llvmpipe: add support for ssbo to the fragment shader jit.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_bitarit.h"
88 #include "gallivm/lp_bld_pack.h"
89 #include "gallivm/lp_bld_format.h"
90 #include "gallivm/lp_bld_quad.h"
91
92 #include "lp_bld_alpha.h"
93 #include "lp_bld_blend.h"
94 #include "lp_bld_depth.h"
95 #include "lp_bld_interp.h"
96 #include "lp_context.h"
97 #include "lp_debug.h"
98 #include "lp_perf.h"
99 #include "lp_setup.h"
100 #include "lp_state.h"
101 #include "lp_tex_sample.h"
102 #include "lp_flush.h"
103 #include "lp_state_fs.h"
104 #include "lp_rast.h"
105
106
107 /** Fragment shader number (for debugging) */
108 static unsigned fs_no = 0;
109
110
111 /**
112 * Expand the relevant bits of mask_input to a n*4-dword mask for the
113 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
114 * quad mask vector to 0 or ~0.
115 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
116 * quad arguments with fs length 8.
117 *
118 * \param first_quad which quad(s) of the quad group to test, in [0,3]
119 * \param mask_input bitwise mask for the whole 4x4 stamp
120 */
121 static LLVMValueRef
122 generate_quad_mask(struct gallivm_state *gallivm,
123 struct lp_type fs_type,
124 unsigned first_quad,
125 LLVMValueRef mask_input) /* int32 */
126 {
127 LLVMBuilderRef builder = gallivm->builder;
128 struct lp_type mask_type;
129 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
130 LLVMValueRef bits[16];
131 LLVMValueRef mask, bits_vec;
132 int shift, i;
133
134 /*
135 * XXX: We'll need a different path for 16 x u8
136 */
137 assert(fs_type.width == 32);
138 assert(fs_type.length <= ARRAY_SIZE(bits));
139 mask_type = lp_int_type(fs_type);
140
141 /*
142 * mask_input >>= (quad * 4)
143 */
144 switch (first_quad) {
145 case 0:
146 shift = 0;
147 break;
148 case 1:
149 assert(fs_type.length == 4);
150 shift = 2;
151 break;
152 case 2:
153 shift = 8;
154 break;
155 case 3:
156 assert(fs_type.length == 4);
157 shift = 10;
158 break;
159 default:
160 assert(0);
161 shift = 0;
162 }
163
164 mask_input = LLVMBuildLShr(builder,
165 mask_input,
166 LLVMConstInt(i32t, shift, 0),
167 "");
168
169 /*
170 * mask = { mask_input & (1 << i), for i in [0,3] }
171 */
172 mask = lp_build_broadcast(gallivm,
173 lp_build_vec_type(gallivm, mask_type),
174 mask_input);
175
176 for (i = 0; i < fs_type.length / 4; i++) {
177 unsigned j = 2 * (i % 2) + (i / 2) * 8;
178 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
179 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
180 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
181 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
182 }
183 bits_vec = LLVMConstVector(bits, fs_type.length);
184 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
185
186 /*
187 * mask = mask == bits ? ~0 : 0
188 */
189 mask = lp_build_compare(gallivm,
190 mask_type, PIPE_FUNC_EQUAL,
191 mask, bits_vec);
192
193 return mask;
194 }
195
196
197 #define EARLY_DEPTH_TEST 0x1
198 #define LATE_DEPTH_TEST 0x2
199 #define EARLY_DEPTH_WRITE 0x4
200 #define LATE_DEPTH_WRITE 0x8
201
202 static int
203 find_output_by_semantic( const struct tgsi_shader_info *info,
204 unsigned semantic,
205 unsigned index )
206 {
207 int i;
208
209 for (i = 0; i < info->num_outputs; i++)
210 if (info->output_semantic_name[i] == semantic &&
211 info->output_semantic_index[i] == index)
212 return i;
213
214 return -1;
215 }
216
217
218 /**
219 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
220 */
221 static LLVMValueRef
222 lp_llvm_viewport(LLVMValueRef context_ptr,
223 struct gallivm_state *gallivm,
224 LLVMValueRef viewport_index)
225 {
226 LLVMBuilderRef builder = gallivm->builder;
227 LLVMValueRef ptr;
228 LLVMValueRef res;
229 struct lp_type viewport_type =
230 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
231
232 ptr = lp_jit_context_viewports(gallivm, context_ptr);
233 ptr = LLVMBuildPointerCast(builder, ptr,
234 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
235
236 res = lp_build_pointer_get(builder, ptr, viewport_index);
237
238 return res;
239 }
240
241
242 static LLVMValueRef
243 lp_build_depth_clamp(struct gallivm_state *gallivm,
244 LLVMBuilderRef builder,
245 struct lp_type type,
246 LLVMValueRef context_ptr,
247 LLVMValueRef thread_data_ptr,
248 LLVMValueRef z)
249 {
250 LLVMValueRef viewport, min_depth, max_depth;
251 LLVMValueRef viewport_index;
252 struct lp_build_context f32_bld;
253
254 assert(type.floating);
255 lp_build_context_init(&f32_bld, gallivm, type);
256
257 /*
258 * Assumes clamping of the viewport index will occur in setup/gs. Value
259 * is passed through the rasterization stage via lp_rast_shader_inputs.
260 *
261 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
262 * semantics.
263 */
264 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
265 thread_data_ptr);
266
267 /*
268 * Load the min and max depth from the lp_jit_context.viewports
269 * array of lp_jit_viewport structures.
270 */
271 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
272
273 /* viewports[viewport_index].min_depth */
274 min_depth = LLVMBuildExtractElement(builder, viewport,
275 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
276 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
277
278 /* viewports[viewport_index].max_depth */
279 max_depth = LLVMBuildExtractElement(builder, viewport,
280 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
281 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
282
283 /*
284 * Clamp to the min and max depth values for the given viewport.
285 */
286 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
287 }
288
289
290 /**
291 * Generate the fragment shader, depth/stencil test, and alpha tests.
292 */
293 static void
294 generate_fs_loop(struct gallivm_state *gallivm,
295 struct lp_fragment_shader *shader,
296 const struct lp_fragment_shader_variant_key *key,
297 LLVMBuilderRef builder,
298 struct lp_type type,
299 LLVMValueRef context_ptr,
300 LLVMValueRef num_loop,
301 struct lp_build_interp_soa_context *interp,
302 const struct lp_build_sampler_soa *sampler,
303 LLVMValueRef mask_store,
304 LLVMValueRef (*out_color)[4],
305 LLVMValueRef depth_ptr,
306 LLVMValueRef depth_stride,
307 LLVMValueRef facing,
308 LLVMValueRef thread_data_ptr)
309 {
310 const struct util_format_description *zs_format_desc = NULL;
311 const struct tgsi_token *tokens = shader->base.tokens;
312 struct lp_type int_type = lp_int_type(type);
313 LLVMTypeRef vec_type, int_vec_type;
314 LLVMValueRef mask_ptr, mask_val;
315 LLVMValueRef consts_ptr, num_consts_ptr;
316 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
317 LLVMValueRef z;
318 LLVMValueRef z_value, s_value;
319 LLVMValueRef z_fb, s_fb;
320 LLVMValueRef stencil_refs[2];
321 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
322 struct lp_build_for_loop_state loop_state;
323 struct lp_build_mask_context mask;
324 /*
325 * TODO: figure out if simple_shader optimization is really worthwile to
326 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
327 * code since tests tend to take another codepath than real shaders.
328 */
329 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
330 shader->info.base.num_inputs < 3 &&
331 shader->info.base.num_instructions < 8) && 0;
332 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
333 util_blend_state_is_dual(&key->blend, 0);
334 unsigned attrib;
335 unsigned chan;
336 unsigned cbuf;
337 unsigned depth_mode;
338
339 struct lp_bld_tgsi_system_values system_values;
340
341 memset(&system_values, 0, sizeof(system_values));
342
343 if (key->depth.enabled ||
344 key->stencil[0].enabled) {
345
346 zs_format_desc = util_format_description(key->zsbuf_format);
347 assert(zs_format_desc);
348
349 if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
350 if (key->alpha.enabled ||
351 key->blend.alpha_to_coverage ||
352 shader->info.base.uses_kill ||
353 shader->info.base.writes_samplemask) {
354 /* With alpha test and kill, can do the depth test early
355 * and hopefully eliminate some quads. But need to do a
356 * special deferred depth write once the final mask value
357 * is known. This only works though if there's either no
358 * stencil test or the stencil value isn't written.
359 */
360 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
361 (key->stencil[1].enabled &&
362 key->stencil[1].writemask)))
363 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
364 else
365 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
366 }
367 else
368 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
369 }
370 else {
371 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
372 }
373
374 if (!(key->depth.enabled && key->depth.writemask) &&
375 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
376 (key->stencil[1].enabled &&
377 key->stencil[1].writemask))))
378 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
379 }
380 else {
381 depth_mode = 0;
382 }
383
384 vec_type = lp_build_vec_type(gallivm, type);
385 int_vec_type = lp_build_vec_type(gallivm, int_type);
386
387 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
388 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
389 /* convert scalar stencil refs into vectors */
390 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
391 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
392
393 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
394 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
395
396 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
397 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
398
399 lp_build_for_loop_begin(&loop_state, gallivm,
400 lp_build_const_int32(gallivm, 0),
401 LLVMIntULT,
402 num_loop,
403 lp_build_const_int32(gallivm, 1));
404
405 mask_ptr = LLVMBuildGEP(builder, mask_store,
406 &loop_state.counter, 1, "mask_ptr");
407 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
408
409 memset(outputs, 0, sizeof outputs);
410
411 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
412 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
413 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
414 lp_build_vec_type(gallivm,
415 type),
416 num_loop, "color");
417 }
418 }
419 if (dual_source_blend) {
420 assert(key->nr_cbufs <= 1);
421 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
422 out_color[1][chan] = lp_build_array_alloca(gallivm,
423 lp_build_vec_type(gallivm,
424 type),
425 num_loop, "color1");
426 }
427 }
428
429
430 /* 'mask' will control execution based on quad's pixel alive/killed state */
431 lp_build_mask_begin(&mask, gallivm, type, mask_val);
432
433 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
434 lp_build_mask_check(&mask);
435
436 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
437 z = interp->pos[2];
438
439 if (depth_mode & EARLY_DEPTH_TEST) {
440 /*
441 * Clamp according to ARB_depth_clamp semantics.
442 */
443 if (key->depth_clamp) {
444 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
445 thread_data_ptr, z);
446 }
447 lp_build_depth_stencil_load_swizzled(gallivm, type,
448 zs_format_desc, key->resource_1d,
449 depth_ptr, depth_stride,
450 &z_fb, &s_fb, loop_state.counter);
451 lp_build_depth_stencil_test(gallivm,
452 &key->depth,
453 key->stencil,
454 type,
455 zs_format_desc,
456 &mask,
457 stencil_refs,
458 z, z_fb, s_fb,
459 facing,
460 &z_value, &s_value,
461 !simple_shader);
462
463 if (depth_mode & EARLY_DEPTH_WRITE) {
464 lp_build_depth_stencil_write_swizzled(gallivm, type,
465 zs_format_desc, key->resource_1d,
466 NULL, NULL, NULL, loop_state.counter,
467 depth_ptr, depth_stride,
468 z_value, s_value);
469 }
470 /*
471 * Note mask check if stencil is enabled must be after ds write not after
472 * stencil test otherwise new stencil values may not get written if all
473 * fragments got killed by depth/stencil test.
474 */
475 if (!simple_shader && key->stencil[0].enabled)
476 lp_build_mask_check(&mask);
477 }
478
479 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
480
481 /* Build the actual shader */
482 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
483 consts_ptr, num_consts_ptr, &system_values,
484 interp->inputs,
485 outputs, context_ptr, thread_data_ptr,
486 sampler, &shader->info.base, NULL, ssbo_ptr, num_ssbo_ptr);
487
488 /* Alpha test */
489 if (key->alpha.enabled) {
490 int color0 = find_output_by_semantic(&shader->info.base,
491 TGSI_SEMANTIC_COLOR,
492 0);
493
494 if (color0 != -1 && outputs[color0][3]) {
495 const struct util_format_description *cbuf_format_desc;
496 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
497 LLVMValueRef alpha_ref_value;
498
499 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
500 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
501
502 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
503
504 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
505 &mask, alpha, alpha_ref_value,
506 (depth_mode & LATE_DEPTH_TEST) != 0);
507 }
508 }
509
510 /* Emulate Alpha to Coverage with Alpha test */
511 if (key->blend.alpha_to_coverage) {
512 int color0 = find_output_by_semantic(&shader->info.base,
513 TGSI_SEMANTIC_COLOR,
514 0);
515
516 if (color0 != -1 && outputs[color0][3]) {
517 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
518
519 lp_build_alpha_to_coverage(gallivm, type,
520 &mask, alpha,
521 (depth_mode & LATE_DEPTH_TEST) != 0);
522 }
523 }
524
525 if (shader->info.base.writes_samplemask) {
526 int smaski = find_output_by_semantic(&shader->info.base,
527 TGSI_SEMANTIC_SAMPLEMASK,
528 0);
529 LLVMValueRef smask;
530 struct lp_build_context smask_bld;
531 lp_build_context_init(&smask_bld, gallivm, int_type);
532
533 assert(smaski >= 0);
534 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
535 /*
536 * Pixel is alive according to the first sample in the mask.
537 */
538 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
539 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
540 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
541 lp_build_mask_update(&mask, smask);
542 }
543
544 /* Late Z test */
545 if (depth_mode & LATE_DEPTH_TEST) {
546 int pos0 = find_output_by_semantic(&shader->info.base,
547 TGSI_SEMANTIC_POSITION,
548 0);
549 int s_out = find_output_by_semantic(&shader->info.base,
550 TGSI_SEMANTIC_STENCIL,
551 0);
552 if (pos0 != -1 && outputs[pos0][2]) {
553 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
554 }
555 /*
556 * Clamp according to ARB_depth_clamp semantics.
557 */
558 if (key->depth_clamp) {
559 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
560 thread_data_ptr, z);
561 }
562
563 if (s_out != -1 && outputs[s_out][1]) {
564 /* there's only one value, and spec says to discard additional bits */
565 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
566 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
567 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
568 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
569 stencil_refs[1] = stencil_refs[0];
570 }
571
572 lp_build_depth_stencil_load_swizzled(gallivm, type,
573 zs_format_desc, key->resource_1d,
574 depth_ptr, depth_stride,
575 &z_fb, &s_fb, loop_state.counter);
576
577 lp_build_depth_stencil_test(gallivm,
578 &key->depth,
579 key->stencil,
580 type,
581 zs_format_desc,
582 &mask,
583 stencil_refs,
584 z, z_fb, s_fb,
585 facing,
586 &z_value, &s_value,
587 !simple_shader);
588 /* Late Z write */
589 if (depth_mode & LATE_DEPTH_WRITE) {
590 lp_build_depth_stencil_write_swizzled(gallivm, type,
591 zs_format_desc, key->resource_1d,
592 NULL, NULL, NULL, loop_state.counter,
593 depth_ptr, depth_stride,
594 z_value, s_value);
595 }
596 }
597 else if ((depth_mode & EARLY_DEPTH_TEST) &&
598 (depth_mode & LATE_DEPTH_WRITE))
599 {
600 /* Need to apply a reduced mask to the depth write. Reload the
601 * depth value, update from zs_value with the new mask value and
602 * write that out.
603 */
604 lp_build_depth_stencil_write_swizzled(gallivm, type,
605 zs_format_desc, key->resource_1d,
606 &mask, z_fb, s_fb, loop_state.counter,
607 depth_ptr, depth_stride,
608 z_value, s_value);
609 }
610
611
612 /* Color write */
613 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
614 {
615 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
616 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
617 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
618 {
619 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
620 if(outputs[attrib][chan]) {
621 /* XXX: just initialize outputs to point at colors[] and
622 * skip this.
623 */
624 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
625 LLVMValueRef color_ptr;
626 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
627 &loop_state.counter, 1, "");
628 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
629 LLVMBuildStore(builder, out, color_ptr);
630 }
631 }
632 }
633 }
634
635 if (key->occlusion_count) {
636 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
637 lp_build_name(counter, "counter");
638 lp_build_occlusion_count(gallivm, type,
639 lp_build_mask_value(&mask), counter);
640 }
641
642 mask_val = lp_build_mask_end(&mask);
643 LLVMBuildStore(builder, mask_val, mask_ptr);
644 lp_build_for_loop_end(&loop_state);
645 }
646
647
648 /**
649 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
650 *
651 * Fragment Shader outputs pixels in small 2x2 blocks
652 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
653 *
654 * However in memory pixels are stored in rows
655 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
656 *
657 * @param type fragment shader type (4x or 8x float)
658 * @param num_fs number of fs_src
659 * @param is_1d whether we're outputting to a 1d resource
660 * @param dst_channels number of output channels
661 * @param fs_src output from fragment shader
662 * @param dst pointer to store result
663 * @param pad_inline is channel padding inline or at end of row
664 * @return the number of dsts
665 */
666 static int
667 generate_fs_twiddle(struct gallivm_state *gallivm,
668 struct lp_type type,
669 unsigned num_fs,
670 unsigned dst_channels,
671 LLVMValueRef fs_src[][4],
672 LLVMValueRef* dst,
673 bool pad_inline)
674 {
675 LLVMValueRef src[16];
676
677 bool swizzle_pad;
678 bool twiddle;
679 bool split;
680
681 unsigned pixels = type.length / 4;
682 unsigned reorder_group;
683 unsigned src_channels;
684 unsigned src_count;
685 unsigned i;
686
687 src_channels = dst_channels < 3 ? dst_channels : 4;
688 src_count = num_fs * src_channels;
689
690 assert(pixels == 2 || pixels == 1);
691 assert(num_fs * src_channels <= ARRAY_SIZE(src));
692
693 /*
694 * Transpose from SoA -> AoS
695 */
696 for (i = 0; i < num_fs; ++i) {
697 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
698 }
699
700 /*
701 * Pick transformation options
702 */
703 swizzle_pad = false;
704 twiddle = false;
705 split = false;
706 reorder_group = 0;
707
708 if (dst_channels == 1) {
709 twiddle = true;
710
711 if (pixels == 2) {
712 split = true;
713 }
714 } else if (dst_channels == 2) {
715 if (pixels == 1) {
716 reorder_group = 1;
717 }
718 } else if (dst_channels > 2) {
719 if (pixels == 1) {
720 reorder_group = 2;
721 } else {
722 twiddle = true;
723 }
724
725 if (!pad_inline && dst_channels == 3 && pixels > 1) {
726 swizzle_pad = true;
727 }
728 }
729
730 /*
731 * Split the src in half
732 */
733 if (split) {
734 for (i = num_fs; i > 0; --i) {
735 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
736 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
737 }
738
739 src_count *= 2;
740 type.length = 4;
741 }
742
743 /*
744 * Ensure pixels are in memory order
745 */
746 if (reorder_group) {
747 /* Twiddle pixels by reordering the array, e.g.:
748 *
749 * src_count = 8 -> 0 2 1 3 4 6 5 7
750 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
751 */
752 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
753
754 for (i = 0; i < src_count; ++i) {
755 unsigned group = i / reorder_group;
756 unsigned block = (group / 4) * 4 * reorder_group;
757 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
758 dst[i] = src[j];
759 }
760 } else if (twiddle) {
761 /* Twiddle pixels across elements of array */
762 /*
763 * XXX: we should avoid this in some cases, but would need to tell
764 * lp_build_conv to reorder (or deal with it ourselves).
765 */
766 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
767 } else {
768 /* Do nothing */
769 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
770 }
771
772 /*
773 * Moves any padding between pixels to the end
774 * e.g. RGBXRGBX -> RGBRGBXX
775 */
776 if (swizzle_pad) {
777 unsigned char swizzles[16];
778 unsigned elems = pixels * dst_channels;
779
780 for (i = 0; i < type.length; ++i) {
781 if (i < elems)
782 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
783 else
784 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
785 }
786
787 for (i = 0; i < src_count; ++i) {
788 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
789 }
790 }
791
792 return src_count;
793 }
794
795
796 /*
797 * Untwiddle and transpose, much like the above.
798 * However, this is after conversion, so we get packed vectors.
799 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
800 * the vectors will look like:
801 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
802 * be swizzled here). Extending to 16bit should be trivial.
803 * Should also be extended to handle twice wide vectors with AVX2...
804 */
805 static void
806 fs_twiddle_transpose(struct gallivm_state *gallivm,
807 struct lp_type type,
808 LLVMValueRef *src,
809 unsigned src_count,
810 LLVMValueRef *dst)
811 {
812 unsigned i, j;
813 struct lp_type type64, type16, type32;
814 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
815 LLVMBuilderRef builder = gallivm->builder;
816 LLVMValueRef tmp[4], shuf[8];
817 for (j = 0; j < 2; j++) {
818 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
819 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
820 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
821 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
822 }
823
824 assert(src_count == 4 || src_count == 2 || src_count == 1);
825 assert(type.width == 8);
826 assert(type.length == 16);
827
828 type8_t = lp_build_vec_type(gallivm, type);
829
830 type64 = type;
831 type64.length /= 8;
832 type64.width *= 8;
833 type64_t = lp_build_vec_type(gallivm, type64);
834
835 type16 = type;
836 type16.length /= 2;
837 type16.width *= 2;
838 type16_t = lp_build_vec_type(gallivm, type16);
839
840 type32 = type;
841 type32.length /= 4;
842 type32.width *= 4;
843 type32_t = lp_build_vec_type(gallivm, type32);
844
845 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
846
847 if (src_count == 1) {
848 /* transpose was no-op, just untwiddle */
849 LLVMValueRef shuf_vec;
850 shuf_vec = LLVMConstVector(shuf, 8);
851 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
852 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
853 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
854 } else if (src_count == 2) {
855 LLVMValueRef shuf_vec;
856 shuf_vec = LLVMConstVector(shuf, 4);
857
858 for (i = 0; i < 2; i++) {
859 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
860 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
861 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
862 }
863 } else {
864 for (j = 0; j < 2; j++) {
865 LLVMValueRef lo, hi, lo2, hi2;
866 /*
867 * Note that if we only really have 3 valid channels (rgb)
868 * and we don't need alpha we could substitute a undef here
869 * for the respective channel (causing llvm to drop conversion
870 * for alpha).
871 */
872 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
873 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
874 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
875 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
876 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
877 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
878 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
879 }
880 }
881 }
882
883
884 /**
885 * Load an unswizzled block of pixels from memory
886 */
887 static void
888 load_unswizzled_block(struct gallivm_state *gallivm,
889 LLVMValueRef base_ptr,
890 LLVMValueRef stride,
891 unsigned block_width,
892 unsigned block_height,
893 LLVMValueRef* dst,
894 struct lp_type dst_type,
895 unsigned dst_count,
896 unsigned dst_alignment)
897 {
898 LLVMBuilderRef builder = gallivm->builder;
899 unsigned row_size = dst_count / block_height;
900 unsigned i;
901
902 /* Ensure block exactly fits into dst */
903 assert((block_width * block_height) % dst_count == 0);
904
905 for (i = 0; i < dst_count; ++i) {
906 unsigned x = i % row_size;
907 unsigned y = i / row_size;
908
909 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
910 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
911
912 LLVMValueRef gep[2];
913 LLVMValueRef dst_ptr;
914
915 gep[0] = lp_build_const_int32(gallivm, 0);
916 gep[1] = LLVMBuildAdd(builder, bx, by, "");
917
918 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
919 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
920 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
921
922 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
923
924 LLVMSetAlignment(dst[i], dst_alignment);
925 }
926 }
927
928
929 /**
930 * Store an unswizzled block of pixels to memory
931 */
932 static void
933 store_unswizzled_block(struct gallivm_state *gallivm,
934 LLVMValueRef base_ptr,
935 LLVMValueRef stride,
936 unsigned block_width,
937 unsigned block_height,
938 LLVMValueRef* src,
939 struct lp_type src_type,
940 unsigned src_count,
941 unsigned src_alignment)
942 {
943 LLVMBuilderRef builder = gallivm->builder;
944 unsigned row_size = src_count / block_height;
945 unsigned i;
946
947 /* Ensure src exactly fits into block */
948 assert((block_width * block_height) % src_count == 0);
949
950 for (i = 0; i < src_count; ++i) {
951 unsigned x = i % row_size;
952 unsigned y = i / row_size;
953
954 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
955 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
956
957 LLVMValueRef gep[2];
958 LLVMValueRef src_ptr;
959
960 gep[0] = lp_build_const_int32(gallivm, 0);
961 gep[1] = LLVMBuildAdd(builder, bx, by, "");
962
963 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
964 src_ptr = LLVMBuildBitCast(builder, src_ptr,
965 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
966
967 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
968
969 LLVMSetAlignment(src_ptr, src_alignment);
970 }
971 }
972
973
974 /**
975 * Checks if a format description is an arithmetic format
976 *
977 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
978 */
979 static inline boolean
980 is_arithmetic_format(const struct util_format_description *format_desc)
981 {
982 boolean arith = false;
983 unsigned i;
984
985 for (i = 0; i < format_desc->nr_channels; ++i) {
986 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
987 arith |= (format_desc->channel[i].size % 8) != 0;
988 }
989
990 return arith;
991 }
992
993
994 /**
995 * Checks if this format requires special handling due to required expansion
996 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
997 * SoA conversion.
998 */
999 static inline boolean
1000 format_expands_to_float_soa(const struct util_format_description *format_desc)
1001 {
1002 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1003 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1004 return true;
1005 }
1006 return false;
1007 }
1008
1009
1010 /**
1011 * Retrieves the type representing the memory layout for a format
1012 *
1013 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1014 */
1015 static inline void
1016 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1017 struct lp_type* type)
1018 {
1019 unsigned i;
1020 unsigned chan;
1021
1022 if (format_expands_to_float_soa(format_desc)) {
1023 /* just make this a uint with width of block */
1024 type->floating = false;
1025 type->fixed = false;
1026 type->sign = false;
1027 type->norm = false;
1028 type->width = format_desc->block.bits;
1029 type->length = 1;
1030 return;
1031 }
1032
1033 for (i = 0; i < 4; i++)
1034 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1035 break;
1036 chan = i;
1037
1038 memset(type, 0, sizeof(struct lp_type));
1039 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1040 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1041 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1042 type->norm = format_desc->channel[chan].normalized;
1043
1044 if (is_arithmetic_format(format_desc)) {
1045 type->width = 0;
1046 type->length = 1;
1047
1048 for (i = 0; i < format_desc->nr_channels; ++i) {
1049 type->width += format_desc->channel[i].size;
1050 }
1051 } else {
1052 type->width = format_desc->channel[chan].size;
1053 type->length = format_desc->nr_channels;
1054 }
1055 }
1056
1057
1058 /**
1059 * Retrieves the type for a format which is usable in the blending code.
1060 *
1061 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1062 */
1063 static inline void
1064 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1065 struct lp_type* type)
1066 {
1067 unsigned i;
1068 unsigned chan;
1069
1070 if (format_expands_to_float_soa(format_desc)) {
1071 /* always use ordinary floats for blending */
1072 type->floating = true;
1073 type->fixed = false;
1074 type->sign = true;
1075 type->norm = false;
1076 type->width = 32;
1077 type->length = 4;
1078 return;
1079 }
1080
1081 for (i = 0; i < 4; i++)
1082 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1083 break;
1084 chan = i;
1085
1086 memset(type, 0, sizeof(struct lp_type));
1087 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1088 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1089 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1090 type->norm = format_desc->channel[chan].normalized;
1091 type->width = format_desc->channel[chan].size;
1092 type->length = format_desc->nr_channels;
1093
1094 for (i = 1; i < format_desc->nr_channels; ++i) {
1095 if (format_desc->channel[i].size > type->width)
1096 type->width = format_desc->channel[i].size;
1097 }
1098
1099 if (type->floating) {
1100 type->width = 32;
1101 } else {
1102 if (type->width <= 8) {
1103 type->width = 8;
1104 } else if (type->width <= 16) {
1105 type->width = 16;
1106 } else {
1107 type->width = 32;
1108 }
1109 }
1110
1111 if (is_arithmetic_format(format_desc) && type->length == 3) {
1112 type->length = 4;
1113 }
1114 }
1115
1116
1117 /**
1118 * Scale a normalized value from src_bits to dst_bits.
1119 *
1120 * The exact calculation is
1121 *
1122 * dst = iround(src * dst_mask / src_mask)
1123 *
1124 * or with integer rounding
1125 *
1126 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1127 *
1128 * where
1129 *
1130 * src_mask = (1 << src_bits) - 1
1131 * dst_mask = (1 << dst_bits) - 1
1132 *
1133 * but we try to avoid division and multiplication through shifts.
1134 */
1135 static inline LLVMValueRef
1136 scale_bits(struct gallivm_state *gallivm,
1137 int src_bits,
1138 int dst_bits,
1139 LLVMValueRef src,
1140 struct lp_type src_type)
1141 {
1142 LLVMBuilderRef builder = gallivm->builder;
1143 LLVMValueRef result = src;
1144
1145 if (dst_bits < src_bits) {
1146 int delta_bits = src_bits - dst_bits;
1147
1148 if (delta_bits <= dst_bits) {
1149 /*
1150 * Approximate the rescaling with a single shift.
1151 *
1152 * This gives the wrong rounding.
1153 */
1154
1155 result = LLVMBuildLShr(builder,
1156 src,
1157 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1158 "");
1159
1160 } else {
1161 /*
1162 * Try more accurate rescaling.
1163 */
1164
1165 /*
1166 * Drop the least significant bits to make space for the multiplication.
1167 *
1168 * XXX: A better approach would be to use a wider integer type as intermediate. But
1169 * this is enough to convert alpha from 16bits -> 2 when rendering to
1170 * PIPE_FORMAT_R10G10B10A2_UNORM.
1171 */
1172 result = LLVMBuildLShr(builder,
1173 src,
1174 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1175 "");
1176
1177
1178 result = LLVMBuildMul(builder,
1179 result,
1180 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1181 "");
1182
1183 /*
1184 * Add a rounding term before the division.
1185 *
1186 * TODO: Handle signed integers too.
1187 */
1188 if (!src_type.sign) {
1189 result = LLVMBuildAdd(builder,
1190 result,
1191 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1192 "");
1193 }
1194
1195 /*
1196 * Approximate the division by src_mask with a src_bits shift.
1197 *
1198 * Given the src has already been shifted by dst_bits, all we need
1199 * to do is to shift by the difference.
1200 */
1201
1202 result = LLVMBuildLShr(builder,
1203 result,
1204 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1205 "");
1206 }
1207
1208 } else if (dst_bits > src_bits) {
1209 /* Scale up bits */
1210 int db = dst_bits - src_bits;
1211
1212 /* Shift left by difference in bits */
1213 result = LLVMBuildShl(builder,
1214 src,
1215 lp_build_const_int_vec(gallivm, src_type, db),
1216 "");
1217
1218 if (db <= src_bits) {
1219 /* Enough bits in src to fill the remainder */
1220 LLVMValueRef lower = LLVMBuildLShr(builder,
1221 src,
1222 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1223 "");
1224
1225 result = LLVMBuildOr(builder, result, lower, "");
1226 } else if (db > src_bits) {
1227 /* Need to repeatedly copy src bits to fill remainder in dst */
1228 unsigned n;
1229
1230 for (n = src_bits; n < dst_bits; n *= 2) {
1231 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1232
1233 result = LLVMBuildOr(builder,
1234 result,
1235 LLVMBuildLShr(builder, result, shuv, ""),
1236 "");
1237 }
1238 }
1239 }
1240
1241 return result;
1242 }
1243
1244 /**
1245 * If RT is a smallfloat (needing denorms) format
1246 */
1247 static inline int
1248 have_smallfloat_format(struct lp_type dst_type,
1249 enum pipe_format format)
1250 {
1251 return ((dst_type.floating && dst_type.width != 32) ||
1252 /* due to format handling hacks this format doesn't have floating set
1253 * here (and actually has width set to 32 too) so special case this. */
1254 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1255 }
1256
1257
1258 /**
1259 * Convert from memory format to blending format
1260 *
1261 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1262 */
1263 static void
1264 convert_to_blend_type(struct gallivm_state *gallivm,
1265 unsigned block_size,
1266 const struct util_format_description *src_fmt,
1267 struct lp_type src_type,
1268 struct lp_type dst_type,
1269 LLVMValueRef* src, // and dst
1270 unsigned num_srcs)
1271 {
1272 LLVMValueRef *dst = src;
1273 LLVMBuilderRef builder = gallivm->builder;
1274 struct lp_type blend_type;
1275 struct lp_type mem_type;
1276 unsigned i, j;
1277 unsigned pixels = block_size / num_srcs;
1278 bool is_arith;
1279
1280 /*
1281 * full custom path for packed floats and srgb formats - none of the later
1282 * functions would do anything useful, and given the lp_type representation they
1283 * can't be fixed. Should really have some SoA blend path for these kind of
1284 * formats rather than hacking them in here.
1285 */
1286 if (format_expands_to_float_soa(src_fmt)) {
1287 LLVMValueRef tmpsrc[4];
1288 /*
1289 * This is pretty suboptimal for this case blending in SoA would be much
1290 * better, since conversion gets us SoA values so need to convert back.
1291 */
1292 assert(src_type.width == 32 || src_type.width == 16);
1293 assert(dst_type.floating);
1294 assert(dst_type.width == 32);
1295 assert(dst_type.length % 4 == 0);
1296 assert(num_srcs % 4 == 0);
1297
1298 if (src_type.width == 16) {
1299 /* expand 4x16bit values to 4x32bit */
1300 struct lp_type type32x4 = src_type;
1301 LLVMTypeRef ltype32x4;
1302 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1303 type32x4.width = 32;
1304 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1305 for (i = 0; i < num_fetch; i++) {
1306 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1307 }
1308 src_type.width = 32;
1309 }
1310 for (i = 0; i < 4; i++) {
1311 tmpsrc[i] = src[i];
1312 }
1313 for (i = 0; i < num_srcs / 4; i++) {
1314 LLVMValueRef tmpsoa[4];
1315 LLVMValueRef tmps = tmpsrc[i];
1316 if (dst_type.length == 8) {
1317 LLVMValueRef shuffles[8];
1318 unsigned j;
1319 /* fetch was 4 values but need 8-wide output values */
1320 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1321 /*
1322 * for 8-wide aos transpose would give us wrong order not matching
1323 * incoming converted fs values and mask. ARGH.
1324 */
1325 for (j = 0; j < 4; j++) {
1326 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1327 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1328 }
1329 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1330 LLVMConstVector(shuffles, 8), "");
1331 }
1332 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1333 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1334 }
1335 else {
1336 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1337 }
1338 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1339 }
1340 return;
1341 }
1342
1343 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1344 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1345
1346 /* Is the format arithmetic */
1347 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1348 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1349
1350 /* Pad if necessary */
1351 if (!is_arith && src_type.length < dst_type.length) {
1352 for (i = 0; i < num_srcs; ++i) {
1353 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1354 }
1355
1356 src_type.length = dst_type.length;
1357 }
1358
1359 /* Special case for half-floats */
1360 if (mem_type.width == 16 && mem_type.floating) {
1361 assert(blend_type.width == 32 && blend_type.floating);
1362 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1363 is_arith = false;
1364 }
1365
1366 if (!is_arith) {
1367 return;
1368 }
1369
1370 src_type.width = blend_type.width * blend_type.length;
1371 blend_type.length *= pixels;
1372 src_type.length *= pixels / (src_type.length / mem_type.length);
1373
1374 for (i = 0; i < num_srcs; ++i) {
1375 LLVMValueRef chans[4];
1376 LLVMValueRef res = NULL;
1377
1378 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1379
1380 for (j = 0; j < src_fmt->nr_channels; ++j) {
1381 unsigned mask = 0;
1382 unsigned sa = src_fmt->channel[j].shift;
1383 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1384 unsigned from_lsb = j;
1385 #else
1386 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1387 #endif
1388
1389 mask = (1 << src_fmt->channel[j].size) - 1;
1390
1391 /* Extract bits from source */
1392 chans[j] = LLVMBuildLShr(builder,
1393 dst[i],
1394 lp_build_const_int_vec(gallivm, src_type, sa),
1395 "");
1396
1397 chans[j] = LLVMBuildAnd(builder,
1398 chans[j],
1399 lp_build_const_int_vec(gallivm, src_type, mask),
1400 "");
1401
1402 /* Scale bits */
1403 if (src_type.norm) {
1404 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1405 blend_type.width, chans[j], src_type);
1406 }
1407
1408 /* Insert bits into correct position */
1409 chans[j] = LLVMBuildShl(builder,
1410 chans[j],
1411 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1412 "");
1413
1414 if (j == 0) {
1415 res = chans[j];
1416 } else {
1417 res = LLVMBuildOr(builder, res, chans[j], "");
1418 }
1419 }
1420
1421 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1422 }
1423 }
1424
1425
1426 /**
1427 * Convert from blending format to memory format
1428 *
1429 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1430 */
1431 static void
1432 convert_from_blend_type(struct gallivm_state *gallivm,
1433 unsigned block_size,
1434 const struct util_format_description *src_fmt,
1435 struct lp_type src_type,
1436 struct lp_type dst_type,
1437 LLVMValueRef* src, // and dst
1438 unsigned num_srcs)
1439 {
1440 LLVMValueRef* dst = src;
1441 unsigned i, j, k;
1442 struct lp_type mem_type;
1443 struct lp_type blend_type;
1444 LLVMBuilderRef builder = gallivm->builder;
1445 unsigned pixels = block_size / num_srcs;
1446 bool is_arith;
1447
1448 /*
1449 * full custom path for packed floats and srgb formats - none of the later
1450 * functions would do anything useful, and given the lp_type representation they
1451 * can't be fixed. Should really have some SoA blend path for these kind of
1452 * formats rather than hacking them in here.
1453 */
1454 if (format_expands_to_float_soa(src_fmt)) {
1455 /*
1456 * This is pretty suboptimal for this case blending in SoA would be much
1457 * better - we need to transpose the AoS values back to SoA values for
1458 * conversion/packing.
1459 */
1460 assert(src_type.floating);
1461 assert(src_type.width == 32);
1462 assert(src_type.length % 4 == 0);
1463 assert(dst_type.width == 32 || dst_type.width == 16);
1464
1465 for (i = 0; i < num_srcs / 4; i++) {
1466 LLVMValueRef tmpsoa[4], tmpdst;
1467 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1468 /* really really need SoA here */
1469
1470 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1471 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1472 }
1473 else {
1474 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1475 src_type, tmpsoa);
1476 }
1477
1478 if (src_type.length == 8) {
1479 LLVMValueRef tmpaos, shuffles[8];
1480 unsigned j;
1481 /*
1482 * for 8-wide aos transpose has given us wrong order not matching
1483 * output order. HMPF. Also need to split the output values manually.
1484 */
1485 for (j = 0; j < 4; j++) {
1486 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1487 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1488 }
1489 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1490 LLVMConstVector(shuffles, 8), "");
1491 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1492 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1493 }
1494 else {
1495 src[i] = tmpdst;
1496 }
1497 }
1498 if (dst_type.width == 16) {
1499 struct lp_type type16x8 = dst_type;
1500 struct lp_type type32x4 = dst_type;
1501 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1502 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1503 type16x8.length = 8;
1504 type32x4.width = 32;
1505 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1506 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1507 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1508 /* We could do vector truncation but it doesn't generate very good code */
1509 for (i = 0; i < num_fetch; i++) {
1510 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1511 src[i], lp_build_zero(gallivm, type32x4));
1512 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1513 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1514 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1515 }
1516 }
1517 return;
1518 }
1519
1520 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1521 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1522
1523 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1524
1525 /* Special case for half-floats */
1526 if (mem_type.width == 16 && mem_type.floating) {
1527 int length = dst_type.length;
1528 assert(blend_type.width == 32 && blend_type.floating);
1529
1530 dst_type.length = src_type.length;
1531
1532 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1533
1534 dst_type.length = length;
1535 is_arith = false;
1536 }
1537
1538 /* Remove any padding */
1539 if (!is_arith && (src_type.length % mem_type.length)) {
1540 src_type.length -= (src_type.length % mem_type.length);
1541
1542 for (i = 0; i < num_srcs; ++i) {
1543 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1544 }
1545 }
1546
1547 /* No bit arithmetic to do */
1548 if (!is_arith) {
1549 return;
1550 }
1551
1552 src_type.length = pixels;
1553 src_type.width = blend_type.length * blend_type.width;
1554 dst_type.length = pixels;
1555
1556 for (i = 0; i < num_srcs; ++i) {
1557 LLVMValueRef chans[4];
1558 LLVMValueRef res = NULL;
1559
1560 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1561
1562 for (j = 0; j < src_fmt->nr_channels; ++j) {
1563 unsigned mask = 0;
1564 unsigned sa = src_fmt->channel[j].shift;
1565 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1566 unsigned from_lsb = j;
1567 #else
1568 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1569 #endif
1570
1571 assert(blend_type.width > src_fmt->channel[j].size);
1572
1573 for (k = 0; k < blend_type.width; ++k) {
1574 mask |= 1 << k;
1575 }
1576
1577 /* Extract bits */
1578 chans[j] = LLVMBuildLShr(builder,
1579 dst[i],
1580 lp_build_const_int_vec(gallivm, src_type,
1581 from_lsb * blend_type.width),
1582 "");
1583
1584 chans[j] = LLVMBuildAnd(builder,
1585 chans[j],
1586 lp_build_const_int_vec(gallivm, src_type, mask),
1587 "");
1588
1589 /* Scale down bits */
1590 if (src_type.norm) {
1591 chans[j] = scale_bits(gallivm, blend_type.width,
1592 src_fmt->channel[j].size, chans[j], src_type);
1593 }
1594
1595 /* Insert bits */
1596 chans[j] = LLVMBuildShl(builder,
1597 chans[j],
1598 lp_build_const_int_vec(gallivm, src_type, sa),
1599 "");
1600
1601 sa += src_fmt->channel[j].size;
1602
1603 if (j == 0) {
1604 res = chans[j];
1605 } else {
1606 res = LLVMBuildOr(builder, res, chans[j], "");
1607 }
1608 }
1609
1610 assert (dst_type.width != 24);
1611
1612 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1613 }
1614 }
1615
1616
1617 /**
1618 * Convert alpha to same blend type as src
1619 */
1620 static void
1621 convert_alpha(struct gallivm_state *gallivm,
1622 struct lp_type row_type,
1623 struct lp_type alpha_type,
1624 const unsigned block_size,
1625 const unsigned block_height,
1626 const unsigned src_count,
1627 const unsigned dst_channels,
1628 const bool pad_inline,
1629 LLVMValueRef* src_alpha)
1630 {
1631 LLVMBuilderRef builder = gallivm->builder;
1632 unsigned i, j;
1633 unsigned length = row_type.length;
1634 row_type.length = alpha_type.length;
1635
1636 /* Twiddle the alpha to match pixels */
1637 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1638
1639 /*
1640 * TODO this should use single lp_build_conv call for
1641 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1642 */
1643 for (i = 0; i < block_height; ++i) {
1644 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1645 }
1646
1647 alpha_type = row_type;
1648 row_type.length = length;
1649
1650 /* If only one channel we can only need the single alpha value per pixel */
1651 if (src_count == 1 && dst_channels == 1) {
1652
1653 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1654 } else {
1655 /* If there are more srcs than rows then we need to split alpha up */
1656 if (src_count > block_height) {
1657 for (i = src_count; i > 0; --i) {
1658 unsigned pixels = block_size / src_count;
1659 unsigned idx = i - 1;
1660
1661 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1662 (idx * pixels) % 4, pixels);
1663 }
1664 }
1665
1666 /* If there is a src for each pixel broadcast the alpha across whole row */
1667 if (src_count == block_size) {
1668 for (i = 0; i < src_count; ++i) {
1669 src_alpha[i] = lp_build_broadcast(gallivm,
1670 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1671 }
1672 } else {
1673 unsigned pixels = block_size / src_count;
1674 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1675 unsigned alpha_span = 1;
1676 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1677
1678 /* Check if we need 2 src_alphas for our shuffles */
1679 if (pixels > alpha_type.length) {
1680 alpha_span = 2;
1681 }
1682
1683 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1684 for (j = 0; j < row_type.length; ++j) {
1685 if (j < pixels * channels) {
1686 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1687 } else {
1688 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1689 }
1690 }
1691
1692 for (i = 0; i < src_count; ++i) {
1693 unsigned idx1 = i, idx2 = i;
1694
1695 if (alpha_span > 1){
1696 idx1 *= alpha_span;
1697 idx2 = idx1 + 1;
1698 }
1699
1700 src_alpha[i] = LLVMBuildShuffleVector(builder,
1701 src_alpha[idx1],
1702 src_alpha[idx2],
1703 LLVMConstVector(shuffles, row_type.length),
1704 "");
1705 }
1706 }
1707 }
1708 }
1709
1710
1711 /**
1712 * Generates the blend function for unswizzled colour buffers
1713 * Also generates the read & write from colour buffer
1714 */
1715 static void
1716 generate_unswizzled_blend(struct gallivm_state *gallivm,
1717 unsigned rt,
1718 struct lp_fragment_shader_variant *variant,
1719 enum pipe_format out_format,
1720 unsigned int num_fs,
1721 struct lp_type fs_type,
1722 LLVMValueRef* fs_mask,
1723 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1724 LLVMValueRef context_ptr,
1725 LLVMValueRef color_ptr,
1726 LLVMValueRef stride,
1727 unsigned partial_mask,
1728 boolean do_branch)
1729 {
1730 const unsigned alpha_channel = 3;
1731 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1732 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1733 const unsigned block_size = block_width * block_height;
1734 const unsigned lp_integer_vector_width = 128;
1735
1736 LLVMBuilderRef builder = gallivm->builder;
1737 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1738 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1739 LLVMValueRef src_alpha[4 * 4];
1740 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1741 LLVMValueRef src_mask[4 * 4];
1742 LLVMValueRef src[4 * 4];
1743 LLVMValueRef src1[4 * 4];
1744 LLVMValueRef dst[4 * 4];
1745 LLVMValueRef blend_color;
1746 LLVMValueRef blend_alpha;
1747 LLVMValueRef i32_zero;
1748 LLVMValueRef check_mask;
1749 LLVMValueRef undef_src_val;
1750
1751 struct lp_build_mask_context mask_ctx;
1752 struct lp_type mask_type;
1753 struct lp_type blend_type;
1754 struct lp_type row_type;
1755 struct lp_type dst_type;
1756 struct lp_type ls_type;
1757
1758 unsigned char swizzle[TGSI_NUM_CHANNELS];
1759 unsigned vector_width;
1760 unsigned src_channels = TGSI_NUM_CHANNELS;
1761 unsigned dst_channels;
1762 unsigned dst_count;
1763 unsigned src_count;
1764 unsigned i, j;
1765
1766 const struct util_format_description* out_format_desc = util_format_description(out_format);
1767
1768 unsigned dst_alignment;
1769
1770 bool pad_inline = is_arithmetic_format(out_format_desc);
1771 bool has_alpha = false;
1772 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1773 util_blend_state_is_dual(&variant->key.blend, 0);
1774
1775 const boolean is_1d = variant->key.resource_1d;
1776 boolean twiddle_after_convert = FALSE;
1777 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1778 LLVMValueRef fpstate = 0;
1779
1780 /* Get type from output format */
1781 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1782 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1783
1784 /*
1785 * Technically this code should go into lp_build_smallfloat_to_float
1786 * and lp_build_float_to_smallfloat but due to the
1787 * http://llvm.org/bugs/show_bug.cgi?id=6393
1788 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1789 * So the ordering is important here and there shouldn't be any
1790 * llvm ir instrunctions in this function before
1791 * this, otherwise half-float format conversions won't work
1792 * (again due to llvm bug #6393).
1793 */
1794 if (have_smallfloat_format(dst_type, out_format)) {
1795 /* We need to make sure that denorms are ok for half float
1796 conversions */
1797 fpstate = lp_build_fpstate_get(gallivm);
1798 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1799 }
1800
1801 mask_type = lp_int32_vec4_type();
1802 mask_type.length = fs_type.length;
1803
1804 for (i = num_fs; i < num_fullblock_fs; i++) {
1805 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1806 }
1807
1808 /* Do not bother executing code when mask is empty.. */
1809 if (do_branch) {
1810 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1811
1812 for (i = 0; i < num_fullblock_fs; ++i) {
1813 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1814 }
1815
1816 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1817 lp_build_mask_check(&mask_ctx);
1818 }
1819
1820 partial_mask |= !variant->opaque;
1821 i32_zero = lp_build_const_int32(gallivm, 0);
1822
1823 undef_src_val = lp_build_undef(gallivm, fs_type);
1824
1825 row_type.length = fs_type.length;
1826 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1827
1828 /* Compute correct swizzle and count channels */
1829 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1830 dst_channels = 0;
1831
1832 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1833 /* Ensure channel is used */
1834 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1835 continue;
1836 }
1837
1838 /* Ensure not already written to (happens in case with GL_ALPHA) */
1839 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1840 continue;
1841 }
1842
1843 /* Ensure we havn't already found all channels */
1844 if (dst_channels >= out_format_desc->nr_channels) {
1845 continue;
1846 }
1847
1848 swizzle[out_format_desc->swizzle[i]] = i;
1849 ++dst_channels;
1850
1851 if (i == alpha_channel) {
1852 has_alpha = true;
1853 }
1854 }
1855
1856 if (format_expands_to_float_soa(out_format_desc)) {
1857 /*
1858 * the code above can't work for layout_other
1859 * for srgb it would sort of work but we short-circuit swizzles, etc.
1860 * as that is done as part of unpack / pack.
1861 */
1862 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1863 has_alpha = true;
1864 swizzle[0] = 0;
1865 swizzle[1] = 1;
1866 swizzle[2] = 2;
1867 swizzle[3] = 3;
1868 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1869 }
1870
1871 /* If 3 channels then pad to include alpha for 4 element transpose */
1872 if (dst_channels == 3) {
1873 assert (!has_alpha);
1874 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1875 if (swizzle[i] > TGSI_NUM_CHANNELS)
1876 swizzle[i] = 3;
1877 }
1878 if (out_format_desc->nr_channels == 4) {
1879 dst_channels = 4;
1880 /*
1881 * We use alpha from the color conversion, not separate one.
1882 * We had to include it for transpose, hence it will get converted
1883 * too (albeit when doing transpose after conversion, that would
1884 * no longer be the case necessarily).
1885 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1886 * otherwise we really have padding, not alpha, included.)
1887 */
1888 has_alpha = true;
1889 }
1890 }
1891
1892 /*
1893 * Load shader output
1894 */
1895 for (i = 0; i < num_fullblock_fs; ++i) {
1896 /* Always load alpha for use in blending */
1897 LLVMValueRef alpha;
1898 if (i < num_fs) {
1899 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1900 }
1901 else {
1902 alpha = undef_src_val;
1903 }
1904
1905 /* Load each channel */
1906 for (j = 0; j < dst_channels; ++j) {
1907 assert(swizzle[j] < 4);
1908 if (i < num_fs) {
1909 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1910 }
1911 else {
1912 fs_src[i][j] = undef_src_val;
1913 }
1914 }
1915
1916 /* If 3 channels then pad to include alpha for 4 element transpose */
1917 /*
1918 * XXX If we include that here maybe could actually use it instead of
1919 * separate alpha for blending?
1920 * (Difficult though we actually convert pad channels, not alpha.)
1921 */
1922 if (dst_channels == 3 && !has_alpha) {
1923 fs_src[i][3] = alpha;
1924 }
1925
1926 /* We split the row_mask and row_alpha as we want 128bit interleave */
1927 if (fs_type.length == 8) {
1928 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1929 0, src_channels);
1930 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1931 src_channels, src_channels);
1932
1933 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1934 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1935 src_channels, src_channels);
1936 } else {
1937 src_mask[i] = fs_mask[i];
1938 src_alpha[i] = alpha;
1939 }
1940 }
1941 if (dual_source_blend) {
1942 /* same as above except different src/dst, skip masks and comments... */
1943 for (i = 0; i < num_fullblock_fs; ++i) {
1944 LLVMValueRef alpha;
1945 if (i < num_fs) {
1946 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1947 }
1948 else {
1949 alpha = undef_src_val;
1950 }
1951
1952 for (j = 0; j < dst_channels; ++j) {
1953 assert(swizzle[j] < 4);
1954 if (i < num_fs) {
1955 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1956 }
1957 else {
1958 fs_src1[i][j] = undef_src_val;
1959 }
1960 }
1961 if (dst_channels == 3 && !has_alpha) {
1962 fs_src1[i][3] = alpha;
1963 }
1964 if (fs_type.length == 8) {
1965 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1966 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1967 src_channels, src_channels);
1968 } else {
1969 src1_alpha[i] = alpha;
1970 }
1971 }
1972 }
1973
1974 if (util_format_is_pure_integer(out_format)) {
1975 /*
1976 * In this case fs_type was really ints or uints disguised as floats,
1977 * fix that up now.
1978 */
1979 fs_type.floating = 0;
1980 fs_type.sign = dst_type.sign;
1981 for (i = 0; i < num_fullblock_fs; ++i) {
1982 for (j = 0; j < dst_channels; ++j) {
1983 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1984 lp_build_vec_type(gallivm, fs_type), "");
1985 }
1986 if (dst_channels == 3 && !has_alpha) {
1987 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1988 lp_build_vec_type(gallivm, fs_type), "");
1989 }
1990 }
1991 }
1992
1993 /*
1994 * We actually should generally do conversion first (for non-1d cases)
1995 * when the blend format is 8 or 16 bits. The reason is obvious,
1996 * there's 2 or 4 times less vectors to deal with for the interleave...
1997 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
1998 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
1999 * unpack only with 128bit vectors).
2000 * Note: for 16bit sizes really need matching pack conversion code
2001 */
2002 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2003 twiddle_after_convert = TRUE;
2004 }
2005
2006 /*
2007 * Pixel twiddle from fragment shader order to memory order
2008 */
2009 if (!twiddle_after_convert) {
2010 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2011 dst_channels, fs_src, src, pad_inline);
2012 if (dual_source_blend) {
2013 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2014 fs_src1, src1, pad_inline);
2015 }
2016 } else {
2017 src_count = num_fullblock_fs * dst_channels;
2018 /*
2019 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2020 * (AVX) turn out the same later when untwiddling/transpose (albeit
2021 * for true AVX2 path untwiddle needs to be different).
2022 * For now just order by colors first (so we can use unpack later).
2023 */
2024 for (j = 0; j < num_fullblock_fs; j++) {
2025 for (i = 0; i < dst_channels; i++) {
2026 src[i*num_fullblock_fs + j] = fs_src[j][i];
2027 if (dual_source_blend) {
2028 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2029 }
2030 }
2031 }
2032 }
2033
2034 src_channels = dst_channels < 3 ? dst_channels : 4;
2035 if (src_count != num_fullblock_fs * src_channels) {
2036 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2037 row_type.length /= ds;
2038 fs_type.length = row_type.length;
2039 }
2040
2041 blend_type = row_type;
2042 mask_type.length = 4;
2043
2044 /* Convert src to row_type */
2045 if (dual_source_blend) {
2046 struct lp_type old_row_type = row_type;
2047 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2048 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2049 }
2050 else {
2051 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2052 }
2053
2054 /* If the rows are not an SSE vector, combine them to become SSE size! */
2055 if ((row_type.width * row_type.length) % 128) {
2056 unsigned bits = row_type.width * row_type.length;
2057 unsigned combined;
2058
2059 assert(src_count >= (vector_width / bits));
2060
2061 dst_count = src_count / (vector_width / bits);
2062
2063 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2064 if (dual_source_blend) {
2065 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2066 }
2067
2068 row_type.length *= combined;
2069 src_count /= combined;
2070
2071 bits = row_type.width * row_type.length;
2072 assert(bits == 128 || bits == 256);
2073 }
2074
2075 if (twiddle_after_convert) {
2076 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2077 if (dual_source_blend) {
2078 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2079 }
2080 }
2081
2082 /*
2083 * Blend Colour conversion
2084 */
2085 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2086 blend_color = LLVMBuildPointerCast(builder, blend_color,
2087 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2088 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2089 &i32_zero, 1, ""), "");
2090
2091 /* Convert */
2092 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2093
2094 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2095 /*
2096 * since blending is done with floats, there was no conversion.
2097 * However, the rules according to fixed point renderbuffers still
2098 * apply, that is we must clamp inputs to 0.0/1.0.
2099 * (This would apply to separate alpha conversion too but we currently
2100 * force has_alpha to be true.)
2101 * TODO: should skip this with "fake" blend, since post-blend conversion
2102 * will clamp anyway.
2103 * TODO: could also skip this if fragment color clamping is enabled. We
2104 * don't support it natively so it gets baked into the shader however, so
2105 * can't really tell here.
2106 */
2107 struct lp_build_context f32_bld;
2108 assert(row_type.floating);
2109 lp_build_context_init(&f32_bld, gallivm, row_type);
2110 for (i = 0; i < src_count; i++) {
2111 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2112 }
2113 if (dual_source_blend) {
2114 for (i = 0; i < src_count; i++) {
2115 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2116 }
2117 }
2118 /* probably can't be different than row_type but better safe than sorry... */
2119 lp_build_context_init(&f32_bld, gallivm, blend_type);
2120 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2121 }
2122
2123 /* Extract alpha */
2124 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2125
2126 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2127 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2128 if (pad_inline) {
2129 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2130 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2131 } else {
2132 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2133 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2134 }
2135
2136 /*
2137 * Mask conversion
2138 */
2139 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2140
2141 if (src_count < block_height) {
2142 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2143 } else if (src_count > block_height) {
2144 for (i = src_count; i > 0; --i) {
2145 unsigned pixels = block_size / src_count;
2146 unsigned idx = i - 1;
2147
2148 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2149 (idx * pixels) % 4, pixels);
2150 }
2151 }
2152
2153 assert(mask_type.width == 32);
2154
2155 for (i = 0; i < src_count; ++i) {
2156 unsigned pixels = block_size / src_count;
2157 unsigned pixel_width = row_type.width * dst_channels;
2158
2159 if (pixel_width == 24) {
2160 mask_type.width = 8;
2161 mask_type.length = vector_width / mask_type.width;
2162 } else {
2163 mask_type.length = pixels;
2164 mask_type.width = row_type.width * dst_channels;
2165
2166 /*
2167 * If mask_type width is smaller than 32bit, this doesn't quite
2168 * generate the most efficient code (could use some pack).
2169 */
2170 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2171 lp_build_int_vec_type(gallivm, mask_type), "");
2172
2173 mask_type.length *= dst_channels;
2174 mask_type.width /= dst_channels;
2175 }
2176
2177 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2178 lp_build_int_vec_type(gallivm, mask_type), "");
2179 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2180 }
2181
2182 /*
2183 * Alpha conversion
2184 */
2185 if (!has_alpha) {
2186 struct lp_type alpha_type = fs_type;
2187 alpha_type.length = 4;
2188 convert_alpha(gallivm, row_type, alpha_type,
2189 block_size, block_height,
2190 src_count, dst_channels,
2191 pad_inline, src_alpha);
2192 if (dual_source_blend) {
2193 convert_alpha(gallivm, row_type, alpha_type,
2194 block_size, block_height,
2195 src_count, dst_channels,
2196 pad_inline, src1_alpha);
2197 }
2198 }
2199
2200
2201 /*
2202 * Load dst from memory
2203 */
2204 if (src_count < block_height) {
2205 dst_count = block_height;
2206 } else {
2207 dst_count = src_count;
2208 }
2209
2210 dst_type.length *= block_size / dst_count;
2211
2212 if (format_expands_to_float_soa(out_format_desc)) {
2213 /*
2214 * we need multiple values at once for the conversion, so can as well
2215 * load them vectorized here too instead of concatenating later.
2216 * (Still need concatenation later for 8-wide vectors).
2217 */
2218 dst_count = block_height;
2219 dst_type.length = block_width;
2220 }
2221
2222 /*
2223 * Compute the alignment of the destination pointer in bytes
2224 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2225 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2226 * 1d tex but can't distinguish here) so need to stick with per-pixel
2227 * alignment in this case.
2228 */
2229 if (is_1d) {
2230 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2231 }
2232 else {
2233 dst_alignment = dst_type.length * dst_type.width / 8;
2234 }
2235 /* Force power-of-two alignment by extracting only the least-significant-bit */
2236 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2237 /*
2238 * Resource base and stride pointers are aligned to 16 bytes, so that's
2239 * the maximum alignment we can guarantee
2240 */
2241 dst_alignment = MIN2(16, dst_alignment);
2242
2243 ls_type = dst_type;
2244
2245 if (dst_count > src_count) {
2246 if ((dst_type.width == 8 || dst_type.width == 16) &&
2247 util_is_power_of_two_or_zero(dst_type.length) &&
2248 dst_type.length * dst_type.width < 128) {
2249 /*
2250 * Never try to load values as 4xi8 which we will then
2251 * concatenate to larger vectors. This gives llvm a real
2252 * headache (the problem is the type legalizer (?) will
2253 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2254 * then the shuffles to concatenate are more or less impossible
2255 * - llvm is easily capable of generating a sequence of 32
2256 * pextrb/pinsrb instructions for that. Albeit it appears to
2257 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2258 * width to avoid the trouble (16bit seems not as bad, llvm
2259 * probably recognizes the load+shuffle as only one shuffle
2260 * is necessary, but we can do just the same anyway).
2261 */
2262 ls_type.length = dst_type.length * dst_type.width / 32;
2263 ls_type.width = 32;
2264 }
2265 }
2266
2267 if (is_1d) {
2268 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2269 dst, ls_type, dst_count / 4, dst_alignment);
2270 for (i = dst_count / 4; i < dst_count; i++) {
2271 dst[i] = lp_build_undef(gallivm, ls_type);
2272 }
2273
2274 }
2275 else {
2276 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2277 dst, ls_type, dst_count, dst_alignment);
2278 }
2279
2280
2281 /*
2282 * Convert from dst/output format to src/blending format.
2283 *
2284 * This is necessary as we can only read 1 row from memory at a time,
2285 * so the minimum dst_count will ever be at this point is 4.
2286 *
2287 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2288 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2289 * on all 16 pixels in that single vector at once.
2290 */
2291 if (dst_count > src_count) {
2292 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2293 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2294 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2295 for (i = 0; i < dst_count; i++) {
2296 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2297 }
2298 }
2299
2300 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2301
2302 if (ls_type.length != dst_type.length) {
2303 struct lp_type tmp_type = dst_type;
2304 tmp_type.length = dst_type.length * 4 / src_count;
2305 for (i = 0; i < src_count; i++) {
2306 dst[i] = LLVMBuildBitCast(builder, dst[i],
2307 lp_build_vec_type(gallivm, tmp_type), "");
2308 }
2309 }
2310 }
2311
2312 /*
2313 * Blending
2314 */
2315 /* XXX this is broken for RGB8 formats -
2316 * they get expanded from 12 to 16 elements (to include alpha)
2317 * by convert_to_blend_type then reduced to 15 instead of 12
2318 * by convert_from_blend_type (a simple fix though breaks A8...).
2319 * R16G16B16 also crashes differently however something going wrong
2320 * inside llvm handling npot vector sizes seemingly.
2321 * It seems some cleanup could be done here (like skipping conversion/blend
2322 * when not needed).
2323 */
2324 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2325 row_type, dst, src_count);
2326
2327 /*
2328 * FIXME: Really should get logic ops / masks out of generic blend / row
2329 * format. Logic ops will definitely not work on the blend float format
2330 * used for SRGB here and I think OpenGL expects this to work as expected
2331 * (that is incoming values converted to srgb then logic op applied).
2332 */
2333 for (i = 0; i < src_count; ++i) {
2334 dst[i] = lp_build_blend_aos(gallivm,
2335 &variant->key.blend,
2336 out_format,
2337 row_type,
2338 rt,
2339 src[i],
2340 has_alpha ? NULL : src_alpha[i],
2341 src1[i],
2342 has_alpha ? NULL : src1_alpha[i],
2343 dst[i],
2344 partial_mask ? src_mask[i] : NULL,
2345 blend_color,
2346 has_alpha ? NULL : blend_alpha,
2347 swizzle,
2348 pad_inline ? 4 : dst_channels);
2349 }
2350
2351 convert_from_blend_type(gallivm, block_size, out_format_desc,
2352 row_type, dst_type, dst, src_count);
2353
2354 /* Split the blend rows back to memory rows */
2355 if (dst_count > src_count) {
2356 row_type.length = dst_type.length * (dst_count / src_count);
2357
2358 if (src_count == 1) {
2359 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2360 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2361
2362 row_type.length /= 2;
2363 src_count *= 2;
2364 }
2365
2366 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2367 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2368 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2369 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2370
2371 row_type.length /= 2;
2372 src_count *= 2;
2373 }
2374
2375 /*
2376 * Store blend result to memory
2377 */
2378 if (is_1d) {
2379 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2380 dst, dst_type, dst_count / 4, dst_alignment);
2381 }
2382 else {
2383 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2384 dst, dst_type, dst_count, dst_alignment);
2385 }
2386
2387 if (have_smallfloat_format(dst_type, out_format)) {
2388 lp_build_fpstate_set(gallivm, fpstate);
2389 }
2390
2391 if (do_branch) {
2392 lp_build_mask_end(&mask_ctx);
2393 }
2394 }
2395
2396
2397 /**
2398 * Generate the runtime callable function for the whole fragment pipeline.
2399 * Note that the function which we generate operates on a block of 16
2400 * pixels at at time. The block contains 2x2 quads. Each quad contains
2401 * 2x2 pixels.
2402 */
2403 static void
2404 generate_fragment(struct llvmpipe_context *lp,
2405 struct lp_fragment_shader *shader,
2406 struct lp_fragment_shader_variant *variant,
2407 unsigned partial_mask)
2408 {
2409 struct gallivm_state *gallivm = variant->gallivm;
2410 const struct lp_fragment_shader_variant_key *key = &variant->key;
2411 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2412 char func_name[64];
2413 struct lp_type fs_type;
2414 struct lp_type blend_type;
2415 LLVMTypeRef fs_elem_type;
2416 LLVMTypeRef blend_vec_type;
2417 LLVMTypeRef arg_types[13];
2418 LLVMTypeRef func_type;
2419 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2420 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2421 LLVMValueRef context_ptr;
2422 LLVMValueRef x;
2423 LLVMValueRef y;
2424 LLVMValueRef a0_ptr;
2425 LLVMValueRef dadx_ptr;
2426 LLVMValueRef dady_ptr;
2427 LLVMValueRef color_ptr_ptr;
2428 LLVMValueRef stride_ptr;
2429 LLVMValueRef depth_ptr;
2430 LLVMValueRef depth_stride;
2431 LLVMValueRef mask_input;
2432 LLVMValueRef thread_data_ptr;
2433 LLVMBasicBlockRef block;
2434 LLVMBuilderRef builder;
2435 struct lp_build_sampler_soa *sampler;
2436 struct lp_build_interp_soa_context interp;
2437 LLVMValueRef fs_mask[16 / 4];
2438 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2439 LLVMValueRef function;
2440 LLVMValueRef facing;
2441 unsigned num_fs;
2442 unsigned i;
2443 unsigned chan;
2444 unsigned cbuf;
2445 boolean cbuf0_write_all;
2446 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2447 util_blend_state_is_dual(&key->blend, 0);
2448
2449 assert(lp_native_vector_width / 32 >= 4);
2450
2451 /* Adjust color input interpolation according to flatshade state:
2452 */
2453 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2454 for (i = 0; i < shader->info.base.num_inputs; i++) {
2455 if (inputs[i].interp == LP_INTERP_COLOR) {
2456 if (key->flatshade)
2457 inputs[i].interp = LP_INTERP_CONSTANT;
2458 else
2459 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2460 }
2461 }
2462
2463 /* check if writes to cbuf[0] are to be copied to all cbufs */
2464 cbuf0_write_all =
2465 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2466
2467 /* TODO: actually pick these based on the fs and color buffer
2468 * characteristics. */
2469
2470 memset(&fs_type, 0, sizeof fs_type);
2471 fs_type.floating = TRUE; /* floating point values */
2472 fs_type.sign = TRUE; /* values are signed */
2473 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2474 fs_type.width = 32; /* 32-bit float */
2475 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2476
2477 memset(&blend_type, 0, sizeof blend_type);
2478 blend_type.floating = FALSE; /* values are integers */
2479 blend_type.sign = FALSE; /* values are unsigned */
2480 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2481 blend_type.width = 8; /* 8-bit ubyte values */
2482 blend_type.length = 16; /* 16 elements per vector */
2483
2484 /*
2485 * Generate the function prototype. Any change here must be reflected in
2486 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2487 */
2488
2489 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2490
2491 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2492
2493 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2494 shader->no, variant->no, partial_mask ? "partial" : "whole");
2495
2496 arg_types[0] = variant->jit_context_ptr_type; /* context */
2497 arg_types[1] = int32_type; /* x */
2498 arg_types[2] = int32_type; /* y */
2499 arg_types[3] = int32_type; /* facing */
2500 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2501 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2502 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2503 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2504 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2505 arg_types[9] = int32_type; /* mask_input */
2506 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2507 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2508 arg_types[12] = int32_type; /* depth_stride */
2509
2510 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2511 arg_types, ARRAY_SIZE(arg_types), 0);
2512
2513 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2514 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2515
2516 variant->function[partial_mask] = function;
2517
2518 /* XXX: need to propagate noalias down into color param now we are
2519 * passing a pointer-to-pointer?
2520 */
2521 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2522 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2523 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2524
2525 context_ptr = LLVMGetParam(function, 0);
2526 x = LLVMGetParam(function, 1);
2527 y = LLVMGetParam(function, 2);
2528 facing = LLVMGetParam(function, 3);
2529 a0_ptr = LLVMGetParam(function, 4);
2530 dadx_ptr = LLVMGetParam(function, 5);
2531 dady_ptr = LLVMGetParam(function, 6);
2532 color_ptr_ptr = LLVMGetParam(function, 7);
2533 depth_ptr = LLVMGetParam(function, 8);
2534 mask_input = LLVMGetParam(function, 9);
2535 thread_data_ptr = LLVMGetParam(function, 10);
2536 stride_ptr = LLVMGetParam(function, 11);
2537 depth_stride = LLVMGetParam(function, 12);
2538
2539 lp_build_name(context_ptr, "context");
2540 lp_build_name(x, "x");
2541 lp_build_name(y, "y");
2542 lp_build_name(a0_ptr, "a0");
2543 lp_build_name(dadx_ptr, "dadx");
2544 lp_build_name(dady_ptr, "dady");
2545 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2546 lp_build_name(depth_ptr, "depth");
2547 lp_build_name(mask_input, "mask_input");
2548 lp_build_name(thread_data_ptr, "thread_data");
2549 lp_build_name(stride_ptr, "stride_ptr");
2550 lp_build_name(depth_stride, "depth_stride");
2551
2552 /*
2553 * Function body
2554 */
2555
2556 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2557 builder = gallivm->builder;
2558 assert(builder);
2559 LLVMPositionBuilderAtEnd(builder, block);
2560
2561 /*
2562 * Must not count ps invocations if there's a null shader.
2563 * (It would be ok to count with null shader if there's d/s tests,
2564 * but only if there's d/s buffers too, which is different
2565 * to implicit rasterization disable which must not depend
2566 * on the d/s buffers.)
2567 * Could use popcount on mask, but pixel accuracy is not required.
2568 * Could disable if there's no stats query, but maybe not worth it.
2569 */
2570 if (shader->info.base.num_instructions > 1) {
2571 LLVMValueRef invocs, val;
2572 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2573 val = LLVMBuildLoad(builder, invocs, "");
2574 val = LLVMBuildAdd(builder, val,
2575 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2576 "invoc_count");
2577 LLVMBuildStore(builder, val, invocs);
2578 }
2579
2580 /* code generated texture sampling */
2581 sampler = lp_llvm_sampler_soa_create(key->state);
2582
2583 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2584 /* for 1d resources only run "upper half" of stamp */
2585 if (key->resource_1d)
2586 num_fs /= 2;
2587
2588 {
2589 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2590 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2591 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2592 num_loop, "mask_store");
2593 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2594 boolean pixel_center_integer =
2595 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2596
2597 /*
2598 * The shader input interpolation info is not explicitely baked in the
2599 * shader key, but everything it derives from (TGSI, and flatshade) is
2600 * already included in the shader key.
2601 */
2602 lp_build_interp_soa_init(&interp,
2603 gallivm,
2604 shader->info.base.num_inputs,
2605 inputs,
2606 pixel_center_integer,
2607 key->depth_clamp,
2608 builder, fs_type,
2609 a0_ptr, dadx_ptr, dady_ptr,
2610 x, y);
2611
2612 for (i = 0; i < num_fs; i++) {
2613 LLVMValueRef mask;
2614 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2615 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2616 &indexi, 1, "mask_ptr");
2617
2618 if (partial_mask) {
2619 mask = generate_quad_mask(gallivm, fs_type,
2620 i*fs_type.length/4, mask_input);
2621 }
2622 else {
2623 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2624 }
2625 LLVMBuildStore(builder, mask, mask_ptr);
2626 }
2627
2628 generate_fs_loop(gallivm,
2629 shader, key,
2630 builder,
2631 fs_type,
2632 context_ptr,
2633 num_loop,
2634 &interp,
2635 sampler,
2636 mask_store, /* output */
2637 color_store,
2638 depth_ptr,
2639 depth_stride,
2640 facing,
2641 thread_data_ptr);
2642
2643 for (i = 0; i < num_fs; i++) {
2644 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2645 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2646 &indexi, 1, "");
2647 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2648 /* This is fucked up need to reorganize things */
2649 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2650 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2651 ptr = LLVMBuildGEP(builder,
2652 color_store[cbuf * !cbuf0_write_all][chan],
2653 &indexi, 1, "");
2654 fs_out_color[cbuf][chan][i] = ptr;
2655 }
2656 }
2657 if (dual_source_blend) {
2658 /* only support one dual source blend target hence always use output 1 */
2659 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2660 ptr = LLVMBuildGEP(builder,
2661 color_store[1][chan],
2662 &indexi, 1, "");
2663 fs_out_color[1][chan][i] = ptr;
2664 }
2665 }
2666 }
2667 }
2668
2669 sampler->destroy(sampler);
2670
2671 /* Loop over color outputs / color buffers to do blending.
2672 */
2673 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2674 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2675 LLVMValueRef color_ptr;
2676 LLVMValueRef stride;
2677 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2678
2679 boolean do_branch = ((key->depth.enabled
2680 || key->stencil[0].enabled
2681 || key->alpha.enabled)
2682 && !shader->info.base.uses_kill);
2683
2684 color_ptr = LLVMBuildLoad(builder,
2685 LLVMBuildGEP(builder, color_ptr_ptr,
2686 &index, 1, ""),
2687 "");
2688
2689 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2690
2691 stride = LLVMBuildLoad(builder,
2692 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2693 "");
2694
2695 generate_unswizzled_blend(gallivm, cbuf, variant,
2696 key->cbuf_format[cbuf],
2697 num_fs, fs_type, fs_mask, fs_out_color,
2698 context_ptr, color_ptr, stride,
2699 partial_mask, do_branch);
2700 }
2701 }
2702
2703 LLVMBuildRetVoid(builder);
2704
2705 gallivm_verify_function(gallivm, function);
2706 }
2707
2708
2709 static void
2710 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2711 {
2712 unsigned i;
2713
2714 debug_printf("fs variant %p:\n", (void *) key);
2715
2716 if (key->flatshade) {
2717 debug_printf("flatshade = 1\n");
2718 }
2719 for (i = 0; i < key->nr_cbufs; ++i) {
2720 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2721 }
2722 if (key->depth.enabled || key->stencil[0].enabled) {
2723 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2724 }
2725 if (key->depth.enabled) {
2726 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2727 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2728 }
2729
2730 for (i = 0; i < 2; ++i) {
2731 if (key->stencil[i].enabled) {
2732 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2733 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2734 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2735 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2736 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2737 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2738 }
2739 }
2740
2741 if (key->alpha.enabled) {
2742 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2743 }
2744
2745 if (key->occlusion_count) {
2746 debug_printf("occlusion_count = 1\n");
2747 }
2748
2749 if (key->blend.logicop_enable) {
2750 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2751 }
2752 else if (key->blend.rt[0].blend_enable) {
2753 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2754 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2755 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2756 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2757 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2758 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2759 }
2760 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2761 if (key->blend.alpha_to_coverage) {
2762 debug_printf("blend.alpha_to_coverage is enabled\n");
2763 }
2764 for (i = 0; i < key->nr_samplers; ++i) {
2765 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2766 debug_printf("sampler[%u] = \n", i);
2767 debug_printf(" .wrap = %s %s %s\n",
2768 util_str_tex_wrap(sampler->wrap_s, TRUE),
2769 util_str_tex_wrap(sampler->wrap_t, TRUE),
2770 util_str_tex_wrap(sampler->wrap_r, TRUE));
2771 debug_printf(" .min_img_filter = %s\n",
2772 util_str_tex_filter(sampler->min_img_filter, TRUE));
2773 debug_printf(" .min_mip_filter = %s\n",
2774 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2775 debug_printf(" .mag_img_filter = %s\n",
2776 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2777 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2778 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2779 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2780 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2781 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2782 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2783 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2784 }
2785 for (i = 0; i < key->nr_sampler_views; ++i) {
2786 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2787 debug_printf("texture[%u] = \n", i);
2788 debug_printf(" .format = %s\n",
2789 util_format_name(texture->format));
2790 debug_printf(" .target = %s\n",
2791 util_str_tex_target(texture->target, TRUE));
2792 debug_printf(" .level_zero_only = %u\n",
2793 texture->level_zero_only);
2794 debug_printf(" .pot = %u %u %u\n",
2795 texture->pot_width,
2796 texture->pot_height,
2797 texture->pot_depth);
2798 }
2799 }
2800
2801
2802 void
2803 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2804 {
2805 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2806 variant->shader->no, variant->no);
2807 tgsi_dump(variant->shader->base.tokens, 0);
2808 dump_fs_variant_key(&variant->key);
2809 debug_printf("variant->opaque = %u\n", variant->opaque);
2810 debug_printf("\n");
2811 }
2812
2813
2814 /**
2815 * Generate a new fragment shader variant from the shader code and
2816 * other state indicated by the key.
2817 */
2818 static struct lp_fragment_shader_variant *
2819 generate_variant(struct llvmpipe_context *lp,
2820 struct lp_fragment_shader *shader,
2821 const struct lp_fragment_shader_variant_key *key)
2822 {
2823 struct lp_fragment_shader_variant *variant;
2824 const struct util_format_description *cbuf0_format_desc = NULL;
2825 boolean fullcolormask;
2826 char module_name[64];
2827
2828 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2829 if (!variant)
2830 return NULL;
2831
2832 util_snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2833 shader->no, shader->variants_created);
2834
2835 variant->gallivm = gallivm_create(module_name, lp->context);
2836 if (!variant->gallivm) {
2837 FREE(variant);
2838 return NULL;
2839 }
2840
2841 variant->shader = shader;
2842 variant->list_item_global.base = variant;
2843 variant->list_item_local.base = variant;
2844 variant->no = shader->variants_created++;
2845
2846 memcpy(&variant->key, key, shader->variant_key_size);
2847
2848 /*
2849 * Determine whether we are touching all channels in the color buffer.
2850 */
2851 fullcolormask = FALSE;
2852 if (key->nr_cbufs == 1) {
2853 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2854 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2855 }
2856
2857 variant->opaque =
2858 !key->blend.logicop_enable &&
2859 !key->blend.rt[0].blend_enable &&
2860 fullcolormask &&
2861 !key->stencil[0].enabled &&
2862 !key->alpha.enabled &&
2863 !key->blend.alpha_to_coverage &&
2864 !key->depth.enabled &&
2865 !shader->info.base.uses_kill &&
2866 !shader->info.base.writes_samplemask
2867 ? TRUE : FALSE;
2868
2869 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2870 lp_debug_fs_variant(variant);
2871 }
2872
2873 lp_jit_init_types(variant);
2874
2875 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2876 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2877
2878 if (variant->jit_function[RAST_WHOLE] == NULL) {
2879 if (variant->opaque) {
2880 /* Specialized shader, which doesn't need to read the color buffer. */
2881 generate_fragment(lp, shader, variant, RAST_WHOLE);
2882 }
2883 }
2884
2885 /*
2886 * Compile everything
2887 */
2888
2889 gallivm_compile_module(variant->gallivm);
2890
2891 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2892
2893 if (variant->function[RAST_EDGE_TEST]) {
2894 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2895 gallivm_jit_function(variant->gallivm,
2896 variant->function[RAST_EDGE_TEST]);
2897 }
2898
2899 if (variant->function[RAST_WHOLE]) {
2900 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2901 gallivm_jit_function(variant->gallivm,
2902 variant->function[RAST_WHOLE]);
2903 } else if (!variant->jit_function[RAST_WHOLE]) {
2904 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2905 }
2906
2907 gallivm_free_ir(variant->gallivm);
2908
2909 return variant;
2910 }
2911
2912
2913 static void *
2914 llvmpipe_create_fs_state(struct pipe_context *pipe,
2915 const struct pipe_shader_state *templ)
2916 {
2917 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2918 struct lp_fragment_shader *shader;
2919 int nr_samplers;
2920 int nr_sampler_views;
2921 int i;
2922
2923 shader = CALLOC_STRUCT(lp_fragment_shader);
2924 if (!shader)
2925 return NULL;
2926
2927 shader->no = fs_no++;
2928 make_empty_list(&shader->variants);
2929
2930 /* get/save the summary info for this shader */
2931 lp_build_tgsi_info(templ->tokens, &shader->info);
2932
2933 /* we need to keep a local copy of the tokens */
2934 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2935
2936 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2937 if (shader->draw_data == NULL) {
2938 FREE((void *) shader->base.tokens);
2939 FREE(shader);
2940 return NULL;
2941 }
2942
2943 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2944 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2945
2946 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2947 state[MAX2(nr_samplers, nr_sampler_views)]);
2948
2949 for (i = 0; i < shader->info.base.num_inputs; i++) {
2950 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2951 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2952
2953 switch (shader->info.base.input_interpolate[i]) {
2954 case TGSI_INTERPOLATE_CONSTANT:
2955 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2956 break;
2957 case TGSI_INTERPOLATE_LINEAR:
2958 shader->inputs[i].interp = LP_INTERP_LINEAR;
2959 break;
2960 case TGSI_INTERPOLATE_PERSPECTIVE:
2961 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2962 break;
2963 case TGSI_INTERPOLATE_COLOR:
2964 shader->inputs[i].interp = LP_INTERP_COLOR;
2965 break;
2966 default:
2967 assert(0);
2968 break;
2969 }
2970
2971 switch (shader->info.base.input_semantic_name[i]) {
2972 case TGSI_SEMANTIC_FACE:
2973 shader->inputs[i].interp = LP_INTERP_FACING;
2974 break;
2975 case TGSI_SEMANTIC_POSITION:
2976 /* Position was already emitted above
2977 */
2978 shader->inputs[i].interp = LP_INTERP_POSITION;
2979 shader->inputs[i].src_index = 0;
2980 continue;
2981 }
2982
2983 /* XXX this is a completely pointless index map... */
2984 shader->inputs[i].src_index = i+1;
2985 }
2986
2987 if (LP_DEBUG & DEBUG_TGSI) {
2988 unsigned attrib;
2989 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2990 shader->no, (void *) shader);
2991 tgsi_dump(templ->tokens, 0);
2992 debug_printf("usage masks:\n");
2993 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2994 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2995 debug_printf(" IN[%u].%s%s%s%s\n",
2996 attrib,
2997 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2998 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2999 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3000 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3001 }
3002 debug_printf("\n");
3003 }
3004
3005 return shader;
3006 }
3007
3008
3009 static void
3010 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3011 {
3012 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3013
3014 if (llvmpipe->fs == fs)
3015 return;
3016
3017 llvmpipe->fs = (struct lp_fragment_shader *) fs;
3018
3019 draw_bind_fragment_shader(llvmpipe->draw,
3020 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
3021
3022 llvmpipe->dirty |= LP_NEW_FS;
3023 }
3024
3025
3026 /**
3027 * Remove shader variant from two lists: the shader's variant list
3028 * and the context's variant list.
3029 */
3030 static void
3031 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3032 struct lp_fragment_shader_variant *variant)
3033 {
3034 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3035 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3036 "v total cached %u inst %u total inst %u\n",
3037 variant->shader->no, variant->no,
3038 variant->shader->variants_created,
3039 variant->shader->variants_cached,
3040 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3041 }
3042
3043 gallivm_destroy(variant->gallivm);
3044
3045 /* remove from shader's list */
3046 remove_from_list(&variant->list_item_local);
3047 variant->shader->variants_cached--;
3048
3049 /* remove from context's list */
3050 remove_from_list(&variant->list_item_global);
3051 lp->nr_fs_variants--;
3052 lp->nr_fs_instrs -= variant->nr_instrs;
3053
3054 FREE(variant);
3055 }
3056
3057
3058 static void
3059 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3060 {
3061 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3062 struct lp_fragment_shader *shader = fs;
3063 struct lp_fs_variant_list_item *li;
3064
3065 assert(fs != llvmpipe->fs);
3066
3067 /*
3068 * XXX: we need to flush the context until we have some sort of reference
3069 * counting in fragment shaders as they may still be binned
3070 * Flushing alone might not sufficient we need to wait on it too.
3071 */
3072 llvmpipe_finish(pipe, __FUNCTION__);
3073
3074 /* Delete all the variants */
3075 li = first_elem(&shader->variants);
3076 while(!at_end(&shader->variants, li)) {
3077 struct lp_fs_variant_list_item *next = next_elem(li);
3078 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3079 li = next;
3080 }
3081
3082 /* Delete draw module's data */
3083 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3084
3085 assert(shader->variants_cached == 0);
3086 FREE((void *) shader->base.tokens);
3087 FREE(shader);
3088 }
3089
3090
3091
3092 static void
3093 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3094 enum pipe_shader_type shader, uint index,
3095 const struct pipe_constant_buffer *cb)
3096 {
3097 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3098 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3099
3100 assert(shader < PIPE_SHADER_TYPES);
3101 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3102
3103 /* note: reference counting */
3104 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3105
3106 if (constants) {
3107 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3108 debug_printf("Illegal set constant without bind flag\n");
3109 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3110 }
3111 }
3112
3113 if (shader == PIPE_SHADER_VERTEX ||
3114 shader == PIPE_SHADER_GEOMETRY) {
3115 /* Pass the constants to the 'draw' module */
3116 const unsigned size = cb ? cb->buffer_size : 0;
3117 const ubyte *data;
3118
3119 if (constants) {
3120 data = (ubyte *) llvmpipe_resource_data(constants);
3121 }
3122 else if (cb && cb->user_buffer) {
3123 data = (ubyte *) cb->user_buffer;
3124 }
3125 else {
3126 data = NULL;
3127 }
3128
3129 if (data)
3130 data += cb->buffer_offset;
3131
3132 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3133 index, data, size);
3134 }
3135 else {
3136 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3137 }
3138
3139 if (cb && cb->user_buffer) {
3140 pipe_resource_reference(&constants, NULL);
3141 }
3142 }
3143
3144
3145 /**
3146 * Return the blend factor equivalent to a destination alpha of one.
3147 */
3148 static inline unsigned
3149 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3150 {
3151 switch(factor) {
3152 case PIPE_BLENDFACTOR_DST_ALPHA:
3153 return PIPE_BLENDFACTOR_ONE;
3154 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3155 return PIPE_BLENDFACTOR_ZERO;
3156 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3157 if (clamped_zero)
3158 return PIPE_BLENDFACTOR_ZERO;
3159 else
3160 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3161 }
3162
3163 return factor;
3164 }
3165
3166
3167 /**
3168 * We need to generate several variants of the fragment pipeline to match
3169 * all the combinations of the contributing state atoms.
3170 *
3171 * TODO: there is actually no reason to tie this to context state -- the
3172 * generated code could be cached globally in the screen.
3173 */
3174 static void
3175 make_variant_key(struct llvmpipe_context *lp,
3176 struct lp_fragment_shader *shader,
3177 struct lp_fragment_shader_variant_key *key)
3178 {
3179 unsigned i;
3180
3181 memset(key, 0, shader->variant_key_size);
3182
3183 if (lp->framebuffer.zsbuf) {
3184 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3185 const struct util_format_description *zsbuf_desc =
3186 util_format_description(zsbuf_format);
3187
3188 if (lp->depth_stencil->depth.enabled &&
3189 util_format_has_depth(zsbuf_desc)) {
3190 key->zsbuf_format = zsbuf_format;
3191 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3192 }
3193 if (lp->depth_stencil->stencil[0].enabled &&
3194 util_format_has_stencil(zsbuf_desc)) {
3195 key->zsbuf_format = zsbuf_format;
3196 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3197 }
3198 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3199 key->resource_1d = TRUE;
3200 }
3201 }
3202
3203 /*
3204 * Propagate the depth clamp setting from the rasterizer state.
3205 * depth_clip == 0 implies depth clamping is enabled.
3206 *
3207 * When clip_halfz is enabled, then always clamp the depth values.
3208 *
3209 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3210 * clamp is always active in d3d10, regardless if depth clip is
3211 * enabled or not).
3212 * (GL has an always-on [0,1] clamp on fs depth output instead
3213 * to ensure the depth values stay in range. Doesn't look like
3214 * we do that, though...)
3215 */
3216 if (lp->rasterizer->clip_halfz) {
3217 key->depth_clamp = 1;
3218 } else {
3219 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3220 }
3221
3222 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3223 if (!lp->framebuffer.nr_cbufs ||
3224 !lp->framebuffer.cbufs[0] ||
3225 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3226 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3227 }
3228 if(key->alpha.enabled)
3229 key->alpha.func = lp->depth_stencil->alpha.func;
3230 /* alpha.ref_value is passed in jit_context */
3231
3232 key->flatshade = lp->rasterizer->flatshade;
3233 if (lp->active_occlusion_queries) {
3234 key->occlusion_count = TRUE;
3235 }
3236
3237 if (lp->framebuffer.nr_cbufs) {
3238 memcpy(&key->blend, lp->blend, sizeof key->blend);
3239 }
3240
3241 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3242
3243 if (!key->blend.independent_blend_enable) {
3244 /* we always need independent blend otherwise the fixups below won't work */
3245 for (i = 1; i < key->nr_cbufs; i++) {
3246 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3247 }
3248 key->blend.independent_blend_enable = 1;
3249 }
3250
3251 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3252 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3253
3254 if (lp->framebuffer.cbufs[i]) {
3255 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3256 const struct util_format_description *format_desc;
3257
3258 key->cbuf_format[i] = format;
3259
3260 /*
3261 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3262 * mixing of 2d textures with height 1 and 1d textures, so make sure
3263 * we pick 1d if any cbuf or zsbuf is 1d.
3264 */
3265 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3266 key->resource_1d = TRUE;
3267 }
3268
3269 format_desc = util_format_description(format);
3270 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3271 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3272
3273 /*
3274 * Mask out color channels not present in the color buffer.
3275 */
3276 blend_rt->colormask &= util_format_colormask(format_desc);
3277
3278 /*
3279 * Disable blend for integer formats.
3280 */
3281 if (util_format_is_pure_integer(format)) {
3282 blend_rt->blend_enable = 0;
3283 }
3284
3285 /*
3286 * Our swizzled render tiles always have an alpha channel, but the
3287 * linear render target format often does not, so force here the dst
3288 * alpha to be one.
3289 *
3290 * This is not a mere optimization. Wrong results will be produced if
3291 * the dst alpha is used, the dst format does not have alpha, and the
3292 * previous rendering was not flushed from the swizzled to linear
3293 * buffer. For example, NonPowTwo DCT.
3294 *
3295 * TODO: This should be generalized to all channels for better
3296 * performance, but only alpha causes correctness issues.
3297 *
3298 * Also, force rgb/alpha func/factors match, to make AoS blending
3299 * easier.
3300 */
3301 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3302 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3303 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3304 boolean clamped_zero = !util_format_is_float(format) &&
3305 !util_format_is_snorm(format);
3306 blend_rt->rgb_src_factor =
3307 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3308 blend_rt->rgb_dst_factor =
3309 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3310 blend_rt->alpha_func = blend_rt->rgb_func;
3311 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3312 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3313 }
3314 }
3315 else {
3316 /* no color buffer for this fragment output */
3317 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3318 blend_rt->colormask = 0x0;
3319 blend_rt->blend_enable = 0;
3320 }
3321 }
3322
3323 /* This value will be the same for all the variants of a given shader:
3324 */
3325 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3326
3327 for(i = 0; i < key->nr_samplers; ++i) {
3328 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3329 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3330 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3331 }
3332 }
3333
3334 /*
3335 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3336 * are dx10-style? Can't really have mixed opcodes, at least not
3337 * if we want to skip the holes here (without rescanning tgsi).
3338 */
3339 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3340 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3341 for(i = 0; i < key->nr_sampler_views; ++i) {
3342 /*
3343 * Note sview may exceed what's representable by file_mask.
3344 * This will still work, the only downside is that not actually
3345 * used views may be included in the shader key.
3346 */
3347 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3348 lp_sampler_static_texture_state(&key->state[i].texture_state,
3349 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3350 }
3351 }
3352 }
3353 else {
3354 key->nr_sampler_views = key->nr_samplers;
3355 for(i = 0; i < key->nr_sampler_views; ++i) {
3356 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3357 lp_sampler_static_texture_state(&key->state[i].texture_state,
3358 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3359 }
3360 }
3361 }
3362 }
3363
3364
3365
3366 /**
3367 * Update fragment shader state. This is called just prior to drawing
3368 * something when some fragment-related state has changed.
3369 */
3370 void
3371 llvmpipe_update_fs(struct llvmpipe_context *lp)
3372 {
3373 struct lp_fragment_shader *shader = lp->fs;
3374 struct lp_fragment_shader_variant_key key;
3375 struct lp_fragment_shader_variant *variant = NULL;
3376 struct lp_fs_variant_list_item *li;
3377
3378 make_variant_key(lp, shader, &key);
3379
3380 /* Search the variants for one which matches the key */
3381 li = first_elem(&shader->variants);
3382 while(!at_end(&shader->variants, li)) {
3383 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3384 variant = li->base;
3385 break;
3386 }
3387 li = next_elem(li);
3388 }
3389
3390 if (variant) {
3391 /* Move this variant to the head of the list to implement LRU
3392 * deletion of shader's when we have too many.
3393 */
3394 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3395 }
3396 else {
3397 /* variant not found, create it now */
3398 int64_t t0, t1, dt;
3399 unsigned i;
3400 unsigned variants_to_cull;
3401
3402 if (LP_DEBUG & DEBUG_FS) {
3403 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3404 lp->nr_fs_variants,
3405 lp->nr_fs_instrs,
3406 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3407 }
3408
3409 /* First, check if we've exceeded the max number of shader variants.
3410 * If so, free 6.25% of them (the least recently used ones).
3411 */
3412 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3413
3414 if (variants_to_cull ||
3415 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3416 struct pipe_context *pipe = &lp->pipe;
3417
3418 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3419 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3420 "\t%u instrs,\t%u instrs/variant\n",
3421 shader->variants_cached,
3422 lp->nr_fs_variants, lp->nr_fs_instrs,
3423 lp->nr_fs_instrs / lp->nr_fs_variants);
3424 }
3425
3426 /*
3427 * XXX: we need to flush the context until we have some sort of
3428 * reference counting in fragment shaders as they may still be binned
3429 * Flushing alone might not be sufficient we need to wait on it too.
3430 */
3431 llvmpipe_finish(pipe, __FUNCTION__);
3432
3433 /*
3434 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3435 * number of shader variants (potentially all of them) could be
3436 * pending for destruction on flush.
3437 */
3438
3439 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3440 struct lp_fs_variant_list_item *item;
3441 if (is_empty_list(&lp->fs_variants_list)) {
3442 break;
3443 }
3444 item = last_elem(&lp->fs_variants_list);
3445 assert(item);
3446 assert(item->base);
3447 llvmpipe_remove_shader_variant(lp, item->base);
3448 }
3449 }
3450
3451 /*
3452 * Generate the new variant.
3453 */
3454 t0 = os_time_get();
3455 variant = generate_variant(lp, shader, &key);
3456 t1 = os_time_get();
3457 dt = t1 - t0;
3458 LP_COUNT_ADD(llvm_compile_time, dt);
3459 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3460
3461 /* Put the new variant into the list */
3462 if (variant) {
3463 insert_at_head(&shader->variants, &variant->list_item_local);
3464 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3465 lp->nr_fs_variants++;
3466 lp->nr_fs_instrs += variant->nr_instrs;
3467 shader->variants_cached++;
3468 }
3469 }
3470
3471 /* Bind this variant */
3472 lp_setup_set_fs_variant(lp->setup, variant);
3473 }
3474
3475
3476
3477
3478
3479 void
3480 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3481 {
3482 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3483 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3484 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3485
3486 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3487 }
3488
3489