write_all;
2463 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2464 util_blend_state_is_dual(&key->blend, 0);
2465
2466 assert(lp_native_vector_width / 32 >= 4);
2467
2468 /* Adjust color input interpolation according to flatshade state:
2469 */
2470 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2471 for (i = 0; i < shader->info.base.num_inputs; i++) {
2472 if (inputs[i].interp == LP_INTERP_COLOR) {
2473 if (key->flatshade)
2474 inputs[i].interp = LP_INTERP_CONSTANT;
2475 else
2476 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2477 }
2478 }
2479
2480 /* check if writes to cbuf[0] are to be copied to all cbufs */
2481 cbuf0_write_all =
2482 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2483
2484 /* TODO: actually pick these based on the fs and color buffer
2485 * characteristics. */
2486
2487 memset(&fs_type, 0, sizeof fs_type);
2488 fs_type.floating = TRUE; /* floating point values */
2489 fs_type.sign = TRUE; /* values are signed */
2490 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2491 fs_type.width = 32; /* 32-bit float */
2492 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2493
2494 memset(&blend_type, 0, sizeof blend_type);
2495 blend_type.floating = FALSE; /* values are integers */
2496 blend_type.sign = FALSE; /* values are unsigned */
2497 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2498 blend_type.width = 8; /* 8-bit ubyte values */
2499 blend_type.length = 16; /* 16 elements per vector */
2500
2501 /*
2502 * Generate the function prototype. Any change here must be reflected in
2503 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2504 */
2505
2506 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2507
2508 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2509
2510 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2511 shader->no, variant->no, partial_mask ? "partial" : "whole");
2512
2513 arg_types[0] = variant->jit_context_ptr_type; /* context */
2514 arg_types[1] = int32_type; /* x */
2515 arg_types[2] = int32_type; /* y */
2516 arg_types[3] = int32_type; /* facing */
2517 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2518 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2519 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2520 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2521 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2522 arg_types[9] = int32_type; /* mask_input */
2523 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2524 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2525 arg_types[12] = int32_type; /* depth_stride */
2526
2527 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2528 arg_types, ARRAY_SIZE(arg_types), 0);
2529
2530 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2531 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2532
2533 variant->function[partial_mask] = function;
2534
2535 /* XXX: need to propagate noalias down into color param now we are
2536 * passing a pointer-to-pointer?
2537 */
2538 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2539 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2540 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2541
2542 context_ptr = LLVMGetParam(function, 0);
2543 x = LLVMGetParam(function, 1);
2544 y = LLVMGetParam(function, 2);
2545 facing = LLVMGetParam(function, 3);
2546 a0_ptr = LLVMGetParam(function, 4);
2547 dadx_ptr = LLVMGetParam(function, 5);
2548 dady_ptr = LLVMGetParam(function, 6);
2549 color_ptr_ptr = LLVMGetParam(function, 7);
2550 depth_ptr = LLVMGetParam(function, 8);
2551 mask_input = LLVMGetParam(function, 9);
2552 thread_data_ptr = LLVMGetParam(function, 10);
2553 stride_ptr = LLVMGetParam(function, 11);
2554 depth_stride = LLVMGetParam(function, 12);
2555
2556 lp_build_name(context_ptr, "context");
2557 lp_build_name(x, "x");
2558 lp_build_name(y, "y");
2559 lp_build_name(a0_ptr, "a0");
2560 lp_build_name(dadx_ptr, "dadx");
2561 lp_build_name(dady_ptr, "dady");
2562 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2563 lp_build_name(depth_ptr, "depth");
2564 lp_build_name(mask_input, "mask_input");
2565 lp_build_name(thread_data_ptr, "thread_data");
2566 lp_build_name(stride_ptr, "stride_ptr");
2567 lp_build_name(depth_stride, "depth_stride");
2568
2569 /*
2570 * Function body
2571 */
2572
2573 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2574 builder = gallivm->builder;
2575 assert(builder);
2576 LLVMPositionBuilderAtEnd(builder, block);
2577
2578 /*
2579 * Must not count ps invocations if there's a null shader.
2580 * (It would be ok to count with null shader if there's d/s tests,
2581 * but only if there's d/s buffers too, which is different
2582 * to implicit rasterization disable which must not depend
2583 * on the d/s buffers.)
2584 * Could use popcount on mask, but pixel accuracy is not required.
2585 * Could disable if there's no stats query, but maybe not worth it.
2586 */
2587 if (shader->info.base.num_instructions > 1) {
2588 LLVMValueRef invocs, val;
2589 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2590 val = LLVMBuildLoad(builder, invocs, "");
2591 val = LLVMBuildAdd(builder, val,
2592 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2593 "invoc_count");
2594 LLVMBuildStore(builder, val, invocs);
2595 }
2596
2597 /* code generated texture sampling */
2598 sampler = lp_llvm_sampler_soa_create(key->state);
2599
2600 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2601 /* for 1d resources only run "upper half" of stamp */
2602 if (key->resource_1d)
2603 num_fs /= 2;
2604
2605 {
2606 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2607 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2608 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2609 num_loop, "mask_store");
2610 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2611 boolean pixel_center_integer =
2612 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2613
2614 /*
2615 * The shader input interpolation info is not explicitely baked in the
2616 * shader key, but everything it derives from (TGSI, and flatshade) is
2617 * already included in the shader key.
2618 */
2619 lp_build_interp_soa_init(&interp,
2620 gallivm,
2621 shader->info.base.num_inputs,
2622 inputs,
2623 pixel_center_integer,
2624 key->depth_clamp,
2625 builder, fs_type,
2626 a0_ptr, dadx_ptr, dady_ptr,
2627 x, y);
2628
2629 for (i = 0; i < num_fs; i++) {
2630 LLVMValueRef mask;
2631 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2632 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2633 &indexi, 1, "mask_ptr");
2634
2635 if (partial_mask) {
2636 mask = generate_quad_mask(gallivm, fs_type,
2637 i*fs_type.length/4, mask_input);
2638 }
2639 else {
2640 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2641 }
2642 LLVMBuildStore(builder, mask, mask_ptr);
2643 }
2644
2645 generate_fs_loop(gallivm,
2646 shader, key,
2647 builder,
2648 fs_type,
2649 context_ptr,
2650 num_loop,
2651 &interp,
2652 sampler,
2653 mask_store, /* output */
2654 color_store,
2655 depth_ptr,
2656 depth_stride,
2657 facing,
2658 thread_data_ptr);
2659
2660 for (i = 0; i < num_fs; i++) {
2661 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2662 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2663 &indexi, 1, "");
2664 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2665 /* This is fucked up need to reorganize things */
2666 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2667 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2668 ptr = LLVMBuildGEP(builder,
2669 color_store[cbuf * !cbuf0_write_all][chan],
2670 &indexi, 1, "");
2671 fs_out_color[cbuf][chan][i] = ptr;
2672 }
2673 }
2674 if (dual_source_blend) {
2675 /* only support one dual source blend target hence always use output 1 */
2676 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2677 ptr = LLVMBuildGEP(builder,
2678 color_store[1][chan],
2679 &indexi, 1, "");
2680 fs_out_color[1][chan][i] = ptr;
2681 }
2682 }
2683 }
2684 }
2685
2686 sampler->destroy(sampler);
2687
2688 /* Loop over color outputs / color buffers to do blending.
2689 */
2690 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2691 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2692 LLVMValueRef color_ptr;
2693 LLVMValueRef stride;
2694 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2695
2696 boolean do_branch = ((key->depth.enabled
2697 || key->stencil[0].enabled
2698 || key->alpha.enabled)
2699 && !shader->info.base.uses_kill);
2700
2701 color_ptr = LLVMBuildLoad(builder,
2702 LLVMBuildGEP(builder, color_ptr_ptr,
2703 &index, 1, ""),
2704 "");
2705
2706 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2707
2708 stride = LLVMBuildLoad(builder,
2709 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2710 "");
2711
2712 generate_unswizzled_blend(gallivm, cbuf, variant,
2713 key->cbuf_format[cbuf],
2714 num_fs, fs_type, fs_mask, fs_out_color,
2715 context_ptr, color_ptr, stride,
2716 partial_mask, do_branch);
2717 }
2718 }
2719
2720 LLVMBuildRetVoid(builder);
2721
2722 gallivm_verify_function(gallivm, function);
2723 }
2724
2725
2726 static void
2727 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2728 {
2729 unsigned i;
2730
2731 debug_printf("fs variant %p:\n", (void *) key);
2732
2733 if (key->flatshade) {
2734 debug_printf("flatshade = 1\n");
2735 }
2736 for (i = 0; i < key->nr_cbufs; ++i) {
2737 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2738 }
2739 if (key->depth.enabled || key->stencil[0].enabled) {
2740 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2741 }
2742 if (key->depth.enabled) {
2743 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2744 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2745 }
2746
2747 for (i = 0; i < 2; ++i) {
2748 if (key->stencil[i].enabled) {
2749 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2750 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2751 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2752 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2753 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2754 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2755 }
2756 }
2757
2758 if (key->alpha.enabled) {
2759 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2760 }
2761
2762 if (key->occlusion_count) {
2763 debug_printf("occlusion_count = 1\n");
2764 }
2765
2766 if (key->blend.logicop_enable) {
2767 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2768 }
2769 else if (key->blend.rt[0].blend_enable) {
2770 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2771 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2772 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2773 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2774 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2775 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2776 }
2777 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2778 if (key->blend.alpha_to_coverage) {
2779 debug_printf("blend.alpha_to_coverage is enabled\n");
2780 }
2781 for (i = 0; i < key->nr_samplers; ++i) {
2782 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2783 debug_printf("sampler[%u] = \n", i);
2784 debug_printf(" .wrap = %s %s %s\n",
2785 util_str_tex_wrap(sampler->wrap_s, TRUE),
2786 util_str_tex_wrap(sampler->wrap_t, TRUE),
2787 util_str_tex_wrap(sampler->wrap_r, TRUE));
2788 debug_printf(" .min_img_filter = %s\n",
2789 util_str_tex_filter(sampler->min_img_filter, TRUE));
2790 debug_printf(" .min_mip_filter = %s\n",
2791 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2792 debug_printf(" .mag_img_filter = %s\n",
2793 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2794 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2795 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2796 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2797 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2798 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2799 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2800 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2801 }
2802 for (i = 0; i < key->nr_sampler_views; ++i) {
2803 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2804 debug_printf("texture[%u] = \n", i);
2805 debug_printf(" .format = %s\n",
2806 util_format_name(texture->format));
2807 debug_printf(" .target = %s\n",
2808 util_str_tex_target(texture->target, TRUE));
2809 debug_printf(" .level_zero_only = %u\n",
2810 texture->level_zero_only);
2811 debug_printf(" .pot = %u %u %u\n",
2812 texture->pot_width,
2813 texture->pot_height,
2814 texture->pot_depth);
2815 }
2816 }
2817
2818
2819 void
2820 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2821 {
2822 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2823 variant->shader->no, variant->no);
2824 tgsi_dump(variant->shader->base.tokens, 0);
2825 dump_fs_variant_key(&variant->key);
2826 debug_printf("variant->opaque = %u\n", variant->opaque);
2827 debug_printf("\n");
2828 }
2829
2830
2831 /**
2832 * Generate a new fragment shader variant from the shader code and
2833 * other state indicated by the key.
2834 */
2835 static struct lp_fragment_shader_variant *
2836 generate_variant(struct llvmpipe_context *lp,
2837 struct lp_fragment_shader *shader,
2838 const struct lp_fragment_shader_variant_key *key)
2839 {
2840 struct lp_fragment_shader_variant *variant;
2841 const struct util_format_description *cbuf0_format_desc = NULL;
2842 boolean fullcolormask;
2843 char module_name[64];
2844
2845 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2846 if (!variant)
2847 return NULL;
2848
2849 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2850 shader->no, shader->variants_created);
2851
2852 variant->gallivm = gallivm_create(module_name, lp->context);
2853 if (!variant->gallivm) {
2854 FREE(variant);
2855 return NULL;
2856 }
2857
2858 variant->shader = shader;
2859 variant->list_item_global.base = variant;
2860 variant->list_item_local.base = variant;
2861 variant->no = shader->variants_created++;
2862
2863 memcpy(&variant->key, key, shader->variant_key_size);
2864
2865 /*
2866 * Determine whether we are touching all channels in the color buffer.
2867 */
2868 fullcolormask = FALSE;
2869 if (key->nr_cbufs == 1) {
2870 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2871 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2872 }
2873
2874 variant->opaque =
2875 !key->blend.logicop_enable &&
2876 !key->blend.rt[0].blend_enable &&
2877 fullcolormask &&
2878 !key->stencil[0].enabled &&
2879 !key->alpha.enabled &&
2880 !key->blend.alpha_to_coverage &&
2881 !key->depth.enabled &&
2882 !shader->info.base.uses_kill &&
2883 !shader->info.base.writes_samplemask
2884 ? TRUE : FALSE;
2885
2886 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2887 lp_debug_fs_variant(variant);
2888 }
2889
2890 lp_jit_init_types(variant);
2891
2892 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2893 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2894
2895 if (variant->jit_function[RAST_WHOLE] == NULL) {
2896 if (variant->opaque) {
2897 /* Specialized shader, which doesn't need to read the color buffer. */
2898 generate_fragment(lp, shader, variant, RAST_WHOLE);
2899 }
2900 }
2901
2902 /*
2903 * Compile everything
2904 */
2905
2906 gallivm_compile_module(variant->gallivm);
2907
2908 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2909
2910 if (variant->function[RAST_EDGE_TEST]) {
2911 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2912 gallivm_jit_function(variant->gallivm,
2913 variant->function[RAST_EDGE_TEST]);
2914 }
2915
2916 if (variant->function[RAST_WHOLE]) {
2917 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2918 gallivm_jit_function(variant->gallivm,
2919 variant->function[RAST_WHOLE]);
2920 } else if (!variant->jit_function[RAST_WHOLE]) {
2921 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2922 }
2923
2924 gallivm_free_ir(variant->gallivm);
2925
2926 return variant;
2927 }
2928
2929
2930 static void *
2931 llvmpipe_create_fs_state(struct pipe_context *pipe,
2932 const struct pipe_shader_state *templ)
2933 {
2934 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2935 struct lp_fragment_shader *shader;
2936 int nr_samplers;
2937 int nr_sampler_views;
2938 int i;
2939
2940 shader = CALLOC_STRUCT(lp_fragment_shader);
2941 if (!shader)
2942 return NULL;
2943
2944 shader->no = fs_no++;
2945 make_empty_list(&shader->variants);
2946
2947 /* get/save the summary info for this shader */
2948 lp_build_tgsi_info(templ->tokens, &shader->info);
2949
2950 /* we need to keep a local copy of the tokens */
2951 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2952
2953 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2954 if (shader->draw_data == NULL) {
2955 FREE((void *) shader->base.tokens);
2956 FREE(shader);
2957 return NULL;
2958 }
2959
2960 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2961 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2962
2963 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2964 state[MAX2(nr_samplers, nr_sampler_views)]);
2965
2966 for (i = 0; i < shader->info.base.num_inputs; i++) {
2967 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2968 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2969
2970 switch (shader->info.base.input_interpolate[i]) {
2971 case TGSI_INTERPOLATE_CONSTANT:
2972 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2973 break;
2974 case TGSI_INTERPOLATE_LINEAR:
2975 shader->inputs[i].interp = LP_INTERP_LINEAR;
2976 break;
2977 case TGSI_INTERPOLATE_PERSPECTIVE:
2978 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2979 break;
2980 case TGSI_INTERPOLATE_COLOR:
2981 shader->inputs[i].interp = LP_INTERP_COLOR;
2982 break;
2983 default:
2984 assert(0);
2985 break;
2986 }
2987
2988 switch (shader->info.base.input_semantic_name[i]) {
2989 case TGSI_SEMANTIC_FACE:
2990 shader->inputs[i].interp = LP_INTERP_FACING;
2991 break;
2992 case TGSI_SEMANTIC_POSITION:
2993 /* Position was already emitted above
2994 */
2995 shader->inputs[i].interp = LP_INTERP_POSITION;
2996 shader->inputs[i].src_index = 0;
2997 continue;
2998 }
2999
3000 /* XXX this is a completely pointless index map... */
3001 shader->inputs[i].src_index = i+1;
3002 }
3003
3004 if (LP_DEBUG & DEBUG_TGSI) {
3005 unsigned attrib;
3006 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3007 shader->no, (void *) shader);
3008 tgsi_dump(templ->tokens, 0);
3009 debug_printf("usage masks:\n");
3010 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3011 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3012 debug_printf(" IN[%u].%s%s%s%s\n",
3013 attrib,
3014 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3015 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3016 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3017 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3018 }
3019 debug_printf("\n");
3020 }
3021
3022 return shader;
3023 }
3024
3025
3026 static void
3027 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3028 {
3029 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3030
3031 if (llvmpipe->fs == fs)
3032 return;
3033
3034 llvmpipe->fs = (struct lp_fragment_shader *) fs;
3035
3036 draw_bind_fragment_shader(llvmpipe->draw,
3037 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
3038
3039 llvmpipe->dirty |= LP_NEW_FS;
3040 }
3041
3042
3043 /**
3044 * Remove shader variant from two lists: the shader's variant list
3045 * and the context's variant list.
3046 */
3047 static void
3048 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3049 struct lp_fragment_shader_variant *variant)
3050 {
3051 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3052 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3053 "v total cached %u inst %u total inst %u\n",
3054 variant->shader->no, variant->no,
3055 variant->shader->variants_created,
3056 variant->shader->variants_cached,
3057 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3058 }
3059
3060 gallivm_destroy(variant->gallivm);
3061
3062 /* remove from shader's list */
3063 remove_from_list(&variant->list_item_local);
3064 variant->shader->variants_cached--;
3065
3066 /* remove from context's list */
3067 remove_from_list(&variant->list_item_global);
3068 lp->nr_fs_variants--;
3069 lp->nr_fs_instrs -= variant->nr_instrs;
3070
3071 FREE(variant);
3072 }
3073
3074
3075 static void
3076 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3077 {
3078 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3079 struct lp_fragment_shader *shader = fs;
3080 struct lp_fs_variant_list_item *li;
3081
3082 assert(fs != llvmpipe->fs);
3083
3084 /*
3085 * XXX: we need to flush the context until we have some sort of reference
3086 * counting in fragment shaders as they may still be binned
3087 * Flushing alone might not sufficient we need to wait on it too.
3088 */
3089 llvmpipe_finish(pipe, __FUNCTION__);
3090
3091 /* Delete all the variants */
3092 li = first_elem(&shader->variants);
3093 while(!at_end(&shader->variants, li)) {
3094 struct lp_fs_variant_list_item *next = next_elem(li);
3095 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3096 li = next;
3097 }
3098
3099 /* Delete draw module's data */
3100 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3101
3102 assert(shader->variants_cached == 0);
3103 FREE((void *) shader->base.tokens);
3104 FREE(shader);
3105 }
3106
3107
3108
3109 static void
3110 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3111 enum pipe_shader_type shader, uint index,
3112 const struct pipe_constant_buffer *cb)
3113 {
3114 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3115 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3116
3117 assert(shader < PIPE_SHADER_TYPES);
3118 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3119
3120 /* note: reference counting */
3121 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3122
3123 if (constants) {
3124 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3125 debug_printf("Illegal set constant without bind flag\n");
3126 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3127 }
3128 }
3129
3130 if (shader == PIPE_SHADER_VERTEX ||
3131 shader == PIPE_SHADER_GEOMETRY) {
3132 /* Pass the constants to the 'draw' module */
3133 const unsigned size = cb ? cb->buffer_size : 0;
3134 const ubyte *data;
3135
3136 if (constants) {
3137 data = (ubyte *) llvmpipe_resource_data(constants);
3138 }
3139 else if (cb && cb->user_buffer) {
3140 data = (ubyte *) cb->user_buffer;
3141 }
3142 else {
3143 data = NULL;
3144 }
3145
3146 if (data)
3147 data += cb->buffer_offset;
3148
3149 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3150 index, data, size);
3151 }
3152 else {
3153 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3154 }
3155
3156 if (cb && cb->user_buffer) {
3157 pipe_resource_reference(&constants, NULL);
3158 }
3159 }
3160
3161 static void
3162 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3163 enum pipe_shader_type shader, unsigned start_slot,
3164 unsigned count, const struct pipe_shader_buffer *buffers,
3165 unsigned writable_bitmask)
3166 {
3167 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3168 unsigned i, idx;
3169 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3170 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3171
3172 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3173
3174 if (shader == PIPE_SHADER_VERTEX ||
3175 shader == PIPE_SHADER_GEOMETRY) {
3176 const unsigned size = buffer ? buffer->buffer_size : 0;
3177 const ubyte *data = NULL;
3178 if (buffer && buffer->buffer)
3179 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3180 if (data)
3181 data += buffer->buffer_offset;
3182 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3183 i, data, size);
3184 } else if (shader == PIPE_SHADER_FRAGMENT) {
3185 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3186 }
3187 }
3188 }
3189
3190 /**
3191 * Return the blend factor equivalent to a destination alpha of one.
3192 */
3193 static inline unsigned
3194 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3195 {
3196 switch(factor) {
3197 case PIPE_BLENDFACTOR_DST_ALPHA:
3198 return PIPE_BLENDFACTOR_ONE;
3199 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3200 return PIPE_BLENDFACTOR_ZERO;
3201 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3202 if (clamped_zero)
3203 return PIPE_BLENDFACTOR_ZERO;
3204 else
3205 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3206 }
3207
3208 return factor;
3209 }
3210
3211
3212 /**
3213 * We need to generate several variants of the fragment pipeline to match
3214 * all the combinations of the contributing state atoms.
3215 *
3216 * TODO: there is actually no reason to tie this to context state -- the
3217 * generated code could be cached globally in the screen.
3218 */
3219 static void
3220 make_variant_key(struct llvmpipe_context *lp,
3221 struct lp_fragment_shader *shader,
3222 struct lp_fragment_shader_variant_key *key)
3223 {
3224 unsigned i;
3225
3226 memset(key, 0, shader->variant_key_size);
3227
3228 if (lp->framebuffer.zsbuf) {
3229 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3230 const struct util_format_description *zsbuf_desc =
3231 util_format_description(zsbuf_format);
3232
3233 if (lp->depth_stencil->depth.enabled &&
3234 util_format_has_depth(zsbuf_desc)) {
3235 key->zsbuf_format = zsbuf_format;
3236 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3237 }
3238 if (lp->depth_stencil->stencil[0].enabled &&
3239 util_format_has_stencil(zsbuf_desc)) {
3240 key->zsbuf_format = zsbuf_format;
3241 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3242 }
3243 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3244 key->resource_1d = TRUE;
3245 }
3246 }
3247
3248 /*
3249 * Propagate the depth clamp setting from the rasterizer state.
3250 * depth_clip == 0 implies depth clamping is enabled.
3251 *
3252 * When clip_halfz is enabled, then always clamp the depth values.
3253 *
3254 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3255 * clamp is always active in d3d10, regardless if depth clip is
3256 * enabled or not).
3257 * (GL has an always-on [0,1] clamp on fs depth output instead
3258 * to ensure the depth values stay in range. Doesn't look like
3259 * we do that, though...)
3260 */
3261 if (lp->rasterizer->clip_halfz) {
3262 key->depth_clamp = 1;
3263 } else {
3264 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3265 }
3266
3267 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3268 if (!lp->framebuffer.nr_cbufs ||
3269 !lp->framebuffer.cbufs[0] ||
3270 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3271 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3272 }
3273 if(key->alpha.enabled)
3274 key->alpha.func = lp->depth_stencil->alpha.func;
3275 /* alpha.ref_value is passed in jit_context */
3276
3277 key->flatshade = lp->rasterizer->flatshade;
3278 if (lp->active_occlusion_queries) {
3279 key->occlusion_count = TRUE;
3280 }
3281
3282 if (lp->framebuffer.nr_cbufs) {
3283 memcpy(&key->blend, lp->blend, sizeof key->blend);
3284 }
3285
3286 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3287
3288 if (!key->blend.independent_blend_enable) {
3289 /* we always need independent blend otherwise the fixups below won't work */
3290 for (i = 1; i < key->nr_cbufs; i++) {
3291 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3292 }
3293 key->blend.independent_blend_enable = 1;
3294 }
3295
3296 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3297 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3298
3299 if (lp->framebuffer.cbufs[i]) {
3300 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3301 const struct util_format_description *format_desc;
3302
3303 key->cbuf_format[i] = format;
3304
3305 /*
3306 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3307 * mixing of 2d textures with height 1 and 1d textures, so make sure
3308 * we pick 1d if any cbuf or zsbuf is 1d.
3309 */
3310 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3311 key->resource_1d = TRUE;
3312 }
3313
3314 format_desc = util_format_description(format);
3315 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3316 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3317
3318 /*
3319 * Mask out color channels not present in the color buffer.
3320 */
3321 blend_rt->colormask &= util_format_colormask(format_desc);
3322
3323 /*
3324 * Disable blend for integer formats.
3325 */
3326 if (util_format_is_pure_integer(format)) {
3327 blend_rt->blend_enable = 0;
3328 }
3329
3330 /*
3331 * Our swizzled render tiles always have an alpha channel, but the
3332 * linear render target format often does not, so force here the dst
3333 * alpha to be one.
3334 *
3335 * This is not a mere optimization. Wrong results will be produced if
3336 * the dst alpha is used, the dst format does not have alpha, and the
3337 * previous rendering was not flushed from the swizzled to linear
3338 * buffer. For example, NonPowTwo DCT.
3339 *
3340 * TODO: This should be generalized to all channels for better
3341 * performance, but only alpha causes correctness issues.
3342 *
3343 * Also, force rgb/alpha func/factors match, to make AoS blending
3344 * easier.
3345 */
3346 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3347 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3348 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3349 boolean clamped_zero = !util_format_is_float(format) &&
3350 !util_format_is_snorm(format);
3351 blend_rt->rgb_src_factor =
3352 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3353 blend_rt->rgb_dst_factor =
3354 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3355 blend_rt->alpha_func = blend_rt->rgb_func;
3356 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3357 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3358 }
3359 }
3360 else {
3361 /* no color buffer for this fragment output */
3362 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3363 blend_rt->colormask = 0x0;
3364 blend_rt->blend_enable = 0;
3365 }
3366 }
3367
3368 /* This value will be the same for all the variants of a given shader:
3369 */
3370 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3371
3372 for(i = 0; i < key->nr_samplers; ++i) {
3373 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3374 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3375 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3376 }
3377 }
3378
3379 /*
3380 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3381 * are dx10-style? Can't really have mixed opcodes, at least not
3382 * if we want to skip the holes here (without rescanning tgsi).
3383 */
3384 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3385 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3386 for(i = 0; i < key->nr_sampler_views; ++i) {
3387 /*
3388 * Note sview may exceed what's representable by file_mask.
3389 * This will still work, the only downside is that not actually
3390 * used views may be included in the shader key.
3391 */
3392 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3393 lp_sampler_static_texture_state(&key->state[i].texture_state,
3394 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3395 }
3396 }
3397 }
3398 else {
3399 key->nr_sampler_views = key->nr_samplers;
3400 for(i = 0; i < key->nr_sampler_views; ++i) {
3401 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3402 lp_sampler_static_texture_state(&key->state[i].texture_state,
3403 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3404 }
3405 }
3406 }
3407 }
3408
3409
3410
3411 /**
3412 * Update fragment shader state. This is called just prior to drawing
3413 * something when some fragment-related state has changed.
3414 */
3415 void
3416 llvmpipe_update_fs(struct llvmpipe_context *lp)
3417 {
3418 struct lp_fragment_shader *shader = lp->fs;
3419 struct lp_fragment_shader_variant_key key;
3420 struct lp_fragment_shader_variant *variant = NULL;
3421 struct lp_fs_variant_list_item *li;
3422
3423 make_variant_key(lp, shader, &key);
3424
3425 /* Search the variants for one which matches the key */
3426 li = first_elem(&shader->variants);
3427 while(!at_end(&shader->variants, li)) {
3428 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3429 variant = li->base;
3430 break;
3431 }
3432 li = next_elem(li);
3433 }
3434
3435 if (variant) {
3436 /* Move this variant to the head of the list to implement LRU
3437 * deletion of shader's when we have too many.
3438 */
3439 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3440 }
3441 else {
3442 /* variant not found, create it now */
3443 int64_t t0, t1, dt;
3444 unsigned i;
3445 unsigned variants_to_cull;
3446
3447 if (LP_DEBUG & DEBUG_FS) {
3448 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3449 lp->nr_fs_variants,
3450 lp->nr_fs_instrs,
3451 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3452 }
3453
3454 /* First, check if we've exceeded the max number of shader variants.
3455 * If so, free 6.25% of them (the least recently used ones).
3456 */
3457 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3458
3459 if (variants_to_cull ||
3460 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3461 struct pipe_context *pipe = &lp->pipe;
3462
3463 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3464 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3465 "\t%u instrs,\t%u instrs/variant\n",
3466 shader->variants_cached,
3467 lp->nr_fs_variants, lp->nr_fs_instrs,
3468 lp->nr_fs_instrs / lp->nr_fs_variants);
3469 }
3470
3471 /*
3472 * XXX: we need to flush the context until we have some sort of
3473 * reference counting in fragment shaders as they may still be binned
3474 * Flushing alone might not be sufficient we need to wait on it too.
3475 */
3476 llvmpipe_finish(pipe, __FUNCTION__);
3477
3478 /*
3479 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3480 * number of shader variants (potentially all of them) could be
3481 * pending for destruction on flush.
3482 */
3483
3484 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3485 struct lp_fs_variant_list_item *item;
3486 if (is_empty_list(&lp->fs_variants_list)) {
3487 break;
3488 }
3489 item = last_elem(&lp->fs_variants_list);
3490 assert(item);
3491 assert(item->base);
3492 llvmpipe_remove_shader_variant(lp, item->base);
3493 }
3494 }
3495
3496 /*
3497 * Generate the new variant.
3498 */
3499 t0 = os_time_get();
3500 variant = generate_variant(lp, shader, &key);
3501 t1 = os_time_get();
3502 dt = t1 - t0;
3503 LP_COUNT_ADD(llvm_compile_time, dt);
3504 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3505
3506 /* Put the new variant into the list */
3507 if (variant) {
3508 insert_at_head(&shader->variants, &variant->list_item_local);
3509 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3510 lp->nr_fs_variants++;
3511 lp->nr_fs_instrs += variant->nr_instrs;
3512 shader->variants_cached++;
3513 }
3514 }
3515
3516 /* Bind this variant */
3517 lp_setup_set_fs_variant(lp->setup, variant);
3518 }
3519
3520
3521
3522
3523
3524 void
3525 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3526 {
3527 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3528 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3529 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3530
3531 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3532
3533 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3534 }
3535
3536