llvmpipe/nir: handle texcoord requirements
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_nir.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87 #include "gallivm/lp_bld_arit.h"
88 #include "gallivm/lp_bld_bitarit.h"
89 #include "gallivm/lp_bld_pack.h"
90 #include "gallivm/lp_bld_format.h"
91 #include "gallivm/lp_bld_quad.h"
92
93 #include "lp_bld_alpha.h"
94 #include "lp_bld_blend.h"
95 #include "lp_bld_depth.h"
96 #include "lp_bld_interp.h"
97 #include "lp_context.h"
98 #include "lp_debug.h"
99 #include "lp_perf.h"
100 #include "lp_setup.h"
101 #include "lp_state.h"
102 #include "lp_tex_sample.h"
103 #include "lp_flush.h"
104 #include "lp_state_fs.h"
105 #include "lp_rast.h"
106 #include "nir/nir_to_tgsi_info.h"
107
108 /** Fragment shader number (for debugging) */
109 static unsigned fs_no = 0;
110
111
112 /**
113 * Expand the relevant bits of mask_input to a n*4-dword mask for the
114 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
115 * quad mask vector to 0 or ~0.
116 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
117 * quad arguments with fs length 8.
118 *
119 * \param first_quad which quad(s) of the quad group to test, in [0,3]
120 * \param mask_input bitwise mask for the whole 4x4 stamp
121 */
122 static LLVMValueRef
123 generate_quad_mask(struct gallivm_state *gallivm,
124 struct lp_type fs_type,
125 unsigned first_quad,
126 LLVMValueRef mask_input) /* int32 */
127 {
128 LLVMBuilderRef builder = gallivm->builder;
129 struct lp_type mask_type;
130 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
131 LLVMValueRef bits[16];
132 LLVMValueRef mask, bits_vec;
133 int shift, i;
134
135 /*
136 * XXX: We'll need a different path for 16 x u8
137 */
138 assert(fs_type.width == 32);
139 assert(fs_type.length <= ARRAY_SIZE(bits));
140 mask_type = lp_int_type(fs_type);
141
142 /*
143 * mask_input >>= (quad * 4)
144 */
145 switch (first_quad) {
146 case 0:
147 shift = 0;
148 break;
149 case 1:
150 assert(fs_type.length == 4);
151 shift = 2;
152 break;
153 case 2:
154 shift = 8;
155 break;
156 case 3:
157 assert(fs_type.length == 4);
158 shift = 10;
159 break;
160 default:
161 assert(0);
162 shift = 0;
163 }
164
165 mask_input = LLVMBuildLShr(builder,
166 mask_input,
167 LLVMConstInt(i32t, shift, 0),
168 "");
169
170 /*
171 * mask = { mask_input & (1 << i), for i in [0,3] }
172 */
173 mask = lp_build_broadcast(gallivm,
174 lp_build_vec_type(gallivm, mask_type),
175 mask_input);
176
177 for (i = 0; i < fs_type.length / 4; i++) {
178 unsigned j = 2 * (i % 2) + (i / 2) * 8;
179 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
180 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
181 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
182 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
183 }
184 bits_vec = LLVMConstVector(bits, fs_type.length);
185 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
186
187 /*
188 * mask = mask == bits ? ~0 : 0
189 */
190 mask = lp_build_compare(gallivm,
191 mask_type, PIPE_FUNC_EQUAL,
192 mask, bits_vec);
193
194 return mask;
195 }
196
197
198 #define EARLY_DEPTH_TEST 0x1
199 #define LATE_DEPTH_TEST 0x2
200 #define EARLY_DEPTH_WRITE 0x4
201 #define LATE_DEPTH_WRITE 0x8
202
203 static int
204 find_output_by_semantic( const struct tgsi_shader_info *info,
205 unsigned semantic,
206 unsigned index )
207 {
208 int i;
209
210 for (i = 0; i < info->num_outputs; i++)
211 if (info->output_semantic_name[i] == semantic &&
212 info->output_semantic_index[i] == index)
213 return i;
214
215 return -1;
216 }
217
218
219 /**
220 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
221 */
222 static LLVMValueRef
223 lp_llvm_viewport(LLVMValueRef context_ptr,
224 struct gallivm_state *gallivm,
225 LLVMValueRef viewport_index)
226 {
227 LLVMBuilderRef builder = gallivm->builder;
228 LLVMValueRef ptr;
229 LLVMValueRef res;
230 struct lp_type viewport_type =
231 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
232
233 ptr = lp_jit_context_viewports(gallivm, context_ptr);
234 ptr = LLVMBuildPointerCast(builder, ptr,
235 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
236
237 res = lp_build_pointer_get(builder, ptr, viewport_index);
238
239 return res;
240 }
241
242
243 static LLVMValueRef
244 lp_build_depth_clamp(struct gallivm_state *gallivm,
245 LLVMBuilderRef builder,
246 struct lp_type type,
247 LLVMValueRef context_ptr,
248 LLVMValueRef thread_data_ptr,
249 LLVMValueRef z)
250 {
251 LLVMValueRef viewport, min_depth, max_depth;
252 LLVMValueRef viewport_index;
253 struct lp_build_context f32_bld;
254
255 assert(type.floating);
256 lp_build_context_init(&f32_bld, gallivm, type);
257
258 /*
259 * Assumes clamping of the viewport index will occur in setup/gs. Value
260 * is passed through the rasterization stage via lp_rast_shader_inputs.
261 *
262 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
263 * semantics.
264 */
265 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
266 thread_data_ptr);
267
268 /*
269 * Load the min and max depth from the lp_jit_context.viewports
270 * array of lp_jit_viewport structures.
271 */
272 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
273
274 /* viewports[viewport_index].min_depth */
275 min_depth = LLVMBuildExtractElement(builder, viewport,
276 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
277 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
278
279 /* viewports[viewport_index].max_depth */
280 max_depth = LLVMBuildExtractElement(builder, viewport,
281 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
282 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
283
284 /*
285 * Clamp to the min and max depth values for the given viewport.
286 */
287 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
288 }
289
290
291 /**
292 * Generate the fragment shader, depth/stencil test, and alpha tests.
293 */
294 static void
295 generate_fs_loop(struct gallivm_state *gallivm,
296 struct lp_fragment_shader *shader,
297 const struct lp_fragment_shader_variant_key *key,
298 LLVMBuilderRef builder,
299 struct lp_type type,
300 LLVMValueRef context_ptr,
301 LLVMValueRef num_loop,
302 struct lp_build_interp_soa_context *interp,
303 const struct lp_build_sampler_soa *sampler,
304 const struct lp_build_image_soa *image,
305 LLVMValueRef mask_store,
306 LLVMValueRef (*out_color)[4],
307 LLVMValueRef depth_ptr,
308 LLVMValueRef depth_stride,
309 LLVMValueRef facing,
310 LLVMValueRef thread_data_ptr)
311 {
312 const struct util_format_description *zs_format_desc = NULL;
313 const struct tgsi_token *tokens = shader->base.tokens;
314 struct lp_type int_type = lp_int_type(type);
315 LLVMTypeRef vec_type, int_vec_type;
316 LLVMValueRef mask_ptr, mask_val;
317 LLVMValueRef consts_ptr, num_consts_ptr;
318 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
319 LLVMValueRef z;
320 LLVMValueRef z_value, s_value;
321 LLVMValueRef z_fb, s_fb;
322 LLVMValueRef stencil_refs[2];
323 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
324 struct lp_build_for_loop_state loop_state;
325 struct lp_build_mask_context mask;
326 /*
327 * TODO: figure out if simple_shader optimization is really worthwile to
328 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
329 * code since tests tend to take another codepath than real shaders.
330 */
331 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
332 shader->info.base.num_inputs < 3 &&
333 shader->info.base.num_instructions < 8) && 0;
334 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
335 util_blend_state_is_dual(&key->blend, 0);
336 unsigned attrib;
337 unsigned chan;
338 unsigned cbuf;
339 unsigned depth_mode;
340
341 struct lp_bld_tgsi_system_values system_values;
342
343 memset(&system_values, 0, sizeof(system_values));
344
345 /* truncate then sign extend. */
346 system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
347 system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
348
349 if (key->depth.enabled ||
350 key->stencil[0].enabled) {
351
352 zs_format_desc = util_format_description(key->zsbuf_format);
353 assert(zs_format_desc);
354
355 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
356 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
357 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
358 if (shader->info.base.writes_memory)
359 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
360 else if (key->alpha.enabled ||
361 key->blend.alpha_to_coverage ||
362 shader->info.base.uses_kill ||
363 shader->info.base.writes_samplemask) {
364 /* With alpha test and kill, can do the depth test early
365 * and hopefully eliminate some quads. But need to do a
366 * special deferred depth write once the final mask value
367 * is known. This only works though if there's either no
368 * stencil test or the stencil value isn't written.
369 */
370 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
371 (key->stencil[1].enabled &&
372 key->stencil[1].writemask)))
373 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
374 else
375 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
376 }
377 else
378 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
379 }
380 else {
381 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
382 }
383
384 if (!(key->depth.enabled && key->depth.writemask) &&
385 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
386 (key->stencil[1].enabled &&
387 key->stencil[1].writemask))))
388 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
389 }
390 else {
391 depth_mode = 0;
392 }
393
394 vec_type = lp_build_vec_type(gallivm, type);
395 int_vec_type = lp_build_vec_type(gallivm, int_type);
396
397 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
398 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
399 /* convert scalar stencil refs into vectors */
400 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
401 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
402
403 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
404 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
405
406 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
407 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
408
409 lp_build_for_loop_begin(&loop_state, gallivm,
410 lp_build_const_int32(gallivm, 0),
411 LLVMIntULT,
412 num_loop,
413 lp_build_const_int32(gallivm, 1));
414
415 mask_ptr = LLVMBuildGEP(builder, mask_store,
416 &loop_state.counter, 1, "mask_ptr");
417 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
418
419 memset(outputs, 0, sizeof outputs);
420
421 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
422 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
423 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
424 lp_build_vec_type(gallivm,
425 type),
426 num_loop, "color");
427 }
428 }
429 if (dual_source_blend) {
430 assert(key->nr_cbufs <= 1);
431 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
432 out_color[1][chan] = lp_build_array_alloca(gallivm,
433 lp_build_vec_type(gallivm,
434 type),
435 num_loop, "color1");
436 }
437 }
438
439
440 /* 'mask' will control execution based on quad's pixel alive/killed state */
441 lp_build_mask_begin(&mask, gallivm, type, mask_val);
442
443 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
444 lp_build_mask_check(&mask);
445
446 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
447 z = interp->pos[2];
448
449 if (depth_mode & EARLY_DEPTH_TEST) {
450 /*
451 * Clamp according to ARB_depth_clamp semantics.
452 */
453 if (key->depth_clamp) {
454 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
455 thread_data_ptr, z);
456 }
457 lp_build_depth_stencil_load_swizzled(gallivm, type,
458 zs_format_desc, key->resource_1d,
459 depth_ptr, depth_stride,
460 &z_fb, &s_fb, loop_state.counter);
461 lp_build_depth_stencil_test(gallivm,
462 &key->depth,
463 key->stencil,
464 type,
465 zs_format_desc,
466 &mask,
467 stencil_refs,
468 z, z_fb, s_fb,
469 facing,
470 &z_value, &s_value,
471 !simple_shader);
472
473 if (depth_mode & EARLY_DEPTH_WRITE) {
474 lp_build_depth_stencil_write_swizzled(gallivm, type,
475 zs_format_desc, key->resource_1d,
476 NULL, NULL, NULL, loop_state.counter,
477 depth_ptr, depth_stride,
478 z_value, s_value);
479 }
480 /*
481 * Note mask check if stencil is enabled must be after ds write not after
482 * stencil test otherwise new stencil values may not get written if all
483 * fragments got killed by depth/stencil test.
484 */
485 if (!simple_shader && key->stencil[0].enabled)
486 lp_build_mask_check(&mask);
487 }
488
489 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
490
491 struct lp_build_tgsi_params params;
492 memset(&params, 0, sizeof(params));
493
494 params.type = type;
495 params.mask = &mask;
496 params.consts_ptr = consts_ptr;
497 params.const_sizes_ptr = num_consts_ptr;
498 params.system_values = &system_values;
499 params.inputs = interp->inputs;
500 params.context_ptr = context_ptr;
501 params.thread_data_ptr = thread_data_ptr;
502 params.sampler = sampler;
503 params.info = &shader->info.base;
504 params.ssbo_ptr = ssbo_ptr;
505 params.ssbo_sizes_ptr = num_ssbo_ptr;
506 params.image = image;
507
508 /* Build the actual shader */
509 if (shader->base.type == PIPE_SHADER_IR_TGSI)
510 lp_build_tgsi_soa(gallivm, tokens, &params,
511 outputs);
512 else
513 lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
514 outputs);
515
516 /* Alpha test */
517 if (key->alpha.enabled) {
518 int color0 = find_output_by_semantic(&shader->info.base,
519 TGSI_SEMANTIC_COLOR,
520 0);
521
522 if (color0 != -1 && outputs[color0][3]) {
523 const struct util_format_description *cbuf_format_desc;
524 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
525 LLVMValueRef alpha_ref_value;
526
527 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
528 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
529
530 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
531
532 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
533 &mask, alpha, alpha_ref_value,
534 (depth_mode & LATE_DEPTH_TEST) != 0);
535 }
536 }
537
538 /* Emulate Alpha to Coverage with Alpha test */
539 if (key->blend.alpha_to_coverage) {
540 int color0 = find_output_by_semantic(&shader->info.base,
541 TGSI_SEMANTIC_COLOR,
542 0);
543
544 if (color0 != -1 && outputs[color0][3]) {
545 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
546
547 lp_build_alpha_to_coverage(gallivm, type,
548 &mask, alpha,
549 (depth_mode & LATE_DEPTH_TEST) != 0);
550 }
551 }
552
553 if (shader->info.base.writes_samplemask) {
554 int smaski = find_output_by_semantic(&shader->info.base,
555 TGSI_SEMANTIC_SAMPLEMASK,
556 0);
557 LLVMValueRef smask;
558 struct lp_build_context smask_bld;
559 lp_build_context_init(&smask_bld, gallivm, int_type);
560
561 assert(smaski >= 0);
562 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
563 /*
564 * Pixel is alive according to the first sample in the mask.
565 */
566 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
567 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
568 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
569 lp_build_mask_update(&mask, smask);
570 }
571
572 /* Late Z test */
573 if (depth_mode & LATE_DEPTH_TEST) {
574 int pos0 = find_output_by_semantic(&shader->info.base,
575 TGSI_SEMANTIC_POSITION,
576 0);
577 int s_out = find_output_by_semantic(&shader->info.base,
578 TGSI_SEMANTIC_STENCIL,
579 0);
580 if (pos0 != -1 && outputs[pos0][2]) {
581 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
582 }
583 /*
584 * Clamp according to ARB_depth_clamp semantics.
585 */
586 if (key->depth_clamp) {
587 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
588 thread_data_ptr, z);
589 }
590
591 if (s_out != -1 && outputs[s_out][1]) {
592 /* there's only one value, and spec says to discard additional bits */
593 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
594 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
595 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
596 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
597 stencil_refs[1] = stencil_refs[0];
598 }
599
600 lp_build_depth_stencil_load_swizzled(gallivm, type,
601 zs_format_desc, key->resource_1d,
602 depth_ptr, depth_stride,
603 &z_fb, &s_fb, loop_state.counter);
604
605 lp_build_depth_stencil_test(gallivm,
606 &key->depth,
607 key->stencil,
608 type,
609 zs_format_desc,
610 &mask,
611 stencil_refs,
612 z, z_fb, s_fb,
613 facing,
614 &z_value, &s_value,
615 !simple_shader);
616 /* Late Z write */
617 if (depth_mode & LATE_DEPTH_WRITE) {
618 lp_build_depth_stencil_write_swizzled(gallivm, type,
619 zs_format_desc, key->resource_1d,
620 NULL, NULL, NULL, loop_state.counter,
621 depth_ptr, depth_stride,
622 z_value, s_value);
623 }
624 }
625 else if ((depth_mode & EARLY_DEPTH_TEST) &&
626 (depth_mode & LATE_DEPTH_WRITE))
627 {
628 /* Need to apply a reduced mask to the depth write. Reload the
629 * depth value, update from zs_value with the new mask value and
630 * write that out.
631 */
632 lp_build_depth_stencil_write_swizzled(gallivm, type,
633 zs_format_desc, key->resource_1d,
634 &mask, z_fb, s_fb, loop_state.counter,
635 depth_ptr, depth_stride,
636 z_value, s_value);
637 }
638
639
640 /* Color write */
641 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
642 {
643 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
644 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
645 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
646 {
647 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
648 if(outputs[attrib][chan]) {
649 /* XXX: just initialize outputs to point at colors[] and
650 * skip this.
651 */
652 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
653 LLVMValueRef color_ptr;
654 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
655 &loop_state.counter, 1, "");
656 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
657 LLVMBuildStore(builder, out, color_ptr);
658 }
659 }
660 }
661 }
662
663 if (key->occlusion_count) {
664 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
665 lp_build_name(counter, "counter");
666 lp_build_occlusion_count(gallivm, type,
667 lp_build_mask_value(&mask), counter);
668 }
669
670 mask_val = lp_build_mask_end(&mask);
671 LLVMBuildStore(builder, mask_val, mask_ptr);
672 lp_build_for_loop_end(&loop_state);
673 }
674
675
676 /**
677 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
678 *
679 * Fragment Shader outputs pixels in small 2x2 blocks
680 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
681 *
682 * However in memory pixels are stored in rows
683 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
684 *
685 * @param type fragment shader type (4x or 8x float)
686 * @param num_fs number of fs_src
687 * @param is_1d whether we're outputting to a 1d resource
688 * @param dst_channels number of output channels
689 * @param fs_src output from fragment shader
690 * @param dst pointer to store result
691 * @param pad_inline is channel padding inline or at end of row
692 * @return the number of dsts
693 */
694 static int
695 generate_fs_twiddle(struct gallivm_state *gallivm,
696 struct lp_type type,
697 unsigned num_fs,
698 unsigned dst_channels,
699 LLVMValueRef fs_src[][4],
700 LLVMValueRef* dst,
701 bool pad_inline)
702 {
703 LLVMValueRef src[16];
704
705 bool swizzle_pad;
706 bool twiddle;
707 bool split;
708
709 unsigned pixels = type.length / 4;
710 unsigned reorder_group;
711 unsigned src_channels;
712 unsigned src_count;
713 unsigned i;
714
715 src_channels = dst_channels < 3 ? dst_channels : 4;
716 src_count = num_fs * src_channels;
717
718 assert(pixels == 2 || pixels == 1);
719 assert(num_fs * src_channels <= ARRAY_SIZE(src));
720
721 /*
722 * Transpose from SoA -> AoS
723 */
724 for (i = 0; i < num_fs; ++i) {
725 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
726 }
727
728 /*
729 * Pick transformation options
730 */
731 swizzle_pad = false;
732 twiddle = false;
733 split = false;
734 reorder_group = 0;
735
736 if (dst_channels == 1) {
737 twiddle = true;
738
739 if (pixels == 2) {
740 split = true;
741 }
742 } else if (dst_channels == 2) {
743 if (pixels == 1) {
744 reorder_group = 1;
745 }
746 } else if (dst_channels > 2) {
747 if (pixels == 1) {
748 reorder_group = 2;
749 } else {
750 twiddle = true;
751 }
752
753 if (!pad_inline && dst_channels == 3 && pixels > 1) {
754 swizzle_pad = true;
755 }
756 }
757
758 /*
759 * Split the src in half
760 */
761 if (split) {
762 for (i = num_fs; i > 0; --i) {
763 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
764 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
765 }
766
767 src_count *= 2;
768 type.length = 4;
769 }
770
771 /*
772 * Ensure pixels are in memory order
773 */
774 if (reorder_group) {
775 /* Twiddle pixels by reordering the array, e.g.:
776 *
777 * src_count = 8 -> 0 2 1 3 4 6 5 7
778 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
779 */
780 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
781
782 for (i = 0; i < src_count; ++i) {
783 unsigned group = i / reorder_group;
784 unsigned block = (group / 4) * 4 * reorder_group;
785 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
786 dst[i] = src[j];
787 }
788 } else if (twiddle) {
789 /* Twiddle pixels across elements of array */
790 /*
791 * XXX: we should avoid this in some cases, but would need to tell
792 * lp_build_conv to reorder (or deal with it ourselves).
793 */
794 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
795 } else {
796 /* Do nothing */
797 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
798 }
799
800 /*
801 * Moves any padding between pixels to the end
802 * e.g. RGBXRGBX -> RGBRGBXX
803 */
804 if (swizzle_pad) {
805 unsigned char swizzles[16];
806 unsigned elems = pixels * dst_channels;
807
808 for (i = 0; i < type.length; ++i) {
809 if (i < elems)
810 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
811 else
812 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
813 }
814
815 for (i = 0; i < src_count; ++i) {
816 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
817 }
818 }
819
820 return src_count;
821 }
822
823
824 /*
825 * Untwiddle and transpose, much like the above.
826 * However, this is after conversion, so we get packed vectors.
827 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
828 * the vectors will look like:
829 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
830 * be swizzled here). Extending to 16bit should be trivial.
831 * Should also be extended to handle twice wide vectors with AVX2...
832 */
833 static void
834 fs_twiddle_transpose(struct gallivm_state *gallivm,
835 struct lp_type type,
836 LLVMValueRef *src,
837 unsigned src_count,
838 LLVMValueRef *dst)
839 {
840 unsigned i, j;
841 struct lp_type type64, type16, type32;
842 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
843 LLVMBuilderRef builder = gallivm->builder;
844 LLVMValueRef tmp[4], shuf[8];
845 for (j = 0; j < 2; j++) {
846 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
847 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
848 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
849 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
850 }
851
852 assert(src_count == 4 || src_count == 2 || src_count == 1);
853 assert(type.width == 8);
854 assert(type.length == 16);
855
856 type8_t = lp_build_vec_type(gallivm, type);
857
858 type64 = type;
859 type64.length /= 8;
860 type64.width *= 8;
861 type64_t = lp_build_vec_type(gallivm, type64);
862
863 type16 = type;
864 type16.length /= 2;
865 type16.width *= 2;
866 type16_t = lp_build_vec_type(gallivm, type16);
867
868 type32 = type;
869 type32.length /= 4;
870 type32.width *= 4;
871 type32_t = lp_build_vec_type(gallivm, type32);
872
873 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
874
875 if (src_count == 1) {
876 /* transpose was no-op, just untwiddle */
877 LLVMValueRef shuf_vec;
878 shuf_vec = LLVMConstVector(shuf, 8);
879 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
880 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
881 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
882 } else if (src_count == 2) {
883 LLVMValueRef shuf_vec;
884 shuf_vec = LLVMConstVector(shuf, 4);
885
886 for (i = 0; i < 2; i++) {
887 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
888 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
889 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
890 }
891 } else {
892 for (j = 0; j < 2; j++) {
893 LLVMValueRef lo, hi, lo2, hi2;
894 /*
895 * Note that if we only really have 3 valid channels (rgb)
896 * and we don't need alpha we could substitute a undef here
897 * for the respective channel (causing llvm to drop conversion
898 * for alpha).
899 */
900 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
901 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
902 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
903 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
904 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
905 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
906 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
907 }
908 }
909 }
910
911
912 /**
913 * Load an unswizzled block of pixels from memory
914 */
915 static void
916 load_unswizzled_block(struct gallivm_state *gallivm,
917 LLVMValueRef base_ptr,
918 LLVMValueRef stride,
919 unsigned block_width,
920 unsigned block_height,
921 LLVMValueRef* dst,
922 struct lp_type dst_type,
923 unsigned dst_count,
924 unsigned dst_alignment)
925 {
926 LLVMBuilderRef builder = gallivm->builder;
927 unsigned row_size = dst_count / block_height;
928 unsigned i;
929
930 /* Ensure block exactly fits into dst */
931 assert((block_width * block_height) % dst_count == 0);
932
933 for (i = 0; i < dst_count; ++i) {
934 unsigned x = i % row_size;
935 unsigned y = i / row_size;
936
937 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
938 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
939
940 LLVMValueRef gep[2];
941 LLVMValueRef dst_ptr;
942
943 gep[0] = lp_build_const_int32(gallivm, 0);
944 gep[1] = LLVMBuildAdd(builder, bx, by, "");
945
946 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
947 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
948 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
949
950 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
951
952 LLVMSetAlignment(dst[i], dst_alignment);
953 }
954 }
955
956
957 /**
958 * Store an unswizzled block of pixels to memory
959 */
960 static void
961 store_unswizzled_block(struct gallivm_state *gallivm,
962 LLVMValueRef base_ptr,
963 LLVMValueRef stride,
964 unsigned block_width,
965 unsigned block_height,
966 LLVMValueRef* src,
967 struct lp_type src_type,
968 unsigned src_count,
969 unsigned src_alignment)
970 {
971 LLVMBuilderRef builder = gallivm->builder;
972 unsigned row_size = src_count / block_height;
973 unsigned i;
974
975 /* Ensure src exactly fits into block */
976 assert((block_width * block_height) % src_count == 0);
977
978 for (i = 0; i < src_count; ++i) {
979 unsigned x = i % row_size;
980 unsigned y = i / row_size;
981
982 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
983 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
984
985 LLVMValueRef gep[2];
986 LLVMValueRef src_ptr;
987
988 gep[0] = lp_build_const_int32(gallivm, 0);
989 gep[1] = LLVMBuildAdd(builder, bx, by, "");
990
991 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
992 src_ptr = LLVMBuildBitCast(builder, src_ptr,
993 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
994
995 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
996
997 LLVMSetAlignment(src_ptr, src_alignment);
998 }
999 }
1000
1001
1002 /**
1003 * Checks if a format description is an arithmetic format
1004 *
1005 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
1006 */
1007 static inline boolean
1008 is_arithmetic_format(const struct util_format_description *format_desc)
1009 {
1010 boolean arith = false;
1011 unsigned i;
1012
1013 for (i = 0; i < format_desc->nr_channels; ++i) {
1014 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1015 arith |= (format_desc->channel[i].size % 8) != 0;
1016 }
1017
1018 return arith;
1019 }
1020
1021
1022 /**
1023 * Checks if this format requires special handling due to required expansion
1024 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1025 * SoA conversion.
1026 */
1027 static inline boolean
1028 format_expands_to_float_soa(const struct util_format_description *format_desc)
1029 {
1030 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1031 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1032 return true;
1033 }
1034 return false;
1035 }
1036
1037
1038 /**
1039 * Retrieves the type representing the memory layout for a format
1040 *
1041 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1042 */
1043 static inline void
1044 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1045 struct lp_type* type)
1046 {
1047 unsigned i;
1048 unsigned chan;
1049
1050 if (format_expands_to_float_soa(format_desc)) {
1051 /* just make this a uint with width of block */
1052 type->floating = false;
1053 type->fixed = false;
1054 type->sign = false;
1055 type->norm = false;
1056 type->width = format_desc->block.bits;
1057 type->length = 1;
1058 return;
1059 }
1060
1061 for (i = 0; i < 4; i++)
1062 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1063 break;
1064 chan = i;
1065
1066 memset(type, 0, sizeof(struct lp_type));
1067 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1068 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1069 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1070 type->norm = format_desc->channel[chan].normalized;
1071
1072 if (is_arithmetic_format(format_desc)) {
1073 type->width = 0;
1074 type->length = 1;
1075
1076 for (i = 0; i < format_desc->nr_channels; ++i) {
1077 type->width += format_desc->channel[i].size;
1078 }
1079 } else {
1080 type->width = format_desc->channel[chan].size;
1081 type->length = format_desc->nr_channels;
1082 }
1083 }
1084
1085
1086 /**
1087 * Retrieves the type for a format which is usable in the blending code.
1088 *
1089 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1090 */
1091 static inline void
1092 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1093 struct lp_type* type)
1094 {
1095 unsigned i;
1096 unsigned chan;
1097
1098 if (format_expands_to_float_soa(format_desc)) {
1099 /* always use ordinary floats for blending */
1100 type->floating = true;
1101 type->fixed = false;
1102 type->sign = true;
1103 type->norm = false;
1104 type->width = 32;
1105 type->length = 4;
1106 return;
1107 }
1108
1109 for (i = 0; i < 4; i++)
1110 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1111 break;
1112 chan = i;
1113
1114 memset(type, 0, sizeof(struct lp_type));
1115 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1116 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1117 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1118 type->norm = format_desc->channel[chan].normalized;
1119 type->width = format_desc->channel[chan].size;
1120 type->length = format_desc->nr_channels;
1121
1122 for (i = 1; i < format_desc->nr_channels; ++i) {
1123 if (format_desc->channel[i].size > type->width)
1124 type->width = format_desc->channel[i].size;
1125 }
1126
1127 if (type->floating) {
1128 type->width = 32;
1129 } else {
1130 if (type->width <= 8) {
1131 type->width = 8;
1132 } else if (type->width <= 16) {
1133 type->width = 16;
1134 } else {
1135 type->width = 32;
1136 }
1137 }
1138
1139 if (is_arithmetic_format(format_desc) && type->length == 3) {
1140 type->length = 4;
1141 }
1142 }
1143
1144
1145 /**
1146 * Scale a normalized value from src_bits to dst_bits.
1147 *
1148 * The exact calculation is
1149 *
1150 * dst = iround(src * dst_mask / src_mask)
1151 *
1152 * or with integer rounding
1153 *
1154 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1155 *
1156 * where
1157 *
1158 * src_mask = (1 << src_bits) - 1
1159 * dst_mask = (1 << dst_bits) - 1
1160 *
1161 * but we try to avoid division and multiplication through shifts.
1162 */
1163 static inline LLVMValueRef
1164 scale_bits(struct gallivm_state *gallivm,
1165 int src_bits,
1166 int dst_bits,
1167 LLVMValueRef src,
1168 struct lp_type src_type)
1169 {
1170 LLVMBuilderRef builder = gallivm->builder;
1171 LLVMValueRef result = src;
1172
1173 if (dst_bits < src_bits) {
1174 int delta_bits = src_bits - dst_bits;
1175
1176 if (delta_bits <= dst_bits) {
1177 /*
1178 * Approximate the rescaling with a single shift.
1179 *
1180 * This gives the wrong rounding.
1181 */
1182
1183 result = LLVMBuildLShr(builder,
1184 src,
1185 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1186 "");
1187
1188 } else {
1189 /*
1190 * Try more accurate rescaling.
1191 */
1192
1193 /*
1194 * Drop the least significant bits to make space for the multiplication.
1195 *
1196 * XXX: A better approach would be to use a wider integer type as intermediate. But
1197 * this is enough to convert alpha from 16bits -> 2 when rendering to
1198 * PIPE_FORMAT_R10G10B10A2_UNORM.
1199 */
1200 result = LLVMBuildLShr(builder,
1201 src,
1202 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1203 "");
1204
1205
1206 result = LLVMBuildMul(builder,
1207 result,
1208 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1209 "");
1210
1211 /*
1212 * Add a rounding term before the division.
1213 *
1214 * TODO: Handle signed integers too.
1215 */
1216 if (!src_type.sign) {
1217 result = LLVMBuildAdd(builder,
1218 result,
1219 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1220 "");
1221 }
1222
1223 /*
1224 * Approximate the division by src_mask with a src_bits shift.
1225 *
1226 * Given the src has already been shifted by dst_bits, all we need
1227 * to do is to shift by the difference.
1228 */
1229
1230 result = LLVMBuildLShr(builder,
1231 result,
1232 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1233 "");
1234 }
1235
1236 } else if (dst_bits > src_bits) {
1237 /* Scale up bits */
1238 int db = dst_bits - src_bits;
1239
1240 /* Shift left by difference in bits */
1241 result = LLVMBuildShl(builder,
1242 src,
1243 lp_build_const_int_vec(gallivm, src_type, db),
1244 "");
1245
1246 if (db <= src_bits) {
1247 /* Enough bits in src to fill the remainder */
1248 LLVMValueRef lower = LLVMBuildLShr(builder,
1249 src,
1250 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1251 "");
1252
1253 result = LLVMBuildOr(builder, result, lower, "");
1254 } else if (db > src_bits) {
1255 /* Need to repeatedly copy src bits to fill remainder in dst */
1256 unsigned n;
1257
1258 for (n = src_bits; n < dst_bits; n *= 2) {
1259 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1260
1261 result = LLVMBuildOr(builder,
1262 result,
1263 LLVMBuildLShr(builder, result, shuv, ""),
1264 "");
1265 }
1266 }
1267 }
1268
1269 return result;
1270 }
1271
1272 /**
1273 * If RT is a smallfloat (needing denorms) format
1274 */
1275 static inline int
1276 have_smallfloat_format(struct lp_type dst_type,
1277 enum pipe_format format)
1278 {
1279 return ((dst_type.floating && dst_type.width != 32) ||
1280 /* due to format handling hacks this format doesn't have floating set
1281 * here (and actually has width set to 32 too) so special case this. */
1282 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1283 }
1284
1285
1286 /**
1287 * Convert from memory format to blending format
1288 *
1289 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1290 */
1291 static void
1292 convert_to_blend_type(struct gallivm_state *gallivm,
1293 unsigned block_size,
1294 const struct util_format_description *src_fmt,
1295 struct lp_type src_type,
1296 struct lp_type dst_type,
1297 LLVMValueRef* src, // and dst
1298 unsigned num_srcs)
1299 {
1300 LLVMValueRef *dst = src;
1301 LLVMBuilderRef builder = gallivm->builder;
1302 struct lp_type blend_type;
1303 struct lp_type mem_type;
1304 unsigned i, j;
1305 unsigned pixels = block_size / num_srcs;
1306 bool is_arith;
1307
1308 /*
1309 * full custom path for packed floats and srgb formats - none of the later
1310 * functions would do anything useful, and given the lp_type representation they
1311 * can't be fixed. Should really have some SoA blend path for these kind of
1312 * formats rather than hacking them in here.
1313 */
1314 if (format_expands_to_float_soa(src_fmt)) {
1315 LLVMValueRef tmpsrc[4];
1316 /*
1317 * This is pretty suboptimal for this case blending in SoA would be much
1318 * better, since conversion gets us SoA values so need to convert back.
1319 */
1320 assert(src_type.width == 32 || src_type.width == 16);
1321 assert(dst_type.floating);
1322 assert(dst_type.width == 32);
1323 assert(dst_type.length % 4 == 0);
1324 assert(num_srcs % 4 == 0);
1325
1326 if (src_type.width == 16) {
1327 /* expand 4x16bit values to 4x32bit */
1328 struct lp_type type32x4 = src_type;
1329 LLVMTypeRef ltype32x4;
1330 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1331 type32x4.width = 32;
1332 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1333 for (i = 0; i < num_fetch; i++) {
1334 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1335 }
1336 src_type.width = 32;
1337 }
1338 for (i = 0; i < 4; i++) {
1339 tmpsrc[i] = src[i];
1340 }
1341 for (i = 0; i < num_srcs / 4; i++) {
1342 LLVMValueRef tmpsoa[4];
1343 LLVMValueRef tmps = tmpsrc[i];
1344 if (dst_type.length == 8) {
1345 LLVMValueRef shuffles[8];
1346 unsigned j;
1347 /* fetch was 4 values but need 8-wide output values */
1348 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1349 /*
1350 * for 8-wide aos transpose would give us wrong order not matching
1351 * incoming converted fs values and mask. ARGH.
1352 */
1353 for (j = 0; j < 4; j++) {
1354 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1355 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1356 }
1357 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1358 LLVMConstVector(shuffles, 8), "");
1359 }
1360 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1361 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1362 }
1363 else {
1364 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1365 }
1366 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1367 }
1368 return;
1369 }
1370
1371 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1372 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1373
1374 /* Is the format arithmetic */
1375 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1376 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1377
1378 /* Pad if necessary */
1379 if (!is_arith && src_type.length < dst_type.length) {
1380 for (i = 0; i < num_srcs; ++i) {
1381 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1382 }
1383
1384 src_type.length = dst_type.length;
1385 }
1386
1387 /* Special case for half-floats */
1388 if (mem_type.width == 16 && mem_type.floating) {
1389 assert(blend_type.width == 32 && blend_type.floating);
1390 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1391 is_arith = false;
1392 }
1393
1394 if (!is_arith) {
1395 return;
1396 }
1397
1398 src_type.width = blend_type.width * blend_type.length;
1399 blend_type.length *= pixels;
1400 src_type.length *= pixels / (src_type.length / mem_type.length);
1401
1402 for (i = 0; i < num_srcs; ++i) {
1403 LLVMValueRef chans[4];
1404 LLVMValueRef res = NULL;
1405
1406 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1407
1408 for (j = 0; j < src_fmt->nr_channels; ++j) {
1409 unsigned mask = 0;
1410 unsigned sa = src_fmt->channel[j].shift;
1411 #if UTIL_ARCH_LITTLE_ENDIAN
1412 unsigned from_lsb = j;
1413 #else
1414 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1415 #endif
1416
1417 mask = (1 << src_fmt->channel[j].size) - 1;
1418
1419 /* Extract bits from source */
1420 chans[j] = LLVMBuildLShr(builder,
1421 dst[i],
1422 lp_build_const_int_vec(gallivm, src_type, sa),
1423 "");
1424
1425 chans[j] = LLVMBuildAnd(builder,
1426 chans[j],
1427 lp_build_const_int_vec(gallivm, src_type, mask),
1428 "");
1429
1430 /* Scale bits */
1431 if (src_type.norm) {
1432 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1433 blend_type.width, chans[j], src_type);
1434 }
1435
1436 /* Insert bits into correct position */
1437 chans[j] = LLVMBuildShl(builder,
1438 chans[j],
1439 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1440 "");
1441
1442 if (j == 0) {
1443 res = chans[j];
1444 } else {
1445 res = LLVMBuildOr(builder, res, chans[j], "");
1446 }
1447 }
1448
1449 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1450 }
1451 }
1452
1453
1454 /**
1455 * Convert from blending format to memory format
1456 *
1457 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1458 */
1459 static void
1460 convert_from_blend_type(struct gallivm_state *gallivm,
1461 unsigned block_size,
1462 const struct util_format_description *src_fmt,
1463 struct lp_type src_type,
1464 struct lp_type dst_type,
1465 LLVMValueRef* src, // and dst
1466 unsigned num_srcs)
1467 {
1468 LLVMValueRef* dst = src;
1469 unsigned i, j, k;
1470 struct lp_type mem_type;
1471 struct lp_type blend_type;
1472 LLVMBuilderRef builder = gallivm->builder;
1473 unsigned pixels = block_size / num_srcs;
1474 bool is_arith;
1475
1476 /*
1477 * full custom path for packed floats and srgb formats - none of the later
1478 * functions would do anything useful, and given the lp_type representation they
1479 * can't be fixed. Should really have some SoA blend path for these kind of
1480 * formats rather than hacking them in here.
1481 */
1482 if (format_expands_to_float_soa(src_fmt)) {
1483 /*
1484 * This is pretty suboptimal for this case blending in SoA would be much
1485 * better - we need to transpose the AoS values back to SoA values for
1486 * conversion/packing.
1487 */
1488 assert(src_type.floating);
1489 assert(src_type.width == 32);
1490 assert(src_type.length % 4 == 0);
1491 assert(dst_type.width == 32 || dst_type.width == 16);
1492
1493 for (i = 0; i < num_srcs / 4; i++) {
1494 LLVMValueRef tmpsoa[4], tmpdst;
1495 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1496 /* really really need SoA here */
1497
1498 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1499 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1500 }
1501 else {
1502 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1503 src_type, tmpsoa);
1504 }
1505
1506 if (src_type.length == 8) {
1507 LLVMValueRef tmpaos, shuffles[8];
1508 unsigned j;
1509 /*
1510 * for 8-wide aos transpose has given us wrong order not matching
1511 * output order. HMPF. Also need to split the output values manually.
1512 */
1513 for (j = 0; j < 4; j++) {
1514 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1515 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1516 }
1517 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1518 LLVMConstVector(shuffles, 8), "");
1519 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1520 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1521 }
1522 else {
1523 src[i] = tmpdst;
1524 }
1525 }
1526 if (dst_type.width == 16) {
1527 struct lp_type type16x8 = dst_type;
1528 struct lp_type type32x4 = dst_type;
1529 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1530 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1531 type16x8.length = 8;
1532 type32x4.width = 32;
1533 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1534 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1535 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1536 /* We could do vector truncation but it doesn't generate very good code */
1537 for (i = 0; i < num_fetch; i++) {
1538 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1539 src[i], lp_build_zero(gallivm, type32x4));
1540 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1541 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1542 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1543 }
1544 }
1545 return;
1546 }
1547
1548 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1549 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1550
1551 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1552
1553 /* Special case for half-floats */
1554 if (mem_type.width == 16 && mem_type.floating) {
1555 int length = dst_type.length;
1556 assert(blend_type.width == 32 && blend_type.floating);
1557
1558 dst_type.length = src_type.length;
1559
1560 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1561
1562 dst_type.length = length;
1563 is_arith = false;
1564 }
1565
1566 /* Remove any padding */
1567 if (!is_arith && (src_type.length % mem_type.length)) {
1568 src_type.length -= (src_type.length % mem_type.length);
1569
1570 for (i = 0; i < num_srcs; ++i) {
1571 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1572 }
1573 }
1574
1575 /* No bit arithmetic to do */
1576 if (!is_arith) {
1577 return;
1578 }
1579
1580 src_type.length = pixels;
1581 src_type.width = blend_type.length * blend_type.width;
1582 dst_type.length = pixels;
1583
1584 for (i = 0; i < num_srcs; ++i) {
1585 LLVMValueRef chans[4];
1586 LLVMValueRef res = NULL;
1587
1588 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1589
1590 for (j = 0; j < src_fmt->nr_channels; ++j) {
1591 unsigned mask = 0;
1592 unsigned sa = src_fmt->channel[j].shift;
1593 #if UTIL_ARCH_LITTLE_ENDIAN
1594 unsigned from_lsb = j;
1595 #else
1596 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1597 #endif
1598
1599 assert(blend_type.width > src_fmt->channel[j].size);
1600
1601 for (k = 0; k < blend_type.width; ++k) {
1602 mask |= 1 << k;
1603 }
1604
1605 /* Extract bits */
1606 chans[j] = LLVMBuildLShr(builder,
1607 dst[i],
1608 lp_build_const_int_vec(gallivm, src_type,
1609 from_lsb * blend_type.width),
1610 "");
1611
1612 chans[j] = LLVMBuildAnd(builder,
1613 chans[j],
1614 lp_build_const_int_vec(gallivm, src_type, mask),
1615 "");
1616
1617 /* Scale down bits */
1618 if (src_type.norm) {
1619 chans[j] = scale_bits(gallivm, blend_type.width,
1620 src_fmt->channel[j].size, chans[j], src_type);
1621 }
1622
1623 /* Insert bits */
1624 chans[j] = LLVMBuildShl(builder,
1625 chans[j],
1626 lp_build_const_int_vec(gallivm, src_type, sa),
1627 "");
1628
1629 sa += src_fmt->channel[j].size;
1630
1631 if (j == 0) {
1632 res = chans[j];
1633 } else {
1634 res = LLVMBuildOr(builder, res, chans[j], "");
1635 }
1636 }
1637
1638 assert (dst_type.width != 24);
1639
1640 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1641 }
1642 }
1643
1644
1645 /**
1646 * Convert alpha to same blend type as src
1647 */
1648 static void
1649 convert_alpha(struct gallivm_state *gallivm,
1650 struct lp_type row_type,
1651 struct lp_type alpha_type,
1652 const unsigned block_size,
1653 const unsigned block_height,
1654 const unsigned src_count,
1655 const unsigned dst_channels,
1656 const bool pad_inline,
1657 LLVMValueRef* src_alpha)
1658 {
1659 LLVMBuilderRef builder = gallivm->builder;
1660 unsigned i, j;
1661 unsigned length = row_type.length;
1662 row_type.length = alpha_type.length;
1663
1664 /* Twiddle the alpha to match pixels */
1665 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1666
1667 /*
1668 * TODO this should use single lp_build_conv call for
1669 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1670 */
1671 for (i = 0; i < block_height; ++i) {
1672 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1673 }
1674
1675 alpha_type = row_type;
1676 row_type.length = length;
1677
1678 /* If only one channel we can only need the single alpha value per pixel */
1679 if (src_count == 1 && dst_channels == 1) {
1680
1681 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1682 } else {
1683 /* If there are more srcs than rows then we need to split alpha up */
1684 if (src_count > block_height) {
1685 for (i = src_count; i > 0; --i) {
1686 unsigned pixels = block_size / src_count;
1687 unsigned idx = i - 1;
1688
1689 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1690 (idx * pixels) % 4, pixels);
1691 }
1692 }
1693
1694 /* If there is a src for each pixel broadcast the alpha across whole row */
1695 if (src_count == block_size) {
1696 for (i = 0; i < src_count; ++i) {
1697 src_alpha[i] = lp_build_broadcast(gallivm,
1698 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1699 }
1700 } else {
1701 unsigned pixels = block_size / src_count;
1702 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1703 unsigned alpha_span = 1;
1704 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1705
1706 /* Check if we need 2 src_alphas for our shuffles */
1707 if (pixels > alpha_type.length) {
1708 alpha_span = 2;
1709 }
1710
1711 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1712 for (j = 0; j < row_type.length; ++j) {
1713 if (j < pixels * channels) {
1714 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1715 } else {
1716 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1717 }
1718 }
1719
1720 for (i = 0; i < src_count; ++i) {
1721 unsigned idx1 = i, idx2 = i;
1722
1723 if (alpha_span > 1){
1724 idx1 *= alpha_span;
1725 idx2 = idx1 + 1;
1726 }
1727
1728 src_alpha[i] = LLVMBuildShuffleVector(builder,
1729 src_alpha[idx1],
1730 src_alpha[idx2],
1731 LLVMConstVector(shuffles, row_type.length),
1732 "");
1733 }
1734 }
1735 }
1736 }
1737
1738
1739 /**
1740 * Generates the blend function for unswizzled colour buffers
1741 * Also generates the read & write from colour buffer
1742 */
1743 static void
1744 generate_unswizzled_blend(struct gallivm_state *gallivm,
1745 unsigned rt,
1746 struct lp_fragment_shader_variant *variant,
1747 enum pipe_format out_format,
1748 unsigned int num_fs,
1749 struct lp_type fs_type,
1750 LLVMValueRef* fs_mask,
1751 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1752 LLVMValueRef context_ptr,
1753 LLVMValueRef color_ptr,
1754 LLVMValueRef stride,
1755 unsigned partial_mask,
1756 boolean do_branch)
1757 {
1758 const unsigned alpha_channel = 3;
1759 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1760 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1761 const unsigned block_size = block_width * block_height;
1762 const unsigned lp_integer_vector_width = 128;
1763
1764 LLVMBuilderRef builder = gallivm->builder;
1765 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1766 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1767 LLVMValueRef src_alpha[4 * 4];
1768 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1769 LLVMValueRef src_mask[4 * 4];
1770 LLVMValueRef src[4 * 4];
1771 LLVMValueRef src1[4 * 4];
1772 LLVMValueRef dst[4 * 4];
1773 LLVMValueRef blend_color;
1774 LLVMValueRef blend_alpha;
1775 LLVMValueRef i32_zero;
1776 LLVMValueRef check_mask;
1777 LLVMValueRef undef_src_val;
1778
1779 struct lp_build_mask_context mask_ctx;
1780 struct lp_type mask_type;
1781 struct lp_type blend_type;
1782 struct lp_type row_type;
1783 struct lp_type dst_type;
1784 struct lp_type ls_type;
1785
1786 unsigned char swizzle[TGSI_NUM_CHANNELS];
1787 unsigned vector_width;
1788 unsigned src_channels = TGSI_NUM_CHANNELS;
1789 unsigned dst_channels;
1790 unsigned dst_count;
1791 unsigned src_count;
1792 unsigned i, j;
1793
1794 const struct util_format_description* out_format_desc = util_format_description(out_format);
1795
1796 unsigned dst_alignment;
1797
1798 bool pad_inline = is_arithmetic_format(out_format_desc);
1799 bool has_alpha = false;
1800 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1801 util_blend_state_is_dual(&variant->key.blend, 0);
1802
1803 const boolean is_1d = variant->key.resource_1d;
1804 boolean twiddle_after_convert = FALSE;
1805 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1806 LLVMValueRef fpstate = 0;
1807
1808 /* Get type from output format */
1809 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1810 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1811
1812 /*
1813 * Technically this code should go into lp_build_smallfloat_to_float
1814 * and lp_build_float_to_smallfloat but due to the
1815 * http://llvm.org/bugs/show_bug.cgi?id=6393
1816 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1817 * So the ordering is important here and there shouldn't be any
1818 * llvm ir instrunctions in this function before
1819 * this, otherwise half-float format conversions won't work
1820 * (again due to llvm bug #6393).
1821 */
1822 if (have_smallfloat_format(dst_type, out_format)) {
1823 /* We need to make sure that denorms are ok for half float
1824 conversions */
1825 fpstate = lp_build_fpstate_get(gallivm);
1826 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1827 }
1828
1829 mask_type = lp_int32_vec4_type();
1830 mask_type.length = fs_type.length;
1831
1832 for (i = num_fs; i < num_fullblock_fs; i++) {
1833 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1834 }
1835
1836 /* Do not bother executing code when mask is empty.. */
1837 if (do_branch) {
1838 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1839
1840 for (i = 0; i < num_fullblock_fs; ++i) {
1841 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1842 }
1843
1844 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1845 lp_build_mask_check(&mask_ctx);
1846 }
1847
1848 partial_mask |= !variant->opaque;
1849 i32_zero = lp_build_const_int32(gallivm, 0);
1850
1851 undef_src_val = lp_build_undef(gallivm, fs_type);
1852
1853 row_type.length = fs_type.length;
1854 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1855
1856 /* Compute correct swizzle and count channels */
1857 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1858 dst_channels = 0;
1859
1860 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1861 /* Ensure channel is used */
1862 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1863 continue;
1864 }
1865
1866 /* Ensure not already written to (happens in case with GL_ALPHA) */
1867 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1868 continue;
1869 }
1870
1871 /* Ensure we havn't already found all channels */
1872 if (dst_channels >= out_format_desc->nr_channels) {
1873 continue;
1874 }
1875
1876 swizzle[out_format_desc->swizzle[i]] = i;
1877 ++dst_channels;
1878
1879 if (i == alpha_channel) {
1880 has_alpha = true;
1881 }
1882 }
1883
1884 if (format_expands_to_float_soa(out_format_desc)) {
1885 /*
1886 * the code above can't work for layout_other
1887 * for srgb it would sort of work but we short-circuit swizzles, etc.
1888 * as that is done as part of unpack / pack.
1889 */
1890 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1891 has_alpha = true;
1892 swizzle[0] = 0;
1893 swizzle[1] = 1;
1894 swizzle[2] = 2;
1895 swizzle[3] = 3;
1896 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1897 }
1898
1899 /* If 3 channels then pad to include alpha for 4 element transpose */
1900 if (dst_channels == 3) {
1901 assert (!has_alpha);
1902 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1903 if (swizzle[i] > TGSI_NUM_CHANNELS)
1904 swizzle[i] = 3;
1905 }
1906 if (out_format_desc->nr_channels == 4) {
1907 dst_channels = 4;
1908 /*
1909 * We use alpha from the color conversion, not separate one.
1910 * We had to include it for transpose, hence it will get converted
1911 * too (albeit when doing transpose after conversion, that would
1912 * no longer be the case necessarily).
1913 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1914 * otherwise we really have padding, not alpha, included.)
1915 */
1916 has_alpha = true;
1917 }
1918 }
1919
1920 /*
1921 * Load shader output
1922 */
1923 for (i = 0; i < num_fullblock_fs; ++i) {
1924 /* Always load alpha for use in blending */
1925 LLVMValueRef alpha;
1926 if (i < num_fs) {
1927 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1928 }
1929 else {
1930 alpha = undef_src_val;
1931 }
1932
1933 /* Load each channel */
1934 for (j = 0; j < dst_channels; ++j) {
1935 assert(swizzle[j] < 4);
1936 if (i < num_fs) {
1937 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1938 }
1939 else {
1940 fs_src[i][j] = undef_src_val;
1941 }
1942 }
1943
1944 /* If 3 channels then pad to include alpha for 4 element transpose */
1945 /*
1946 * XXX If we include that here maybe could actually use it instead of
1947 * separate alpha for blending?
1948 * (Difficult though we actually convert pad channels, not alpha.)
1949 */
1950 if (dst_channels == 3 && !has_alpha) {
1951 fs_src[i][3] = alpha;
1952 }
1953
1954 /* We split the row_mask and row_alpha as we want 128bit interleave */
1955 if (fs_type.length == 8) {
1956 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1957 0, src_channels);
1958 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1959 src_channels, src_channels);
1960
1961 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1962 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1963 src_channels, src_channels);
1964 } else {
1965 src_mask[i] = fs_mask[i];
1966 src_alpha[i] = alpha;
1967 }
1968 }
1969 if (dual_source_blend) {
1970 /* same as above except different src/dst, skip masks and comments... */
1971 for (i = 0; i < num_fullblock_fs; ++i) {
1972 LLVMValueRef alpha;
1973 if (i < num_fs) {
1974 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1975 }
1976 else {
1977 alpha = undef_src_val;
1978 }
1979
1980 for (j = 0; j < dst_channels; ++j) {
1981 assert(swizzle[j] < 4);
1982 if (i < num_fs) {
1983 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1984 }
1985 else {
1986 fs_src1[i][j] = undef_src_val;
1987 }
1988 }
1989 if (dst_channels == 3 && !has_alpha) {
1990 fs_src1[i][3] = alpha;
1991 }
1992 if (fs_type.length == 8) {
1993 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1994 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1995 src_channels, src_channels);
1996 } else {
1997 src1_alpha[i] = alpha;
1998 }
1999 }
2000 }
2001
2002 if (util_format_is_pure_integer(out_format)) {
2003 /*
2004 * In this case fs_type was really ints or uints disguised as floats,
2005 * fix that up now.
2006 */
2007 fs_type.floating = 0;
2008 fs_type.sign = dst_type.sign;
2009 for (i = 0; i < num_fullblock_fs; ++i) {
2010 for (j = 0; j < dst_channels; ++j) {
2011 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2012 lp_build_vec_type(gallivm, fs_type), "");
2013 }
2014 if (dst_channels == 3 && !has_alpha) {
2015 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2016 lp_build_vec_type(gallivm, fs_type), "");
2017 }
2018 }
2019 }
2020
2021 /*
2022 * We actually should generally do conversion first (for non-1d cases)
2023 * when the blend format is 8 or 16 bits. The reason is obvious,
2024 * there's 2 or 4 times less vectors to deal with for the interleave...
2025 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2026 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2027 * unpack only with 128bit vectors).
2028 * Note: for 16bit sizes really need matching pack conversion code
2029 */
2030 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2031 twiddle_after_convert = TRUE;
2032 }
2033
2034 /*
2035 * Pixel twiddle from fragment shader order to memory order
2036 */
2037 if (!twiddle_after_convert) {
2038 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2039 dst_channels, fs_src, src, pad_inline);
2040 if (dual_source_blend) {
2041 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2042 fs_src1, src1, pad_inline);
2043 }
2044 } else {
2045 src_count = num_fullblock_fs * dst_channels;
2046 /*
2047 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2048 * (AVX) turn out the same later when untwiddling/transpose (albeit
2049 * for true AVX2 path untwiddle needs to be different).
2050 * For now just order by colors first (so we can use unpack later).
2051 */
2052 for (j = 0; j < num_fullblock_fs; j++) {
2053 for (i = 0; i < dst_channels; i++) {
2054 src[i*num_fullblock_fs + j] = fs_src[j][i];
2055 if (dual_source_blend) {
2056 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2057 }
2058 }
2059 }
2060 }
2061
2062 src_channels = dst_channels < 3 ? dst_channels : 4;
2063 if (src_count != num_fullblock_fs * src_channels) {
2064 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2065 row_type.length /= ds;
2066 fs_type.length = row_type.length;
2067 }
2068
2069 blend_type = row_type;
2070 mask_type.length = 4;
2071
2072 /* Convert src to row_type */
2073 if (dual_source_blend) {
2074 struct lp_type old_row_type = row_type;
2075 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2076 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2077 }
2078 else {
2079 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2080 }
2081
2082 /* If the rows are not an SSE vector, combine them to become SSE size! */
2083 if ((row_type.width * row_type.length) % 128) {
2084 unsigned bits = row_type.width * row_type.length;
2085 unsigned combined;
2086
2087 assert(src_count >= (vector_width / bits));
2088
2089 dst_count = src_count / (vector_width / bits);
2090
2091 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2092 if (dual_source_blend) {
2093 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2094 }
2095
2096 row_type.length *= combined;
2097 src_count /= combined;
2098
2099 bits = row_type.width * row_type.length;
2100 assert(bits == 128 || bits == 256);
2101 }
2102
2103 if (twiddle_after_convert) {
2104 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2105 if (dual_source_blend) {
2106 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2107 }
2108 }
2109
2110 /*
2111 * Blend Colour conversion
2112 */
2113 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2114 blend_color = LLVMBuildPointerCast(builder, blend_color,
2115 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2116 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2117 &i32_zero, 1, ""), "");
2118
2119 /* Convert */
2120 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2121
2122 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2123 /*
2124 * since blending is done with floats, there was no conversion.
2125 * However, the rules according to fixed point renderbuffers still
2126 * apply, that is we must clamp inputs to 0.0/1.0.
2127 * (This would apply to separate alpha conversion too but we currently
2128 * force has_alpha to be true.)
2129 * TODO: should skip this with "fake" blend, since post-blend conversion
2130 * will clamp anyway.
2131 * TODO: could also skip this if fragment color clamping is enabled. We
2132 * don't support it natively so it gets baked into the shader however, so
2133 * can't really tell here.
2134 */
2135 struct lp_build_context f32_bld;
2136 assert(row_type.floating);
2137 lp_build_context_init(&f32_bld, gallivm, row_type);
2138 for (i = 0; i < src_count; i++) {
2139 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2140 }
2141 if (dual_source_blend) {
2142 for (i = 0; i < src_count; i++) {
2143 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2144 }
2145 }
2146 /* probably can't be different than row_type but better safe than sorry... */
2147 lp_build_context_init(&f32_bld, gallivm, blend_type);
2148 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2149 }
2150
2151 /* Extract alpha */
2152 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2153
2154 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2155 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2156 if (pad_inline) {
2157 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2158 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2159 } else {
2160 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2161 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2162 }
2163
2164 /*
2165 * Mask conversion
2166 */
2167 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2168
2169 if (src_count < block_height) {
2170 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2171 } else if (src_count > block_height) {
2172 for (i = src_count; i > 0; --i) {
2173 unsigned pixels = block_size / src_count;
2174 unsigned idx = i - 1;
2175
2176 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2177 (idx * pixels) % 4, pixels);
2178 }
2179 }
2180
2181 assert(mask_type.width == 32);
2182
2183 for (i = 0; i < src_count; ++i) {
2184 unsigned pixels = block_size / src_count;
2185 unsigned pixel_width = row_type.width * dst_channels;
2186
2187 if (pixel_width == 24) {
2188 mask_type.width = 8;
2189 mask_type.length = vector_width / mask_type.width;
2190 } else {
2191 mask_type.length = pixels;
2192 mask_type.width = row_type.width * dst_channels;
2193
2194 /*
2195 * If mask_type width is smaller than 32bit, this doesn't quite
2196 * generate the most efficient code (could use some pack).
2197 */
2198 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2199 lp_build_int_vec_type(gallivm, mask_type), "");
2200
2201 mask_type.length *= dst_channels;
2202 mask_type.width /= dst_channels;
2203 }
2204
2205 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2206 lp_build_int_vec_type(gallivm, mask_type), "");
2207 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2208 }
2209
2210 /*
2211 * Alpha conversion
2212 */
2213 if (!has_alpha) {
2214 struct lp_type alpha_type = fs_type;
2215 alpha_type.length = 4;
2216 convert_alpha(gallivm, row_type, alpha_type,
2217 block_size, block_height,
2218 src_count, dst_channels,
2219 pad_inline, src_alpha);
2220 if (dual_source_blend) {
2221 convert_alpha(gallivm, row_type, alpha_type,
2222 block_size, block_height,
2223 src_count, dst_channels,
2224 pad_inline, src1_alpha);
2225 }
2226 }
2227
2228
2229 /*
2230 * Load dst from memory
2231 */
2232 if (src_count < block_height) {
2233 dst_count = block_height;
2234 } else {
2235 dst_count = src_count;
2236 }
2237
2238 dst_type.length *= block_size / dst_count;
2239
2240 if (format_expands_to_float_soa(out_format_desc)) {
2241 /*
2242 * we need multiple values at once for the conversion, so can as well
2243 * load them vectorized here too instead of concatenating later.
2244 * (Still need concatenation later for 8-wide vectors).
2245 */
2246 dst_count = block_height;
2247 dst_type.length = block_width;
2248 }
2249
2250 /*
2251 * Compute the alignment of the destination pointer in bytes
2252 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2253 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2254 * 1d tex but can't distinguish here) so need to stick with per-pixel
2255 * alignment in this case.
2256 */
2257 if (is_1d) {
2258 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2259 }
2260 else {
2261 dst_alignment = dst_type.length * dst_type.width / 8;
2262 }
2263 /* Force power-of-two alignment by extracting only the least-significant-bit */
2264 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2265 /*
2266 * Resource base and stride pointers are aligned to 16 bytes, so that's
2267 * the maximum alignment we can guarantee
2268 */
2269 dst_alignment = MIN2(16, dst_alignment);
2270
2271 ls_type = dst_type;
2272
2273 if (dst_count > src_count) {
2274 if ((dst_type.width == 8 || dst_type.width == 16) &&
2275 util_is_power_of_two_or_zero(dst_type.length) &&
2276 dst_type.length * dst_type.width < 128) {
2277 /*
2278 * Never try to load values as 4xi8 which we will then
2279 * concatenate to larger vectors. This gives llvm a real
2280 * headache (the problem is the type legalizer (?) will
2281 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2282 * then the shuffles to concatenate are more or less impossible
2283 * - llvm is easily capable of generating a sequence of 32
2284 * pextrb/pinsrb instructions for that. Albeit it appears to
2285 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2286 * width to avoid the trouble (16bit seems not as bad, llvm
2287 * probably recognizes the load+shuffle as only one shuffle
2288 * is necessary, but we can do just the same anyway).
2289 */
2290 ls_type.length = dst_type.length * dst_type.width / 32;
2291 ls_type.width = 32;
2292 }
2293 }
2294
2295 if (is_1d) {
2296 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2297 dst, ls_type, dst_count / 4, dst_alignment);
2298 for (i = dst_count / 4; i < dst_count; i++) {
2299 dst[i] = lp_build_undef(gallivm, ls_type);
2300 }
2301
2302 }
2303 else {
2304 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2305 dst, ls_type, dst_count, dst_alignment);
2306 }
2307
2308
2309 /*
2310 * Convert from dst/output format to src/blending format.
2311 *
2312 * This is necessary as we can only read 1 row from memory at a time,
2313 * so the minimum dst_count will ever be at this point is 4.
2314 *
2315 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2316 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2317 * on all 16 pixels in that single vector at once.
2318 */
2319 if (dst_count > src_count) {
2320 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2321 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2322 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2323 for (i = 0; i < dst_count; i++) {
2324 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2325 }
2326 }
2327
2328 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2329
2330 if (ls_type.length != dst_type.length) {
2331 struct lp_type tmp_type = dst_type;
2332 tmp_type.length = dst_type.length * 4 / src_count;
2333 for (i = 0; i < src_count; i++) {
2334 dst[i] = LLVMBuildBitCast(builder, dst[i],
2335 lp_build_vec_type(gallivm, tmp_type), "");
2336 }
2337 }
2338 }
2339
2340 /*
2341 * Blending
2342 */
2343 /* XXX this is broken for RGB8 formats -
2344 * they get expanded from 12 to 16 elements (to include alpha)
2345 * by convert_to_blend_type then reduced to 15 instead of 12
2346 * by convert_from_blend_type (a simple fix though breaks A8...).
2347 * R16G16B16 also crashes differently however something going wrong
2348 * inside llvm handling npot vector sizes seemingly.
2349 * It seems some cleanup could be done here (like skipping conversion/blend
2350 * when not needed).
2351 */
2352 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2353 row_type, dst, src_count);
2354
2355 /*
2356 * FIXME: Really should get logic ops / masks out of generic blend / row
2357 * format. Logic ops will definitely not work on the blend float format
2358 * used for SRGB here and I think OpenGL expects this to work as expected
2359 * (that is incoming values converted to srgb then logic op applied).
2360 */
2361 for (i = 0; i < src_count; ++i) {
2362 dst[i] = lp_build_blend_aos(gallivm,
2363 &variant->key.blend,
2364 out_format,
2365 row_type,
2366 rt,
2367 src[i],
2368 has_alpha ? NULL : src_alpha[i],
2369 src1[i],
2370 has_alpha ? NULL : src1_alpha[i],
2371 dst[i],
2372 partial_mask ? src_mask[i] : NULL,
2373 blend_color,
2374 has_alpha ? NULL : blend_alpha,
2375 swizzle,
2376 pad_inline ? 4 : dst_channels);
2377 }
2378
2379 convert_from_blend_type(gallivm, block_size, out_format_desc,
2380 row_type, dst_type, dst, src_count);
2381
2382 /* Split the blend rows back to memory rows */
2383 if (dst_count > src_count) {
2384 row_type.length = dst_type.length * (dst_count / src_count);
2385
2386 if (src_count == 1) {
2387 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2388 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2389
2390 row_type.length /= 2;
2391 src_count *= 2;
2392 }
2393
2394 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2395 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2396 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2397 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2398
2399 row_type.length /= 2;
2400 src_count *= 2;
2401 }
2402
2403 /*
2404 * Store blend result to memory
2405 */
2406 if (is_1d) {
2407 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2408 dst, dst_type, dst_count / 4, dst_alignment);
2409 }
2410 else {
2411 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2412 dst, dst_type, dst_count, dst_alignment);
2413 }
2414
2415 if (have_smallfloat_format(dst_type, out_format)) {
2416 lp_build_fpstate_set(gallivm, fpstate);
2417 }
2418
2419 if (do_branch) {
2420 lp_build_mask_end(&mask_ctx);
2421 }
2422 }
2423
2424
2425 /**
2426 * Generate the runtime callable function for the whole fragment pipeline.
2427 * Note that the function which we generate operates on a block of 16
2428 * pixels at at time. The block contains 2x2 quads. Each quad contains
2429 * 2x2 pixels.
2430 */
2431 static void
2432 generate_fragment(struct llvmpipe_context *lp,
2433 struct lp_fragment_shader *shader,
2434 struct lp_fragment_shader_variant *variant,
2435 unsigned partial_mask)
2436 {
2437 struct gallivm_state *gallivm = variant->gallivm;
2438 struct lp_fragment_shader_variant_key *key = &variant->key;
2439 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2440 char func_name[64];
2441 struct lp_type fs_type;
2442 struct lp_type blend_type;
2443 LLVMTypeRef fs_elem_type;
2444 LLVMTypeRef blend_vec_type;
2445 LLVMTypeRef arg_types[13];
2446 LLVMTypeRef func_type;
2447 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2448 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2449 LLVMValueRef context_ptr;
2450 LLVMValueRef x;
2451 LLVMValueRef y;
2452 LLVMValueRef a0_ptr;
2453 LLVMValueRef dadx_ptr;
2454 LLVMValueRef dady_ptr;
2455 LLVMValueRef color_ptr_ptr;
2456 LLVMValueRef stride_ptr;
2457 LLVMValueRef depth_ptr;
2458 LLVMValueRef depth_stride;
2459 LLVMValueRef mask_input;
2460 LLVMValueRef thread_data_ptr;
2461 LLVMBasicBlockRef block;
2462 LLVMBuilderRef builder;
2463 struct lp_build_sampler_soa *sampler;
2464 struct lp_build_image_soa *image;
2465 struct lp_build_interp_soa_context interp;
2466 LLVMValueRef fs_mask[16 / 4];
2467 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2468 LLVMValueRef function;
2469 LLVMValueRef facing;
2470 unsigned num_fs;
2471 unsigned i;
2472 unsigned chan;
2473 unsigned cbuf;
2474 boolean cbuf0_write_all;
2475 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2476 util_blend_state_is_dual(&key->blend, 0);
2477
2478 assert(lp_native_vector_width / 32 >= 4);
2479
2480 /* Adjust color input interpolation according to flatshade state:
2481 */
2482 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2483 for (i = 0; i < shader->info.base.num_inputs; i++) {
2484 if (inputs[i].interp == LP_INTERP_COLOR) {
2485 if (key->flatshade)
2486 inputs[i].interp = LP_INTERP_CONSTANT;
2487 else
2488 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2489 }
2490 }
2491
2492 /* check if writes to cbuf[0] are to be copied to all cbufs */
2493 cbuf0_write_all =
2494 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2495
2496 /* TODO: actually pick these based on the fs and color buffer
2497 * characteristics. */
2498
2499 memset(&fs_type, 0, sizeof fs_type);
2500 fs_type.floating = TRUE; /* floating point values */
2501 fs_type.sign = TRUE; /* values are signed */
2502 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2503 fs_type.width = 32; /* 32-bit float */
2504 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2505
2506 memset(&blend_type, 0, sizeof blend_type);
2507 blend_type.floating = FALSE; /* values are integers */
2508 blend_type.sign = FALSE; /* values are unsigned */
2509 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2510 blend_type.width = 8; /* 8-bit ubyte values */
2511 blend_type.length = 16; /* 16 elements per vector */
2512
2513 /*
2514 * Generate the function prototype. Any change here must be reflected in
2515 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2516 */
2517
2518 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2519
2520 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2521
2522 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2523 shader->no, variant->no, partial_mask ? "partial" : "whole");
2524
2525 arg_types[0] = variant->jit_context_ptr_type; /* context */
2526 arg_types[1] = int32_type; /* x */
2527 arg_types[2] = int32_type; /* y */
2528 arg_types[3] = int32_type; /* facing */
2529 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2530 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2531 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2532 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2533 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2534 arg_types[9] = int32_type; /* mask_input */
2535 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2536 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2537 arg_types[12] = int32_type; /* depth_stride */
2538
2539 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2540 arg_types, ARRAY_SIZE(arg_types), 0);
2541
2542 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2543 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2544
2545 variant->function[partial_mask] = function;
2546
2547 /* XXX: need to propagate noalias down into color param now we are
2548 * passing a pointer-to-pointer?
2549 */
2550 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2551 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2552 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2553
2554 context_ptr = LLVMGetParam(function, 0);
2555 x = LLVMGetParam(function, 1);
2556 y = LLVMGetParam(function, 2);
2557 facing = LLVMGetParam(function, 3);
2558 a0_ptr = LLVMGetParam(function, 4);
2559 dadx_ptr = LLVMGetParam(function, 5);
2560 dady_ptr = LLVMGetParam(function, 6);
2561 color_ptr_ptr = LLVMGetParam(function, 7);
2562 depth_ptr = LLVMGetParam(function, 8);
2563 mask_input = LLVMGetParam(function, 9);
2564 thread_data_ptr = LLVMGetParam(function, 10);
2565 stride_ptr = LLVMGetParam(function, 11);
2566 depth_stride = LLVMGetParam(function, 12);
2567
2568 lp_build_name(context_ptr, "context");
2569 lp_build_name(x, "x");
2570 lp_build_name(y, "y");
2571 lp_build_name(a0_ptr, "a0");
2572 lp_build_name(dadx_ptr, "dadx");
2573 lp_build_name(dady_ptr, "dady");
2574 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2575 lp_build_name(depth_ptr, "depth");
2576 lp_build_name(mask_input, "mask_input");
2577 lp_build_name(thread_data_ptr, "thread_data");
2578 lp_build_name(stride_ptr, "stride_ptr");
2579 lp_build_name(depth_stride, "depth_stride");
2580
2581 /*
2582 * Function body
2583 */
2584
2585 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2586 builder = gallivm->builder;
2587 assert(builder);
2588 LLVMPositionBuilderAtEnd(builder, block);
2589
2590 /*
2591 * Must not count ps invocations if there's a null shader.
2592 * (It would be ok to count with null shader if there's d/s tests,
2593 * but only if there's d/s buffers too, which is different
2594 * to implicit rasterization disable which must not depend
2595 * on the d/s buffers.)
2596 * Could use popcount on mask, but pixel accuracy is not required.
2597 * Could disable if there's no stats query, but maybe not worth it.
2598 */
2599 if (shader->info.base.num_instructions > 1) {
2600 LLVMValueRef invocs, val;
2601 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2602 val = LLVMBuildLoad(builder, invocs, "");
2603 val = LLVMBuildAdd(builder, val,
2604 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2605 "invoc_count");
2606 LLVMBuildStore(builder, val, invocs);
2607 }
2608
2609 /* code generated texture sampling */
2610 sampler = lp_llvm_sampler_soa_create(key->samplers);
2611 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2612
2613 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2614 /* for 1d resources only run "upper half" of stamp */
2615 if (key->resource_1d)
2616 num_fs /= 2;
2617
2618 {
2619 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2620 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2621 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2622 num_loop, "mask_store");
2623 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2624 boolean pixel_center_integer =
2625 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2626
2627 /*
2628 * The shader input interpolation info is not explicitely baked in the
2629 * shader key, but everything it derives from (TGSI, and flatshade) is
2630 * already included in the shader key.
2631 */
2632 lp_build_interp_soa_init(&interp,
2633 gallivm,
2634 shader->info.base.num_inputs,
2635 inputs,
2636 pixel_center_integer,
2637 key->depth_clamp,
2638 builder, fs_type,
2639 a0_ptr, dadx_ptr, dady_ptr,
2640 x, y);
2641
2642 for (i = 0; i < num_fs; i++) {
2643 LLVMValueRef mask;
2644 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2645 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2646 &indexi, 1, "mask_ptr");
2647
2648 if (partial_mask) {
2649 mask = generate_quad_mask(gallivm, fs_type,
2650 i*fs_type.length/4, mask_input);
2651 }
2652 else {
2653 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2654 }
2655 LLVMBuildStore(builder, mask, mask_ptr);
2656 }
2657
2658 generate_fs_loop(gallivm,
2659 shader, key,
2660 builder,
2661 fs_type,
2662 context_ptr,
2663 num_loop,
2664 &interp,
2665 sampler,
2666 image,
2667 mask_store, /* output */
2668 color_store,
2669 depth_ptr,
2670 depth_stride,
2671 facing,
2672 thread_data_ptr);
2673
2674 for (i = 0; i < num_fs; i++) {
2675 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2676 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2677 &indexi, 1, "");
2678 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2679 /* This is fucked up need to reorganize things */
2680 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2681 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2682 ptr = LLVMBuildGEP(builder,
2683 color_store[cbuf * !cbuf0_write_all][chan],
2684 &indexi, 1, "");
2685 fs_out_color[cbuf][chan][i] = ptr;
2686 }
2687 }
2688 if (dual_source_blend) {
2689 /* only support one dual source blend target hence always use output 1 */
2690 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2691 ptr = LLVMBuildGEP(builder,
2692 color_store[1][chan],
2693 &indexi, 1, "");
2694 fs_out_color[1][chan][i] = ptr;
2695 }
2696 }
2697 }
2698 }
2699
2700 sampler->destroy(sampler);
2701 image->destroy(image);
2702 /* Loop over color outputs / color buffers to do blending.
2703 */
2704 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2705 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2706 LLVMValueRef color_ptr;
2707 LLVMValueRef stride;
2708 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2709
2710 boolean do_branch = ((key->depth.enabled
2711 || key->stencil[0].enabled
2712 || key->alpha.enabled)
2713 && !shader->info.base.uses_kill);
2714
2715 color_ptr = LLVMBuildLoad(builder,
2716 LLVMBuildGEP(builder, color_ptr_ptr,
2717 &index, 1, ""),
2718 "");
2719
2720 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2721
2722 stride = LLVMBuildLoad(builder,
2723 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2724 "");
2725
2726 generate_unswizzled_blend(gallivm, cbuf, variant,
2727 key->cbuf_format[cbuf],
2728 num_fs, fs_type, fs_mask, fs_out_color,
2729 context_ptr, color_ptr, stride,
2730 partial_mask, do_branch);
2731 }
2732 }
2733
2734 LLVMBuildRetVoid(builder);
2735
2736 gallivm_verify_function(gallivm, function);
2737 }
2738
2739
2740 static void
2741 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
2742 {
2743 unsigned i;
2744
2745 debug_printf("fs variant %p:\n", (void *) key);
2746
2747 if (key->flatshade) {
2748 debug_printf("flatshade = 1\n");
2749 }
2750 for (i = 0; i < key->nr_cbufs; ++i) {
2751 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2752 }
2753 if (key->depth.enabled || key->stencil[0].enabled) {
2754 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2755 }
2756 if (key->depth.enabled) {
2757 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2758 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2759 }
2760
2761 for (i = 0; i < 2; ++i) {
2762 if (key->stencil[i].enabled) {
2763 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2764 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2765 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2766 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2767 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2768 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2769 }
2770 }
2771
2772 if (key->alpha.enabled) {
2773 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2774 }
2775
2776 if (key->occlusion_count) {
2777 debug_printf("occlusion_count = 1\n");
2778 }
2779
2780 if (key->blend.logicop_enable) {
2781 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2782 }
2783 else if (key->blend.rt[0].blend_enable) {
2784 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2785 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2786 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2787 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2788 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2789 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2790 }
2791 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2792 if (key->blend.alpha_to_coverage) {
2793 debug_printf("blend.alpha_to_coverage is enabled\n");
2794 }
2795 for (i = 0; i < key->nr_samplers; ++i) {
2796 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
2797 debug_printf("sampler[%u] = \n", i);
2798 debug_printf(" .wrap = %s %s %s\n",
2799 util_str_tex_wrap(sampler->wrap_s, TRUE),
2800 util_str_tex_wrap(sampler->wrap_t, TRUE),
2801 util_str_tex_wrap(sampler->wrap_r, TRUE));
2802 debug_printf(" .min_img_filter = %s\n",
2803 util_str_tex_filter(sampler->min_img_filter, TRUE));
2804 debug_printf(" .min_mip_filter = %s\n",
2805 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2806 debug_printf(" .mag_img_filter = %s\n",
2807 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2808 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2809 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2810 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2811 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2812 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2813 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2814 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2815 }
2816 for (i = 0; i < key->nr_sampler_views; ++i) {
2817 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
2818 debug_printf("texture[%u] = \n", i);
2819 debug_printf(" .format = %s\n",
2820 util_format_name(texture->format));
2821 debug_printf(" .target = %s\n",
2822 util_str_tex_target(texture->target, TRUE));
2823 debug_printf(" .level_zero_only = %u\n",
2824 texture->level_zero_only);
2825 debug_printf(" .pot = %u %u %u\n",
2826 texture->pot_width,
2827 texture->pot_height,
2828 texture->pot_depth);
2829 }
2830 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
2831 for (i = 0; i < key->nr_images; ++i) {
2832 const struct lp_static_texture_state *image = &images[i].image_state;
2833 debug_printf("image[%u] = \n", i);
2834 debug_printf(" .format = %s\n",
2835 util_format_name(image->format));
2836 debug_printf(" .target = %s\n",
2837 util_str_tex_target(image->target, TRUE));
2838 debug_printf(" .level_zero_only = %u\n",
2839 image->level_zero_only);
2840 debug_printf(" .pot = %u %u %u\n",
2841 image->pot_width,
2842 image->pot_height,
2843 image->pot_depth);
2844 }
2845 }
2846
2847
2848 void
2849 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
2850 {
2851 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2852 variant->shader->no, variant->no);
2853 if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
2854 tgsi_dump(variant->shader->base.tokens, 0);
2855 else
2856 nir_print_shader(variant->shader->base.ir.nir, stderr);
2857 dump_fs_variant_key(&variant->key);
2858 debug_printf("variant->opaque = %u\n", variant->opaque);
2859 debug_printf("\n");
2860 }
2861
2862
2863 /**
2864 * Generate a new fragment shader variant from the shader code and
2865 * other state indicated by the key.
2866 */
2867 static struct lp_fragment_shader_variant *
2868 generate_variant(struct llvmpipe_context *lp,
2869 struct lp_fragment_shader *shader,
2870 const struct lp_fragment_shader_variant_key *key)
2871 {
2872 struct lp_fragment_shader_variant *variant;
2873 const struct util_format_description *cbuf0_format_desc = NULL;
2874 boolean fullcolormask;
2875 char module_name[64];
2876
2877 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
2878 if (!variant)
2879 return NULL;
2880
2881 memset(variant, 0, sizeof(*variant));
2882 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2883 shader->no, shader->variants_created);
2884
2885 variant->gallivm = gallivm_create(module_name, lp->context);
2886 if (!variant->gallivm) {
2887 FREE(variant);
2888 return NULL;
2889 }
2890
2891 variant->shader = shader;
2892 variant->list_item_global.base = variant;
2893 variant->list_item_local.base = variant;
2894 variant->no = shader->variants_created++;
2895
2896 memcpy(&variant->key, key, shader->variant_key_size);
2897
2898 /*
2899 * Determine whether we are touching all channels in the color buffer.
2900 */
2901 fullcolormask = FALSE;
2902 if (key->nr_cbufs == 1) {
2903 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2904 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2905 }
2906
2907 variant->opaque =
2908 !key->blend.logicop_enable &&
2909 !key->blend.rt[0].blend_enable &&
2910 fullcolormask &&
2911 !key->stencil[0].enabled &&
2912 !key->alpha.enabled &&
2913 !key->blend.alpha_to_coverage &&
2914 !key->depth.enabled &&
2915 !shader->info.base.uses_kill &&
2916 !shader->info.base.writes_samplemask
2917 ? TRUE : FALSE;
2918
2919 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2920 lp_debug_fs_variant(variant);
2921 }
2922
2923 lp_jit_init_types(variant);
2924
2925 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2926 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2927
2928 if (variant->jit_function[RAST_WHOLE] == NULL) {
2929 if (variant->opaque) {
2930 /* Specialized shader, which doesn't need to read the color buffer. */
2931 generate_fragment(lp, shader, variant, RAST_WHOLE);
2932 }
2933 }
2934
2935 /*
2936 * Compile everything
2937 */
2938
2939 gallivm_compile_module(variant->gallivm);
2940
2941 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2942
2943 if (variant->function[RAST_EDGE_TEST]) {
2944 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2945 gallivm_jit_function(variant->gallivm,
2946 variant->function[RAST_EDGE_TEST]);
2947 }
2948
2949 if (variant->function[RAST_WHOLE]) {
2950 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2951 gallivm_jit_function(variant->gallivm,
2952 variant->function[RAST_WHOLE]);
2953 } else if (!variant->jit_function[RAST_WHOLE]) {
2954 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2955 }
2956
2957 gallivm_free_ir(variant->gallivm);
2958
2959 return variant;
2960 }
2961
2962
2963 static void *
2964 llvmpipe_create_fs_state(struct pipe_context *pipe,
2965 const struct pipe_shader_state *templ)
2966 {
2967 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2968 struct lp_fragment_shader *shader;
2969 int nr_samplers;
2970 int nr_sampler_views;
2971 int nr_images;
2972 int i;
2973
2974 shader = CALLOC_STRUCT(lp_fragment_shader);
2975 if (!shader)
2976 return NULL;
2977
2978 shader->no = fs_no++;
2979 make_empty_list(&shader->variants);
2980
2981 shader->base.type = templ->type;
2982 if (templ->type == PIPE_SHADER_IR_TGSI) {
2983 /* get/save the summary info for this shader */
2984 lp_build_tgsi_info(templ->tokens, &shader->info);
2985
2986 /* we need to keep a local copy of the tokens */
2987 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2988 } else {
2989 shader->base.ir.nir = templ->ir.nir;
2990 nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
2991 }
2992
2993 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2994 if (shader->draw_data == NULL) {
2995 FREE((void *) shader->base.tokens);
2996 FREE(shader);
2997 return NULL;
2998 }
2999
3000 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3001 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3002 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3003 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3004
3005 for (i = 0; i < shader->info.base.num_inputs; i++) {
3006 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3007 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
3008
3009 switch (shader->info.base.input_interpolate[i]) {
3010 case TGSI_INTERPOLATE_CONSTANT:
3011 shader->inputs[i].interp = LP_INTERP_CONSTANT;
3012 break;
3013 case TGSI_INTERPOLATE_LINEAR:
3014 shader->inputs[i].interp = LP_INTERP_LINEAR;
3015 break;
3016 case TGSI_INTERPOLATE_PERSPECTIVE:
3017 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3018 break;
3019 case TGSI_INTERPOLATE_COLOR:
3020 shader->inputs[i].interp = LP_INTERP_COLOR;
3021 break;
3022 default:
3023 assert(0);
3024 break;
3025 }
3026
3027 switch (shader->info.base.input_semantic_name[i]) {
3028 case TGSI_SEMANTIC_FACE:
3029 shader->inputs[i].interp = LP_INTERP_FACING;
3030 break;
3031 case TGSI_SEMANTIC_POSITION:
3032 /* Position was already emitted above
3033 */
3034 shader->inputs[i].interp = LP_INTERP_POSITION;
3035 shader->inputs[i].src_index = 0;
3036 continue;
3037 }
3038
3039 /* XXX this is a completely pointless index map... */
3040 shader->inputs[i].src_index = i+1;
3041 }
3042
3043 if (LP_DEBUG & DEBUG_TGSI) {
3044 unsigned attrib;
3045 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3046 shader->no, (void *) shader);
3047 tgsi_dump(templ->tokens, 0);
3048 debug_printf("usage masks:\n");
3049 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3050 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3051 debug_printf(" IN[%u].%s%s%s%s\n",
3052 attrib,
3053 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3054 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3055 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3056 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3057 }
3058 debug_printf("\n");
3059 }
3060
3061 return shader;
3062 }
3063
3064
3065 static void
3066 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3067 {
3068 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3069
3070 if (llvmpipe->fs == fs)
3071 return;
3072
3073 llvmpipe->fs = (struct lp_fragment_shader *) fs;
3074
3075 draw_bind_fragment_shader(llvmpipe->draw,
3076 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
3077
3078 llvmpipe->dirty |= LP_NEW_FS;
3079 }
3080
3081
3082 /**
3083 * Remove shader variant from two lists: the shader's variant list
3084 * and the context's variant list.
3085 */
3086 static void
3087 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3088 struct lp_fragment_shader_variant *variant)
3089 {
3090 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3091 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3092 "v total cached %u inst %u total inst %u\n",
3093 variant->shader->no, variant->no,
3094 variant->shader->variants_created,
3095 variant->shader->variants_cached,
3096 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3097 }
3098
3099 gallivm_destroy(variant->gallivm);
3100
3101 /* remove from shader's list */
3102 remove_from_list(&variant->list_item_local);
3103 variant->shader->variants_cached--;
3104
3105 /* remove from context's list */
3106 remove_from_list(&variant->list_item_global);
3107 lp->nr_fs_variants--;
3108 lp->nr_fs_instrs -= variant->nr_instrs;
3109
3110 FREE(variant);
3111 }
3112
3113
3114 static void
3115 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3116 {
3117 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3118 struct lp_fragment_shader *shader = fs;
3119 struct lp_fs_variant_list_item *li;
3120
3121 assert(fs != llvmpipe->fs);
3122
3123 /*
3124 * XXX: we need to flush the context until we have some sort of reference
3125 * counting in fragment shaders as they may still be binned
3126 * Flushing alone might not sufficient we need to wait on it too.
3127 */
3128 llvmpipe_finish(pipe, __FUNCTION__);
3129
3130 /* Delete all the variants */
3131 li = first_elem(&shader->variants);
3132 while(!at_end(&shader->variants, li)) {
3133 struct lp_fs_variant_list_item *next = next_elem(li);
3134 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3135 li = next;
3136 }
3137
3138 /* Delete draw module's data */
3139 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3140
3141 assert(shader->variants_cached == 0);
3142 FREE((void *) shader->base.tokens);
3143 FREE(shader);
3144 }
3145
3146
3147
3148 static void
3149 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3150 enum pipe_shader_type shader, uint index,
3151 const struct pipe_constant_buffer *cb)
3152 {
3153 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3154 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3155
3156 assert(shader < PIPE_SHADER_TYPES);
3157 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3158
3159 /* note: reference counting */
3160 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3161
3162 if (constants) {
3163 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3164 debug_printf("Illegal set constant without bind flag\n");
3165 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3166 }
3167 }
3168
3169 if (shader == PIPE_SHADER_VERTEX ||
3170 shader == PIPE_SHADER_GEOMETRY) {
3171 /* Pass the constants to the 'draw' module */
3172 const unsigned size = cb ? cb->buffer_size : 0;
3173 const ubyte *data;
3174
3175 if (constants) {
3176 data = (ubyte *) llvmpipe_resource_data(constants);
3177 }
3178 else if (cb && cb->user_buffer) {
3179 data = (ubyte *) cb->user_buffer;
3180 }
3181 else {
3182 data = NULL;
3183 }
3184
3185 if (data)
3186 data += cb->buffer_offset;
3187
3188 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3189 index, data, size);
3190 }
3191 else if (shader == PIPE_SHADER_COMPUTE)
3192 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3193 else
3194 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3195
3196 if (cb && cb->user_buffer) {
3197 pipe_resource_reference(&constants, NULL);
3198 }
3199 }
3200
3201 static void
3202 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3203 enum pipe_shader_type shader, unsigned start_slot,
3204 unsigned count, const struct pipe_shader_buffer *buffers,
3205 unsigned writable_bitmask)
3206 {
3207 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3208 unsigned i, idx;
3209 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3210 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3211
3212 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3213
3214 if (shader == PIPE_SHADER_VERTEX ||
3215 shader == PIPE_SHADER_GEOMETRY) {
3216 const unsigned size = buffer ? buffer->buffer_size : 0;
3217 const ubyte *data = NULL;
3218 if (buffer && buffer->buffer)
3219 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3220 if (data)
3221 data += buffer->buffer_offset;
3222 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3223 i, data, size);
3224 } else if (shader == PIPE_SHADER_COMPUTE) {
3225 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3226 } else if (shader == PIPE_SHADER_FRAGMENT) {
3227 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3228 }
3229 }
3230 }
3231
3232 static void
3233 llvmpipe_set_shader_images(struct pipe_context *pipe,
3234 enum pipe_shader_type shader, unsigned start_slot,
3235 unsigned count, const struct pipe_image_view *images)
3236 {
3237 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3238 unsigned i, idx;
3239
3240 draw_flush(llvmpipe->draw);
3241 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3242 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3243
3244 util_copy_image_view(&llvmpipe->images[shader][i], image);
3245 }
3246
3247 llvmpipe->num_images[shader] = start_slot + count;
3248 if (shader == PIPE_SHADER_VERTEX ||
3249 shader == PIPE_SHADER_GEOMETRY) {
3250 draw_set_images(llvmpipe->draw,
3251 shader,
3252 llvmpipe->images[shader],
3253 start_slot + count);
3254 } else if (shader == PIPE_SHADER_COMPUTE)
3255 llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
3256 else
3257 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3258 }
3259
3260 /**
3261 * Return the blend factor equivalent to a destination alpha of one.
3262 */
3263 static inline unsigned
3264 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3265 {
3266 switch(factor) {
3267 case PIPE_BLENDFACTOR_DST_ALPHA:
3268 return PIPE_BLENDFACTOR_ONE;
3269 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3270 return PIPE_BLENDFACTOR_ZERO;
3271 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3272 if (clamped_zero)
3273 return PIPE_BLENDFACTOR_ZERO;
3274 else
3275 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3276 }
3277
3278 return factor;
3279 }
3280
3281
3282 /**
3283 * We need to generate several variants of the fragment pipeline to match
3284 * all the combinations of the contributing state atoms.
3285 *
3286 * TODO: there is actually no reason to tie this to context state -- the
3287 * generated code could be cached globally in the screen.
3288 */
3289 static struct lp_fragment_shader_variant_key *
3290 make_variant_key(struct llvmpipe_context *lp,
3291 struct lp_fragment_shader *shader,
3292 char *store)
3293 {
3294 unsigned i;
3295 struct lp_fragment_shader_variant_key *key;
3296
3297 key = (struct lp_fragment_shader_variant_key *)store;
3298
3299 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3300
3301 if (lp->framebuffer.zsbuf) {
3302 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3303 const struct util_format_description *zsbuf_desc =
3304 util_format_description(zsbuf_format);
3305
3306 if (lp->depth_stencil->depth.enabled &&
3307 util_format_has_depth(zsbuf_desc)) {
3308 key->zsbuf_format = zsbuf_format;
3309 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3310 }
3311 if (lp->depth_stencil->stencil[0].enabled &&
3312 util_format_has_stencil(zsbuf_desc)) {
3313 key->zsbuf_format = zsbuf_format;
3314 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3315 }
3316 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3317 key->resource_1d = TRUE;
3318 }
3319 }
3320
3321 /*
3322 * Propagate the depth clamp setting from the rasterizer state.
3323 * depth_clip == 0 implies depth clamping is enabled.
3324 *
3325 * When clip_halfz is enabled, then always clamp the depth values.
3326 *
3327 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3328 * clamp is always active in d3d10, regardless if depth clip is
3329 * enabled or not).
3330 * (GL has an always-on [0,1] clamp on fs depth output instead
3331 * to ensure the depth values stay in range. Doesn't look like
3332 * we do that, though...)
3333 */
3334 if (lp->rasterizer->clip_halfz) {
3335 key->depth_clamp = 1;
3336 } else {
3337 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3338 }
3339
3340 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3341 if (!lp->framebuffer.nr_cbufs ||
3342 !lp->framebuffer.cbufs[0] ||
3343 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3344 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3345 }
3346 if(key->alpha.enabled)
3347 key->alpha.func = lp->depth_stencil->alpha.func;
3348 /* alpha.ref_value is passed in jit_context */
3349
3350 key->flatshade = lp->rasterizer->flatshade;
3351 if (lp->active_occlusion_queries && !lp->queries_disabled) {
3352 key->occlusion_count = TRUE;
3353 }
3354
3355 if (lp->framebuffer.nr_cbufs) {
3356 memcpy(&key->blend, lp->blend, sizeof key->blend);
3357 }
3358
3359 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3360
3361 if (!key->blend.independent_blend_enable) {
3362 /* we always need independent blend otherwise the fixups below won't work */
3363 for (i = 1; i < key->nr_cbufs; i++) {
3364 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3365 }
3366 key->blend.independent_blend_enable = 1;
3367 }
3368
3369 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3370 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3371
3372 if (lp->framebuffer.cbufs[i]) {
3373 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3374 const struct util_format_description *format_desc;
3375
3376 key->cbuf_format[i] = format;
3377
3378 /*
3379 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3380 * mixing of 2d textures with height 1 and 1d textures, so make sure
3381 * we pick 1d if any cbuf or zsbuf is 1d.
3382 */
3383 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3384 key->resource_1d = TRUE;
3385 }
3386
3387 format_desc = util_format_description(format);
3388 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3389 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3390
3391 /*
3392 * Mask out color channels not present in the color buffer.
3393 */
3394 blend_rt->colormask &= util_format_colormask(format_desc);
3395
3396 /*
3397 * Disable blend for integer formats.
3398 */
3399 if (util_format_is_pure_integer(format)) {
3400 blend_rt->blend_enable = 0;
3401 }
3402
3403 /*
3404 * Our swizzled render tiles always have an alpha channel, but the
3405 * linear render target format often does not, so force here the dst
3406 * alpha to be one.
3407 *
3408 * This is not a mere optimization. Wrong results will be produced if
3409 * the dst alpha is used, the dst format does not have alpha, and the
3410 * previous rendering was not flushed from the swizzled to linear
3411 * buffer. For example, NonPowTwo DCT.
3412 *
3413 * TODO: This should be generalized to all channels for better
3414 * performance, but only alpha causes correctness issues.
3415 *
3416 * Also, force rgb/alpha func/factors match, to make AoS blending
3417 * easier.
3418 */
3419 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3420 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3421 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3422 boolean clamped_zero = !util_format_is_float(format) &&
3423 !util_format_is_snorm(format);
3424 blend_rt->rgb_src_factor =
3425 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3426 blend_rt->rgb_dst_factor =
3427 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3428 blend_rt->alpha_func = blend_rt->rgb_func;
3429 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3430 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3431 }
3432 }
3433 else {
3434 /* no color buffer for this fragment output */
3435 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3436 blend_rt->colormask = 0x0;
3437 blend_rt->blend_enable = 0;
3438 }
3439 }
3440
3441 /* This value will be the same for all the variants of a given shader:
3442 */
3443 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3444
3445 struct lp_sampler_static_state *fs_sampler;
3446
3447 fs_sampler = key->samplers;
3448
3449 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3450
3451 for(i = 0; i < key->nr_samplers; ++i) {
3452 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3453 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3454 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3455 }
3456 }
3457
3458 /*
3459 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3460 * are dx10-style? Can't really have mixed opcodes, at least not
3461 * if we want to skip the holes here (without rescanning tgsi).
3462 */
3463 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3464 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3465 for(i = 0; i < key->nr_sampler_views; ++i) {
3466 /*
3467 * Note sview may exceed what's representable by file_mask.
3468 * This will still work, the only downside is that not actually
3469 * used views may be included in the shader key.
3470 */
3471 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3472 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3473 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3474 }
3475 }
3476 }
3477 else {
3478 key->nr_sampler_views = key->nr_samplers;
3479 for(i = 0; i < key->nr_sampler_views; ++i) {
3480 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3481 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3482 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3483 }
3484 }
3485 }
3486
3487 struct lp_image_static_state *lp_image;
3488 lp_image = lp_fs_variant_key_images(key);
3489 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3490 for (i = 0; i < key->nr_images; ++i) {
3491 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3492 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3493 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3494 }
3495 }
3496 return key;
3497 }
3498
3499
3500
3501 /**
3502 * Update fragment shader state. This is called just prior to drawing
3503 * something when some fragment-related state has changed.
3504 */
3505 void
3506 llvmpipe_update_fs(struct llvmpipe_context *lp)
3507 {
3508 struct lp_fragment_shader *shader = lp->fs;
3509 struct lp_fragment_shader_variant_key *key;
3510 struct lp_fragment_shader_variant *variant = NULL;
3511 struct lp_fs_variant_list_item *li;
3512 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3513
3514 key = make_variant_key(lp, shader, store);
3515
3516 /* Search the variants for one which matches the key */
3517 li = first_elem(&shader->variants);
3518 while(!at_end(&shader->variants, li)) {
3519 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3520 variant = li->base;
3521 break;
3522 }
3523 li = next_elem(li);
3524 }
3525
3526 if (variant) {
3527 /* Move this variant to the head of the list to implement LRU
3528 * deletion of shader's when we have too many.
3529 */
3530 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3531 }
3532 else {
3533 /* variant not found, create it now */
3534 int64_t t0, t1, dt;
3535 unsigned i;
3536 unsigned variants_to_cull;
3537
3538 if (LP_DEBUG & DEBUG_FS) {
3539 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3540 lp->nr_fs_variants,
3541 lp->nr_fs_instrs,
3542 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3543 }
3544
3545 /* First, check if we've exceeded the max number of shader variants.
3546 * If so, free 6.25% of them (the least recently used ones).
3547 */
3548 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3549
3550 if (variants_to_cull ||
3551 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3552 struct pipe_context *pipe = &lp->pipe;
3553
3554 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3555 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3556 "\t%u instrs,\t%u instrs/variant\n",
3557 shader->variants_cached,
3558 lp->nr_fs_variants, lp->nr_fs_instrs,
3559 lp->nr_fs_instrs / lp->nr_fs_variants);
3560 }
3561
3562 /*
3563 * XXX: we need to flush the context until we have some sort of
3564 * reference counting in fragment shaders as they may still be binned
3565 * Flushing alone might not be sufficient we need to wait on it too.
3566 */
3567 llvmpipe_finish(pipe, __FUNCTION__);
3568
3569 /*
3570 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3571 * number of shader variants (potentially all of them) could be
3572 * pending for destruction on flush.
3573 */
3574
3575 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3576 struct lp_fs_variant_list_item *item;
3577 if (is_empty_list(&lp->fs_variants_list)) {
3578 break;
3579 }
3580 item = last_elem(&lp->fs_variants_list);
3581 assert(item);
3582 assert(item->base);
3583 llvmpipe_remove_shader_variant(lp, item->base);
3584 }
3585 }
3586
3587 /*
3588 * Generate the new variant.
3589 */
3590 t0 = os_time_get();
3591 variant = generate_variant(lp, shader, key);
3592 t1 = os_time_get();
3593 dt = t1 - t0;
3594 LP_COUNT_ADD(llvm_compile_time, dt);
3595 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3596
3597 /* Put the new variant into the list */
3598 if (variant) {
3599 insert_at_head(&shader->variants, &variant->list_item_local);
3600 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3601 lp->nr_fs_variants++;
3602 lp->nr_fs_instrs += variant->nr_instrs;
3603 shader->variants_cached++;
3604 }
3605 }
3606
3607 /* Bind this variant */
3608 lp_setup_set_fs_variant(lp->setup, variant);
3609 }
3610
3611
3612
3613
3614
3615 void
3616 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3617 {
3618 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3619 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3620 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3621
3622 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3623
3624 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3625 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3626 }
3627
3628