gallium: make constant_buffer const
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_pack.h"
88 #include "gallivm/lp_bld_format.h"
89 #include "gallivm/lp_bld_quad.h"
90
91 #include "lp_bld_alpha.h"
92 #include "lp_bld_blend.h"
93 #include "lp_bld_depth.h"
94 #include "lp_bld_interp.h"
95 #include "lp_context.h"
96 #include "lp_debug.h"
97 #include "lp_perf.h"
98 #include "lp_setup.h"
99 #include "lp_state.h"
100 #include "lp_tex_sample.h"
101 #include "lp_flush.h"
102 #include "lp_state_fs.h"
103 #include "lp_rast.h"
104
105
106 /** Fragment shader number (for debugging) */
107 static unsigned fs_no = 0;
108
109
110 /**
111 * Expand the relevant bits of mask_input to a n*4-dword mask for the
112 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
113 * quad mask vector to 0 or ~0.
114 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
115 * quad arguments with fs length 8.
116 *
117 * \param first_quad which quad(s) of the quad group to test, in [0,3]
118 * \param mask_input bitwise mask for the whole 4x4 stamp
119 */
120 static LLVMValueRef
121 generate_quad_mask(struct gallivm_state *gallivm,
122 struct lp_type fs_type,
123 unsigned first_quad,
124 LLVMValueRef mask_input) /* int32 */
125 {
126 LLVMBuilderRef builder = gallivm->builder;
127 struct lp_type mask_type;
128 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
129 LLVMValueRef bits[16];
130 LLVMValueRef mask;
131 int shift, i;
132
133 /*
134 * XXX: We'll need a different path for 16 x u8
135 */
136 assert(fs_type.width == 32);
137 assert(fs_type.length <= ARRAY_SIZE(bits));
138 mask_type = lp_int_type(fs_type);
139
140 /*
141 * mask_input >>= (quad * 4)
142 */
143 switch (first_quad) {
144 case 0:
145 shift = 0;
146 break;
147 case 1:
148 assert(fs_type.length == 4);
149 shift = 2;
150 break;
151 case 2:
152 shift = 8;
153 break;
154 case 3:
155 assert(fs_type.length == 4);
156 shift = 10;
157 break;
158 default:
159 assert(0);
160 shift = 0;
161 }
162
163 mask_input = LLVMBuildLShr(builder,
164 mask_input,
165 LLVMConstInt(i32t, shift, 0),
166 "");
167
168 /*
169 * mask = { mask_input & (1 << i), for i in [0,3] }
170 */
171 mask = lp_build_broadcast(gallivm,
172 lp_build_vec_type(gallivm, mask_type),
173 mask_input);
174
175 for (i = 0; i < fs_type.length / 4; i++) {
176 unsigned j = 2 * (i % 2) + (i / 2) * 8;
177 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
178 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
179 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
180 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
181 }
182 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), "");
183
184 /*
185 * mask = mask != 0 ? ~0 : 0
186 */
187 mask = lp_build_compare(gallivm,
188 mask_type, PIPE_FUNC_NOTEQUAL,
189 mask,
190 lp_build_const_int_vec(gallivm, mask_type, 0));
191
192 return mask;
193 }
194
195
196 #define EARLY_DEPTH_TEST 0x1
197 #define LATE_DEPTH_TEST 0x2
198 #define EARLY_DEPTH_WRITE 0x4
199 #define LATE_DEPTH_WRITE 0x8
200
201 static int
202 find_output_by_semantic( const struct tgsi_shader_info *info,
203 unsigned semantic,
204 unsigned index )
205 {
206 int i;
207
208 for (i = 0; i < info->num_outputs; i++)
209 if (info->output_semantic_name[i] == semantic &&
210 info->output_semantic_index[i] == index)
211 return i;
212
213 return -1;
214 }
215
216
217 /**
218 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
219 */
220 static LLVMValueRef
221 lp_llvm_viewport(LLVMValueRef context_ptr,
222 struct gallivm_state *gallivm,
223 LLVMValueRef viewport_index)
224 {
225 LLVMBuilderRef builder = gallivm->builder;
226 LLVMValueRef ptr;
227 LLVMValueRef res;
228 struct lp_type viewport_type =
229 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
230
231 ptr = lp_jit_context_viewports(gallivm, context_ptr);
232 ptr = LLVMBuildPointerCast(builder, ptr,
233 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
234
235 res = lp_build_pointer_get(builder, ptr, viewport_index);
236
237 return res;
238 }
239
240
241 /**
242 * Generate the fragment shader, depth/stencil test, and alpha tests.
243 */
244 static void
245 generate_fs_loop(struct gallivm_state *gallivm,
246 struct lp_fragment_shader *shader,
247 const struct lp_fragment_shader_variant_key *key,
248 LLVMBuilderRef builder,
249 struct lp_type type,
250 LLVMValueRef context_ptr,
251 LLVMValueRef num_loop,
252 struct lp_build_interp_soa_context *interp,
253 struct lp_build_sampler_soa *sampler,
254 LLVMValueRef mask_store,
255 LLVMValueRef (*out_color)[4],
256 LLVMValueRef depth_ptr,
257 LLVMValueRef depth_stride,
258 LLVMValueRef facing,
259 LLVMValueRef thread_data_ptr)
260 {
261 const struct util_format_description *zs_format_desc = NULL;
262 const struct tgsi_token *tokens = shader->base.tokens;
263 struct lp_type int_type = lp_int_type(type);
264 LLVMTypeRef vec_type, int_vec_type;
265 LLVMValueRef mask_ptr, mask_val;
266 LLVMValueRef consts_ptr, num_consts_ptr;
267 LLVMValueRef z;
268 LLVMValueRef z_value, s_value;
269 LLVMValueRef z_fb, s_fb;
270 LLVMValueRef stencil_refs[2];
271 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
272 struct lp_build_for_loop_state loop_state;
273 struct lp_build_mask_context mask;
274 /*
275 * TODO: figure out if simple_shader optimization is really worthwile to
276 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
277 * code since tests tend to take another codepath than real shaders.
278 */
279 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
280 shader->info.base.num_inputs < 3 &&
281 shader->info.base.num_instructions < 8) && 0;
282 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
283 util_blend_state_is_dual(&key->blend, 0);
284 unsigned attrib;
285 unsigned chan;
286 unsigned cbuf;
287 unsigned depth_mode;
288
289 struct lp_bld_tgsi_system_values system_values;
290
291 memset(&system_values, 0, sizeof(system_values));
292
293 if (key->depth.enabled ||
294 key->stencil[0].enabled) {
295
296 zs_format_desc = util_format_description(key->zsbuf_format);
297 assert(zs_format_desc);
298
299 if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
300 if (key->alpha.enabled ||
301 key->blend.alpha_to_coverage ||
302 shader->info.base.uses_kill) {
303 /* With alpha test and kill, can do the depth test early
304 * and hopefully eliminate some quads. But need to do a
305 * special deferred depth write once the final mask value
306 * is known. This only works though if there's either no
307 * stencil test or the stencil value isn't written.
308 */
309 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
310 (key->stencil[1].enabled &&
311 key->stencil[1].writemask)))
312 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
313 else
314 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
315 }
316 else
317 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
318 }
319 else {
320 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
321 }
322
323 if (!(key->depth.enabled && key->depth.writemask) &&
324 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
325 (key->stencil[1].enabled &&
326 key->stencil[1].writemask))))
327 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
328 }
329 else {
330 depth_mode = 0;
331 }
332
333 vec_type = lp_build_vec_type(gallivm, type);
334 int_vec_type = lp_build_vec_type(gallivm, int_type);
335
336 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
337 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
338 /* convert scalar stencil refs into vectors */
339 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
340 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
341
342 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
343 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
344
345 lp_build_for_loop_begin(&loop_state, gallivm,
346 lp_build_const_int32(gallivm, 0),
347 LLVMIntULT,
348 num_loop,
349 lp_build_const_int32(gallivm, 1));
350
351 mask_ptr = LLVMBuildGEP(builder, mask_store,
352 &loop_state.counter, 1, "mask_ptr");
353 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
354
355 memset(outputs, 0, sizeof outputs);
356
357 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
358 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
359 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
360 lp_build_vec_type(gallivm,
361 type),
362 num_loop, "color");
363 }
364 }
365 if (dual_source_blend) {
366 assert(key->nr_cbufs <= 1);
367 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
368 out_color[1][chan] = lp_build_array_alloca(gallivm,
369 lp_build_vec_type(gallivm,
370 type),
371 num_loop, "color1");
372 }
373 }
374
375
376 /* 'mask' will control execution based on quad's pixel alive/killed state */
377 lp_build_mask_begin(&mask, gallivm, type, mask_val);
378
379 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
380 lp_build_mask_check(&mask);
381
382 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
383 z = interp->pos[2];
384
385 if (depth_mode & EARLY_DEPTH_TEST) {
386 lp_build_depth_stencil_load_swizzled(gallivm, type,
387 zs_format_desc, key->resource_1d,
388 depth_ptr, depth_stride,
389 &z_fb, &s_fb, loop_state.counter);
390 lp_build_depth_stencil_test(gallivm,
391 &key->depth,
392 key->stencil,
393 type,
394 zs_format_desc,
395 &mask,
396 stencil_refs,
397 z, z_fb, s_fb,
398 facing,
399 &z_value, &s_value,
400 !simple_shader);
401
402 if (depth_mode & EARLY_DEPTH_WRITE) {
403 lp_build_depth_stencil_write_swizzled(gallivm, type,
404 zs_format_desc, key->resource_1d,
405 NULL, NULL, NULL, loop_state.counter,
406 depth_ptr, depth_stride,
407 z_value, s_value);
408 }
409 /*
410 * Note mask check if stencil is enabled must be after ds write not after
411 * stencil test otherwise new stencil values may not get written if all
412 * fragments got killed by depth/stencil test.
413 */
414 if (!simple_shader && key->stencil[0].enabled)
415 lp_build_mask_check(&mask);
416 }
417
418 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
419
420 /* Build the actual shader */
421 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
422 consts_ptr, num_consts_ptr, &system_values,
423 interp->inputs,
424 outputs, context_ptr, thread_data_ptr,
425 sampler, &shader->info.base, NULL);
426
427 /* Alpha test */
428 if (key->alpha.enabled) {
429 int color0 = find_output_by_semantic(&shader->info.base,
430 TGSI_SEMANTIC_COLOR,
431 0);
432
433 if (color0 != -1 && outputs[color0][3]) {
434 const struct util_format_description *cbuf_format_desc;
435 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
436 LLVMValueRef alpha_ref_value;
437
438 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
439 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
440
441 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
442
443 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
444 &mask, alpha, alpha_ref_value,
445 (depth_mode & LATE_DEPTH_TEST) != 0);
446 }
447 }
448
449 /* Emulate Alpha to Coverage with Alpha test */
450 if (key->blend.alpha_to_coverage) {
451 int color0 = find_output_by_semantic(&shader->info.base,
452 TGSI_SEMANTIC_COLOR,
453 0);
454
455 if (color0 != -1 && outputs[color0][3]) {
456 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
457
458 lp_build_alpha_to_coverage(gallivm, type,
459 &mask, alpha,
460 (depth_mode & LATE_DEPTH_TEST) != 0);
461 }
462 }
463
464 /* Late Z test */
465 if (depth_mode & LATE_DEPTH_TEST) {
466 int pos0 = find_output_by_semantic(&shader->info.base,
467 TGSI_SEMANTIC_POSITION,
468 0);
469 int s_out = find_output_by_semantic(&shader->info.base,
470 TGSI_SEMANTIC_STENCIL,
471 0);
472 if (pos0 != -1 && outputs[pos0][2]) {
473 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
474
475 /*
476 * Clamp according to ARB_depth_clamp semantics.
477 */
478 if (key->depth_clamp) {
479 LLVMValueRef viewport, min_depth, max_depth;
480 LLVMValueRef viewport_index;
481 struct lp_build_context f32_bld;
482
483 assert(type.floating);
484 lp_build_context_init(&f32_bld, gallivm, type);
485
486 /*
487 * Assumes clamping of the viewport index will occur in setup/gs. Value
488 * is passed through the rasterization stage via lp_rast_shader_inputs.
489 *
490 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
491 * semantics.
492 */
493 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
494 thread_data_ptr);
495
496 /*
497 * Load the min and max depth from the lp_jit_context.viewports
498 * array of lp_jit_viewport structures.
499 */
500 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
501
502 /* viewports[viewport_index].min_depth */
503 min_depth = LLVMBuildExtractElement(builder, viewport,
504 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH),
505 "");
506 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
507
508 /* viewports[viewport_index].max_depth */
509 max_depth = LLVMBuildExtractElement(builder, viewport,
510 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH),
511 "");
512 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
513
514 /*
515 * Clamp to the min and max depth values for the given viewport.
516 */
517 z = lp_build_clamp(&f32_bld, z, min_depth, max_depth);
518 }
519 }
520
521 if (s_out != -1 && outputs[s_out][1]) {
522 /* there's only one value, and spec says to discard additional bits */
523 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
524 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
525 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
526 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
527 stencil_refs[1] = stencil_refs[0];
528 }
529
530 lp_build_depth_stencil_load_swizzled(gallivm, type,
531 zs_format_desc, key->resource_1d,
532 depth_ptr, depth_stride,
533 &z_fb, &s_fb, loop_state.counter);
534
535 lp_build_depth_stencil_test(gallivm,
536 &key->depth,
537 key->stencil,
538 type,
539 zs_format_desc,
540 &mask,
541 stencil_refs,
542 z, z_fb, s_fb,
543 facing,
544 &z_value, &s_value,
545 !simple_shader);
546 /* Late Z write */
547 if (depth_mode & LATE_DEPTH_WRITE) {
548 lp_build_depth_stencil_write_swizzled(gallivm, type,
549 zs_format_desc, key->resource_1d,
550 NULL, NULL, NULL, loop_state.counter,
551 depth_ptr, depth_stride,
552 z_value, s_value);
553 }
554 }
555 else if ((depth_mode & EARLY_DEPTH_TEST) &&
556 (depth_mode & LATE_DEPTH_WRITE))
557 {
558 /* Need to apply a reduced mask to the depth write. Reload the
559 * depth value, update from zs_value with the new mask value and
560 * write that out.
561 */
562 lp_build_depth_stencil_write_swizzled(gallivm, type,
563 zs_format_desc, key->resource_1d,
564 &mask, z_fb, s_fb, loop_state.counter,
565 depth_ptr, depth_stride,
566 z_value, s_value);
567 }
568
569
570 /* Color write */
571 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
572 {
573 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
574 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
575 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
576 {
577 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
578 if(outputs[attrib][chan]) {
579 /* XXX: just initialize outputs to point at colors[] and
580 * skip this.
581 */
582 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
583 LLVMValueRef color_ptr;
584 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
585 &loop_state.counter, 1, "");
586 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
587 LLVMBuildStore(builder, out, color_ptr);
588 }
589 }
590 }
591 }
592
593 if (key->occlusion_count) {
594 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
595 lp_build_name(counter, "counter");
596 lp_build_occlusion_count(gallivm, type,
597 lp_build_mask_value(&mask), counter);
598 }
599
600 mask_val = lp_build_mask_end(&mask);
601 LLVMBuildStore(builder, mask_val, mask_ptr);
602 lp_build_for_loop_end(&loop_state);
603 }
604
605
606 /**
607 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
608 *
609 * Fragment Shader outputs pixels in small 2x2 blocks
610 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
611 *
612 * However in memory pixels are stored in rows
613 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
614 *
615 * @param type fragment shader type (4x or 8x float)
616 * @param num_fs number of fs_src
617 * @param is_1d whether we're outputting to a 1d resource
618 * @param dst_channels number of output channels
619 * @param fs_src output from fragment shader
620 * @param dst pointer to store result
621 * @param pad_inline is channel padding inline or at end of row
622 * @return the number of dsts
623 */
624 static int
625 generate_fs_twiddle(struct gallivm_state *gallivm,
626 struct lp_type type,
627 unsigned num_fs,
628 unsigned dst_channels,
629 LLVMValueRef fs_src[][4],
630 LLVMValueRef* dst,
631 bool pad_inline)
632 {
633 LLVMValueRef src[16];
634
635 bool swizzle_pad;
636 bool twiddle;
637 bool split;
638
639 unsigned pixels = type.length / 4;
640 unsigned reorder_group;
641 unsigned src_channels;
642 unsigned src_count;
643 unsigned i;
644
645 src_channels = dst_channels < 3 ? dst_channels : 4;
646 src_count = num_fs * src_channels;
647
648 assert(pixels == 2 || pixels == 1);
649 assert(num_fs * src_channels <= ARRAY_SIZE(src));
650
651 /*
652 * Transpose from SoA -> AoS
653 */
654 for (i = 0; i < num_fs; ++i) {
655 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
656 }
657
658 /*
659 * Pick transformation options
660 */
661 swizzle_pad = false;
662 twiddle = false;
663 split = false;
664 reorder_group = 0;
665
666 if (dst_channels == 1) {
667 twiddle = true;
668
669 if (pixels == 2) {
670 split = true;
671 }
672 } else if (dst_channels == 2) {
673 if (pixels == 1) {
674 reorder_group = 1;
675 }
676 } else if (dst_channels > 2) {
677 if (pixels == 1) {
678 reorder_group = 2;
679 } else {
680 twiddle = true;
681 }
682
683 if (!pad_inline && dst_channels == 3 && pixels > 1) {
684 swizzle_pad = true;
685 }
686 }
687
688 /*
689 * Split the src in half
690 */
691 if (split) {
692 for (i = num_fs; i > 0; --i) {
693 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
694 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
695 }
696
697 src_count *= 2;
698 type.length = 4;
699 }
700
701 /*
702 * Ensure pixels are in memory order
703 */
704 if (reorder_group) {
705 /* Twiddle pixels by reordering the array, e.g.:
706 *
707 * src_count = 8 -> 0 2 1 3 4 6 5 7
708 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
709 */
710 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
711
712 for (i = 0; i < src_count; ++i) {
713 unsigned group = i / reorder_group;
714 unsigned block = (group / 4) * 4 * reorder_group;
715 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
716 dst[i] = src[j];
717 }
718 } else if (twiddle) {
719 /* Twiddle pixels across elements of array */
720 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
721 } else {
722 /* Do nothing */
723 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
724 }
725
726 /*
727 * Moves any padding between pixels to the end
728 * e.g. RGBXRGBX -> RGBRGBXX
729 */
730 if (swizzle_pad) {
731 unsigned char swizzles[16];
732 unsigned elems = pixels * dst_channels;
733
734 for (i = 0; i < type.length; ++i) {
735 if (i < elems)
736 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
737 else
738 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
739 }
740
741 for (i = 0; i < src_count; ++i) {
742 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
743 }
744 }
745
746 return src_count;
747 }
748
749
750 /**
751 * Load an unswizzled block of pixels from memory
752 */
753 static void
754 load_unswizzled_block(struct gallivm_state *gallivm,
755 LLVMValueRef base_ptr,
756 LLVMValueRef stride,
757 unsigned block_width,
758 unsigned block_height,
759 LLVMValueRef* dst,
760 struct lp_type dst_type,
761 unsigned dst_count,
762 unsigned dst_alignment)
763 {
764 LLVMBuilderRef builder = gallivm->builder;
765 unsigned row_size = dst_count / block_height;
766 unsigned i;
767
768 /* Ensure block exactly fits into dst */
769 assert((block_width * block_height) % dst_count == 0);
770
771 for (i = 0; i < dst_count; ++i) {
772 unsigned x = i % row_size;
773 unsigned y = i / row_size;
774
775 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
776 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
777
778 LLVMValueRef gep[2];
779 LLVMValueRef dst_ptr;
780
781 gep[0] = lp_build_const_int32(gallivm, 0);
782 gep[1] = LLVMBuildAdd(builder, bx, by, "");
783
784 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
785 dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
786
787 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
788
789 LLVMSetAlignment(dst[i], dst_alignment);
790 }
791 }
792
793
794 /**
795 * Store an unswizzled block of pixels to memory
796 */
797 static void
798 store_unswizzled_block(struct gallivm_state *gallivm,
799 LLVMValueRef base_ptr,
800 LLVMValueRef stride,
801 unsigned block_width,
802 unsigned block_height,
803 LLVMValueRef* src,
804 struct lp_type src_type,
805 unsigned src_count,
806 unsigned src_alignment)
807 {
808 LLVMBuilderRef builder = gallivm->builder;
809 unsigned row_size = src_count / block_height;
810 unsigned i;
811
812 /* Ensure src exactly fits into block */
813 assert((block_width * block_height) % src_count == 0);
814
815 for (i = 0; i < src_count; ++i) {
816 unsigned x = i % row_size;
817 unsigned y = i / row_size;
818
819 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
820 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
821
822 LLVMValueRef gep[2];
823 LLVMValueRef src_ptr;
824
825 gep[0] = lp_build_const_int32(gallivm, 0);
826 gep[1] = LLVMBuildAdd(builder, bx, by, "");
827
828 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
829 src_ptr = LLVMBuildBitCast(builder, src_ptr, LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
830
831 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
832
833 LLVMSetAlignment(src_ptr, src_alignment);
834 }
835 }
836
837
838 /**
839 * Checks if a format description is an arithmetic format
840 *
841 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
842 */
843 static inline boolean
844 is_arithmetic_format(const struct util_format_description *format_desc)
845 {
846 boolean arith = false;
847 unsigned i;
848
849 for (i = 0; i < format_desc->nr_channels; ++i) {
850 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
851 arith |= (format_desc->channel[i].size % 8) != 0;
852 }
853
854 return arith;
855 }
856
857
858 /**
859 * Checks if this format requires special handling due to required expansion
860 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
861 * SoA conversion.
862 */
863 static inline boolean
864 format_expands_to_float_soa(const struct util_format_description *format_desc)
865 {
866 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
867 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
868 return true;
869 }
870 return false;
871 }
872
873
874 /**
875 * Retrieves the type representing the memory layout for a format
876 *
877 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
878 */
879 static inline void
880 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
881 struct lp_type* type)
882 {
883 unsigned i;
884 unsigned chan;
885
886 if (format_expands_to_float_soa(format_desc)) {
887 /* just make this a uint with width of block */
888 type->floating = false;
889 type->fixed = false;
890 type->sign = false;
891 type->norm = false;
892 type->width = format_desc->block.bits;
893 type->length = 1;
894 return;
895 }
896
897 for (i = 0; i < 4; i++)
898 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
899 break;
900 chan = i;
901
902 memset(type, 0, sizeof(struct lp_type));
903 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
904 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
905 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
906 type->norm = format_desc->channel[chan].normalized;
907
908 if (is_arithmetic_format(format_desc)) {
909 type->width = 0;
910 type->length = 1;
911
912 for (i = 0; i < format_desc->nr_channels; ++i) {
913 type->width += format_desc->channel[i].size;
914 }
915 } else {
916 type->width = format_desc->channel[chan].size;
917 type->length = format_desc->nr_channels;
918 }
919 }
920
921
922 /**
923 * Retrieves the type for a format which is usable in the blending code.
924 *
925 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
926 */
927 static inline void
928 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
929 struct lp_type* type)
930 {
931 unsigned i;
932 unsigned chan;
933
934 if (format_expands_to_float_soa(format_desc)) {
935 /* always use ordinary floats for blending */
936 type->floating = true;
937 type->fixed = false;
938 type->sign = true;
939 type->norm = false;
940 type->width = 32;
941 type->length = 4;
942 return;
943 }
944
945 for (i = 0; i < 4; i++)
946 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
947 break;
948 chan = i;
949
950 memset(type, 0, sizeof(struct lp_type));
951 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
952 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
953 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
954 type->norm = format_desc->channel[chan].normalized;
955 type->width = format_desc->channel[chan].size;
956 type->length = format_desc->nr_channels;
957
958 for (i = 1; i < format_desc->nr_channels; ++i) {
959 if (format_desc->channel[i].size > type->width)
960 type->width = format_desc->channel[i].size;
961 }
962
963 if (type->floating) {
964 type->width = 32;
965 } else {
966 if (type->width <= 8) {
967 type->width = 8;
968 } else if (type->width <= 16) {
969 type->width = 16;
970 } else {
971 type->width = 32;
972 }
973 }
974
975 if (is_arithmetic_format(format_desc) && type->length == 3) {
976 type->length = 4;
977 }
978 }
979
980
981 /**
982 * Scale a normalized value from src_bits to dst_bits.
983 *
984 * The exact calculation is
985 *
986 * dst = iround(src * dst_mask / src_mask)
987 *
988 * or with integer rounding
989 *
990 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
991 *
992 * where
993 *
994 * src_mask = (1 << src_bits) - 1
995 * dst_mask = (1 << dst_bits) - 1
996 *
997 * but we try to avoid division and multiplication through shifts.
998 */
999 static inline LLVMValueRef
1000 scale_bits(struct gallivm_state *gallivm,
1001 int src_bits,
1002 int dst_bits,
1003 LLVMValueRef src,
1004 struct lp_type src_type)
1005 {
1006 LLVMBuilderRef builder = gallivm->builder;
1007 LLVMValueRef result = src;
1008
1009 if (dst_bits < src_bits) {
1010 int delta_bits = src_bits - dst_bits;
1011
1012 if (delta_bits <= dst_bits) {
1013 /*
1014 * Approximate the rescaling with a single shift.
1015 *
1016 * This gives the wrong rounding.
1017 */
1018
1019 result = LLVMBuildLShr(builder,
1020 src,
1021 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1022 "");
1023
1024 } else {
1025 /*
1026 * Try more accurate rescaling.
1027 */
1028
1029 /*
1030 * Drop the least significant bits to make space for the multiplication.
1031 *
1032 * XXX: A better approach would be to use a wider integer type as intermediate. But
1033 * this is enough to convert alpha from 16bits -> 2 when rendering to
1034 * PIPE_FORMAT_R10G10B10A2_UNORM.
1035 */
1036 result = LLVMBuildLShr(builder,
1037 src,
1038 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1039 "");
1040
1041
1042 result = LLVMBuildMul(builder,
1043 result,
1044 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1045 "");
1046
1047 /*
1048 * Add a rounding term before the division.
1049 *
1050 * TODO: Handle signed integers too.
1051 */
1052 if (!src_type.sign) {
1053 result = LLVMBuildAdd(builder,
1054 result,
1055 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1056 "");
1057 }
1058
1059 /*
1060 * Approximate the division by src_mask with a src_bits shift.
1061 *
1062 * Given the src has already been shifted by dst_bits, all we need
1063 * to do is to shift by the difference.
1064 */
1065
1066 result = LLVMBuildLShr(builder,
1067 result,
1068 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1069 "");
1070 }
1071
1072 } else if (dst_bits > src_bits) {
1073 /* Scale up bits */
1074 int db = dst_bits - src_bits;
1075
1076 /* Shift left by difference in bits */
1077 result = LLVMBuildShl(builder,
1078 src,
1079 lp_build_const_int_vec(gallivm, src_type, db),
1080 "");
1081
1082 if (db < src_bits) {
1083 /* Enough bits in src to fill the remainder */
1084 LLVMValueRef lower = LLVMBuildLShr(builder,
1085 src,
1086 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1087 "");
1088
1089 result = LLVMBuildOr(builder, result, lower, "");
1090 } else if (db > src_bits) {
1091 /* Need to repeatedly copy src bits to fill remainder in dst */
1092 unsigned n;
1093
1094 for (n = src_bits; n < dst_bits; n *= 2) {
1095 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1096
1097 result = LLVMBuildOr(builder,
1098 result,
1099 LLVMBuildLShr(builder, result, shuv, ""),
1100 "");
1101 }
1102 }
1103 }
1104
1105 return result;
1106 }
1107
1108 /**
1109 * If RT is a smallfloat (needing denorms) format
1110 */
1111 static inline int
1112 have_smallfloat_format(struct lp_type dst_type,
1113 enum pipe_format format)
1114 {
1115 return ((dst_type.floating && dst_type.width != 32) ||
1116 /* due to format handling hacks this format doesn't have floating set
1117 * here (and actually has width set to 32 too) so special case this. */
1118 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1119 }
1120
1121
1122 /**
1123 * Convert from memory format to blending format
1124 *
1125 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1126 */
1127 static void
1128 convert_to_blend_type(struct gallivm_state *gallivm,
1129 unsigned block_size,
1130 const struct util_format_description *src_fmt,
1131 struct lp_type src_type,
1132 struct lp_type dst_type,
1133 LLVMValueRef* src, // and dst
1134 unsigned num_srcs)
1135 {
1136 LLVMValueRef *dst = src;
1137 LLVMBuilderRef builder = gallivm->builder;
1138 struct lp_type blend_type;
1139 struct lp_type mem_type;
1140 unsigned i, j, k;
1141 unsigned pixels = block_size / num_srcs;
1142 bool is_arith;
1143
1144 /*
1145 * full custom path for packed floats and srgb formats - none of the later
1146 * functions would do anything useful, and given the lp_type representation they
1147 * can't be fixed. Should really have some SoA blend path for these kind of
1148 * formats rather than hacking them in here.
1149 */
1150 if (format_expands_to_float_soa(src_fmt)) {
1151 LLVMValueRef tmpsrc[4];
1152 /*
1153 * This is pretty suboptimal for this case blending in SoA would be much
1154 * better, since conversion gets us SoA values so need to convert back.
1155 */
1156 assert(src_type.width == 32 || src_type.width == 16);
1157 assert(dst_type.floating);
1158 assert(dst_type.width == 32);
1159 assert(dst_type.length % 4 == 0);
1160 assert(num_srcs % 4 == 0);
1161
1162 if (src_type.width == 16) {
1163 /* expand 4x16bit values to 4x32bit */
1164 struct lp_type type32x4 = src_type;
1165 LLVMTypeRef ltype32x4;
1166 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1167 type32x4.width = 32;
1168 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1169 for (i = 0; i < num_fetch; i++) {
1170 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1171 }
1172 src_type.width = 32;
1173 }
1174 for (i = 0; i < 4; i++) {
1175 tmpsrc[i] = src[i];
1176 }
1177 for (i = 0; i < num_srcs / 4; i++) {
1178 LLVMValueRef tmpsoa[4];
1179 LLVMValueRef tmps = tmpsrc[i];
1180 if (dst_type.length == 8) {
1181 LLVMValueRef shuffles[8];
1182 unsigned j;
1183 /* fetch was 4 values but need 8-wide output values */
1184 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1185 /*
1186 * for 8-wide aos transpose would give us wrong order not matching
1187 * incoming converted fs values and mask. ARGH.
1188 */
1189 for (j = 0; j < 4; j++) {
1190 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1191 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1192 }
1193 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1194 LLVMConstVector(shuffles, 8), "");
1195 }
1196 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1197 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1198 }
1199 else {
1200 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1201 }
1202 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1203 }
1204 return;
1205 }
1206
1207 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1208 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1209
1210 /* Is the format arithmetic */
1211 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1212 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1213
1214 /* Pad if necessary */
1215 if (!is_arith && src_type.length < dst_type.length) {
1216 for (i = 0; i < num_srcs; ++i) {
1217 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1218 }
1219
1220 src_type.length = dst_type.length;
1221 }
1222
1223 /* Special case for half-floats */
1224 if (mem_type.width == 16 && mem_type.floating) {
1225 assert(blend_type.width == 32 && blend_type.floating);
1226 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1227 is_arith = false;
1228 }
1229
1230 if (!is_arith) {
1231 return;
1232 }
1233
1234 src_type.width = blend_type.width * blend_type.length;
1235 blend_type.length *= pixels;
1236 src_type.length *= pixels / (src_type.length / mem_type.length);
1237
1238 for (i = 0; i < num_srcs; ++i) {
1239 LLVMValueRef chans[4];
1240 LLVMValueRef res = NULL;
1241
1242 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1243
1244 for (j = 0; j < src_fmt->nr_channels; ++j) {
1245 unsigned mask = 0;
1246 unsigned sa = src_fmt->channel[j].shift;
1247 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1248 unsigned from_lsb = j;
1249 #else
1250 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1251 #endif
1252
1253 for (k = 0; k < src_fmt->channel[j].size; ++k) {
1254 mask |= 1 << k;
1255 }
1256
1257 /* Extract bits from source */
1258 chans[j] = LLVMBuildLShr(builder,
1259 dst[i],
1260 lp_build_const_int_vec(gallivm, src_type, sa),
1261 "");
1262
1263 chans[j] = LLVMBuildAnd(builder,
1264 chans[j],
1265 lp_build_const_int_vec(gallivm, src_type, mask),
1266 "");
1267
1268 /* Scale bits */
1269 if (src_type.norm) {
1270 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1271 blend_type.width, chans[j], src_type);
1272 }
1273
1274 /* Insert bits into correct position */
1275 chans[j] = LLVMBuildShl(builder,
1276 chans[j],
1277 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1278 "");
1279
1280 if (j == 0) {
1281 res = chans[j];
1282 } else {
1283 res = LLVMBuildOr(builder, res, chans[j], "");
1284 }
1285 }
1286
1287 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1288 }
1289 }
1290
1291
1292 /**
1293 * Convert from blending format to memory format
1294 *
1295 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1296 */
1297 static void
1298 convert_from_blend_type(struct gallivm_state *gallivm,
1299 unsigned block_size,
1300 const struct util_format_description *src_fmt,
1301 struct lp_type src_type,
1302 struct lp_type dst_type,
1303 LLVMValueRef* src, // and dst
1304 unsigned num_srcs)
1305 {
1306 LLVMValueRef* dst = src;
1307 unsigned i, j, k;
1308 struct lp_type mem_type;
1309 struct lp_type blend_type;
1310 LLVMBuilderRef builder = gallivm->builder;
1311 unsigned pixels = block_size / num_srcs;
1312 bool is_arith;
1313
1314 /*
1315 * full custom path for packed floats and srgb formats - none of the later
1316 * functions would do anything useful, and given the lp_type representation they
1317 * can't be fixed. Should really have some SoA blend path for these kind of
1318 * formats rather than hacking them in here.
1319 */
1320 if (format_expands_to_float_soa(src_fmt)) {
1321 /*
1322 * This is pretty suboptimal for this case blending in SoA would be much
1323 * better - we need to transpose the AoS values back to SoA values for
1324 * conversion/packing.
1325 */
1326 assert(src_type.floating);
1327 assert(src_type.width == 32);
1328 assert(src_type.length % 4 == 0);
1329 assert(dst_type.width == 32 || dst_type.width == 16);
1330
1331 for (i = 0; i < num_srcs / 4; i++) {
1332 LLVMValueRef tmpsoa[4], tmpdst;
1333 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1334 /* really really need SoA here */
1335
1336 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1337 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1338 }
1339 else {
1340 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1341 src_type, tmpsoa);
1342 }
1343
1344 if (src_type.length == 8) {
1345 LLVMValueRef tmpaos, shuffles[8];
1346 unsigned j;
1347 /*
1348 * for 8-wide aos transpose has given us wrong order not matching
1349 * output order. HMPF. Also need to split the output values manually.
1350 */
1351 for (j = 0; j < 4; j++) {
1352 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1353 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1354 }
1355 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1356 LLVMConstVector(shuffles, 8), "");
1357 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1358 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1359 }
1360 else {
1361 src[i] = tmpdst;
1362 }
1363 }
1364 if (dst_type.width == 16) {
1365 struct lp_type type16x8 = dst_type;
1366 struct lp_type type32x4 = dst_type;
1367 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1368 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1369 type16x8.length = 8;
1370 type32x4.width = 32;
1371 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1372 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1373 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1374 /* We could do vector truncation but it doesn't generate very good code */
1375 for (i = 0; i < num_fetch; i++) {
1376 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1377 src[i], lp_build_zero(gallivm, type32x4));
1378 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1379 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1380 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1381 }
1382 }
1383 return;
1384 }
1385
1386 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1387 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1388
1389 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1390
1391 /* Special case for half-floats */
1392 if (mem_type.width == 16 && mem_type.floating) {
1393 int length = dst_type.length;
1394 assert(blend_type.width == 32 && blend_type.floating);
1395
1396 dst_type.length = src_type.length;
1397
1398 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1399
1400 dst_type.length = length;
1401 is_arith = false;
1402 }
1403
1404 /* Remove any padding */
1405 if (!is_arith && (src_type.length % mem_type.length)) {
1406 src_type.length -= (src_type.length % mem_type.length);
1407
1408 for (i = 0; i < num_srcs; ++i) {
1409 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1410 }
1411 }
1412
1413 /* No bit arithmetic to do */
1414 if (!is_arith) {
1415 return;
1416 }
1417
1418 src_type.length = pixels;
1419 src_type.width = blend_type.length * blend_type.width;
1420 dst_type.length = pixels;
1421
1422 for (i = 0; i < num_srcs; ++i) {
1423 LLVMValueRef chans[4];
1424 LLVMValueRef res = NULL;
1425
1426 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1427
1428 for (j = 0; j < src_fmt->nr_channels; ++j) {
1429 unsigned mask = 0;
1430 unsigned sa = src_fmt->channel[j].shift;
1431 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1432 unsigned from_lsb = j;
1433 #else
1434 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1435 #endif
1436
1437 assert(blend_type.width > src_fmt->channel[j].size);
1438
1439 for (k = 0; k < blend_type.width; ++k) {
1440 mask |= 1 << k;
1441 }
1442
1443 /* Extract bits */
1444 chans[j] = LLVMBuildLShr(builder,
1445 dst[i],
1446 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1447 "");
1448
1449 chans[j] = LLVMBuildAnd(builder,
1450 chans[j],
1451 lp_build_const_int_vec(gallivm, src_type, mask),
1452 "");
1453
1454 /* Scale down bits */
1455 if (src_type.norm) {
1456 chans[j] = scale_bits(gallivm, blend_type.width,
1457 src_fmt->channel[j].size, chans[j], src_type);
1458 }
1459
1460 /* Insert bits */
1461 chans[j] = LLVMBuildShl(builder,
1462 chans[j],
1463 lp_build_const_int_vec(gallivm, src_type, sa),
1464 "");
1465
1466 sa += src_fmt->channel[j].size;
1467
1468 if (j == 0) {
1469 res = chans[j];
1470 } else {
1471 res = LLVMBuildOr(builder, res, chans[j], "");
1472 }
1473 }
1474
1475 assert (dst_type.width != 24);
1476
1477 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1478 }
1479 }
1480
1481
1482 /**
1483 * Convert alpha to same blend type as src
1484 */
1485 static void
1486 convert_alpha(struct gallivm_state *gallivm,
1487 struct lp_type row_type,
1488 struct lp_type alpha_type,
1489 const unsigned block_size,
1490 const unsigned block_height,
1491 const unsigned src_count,
1492 const unsigned dst_channels,
1493 const bool pad_inline,
1494 LLVMValueRef* src_alpha)
1495 {
1496 LLVMBuilderRef builder = gallivm->builder;
1497 unsigned i, j;
1498 unsigned length = row_type.length;
1499 row_type.length = alpha_type.length;
1500
1501 /* Twiddle the alpha to match pixels */
1502 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1503
1504 /*
1505 * TODO this should use single lp_build_conv call for
1506 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1507 */
1508 for (i = 0; i < block_height; ++i) {
1509 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1510 }
1511
1512 alpha_type = row_type;
1513 row_type.length = length;
1514
1515 /* If only one channel we can only need the single alpha value per pixel */
1516 if (src_count == 1 && dst_channels == 1) {
1517
1518 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1519 } else {
1520 /* If there are more srcs than rows then we need to split alpha up */
1521 if (src_count > block_height) {
1522 for (i = src_count; i > 0; --i) {
1523 unsigned pixels = block_size / src_count;
1524 unsigned idx = i - 1;
1525
1526 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1527 (idx * pixels) % 4, pixels);
1528 }
1529 }
1530
1531 /* If there is a src for each pixel broadcast the alpha across whole row */
1532 if (src_count == block_size) {
1533 for (i = 0; i < src_count; ++i) {
1534 src_alpha[i] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1535 }
1536 } else {
1537 unsigned pixels = block_size / src_count;
1538 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1539 unsigned alpha_span = 1;
1540 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1541
1542 /* Check if we need 2 src_alphas for our shuffles */
1543 if (pixels > alpha_type.length) {
1544 alpha_span = 2;
1545 }
1546
1547 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1548 for (j = 0; j < row_type.length; ++j) {
1549 if (j < pixels * channels) {
1550 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1551 } else {
1552 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1553 }
1554 }
1555
1556 for (i = 0; i < src_count; ++i) {
1557 unsigned idx1 = i, idx2 = i;
1558
1559 if (alpha_span > 1){
1560 idx1 *= alpha_span;
1561 idx2 = idx1 + 1;
1562 }
1563
1564 src_alpha[i] = LLVMBuildShuffleVector(builder,
1565 src_alpha[idx1],
1566 src_alpha[idx2],
1567 LLVMConstVector(shuffles, row_type.length),
1568 "");
1569 }
1570 }
1571 }
1572 }
1573
1574
1575 /**
1576 * Generates the blend function for unswizzled colour buffers
1577 * Also generates the read & write from colour buffer
1578 */
1579 static void
1580 generate_unswizzled_blend(struct gallivm_state *gallivm,
1581 unsigned rt,
1582 struct lp_fragment_shader_variant *variant,
1583 enum pipe_format out_format,
1584 unsigned int num_fs,
1585 struct lp_type fs_type,
1586 LLVMValueRef* fs_mask,
1587 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1588 LLVMValueRef context_ptr,
1589 LLVMValueRef color_ptr,
1590 LLVMValueRef stride,
1591 unsigned partial_mask,
1592 boolean do_branch)
1593 {
1594 const unsigned alpha_channel = 3;
1595 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1596 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1597 const unsigned block_size = block_width * block_height;
1598 const unsigned lp_integer_vector_width = 128;
1599
1600 LLVMBuilderRef builder = gallivm->builder;
1601 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1602 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1603 LLVMValueRef src_alpha[4 * 4];
1604 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1605 LLVMValueRef src_mask[4 * 4];
1606 LLVMValueRef src[4 * 4];
1607 LLVMValueRef src1[4 * 4];
1608 LLVMValueRef dst[4 * 4];
1609 LLVMValueRef blend_color;
1610 LLVMValueRef blend_alpha;
1611 LLVMValueRef i32_zero;
1612 LLVMValueRef check_mask;
1613 LLVMValueRef undef_src_val;
1614
1615 struct lp_build_mask_context mask_ctx;
1616 struct lp_type mask_type;
1617 struct lp_type blend_type;
1618 struct lp_type row_type;
1619 struct lp_type dst_type;
1620
1621 unsigned char swizzle[TGSI_NUM_CHANNELS];
1622 unsigned vector_width;
1623 unsigned src_channels = TGSI_NUM_CHANNELS;
1624 unsigned dst_channels;
1625 unsigned dst_count;
1626 unsigned src_count;
1627 unsigned i, j;
1628
1629 const struct util_format_description* out_format_desc = util_format_description(out_format);
1630
1631 unsigned dst_alignment;
1632
1633 bool pad_inline = is_arithmetic_format(out_format_desc);
1634 bool has_alpha = false;
1635 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1636 util_blend_state_is_dual(&variant->key.blend, 0);
1637
1638 const boolean is_1d = variant->key.resource_1d;
1639 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1640 LLVMValueRef fpstate = 0;
1641
1642 /* Get type from output format */
1643 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1644 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1645
1646 /*
1647 * Technically this code should go into lp_build_smallfloat_to_float
1648 * and lp_build_float_to_smallfloat but due to the
1649 * http://llvm.org/bugs/show_bug.cgi?id=6393
1650 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1651 * So the ordering is important here and there shouldn't be any
1652 * llvm ir instrunctions in this function before
1653 * this, otherwise half-float format conversions won't work
1654 * (again due to llvm bug #6393).
1655 */
1656 if (have_smallfloat_format(dst_type, out_format)) {
1657 /* We need to make sure that denorms are ok for half float
1658 conversions */
1659 fpstate = lp_build_fpstate_get(gallivm);
1660 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1661 }
1662
1663 mask_type = lp_int32_vec4_type();
1664 mask_type.length = fs_type.length;
1665
1666 for (i = num_fs; i < num_fullblock_fs; i++) {
1667 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1668 }
1669
1670 /* Do not bother executing code when mask is empty.. */
1671 if (do_branch) {
1672 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1673
1674 for (i = 0; i < num_fullblock_fs; ++i) {
1675 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1676 }
1677
1678 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1679 lp_build_mask_check(&mask_ctx);
1680 }
1681
1682 partial_mask |= !variant->opaque;
1683 i32_zero = lp_build_const_int32(gallivm, 0);
1684
1685 undef_src_val = lp_build_undef(gallivm, fs_type);
1686
1687 row_type.length = fs_type.length;
1688 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1689
1690 /* Compute correct swizzle and count channels */
1691 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1692 dst_channels = 0;
1693
1694 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1695 /* Ensure channel is used */
1696 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1697 continue;
1698 }
1699
1700 /* Ensure not already written to (happens in case with GL_ALPHA) */
1701 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1702 continue;
1703 }
1704
1705 /* Ensure we havn't already found all channels */
1706 if (dst_channels >= out_format_desc->nr_channels) {
1707 continue;
1708 }
1709
1710 swizzle[out_format_desc->swizzle[i]] = i;
1711 ++dst_channels;
1712
1713 if (i == alpha_channel) {
1714 has_alpha = true;
1715 }
1716 }
1717
1718 if (format_expands_to_float_soa(out_format_desc)) {
1719 /*
1720 * the code above can't work for layout_other
1721 * for srgb it would sort of work but we short-circuit swizzles, etc.
1722 * as that is done as part of unpack / pack.
1723 */
1724 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1725 has_alpha = true;
1726 swizzle[0] = 0;
1727 swizzle[1] = 1;
1728 swizzle[2] = 2;
1729 swizzle[3] = 3;
1730 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1731 }
1732
1733 /* If 3 channels then pad to include alpha for 4 element transpose */
1734 if (dst_channels == 3 && !has_alpha) {
1735 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1736 if (swizzle[i] > TGSI_NUM_CHANNELS)
1737 swizzle[i] = 3;
1738 }
1739 if (out_format_desc->nr_channels == 4) {
1740 dst_channels = 4;
1741 }
1742 }
1743
1744 /*
1745 * Load shader output
1746 */
1747 for (i = 0; i < num_fullblock_fs; ++i) {
1748 /* Always load alpha for use in blending */
1749 LLVMValueRef alpha;
1750 if (i < num_fs) {
1751 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1752 }
1753 else {
1754 alpha = undef_src_val;
1755 }
1756
1757 /* Load each channel */
1758 for (j = 0; j < dst_channels; ++j) {
1759 assert(swizzle[j] < 4);
1760 if (i < num_fs) {
1761 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1762 }
1763 else {
1764 fs_src[i][j] = undef_src_val;
1765 }
1766 }
1767
1768 /* If 3 channels then pad to include alpha for 4 element transpose */
1769 /*
1770 * XXX If we include that here maybe could actually use it instead of
1771 * separate alpha for blending?
1772 */
1773 if (dst_channels == 3 && !has_alpha) {
1774 fs_src[i][3] = alpha;
1775 }
1776
1777 /* We split the row_mask and row_alpha as we want 128bit interleave */
1778 if (fs_type.length == 8) {
1779 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i], 0, src_channels);
1780 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i], src_channels, src_channels);
1781
1782 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1783 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1784 } else {
1785 src_mask[i] = fs_mask[i];
1786 src_alpha[i] = alpha;
1787 }
1788 }
1789 if (dual_source_blend) {
1790 /* same as above except different src/dst, skip masks and comments... */
1791 for (i = 0; i < num_fullblock_fs; ++i) {
1792 LLVMValueRef alpha;
1793 if (i < num_fs) {
1794 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1795 }
1796 else {
1797 alpha = undef_src_val;
1798 }
1799
1800 for (j = 0; j < dst_channels; ++j) {
1801 assert(swizzle[j] < 4);
1802 if (i < num_fs) {
1803 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1804 }
1805 else {
1806 fs_src1[i][j] = undef_src_val;
1807 }
1808 }
1809 if (dst_channels == 3 && !has_alpha) {
1810 fs_src1[i][3] = alpha;
1811 }
1812 if (fs_type.length == 8) {
1813 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1814 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1815 } else {
1816 src1_alpha[i] = alpha;
1817 }
1818 }
1819 }
1820
1821 if (util_format_is_pure_integer(out_format)) {
1822 /*
1823 * In this case fs_type was really ints or uints disguised as floats,
1824 * fix that up now.
1825 */
1826 fs_type.floating = 0;
1827 fs_type.sign = dst_type.sign;
1828 for (i = 0; i < num_fullblock_fs; ++i) {
1829 for (j = 0; j < dst_channels; ++j) {
1830 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1831 lp_build_vec_type(gallivm, fs_type), "");
1832 }
1833 if (dst_channels == 3 && !has_alpha) {
1834 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1835 lp_build_vec_type(gallivm, fs_type), "");
1836 }
1837 }
1838 }
1839
1840 /*
1841 * Pixel twiddle from fragment shader order to memory order
1842 */
1843 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
1844 dst_channels, fs_src, src, pad_inline);
1845 if (dual_source_blend) {
1846 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
1847 fs_src1, src1, pad_inline);
1848 }
1849
1850 src_channels = dst_channels < 3 ? dst_channels : 4;
1851 if (src_count != num_fullblock_fs * src_channels) {
1852 unsigned ds = src_count / (num_fullblock_fs * src_channels);
1853 row_type.length /= ds;
1854 fs_type.length = row_type.length;
1855 }
1856
1857 blend_type = row_type;
1858 mask_type.length = 4;
1859
1860 /* Convert src to row_type */
1861 if (dual_source_blend) {
1862 struct lp_type old_row_type = row_type;
1863 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1864 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
1865 }
1866 else {
1867 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1868 }
1869
1870 /* If the rows are not an SSE vector, combine them to become SSE size! */
1871 if ((row_type.width * row_type.length) % 128) {
1872 unsigned bits = row_type.width * row_type.length;
1873 unsigned combined;
1874
1875 assert(src_count >= (vector_width / bits));
1876
1877 dst_count = src_count / (vector_width / bits);
1878
1879 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
1880 if (dual_source_blend) {
1881 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
1882 }
1883
1884 row_type.length *= combined;
1885 src_count /= combined;
1886
1887 bits = row_type.width * row_type.length;
1888 assert(bits == 128 || bits == 256);
1889 }
1890
1891
1892 /*
1893 * Blend Colour conversion
1894 */
1895 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
1896 blend_color = LLVMBuildPointerCast(builder, blend_color, LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
1897 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color, &i32_zero, 1, ""), "");
1898
1899 /* Convert */
1900 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
1901
1902 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1903 /*
1904 * since blending is done with floats, there was no conversion.
1905 * However, the rules according to fixed point renderbuffers still
1906 * apply, that is we must clamp inputs to 0.0/1.0.
1907 * (This would apply to separate alpha conversion too but we currently
1908 * force has_alpha to be true.)
1909 * TODO: should skip this with "fake" blend, since post-blend conversion
1910 * will clamp anyway.
1911 * TODO: could also skip this if fragment color clamping is enabled. We
1912 * don't support it natively so it gets baked into the shader however, so
1913 * can't really tell here.
1914 */
1915 struct lp_build_context f32_bld;
1916 assert(row_type.floating);
1917 lp_build_context_init(&f32_bld, gallivm, row_type);
1918 for (i = 0; i < src_count; i++) {
1919 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
1920 }
1921 if (dual_source_blend) {
1922 for (i = 0; i < src_count; i++) {
1923 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
1924 }
1925 }
1926 /* probably can't be different than row_type but better safe than sorry... */
1927 lp_build_context_init(&f32_bld, gallivm, blend_type);
1928 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
1929 }
1930
1931 /* Extract alpha */
1932 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
1933
1934 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
1935 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
1936 if (pad_inline) {
1937 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
1938 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
1939 } else {
1940 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
1941 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
1942 }
1943
1944 /*
1945 * Mask conversion
1946 */
1947 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
1948
1949 if (src_count < block_height) {
1950 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
1951 } else if (src_count > block_height) {
1952 for (i = src_count; i > 0; --i) {
1953 unsigned pixels = block_size / src_count;
1954 unsigned idx = i - 1;
1955
1956 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
1957 (idx * pixels) % 4, pixels);
1958 }
1959 }
1960
1961 assert(mask_type.width == 32);
1962
1963 for (i = 0; i < src_count; ++i) {
1964 unsigned pixels = block_size / src_count;
1965 unsigned pixel_width = row_type.width * dst_channels;
1966
1967 if (pixel_width == 24) {
1968 mask_type.width = 8;
1969 mask_type.length = vector_width / mask_type.width;
1970 } else {
1971 mask_type.length = pixels;
1972 mask_type.width = row_type.width * dst_channels;
1973
1974 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1975
1976 mask_type.length *= dst_channels;
1977 mask_type.width /= dst_channels;
1978 }
1979
1980 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1981 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
1982 }
1983
1984 /*
1985 * Alpha conversion
1986 */
1987 if (!has_alpha) {
1988 struct lp_type alpha_type = fs_type;
1989 alpha_type.length = 4;
1990 convert_alpha(gallivm, row_type, alpha_type,
1991 block_size, block_height,
1992 src_count, dst_channels,
1993 pad_inline, src_alpha);
1994 if (dual_source_blend) {
1995 convert_alpha(gallivm, row_type, alpha_type,
1996 block_size, block_height,
1997 src_count, dst_channels,
1998 pad_inline, src1_alpha);
1999 }
2000 }
2001
2002
2003 /*
2004 * Load dst from memory
2005 */
2006 if (src_count < block_height) {
2007 dst_count = block_height;
2008 } else {
2009 dst_count = src_count;
2010 }
2011
2012 dst_type.length *= block_size / dst_count;
2013
2014 if (format_expands_to_float_soa(out_format_desc)) {
2015 /*
2016 * we need multiple values at once for the conversion, so can as well
2017 * load them vectorized here too instead of concatenating later.
2018 * (Still need concatenation later for 8-wide vectors).
2019 */
2020 dst_count = block_height;
2021 dst_type.length = block_width;
2022 }
2023
2024 /*
2025 * Compute the alignment of the destination pointer in bytes
2026 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2027 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2028 * 1d tex but can't distinguish here) so need to stick with per-pixel
2029 * alignment in this case.
2030 */
2031 if (is_1d) {
2032 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2033 }
2034 else {
2035 dst_alignment = dst_type.length * dst_type.width / 8;
2036 }
2037 /* Force power-of-two alignment by extracting only the least-significant-bit */
2038 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2039 /*
2040 * Resource base and stride pointers are aligned to 16 bytes, so that's
2041 * the maximum alignment we can guarantee
2042 */
2043 dst_alignment = MIN2(16, dst_alignment);
2044
2045 if (is_1d) {
2046 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2047 dst, dst_type, dst_count / 4, dst_alignment);
2048 for (i = dst_count / 4; i < dst_count; i++) {
2049 dst[i] = lp_build_undef(gallivm, dst_type);
2050 }
2051
2052 }
2053 else {
2054 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2055 dst, dst_type, dst_count, dst_alignment);
2056 }
2057
2058
2059 /*
2060 * Convert from dst/output format to src/blending format.
2061 *
2062 * This is necessary as we can only read 1 row from memory at a time,
2063 * so the minimum dst_count will ever be at this point is 4.
2064 *
2065 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2066 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2067 * on all 16 pixels in that single vector at once.
2068 */
2069 if (dst_count > src_count) {
2070 lp_build_concat_n(gallivm, dst_type, dst, 4, dst, src_count);
2071 }
2072
2073 /*
2074 * Blending
2075 */
2076 /* XXX this is broken for RGB8 formats -
2077 * they get expanded from 12 to 16 elements (to include alpha)
2078 * by convert_to_blend_type then reduced to 15 instead of 12
2079 * by convert_from_blend_type (a simple fix though breaks A8...).
2080 * R16G16B16 also crashes differently however something going wrong
2081 * inside llvm handling npot vector sizes seemingly.
2082 * It seems some cleanup could be done here (like skipping conversion/blend
2083 * when not needed).
2084 */
2085 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type, row_type, dst, src_count);
2086
2087 /*
2088 * FIXME: Really should get logic ops / masks out of generic blend / row
2089 * format. Logic ops will definitely not work on the blend float format
2090 * used for SRGB here and I think OpenGL expects this to work as expected
2091 * (that is incoming values converted to srgb then logic op applied).
2092 */
2093 for (i = 0; i < src_count; ++i) {
2094 dst[i] = lp_build_blend_aos(gallivm,
2095 &variant->key.blend,
2096 out_format,
2097 row_type,
2098 rt,
2099 src[i],
2100 has_alpha ? NULL : src_alpha[i],
2101 src1[i],
2102 has_alpha ? NULL : src1_alpha[i],
2103 dst[i],
2104 partial_mask ? src_mask[i] : NULL,
2105 blend_color,
2106 has_alpha ? NULL : blend_alpha,
2107 swizzle,
2108 pad_inline ? 4 : dst_channels);
2109 }
2110
2111 convert_from_blend_type(gallivm, block_size, out_format_desc, row_type, dst_type, dst, src_count);
2112
2113 /* Split the blend rows back to memory rows */
2114 if (dst_count > src_count) {
2115 row_type.length = dst_type.length * (dst_count / src_count);
2116
2117 if (src_count == 1) {
2118 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2119 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2120
2121 row_type.length /= 2;
2122 src_count *= 2;
2123 }
2124
2125 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2126 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2127 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2128 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2129
2130 row_type.length /= 2;
2131 src_count *= 2;
2132 }
2133
2134 /*
2135 * Store blend result to memory
2136 */
2137 if (is_1d) {
2138 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2139 dst, dst_type, dst_count / 4, dst_alignment);
2140 }
2141 else {
2142 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2143 dst, dst_type, dst_count, dst_alignment);
2144 }
2145
2146 if (have_smallfloat_format(dst_type, out_format)) {
2147 lp_build_fpstate_set(gallivm, fpstate);
2148 }
2149
2150 if (do_branch) {
2151 lp_build_mask_end(&mask_ctx);
2152 }
2153 }
2154
2155
2156 /**
2157 * Generate the runtime callable function for the whole fragment pipeline.
2158 * Note that the function which we generate operates on a block of 16
2159 * pixels at at time. The block contains 2x2 quads. Each quad contains
2160 * 2x2 pixels.
2161 */
2162 static void
2163 generate_fragment(struct llvmpipe_context *lp,
2164 struct lp_fragment_shader *shader,
2165 struct lp_fragment_shader_variant *variant,
2166 unsigned partial_mask)
2167 {
2168 struct gallivm_state *gallivm = variant->gallivm;
2169 const struct lp_fragment_shader_variant_key *key = &variant->key;
2170 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2171 char func_name[64];
2172 struct lp_type fs_type;
2173 struct lp_type blend_type;
2174 LLVMTypeRef fs_elem_type;
2175 LLVMTypeRef blend_vec_type;
2176 LLVMTypeRef arg_types[13];
2177 LLVMTypeRef func_type;
2178 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2179 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2180 LLVMValueRef context_ptr;
2181 LLVMValueRef x;
2182 LLVMValueRef y;
2183 LLVMValueRef a0_ptr;
2184 LLVMValueRef dadx_ptr;
2185 LLVMValueRef dady_ptr;
2186 LLVMValueRef color_ptr_ptr;
2187 LLVMValueRef stride_ptr;
2188 LLVMValueRef depth_ptr;
2189 LLVMValueRef depth_stride;
2190 LLVMValueRef mask_input;
2191 LLVMValueRef thread_data_ptr;
2192 LLVMBasicBlockRef block;
2193 LLVMBuilderRef builder;
2194 struct lp_build_sampler_soa *sampler;
2195 struct lp_build_interp_soa_context interp;
2196 LLVMValueRef fs_mask[16 / 4];
2197 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2198 LLVMValueRef function;
2199 LLVMValueRef facing;
2200 unsigned num_fs;
2201 unsigned i;
2202 unsigned chan;
2203 unsigned cbuf;
2204 boolean cbuf0_write_all;
2205 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2206 util_blend_state_is_dual(&key->blend, 0);
2207
2208 assert(lp_native_vector_width / 32 >= 4);
2209
2210 /* Adjust color input interpolation according to flatshade state:
2211 */
2212 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2213 for (i = 0; i < shader->info.base.num_inputs; i++) {
2214 if (inputs[i].interp == LP_INTERP_COLOR) {
2215 if (key->flatshade)
2216 inputs[i].interp = LP_INTERP_CONSTANT;
2217 else
2218 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2219 }
2220 }
2221
2222 /* check if writes to cbuf[0] are to be copied to all cbufs */
2223 cbuf0_write_all =
2224 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2225
2226 /* TODO: actually pick these based on the fs and color buffer
2227 * characteristics. */
2228
2229 memset(&fs_type, 0, sizeof fs_type);
2230 fs_type.floating = TRUE; /* floating point values */
2231 fs_type.sign = TRUE; /* values are signed */
2232 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2233 fs_type.width = 32; /* 32-bit float */
2234 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2235
2236 memset(&blend_type, 0, sizeof blend_type);
2237 blend_type.floating = FALSE; /* values are integers */
2238 blend_type.sign = FALSE; /* values are unsigned */
2239 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2240 blend_type.width = 8; /* 8-bit ubyte values */
2241 blend_type.length = 16; /* 16 elements per vector */
2242
2243 /*
2244 * Generate the function prototype. Any change here must be reflected in
2245 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2246 */
2247
2248 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2249
2250 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2251
2252 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2253 shader->no, variant->no, partial_mask ? "partial" : "whole");
2254
2255 arg_types[0] = variant->jit_context_ptr_type; /* context */
2256 arg_types[1] = int32_type; /* x */
2257 arg_types[2] = int32_type; /* y */
2258 arg_types[3] = int32_type; /* facing */
2259 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2260 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2261 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2262 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2263 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2264 arg_types[9] = int32_type; /* mask_input */
2265 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2266 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2267 arg_types[12] = int32_type; /* depth_stride */
2268
2269 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2270 arg_types, ARRAY_SIZE(arg_types), 0);
2271
2272 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2273 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2274
2275 variant->function[partial_mask] = function;
2276
2277 /* XXX: need to propagate noalias down into color param now we are
2278 * passing a pointer-to-pointer?
2279 */
2280 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2281 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2282 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
2283
2284 context_ptr = LLVMGetParam(function, 0);
2285 x = LLVMGetParam(function, 1);
2286 y = LLVMGetParam(function, 2);
2287 facing = LLVMGetParam(function, 3);
2288 a0_ptr = LLVMGetParam(function, 4);
2289 dadx_ptr = LLVMGetParam(function, 5);
2290 dady_ptr = LLVMGetParam(function, 6);
2291 color_ptr_ptr = LLVMGetParam(function, 7);
2292 depth_ptr = LLVMGetParam(function, 8);
2293 mask_input = LLVMGetParam(function, 9);
2294 thread_data_ptr = LLVMGetParam(function, 10);
2295 stride_ptr = LLVMGetParam(function, 11);
2296 depth_stride = LLVMGetParam(function, 12);
2297
2298 lp_build_name(context_ptr, "context");
2299 lp_build_name(x, "x");
2300 lp_build_name(y, "y");
2301 lp_build_name(a0_ptr, "a0");
2302 lp_build_name(dadx_ptr, "dadx");
2303 lp_build_name(dady_ptr, "dady");
2304 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2305 lp_build_name(depth_ptr, "depth");
2306 lp_build_name(mask_input, "mask_input");
2307 lp_build_name(thread_data_ptr, "thread_data");
2308 lp_build_name(stride_ptr, "stride_ptr");
2309 lp_build_name(depth_stride, "depth_stride");
2310
2311 /*
2312 * Function body
2313 */
2314
2315 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2316 builder = gallivm->builder;
2317 assert(builder);
2318 LLVMPositionBuilderAtEnd(builder, block);
2319
2320 /* code generated texture sampling */
2321 sampler = lp_llvm_sampler_soa_create(key->state);
2322
2323 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2324 /* for 1d resources only run "upper half" of stamp */
2325 if (key->resource_1d)
2326 num_fs /= 2;
2327
2328 {
2329 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2330 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2331 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2332 num_loop, "mask_store");
2333 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2334 boolean pixel_center_integer =
2335 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2336
2337 /*
2338 * The shader input interpolation info is not explicitely baked in the
2339 * shader key, but everything it derives from (TGSI, and flatshade) is
2340 * already included in the shader key.
2341 */
2342 lp_build_interp_soa_init(&interp,
2343 gallivm,
2344 shader->info.base.num_inputs,
2345 inputs,
2346 pixel_center_integer,
2347 builder, fs_type,
2348 a0_ptr, dadx_ptr, dady_ptr,
2349 x, y);
2350
2351 for (i = 0; i < num_fs; i++) {
2352 LLVMValueRef mask;
2353 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2354 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2355 &indexi, 1, "mask_ptr");
2356
2357 if (partial_mask) {
2358 mask = generate_quad_mask(gallivm, fs_type,
2359 i*fs_type.length/4, mask_input);
2360 }
2361 else {
2362 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2363 }
2364 LLVMBuildStore(builder, mask, mask_ptr);
2365 }
2366
2367 generate_fs_loop(gallivm,
2368 shader, key,
2369 builder,
2370 fs_type,
2371 context_ptr,
2372 num_loop,
2373 &interp,
2374 sampler,
2375 mask_store, /* output */
2376 color_store,
2377 depth_ptr,
2378 depth_stride,
2379 facing,
2380 thread_data_ptr);
2381
2382 for (i = 0; i < num_fs; i++) {
2383 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2384 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2385 &indexi, 1, "");
2386 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2387 /* This is fucked up need to reorganize things */
2388 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2389 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2390 ptr = LLVMBuildGEP(builder,
2391 color_store[cbuf * !cbuf0_write_all][chan],
2392 &indexi, 1, "");
2393 fs_out_color[cbuf][chan][i] = ptr;
2394 }
2395 }
2396 if (dual_source_blend) {
2397 /* only support one dual source blend target hence always use output 1 */
2398 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2399 ptr = LLVMBuildGEP(builder,
2400 color_store[1][chan],
2401 &indexi, 1, "");
2402 fs_out_color[1][chan][i] = ptr;
2403 }
2404 }
2405 }
2406 }
2407
2408 sampler->destroy(sampler);
2409
2410 /* Loop over color outputs / color buffers to do blending.
2411 */
2412 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2413 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2414 LLVMValueRef color_ptr;
2415 LLVMValueRef stride;
2416 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2417
2418 boolean do_branch = ((key->depth.enabled
2419 || key->stencil[0].enabled
2420 || key->alpha.enabled)
2421 && !shader->info.base.uses_kill);
2422
2423 color_ptr = LLVMBuildLoad(builder,
2424 LLVMBuildGEP(builder, color_ptr_ptr,
2425 &index, 1, ""),
2426 "");
2427
2428 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2429
2430 stride = LLVMBuildLoad(builder,
2431 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2432 "");
2433
2434 generate_unswizzled_blend(gallivm, cbuf, variant,
2435 key->cbuf_format[cbuf],
2436 num_fs, fs_type, fs_mask, fs_out_color,
2437 context_ptr, color_ptr, stride,
2438 partial_mask, do_branch);
2439 }
2440 }
2441
2442 LLVMBuildRetVoid(builder);
2443
2444 gallivm_verify_function(gallivm, function);
2445 }
2446
2447
2448 static void
2449 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2450 {
2451 unsigned i;
2452
2453 debug_printf("fs variant %p:\n", (void *) key);
2454
2455 if (key->flatshade) {
2456 debug_printf("flatshade = 1\n");
2457 }
2458 for (i = 0; i < key->nr_cbufs; ++i) {
2459 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2460 }
2461 if (key->depth.enabled) {
2462 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2463 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
2464 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2465 }
2466
2467 for (i = 0; i < 2; ++i) {
2468 if (key->stencil[i].enabled) {
2469 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
2470 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
2471 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
2472 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
2473 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2474 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2475 }
2476 }
2477
2478 if (key->alpha.enabled) {
2479 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
2480 }
2481
2482 if (key->occlusion_count) {
2483 debug_printf("occlusion_count = 1\n");
2484 }
2485
2486 if (key->blend.logicop_enable) {
2487 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
2488 }
2489 else if (key->blend.rt[0].blend_enable) {
2490 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
2491 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2492 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2493 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
2494 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2495 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2496 }
2497 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2498 if (key->blend.alpha_to_coverage) {
2499 debug_printf("blend.alpha_to_coverage is enabled\n");
2500 }
2501 for (i = 0; i < key->nr_samplers; ++i) {
2502 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2503 debug_printf("sampler[%u] = \n", i);
2504 debug_printf(" .wrap = %s %s %s\n",
2505 util_dump_tex_wrap(sampler->wrap_s, TRUE),
2506 util_dump_tex_wrap(sampler->wrap_t, TRUE),
2507 util_dump_tex_wrap(sampler->wrap_r, TRUE));
2508 debug_printf(" .min_img_filter = %s\n",
2509 util_dump_tex_filter(sampler->min_img_filter, TRUE));
2510 debug_printf(" .min_mip_filter = %s\n",
2511 util_dump_tex_mipfilter(sampler->min_mip_filter, TRUE));
2512 debug_printf(" .mag_img_filter = %s\n",
2513 util_dump_tex_filter(sampler->mag_img_filter, TRUE));
2514 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2515 debug_printf(" .compare_func = %s\n", util_dump_func(sampler->compare_func, TRUE));
2516 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2517 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2518 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2519 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2520 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2521 }
2522 for (i = 0; i < key->nr_sampler_views; ++i) {
2523 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2524 debug_printf("texture[%u] = \n", i);
2525 debug_printf(" .format = %s\n",
2526 util_format_name(texture->format));
2527 debug_printf(" .target = %s\n",
2528 util_dump_tex_target(texture->target, TRUE));
2529 debug_printf(" .level_zero_only = %u\n",
2530 texture->level_zero_only);
2531 debug_printf(" .pot = %u %u %u\n",
2532 texture->pot_width,
2533 texture->pot_height,
2534 texture->pot_depth);
2535 }
2536 }
2537
2538
2539 void
2540 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2541 {
2542 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2543 variant->shader->no, variant->no);
2544 tgsi_dump(variant->shader->base.tokens, 0);
2545 dump_fs_variant_key(&variant->key);
2546 debug_printf("variant->opaque = %u\n", variant->opaque);
2547 debug_printf("\n");
2548 }
2549
2550
2551 /**
2552 * Generate a new fragment shader variant from the shader code and
2553 * other state indicated by the key.
2554 */
2555 static struct lp_fragment_shader_variant *
2556 generate_variant(struct llvmpipe_context *lp,
2557 struct lp_fragment_shader *shader,
2558 const struct lp_fragment_shader_variant_key *key)
2559 {
2560 struct lp_fragment_shader_variant *variant;
2561 const struct util_format_description *cbuf0_format_desc;
2562 boolean fullcolormask;
2563 char module_name[64];
2564
2565 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2566 if (!variant)
2567 return NULL;
2568
2569 util_snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2570 shader->no, shader->variants_created);
2571
2572 variant->gallivm = gallivm_create(module_name, lp->context);
2573 if (!variant->gallivm) {
2574 FREE(variant);
2575 return NULL;
2576 }
2577
2578 variant->shader = shader;
2579 variant->list_item_global.base = variant;
2580 variant->list_item_local.base = variant;
2581 variant->no = shader->variants_created++;
2582
2583 memcpy(&variant->key, key, shader->variant_key_size);
2584
2585 /*
2586 * Determine whether we are touching all channels in the color buffer.
2587 */
2588 fullcolormask = FALSE;
2589 if (key->nr_cbufs == 1) {
2590 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2591 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2592 }
2593
2594 variant->opaque =
2595 !key->blend.logicop_enable &&
2596 !key->blend.rt[0].blend_enable &&
2597 fullcolormask &&
2598 !key->stencil[0].enabled &&
2599 !key->alpha.enabled &&
2600 !key->blend.alpha_to_coverage &&
2601 !key->depth.enabled &&
2602 !shader->info.base.uses_kill
2603 ? TRUE : FALSE;
2604
2605 if ((shader->info.base.num_tokens <= 1) &&
2606 !key->depth.enabled && !key->stencil[0].enabled) {
2607 variant->ps_inv_multiplier = 0;
2608 } else {
2609 variant->ps_inv_multiplier = 1;
2610 }
2611
2612 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2613 lp_debug_fs_variant(variant);
2614 }
2615
2616 lp_jit_init_types(variant);
2617
2618 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2619 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2620
2621 if (variant->jit_function[RAST_WHOLE] == NULL) {
2622 if (variant->opaque) {
2623 /* Specialized shader, which doesn't need to read the color buffer. */
2624 generate_fragment(lp, shader, variant, RAST_WHOLE);
2625 }
2626 }
2627
2628 /*
2629 * Compile everything
2630 */
2631
2632 gallivm_compile_module(variant->gallivm);
2633
2634 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2635
2636 if (variant->function[RAST_EDGE_TEST]) {
2637 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2638 gallivm_jit_function(variant->gallivm,
2639 variant->function[RAST_EDGE_TEST]);
2640 }
2641
2642 if (variant->function[RAST_WHOLE]) {
2643 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2644 gallivm_jit_function(variant->gallivm,
2645 variant->function[RAST_WHOLE]);
2646 } else if (!variant->jit_function[RAST_WHOLE]) {
2647 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2648 }
2649
2650 gallivm_free_ir(variant->gallivm);
2651
2652 return variant;
2653 }
2654
2655
2656 static void *
2657 llvmpipe_create_fs_state(struct pipe_context *pipe,
2658 const struct pipe_shader_state *templ)
2659 {
2660 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2661 struct lp_fragment_shader *shader;
2662 int nr_samplers;
2663 int nr_sampler_views;
2664 int i;
2665
2666 shader = CALLOC_STRUCT(lp_fragment_shader);
2667 if (!shader)
2668 return NULL;
2669
2670 shader->no = fs_no++;
2671 make_empty_list(&shader->variants);
2672
2673 /* get/save the summary info for this shader */
2674 lp_build_tgsi_info(templ->tokens, &shader->info);
2675
2676 /* we need to keep a local copy of the tokens */
2677 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2678
2679 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2680 if (shader->draw_data == NULL) {
2681 FREE((void *) shader->base.tokens);
2682 FREE(shader);
2683 return NULL;
2684 }
2685
2686 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2687 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2688
2689 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2690 state[MAX2(nr_samplers, nr_sampler_views)]);
2691
2692 for (i = 0; i < shader->info.base.num_inputs; i++) {
2693 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2694 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2695
2696 switch (shader->info.base.input_interpolate[i]) {
2697 case TGSI_INTERPOLATE_CONSTANT:
2698 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2699 break;
2700 case TGSI_INTERPOLATE_LINEAR:
2701 shader->inputs[i].interp = LP_INTERP_LINEAR;
2702 break;
2703 case TGSI_INTERPOLATE_PERSPECTIVE:
2704 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2705 break;
2706 case TGSI_INTERPOLATE_COLOR:
2707 shader->inputs[i].interp = LP_INTERP_COLOR;
2708 break;
2709 default:
2710 assert(0);
2711 break;
2712 }
2713
2714 switch (shader->info.base.input_semantic_name[i]) {
2715 case TGSI_SEMANTIC_FACE:
2716 shader->inputs[i].interp = LP_INTERP_FACING;
2717 break;
2718 case TGSI_SEMANTIC_POSITION:
2719 /* Position was already emitted above
2720 */
2721 shader->inputs[i].interp = LP_INTERP_POSITION;
2722 shader->inputs[i].src_index = 0;
2723 continue;
2724 }
2725
2726 /* XXX this is a completely pointless index map... */
2727 shader->inputs[i].src_index = i+1;
2728 }
2729
2730 if (LP_DEBUG & DEBUG_TGSI) {
2731 unsigned attrib;
2732 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2733 shader->no, (void *) shader);
2734 tgsi_dump(templ->tokens, 0);
2735 debug_printf("usage masks:\n");
2736 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2737 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2738 debug_printf(" IN[%u].%s%s%s%s\n",
2739 attrib,
2740 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2741 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2742 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2743 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2744 }
2745 debug_printf("\n");
2746 }
2747
2748 return shader;
2749 }
2750
2751
2752 static void
2753 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2754 {
2755 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2756
2757 if (llvmpipe->fs == fs)
2758 return;
2759
2760 llvmpipe->fs = (struct lp_fragment_shader *) fs;
2761
2762 draw_bind_fragment_shader(llvmpipe->draw,
2763 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
2764
2765 llvmpipe->dirty |= LP_NEW_FS;
2766 }
2767
2768
2769 /**
2770 * Remove shader variant from two lists: the shader's variant list
2771 * and the context's variant list.
2772 */
2773 void
2774 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
2775 struct lp_fragment_shader_variant *variant)
2776 {
2777 if (gallivm_debug & GALLIVM_DEBUG_IR) {
2778 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
2779 " #%u v total cached #%u\n",
2780 variant->shader->no,
2781 variant->no,
2782 variant->shader->variants_created,
2783 variant->shader->variants_cached,
2784 lp->nr_fs_variants);
2785 }
2786
2787 gallivm_destroy(variant->gallivm);
2788
2789 /* remove from shader's list */
2790 remove_from_list(&variant->list_item_local);
2791 variant->shader->variants_cached--;
2792
2793 /* remove from context's list */
2794 remove_from_list(&variant->list_item_global);
2795 lp->nr_fs_variants--;
2796 lp->nr_fs_instrs -= variant->nr_instrs;
2797
2798 FREE(variant);
2799 }
2800
2801
2802 static void
2803 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
2804 {
2805 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2806 struct lp_fragment_shader *shader = fs;
2807 struct lp_fs_variant_list_item *li;
2808
2809 assert(fs != llvmpipe->fs);
2810
2811 /*
2812 * XXX: we need to flush the context until we have some sort of reference
2813 * counting in fragment shaders as they may still be binned
2814 * Flushing alone might not sufficient we need to wait on it too.
2815 */
2816 llvmpipe_finish(pipe, __FUNCTION__);
2817
2818 /* Delete all the variants */
2819 li = first_elem(&shader->variants);
2820 while(!at_end(&shader->variants, li)) {
2821 struct lp_fs_variant_list_item *next = next_elem(li);
2822 llvmpipe_remove_shader_variant(llvmpipe, li->base);
2823 li = next;
2824 }
2825
2826 /* Delete draw module's data */
2827 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
2828
2829 assert(shader->variants_cached == 0);
2830 FREE((void *) shader->base.tokens);
2831 FREE(shader);
2832 }
2833
2834
2835
2836 static void
2837 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
2838 uint shader, uint index,
2839 const struct pipe_constant_buffer *cb)
2840 {
2841 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2842 struct pipe_resource *constants = cb ? cb->buffer : NULL;
2843
2844 assert(shader < PIPE_SHADER_TYPES);
2845 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
2846
2847 /* note: reference counting */
2848 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
2849
2850 if (constants) {
2851 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
2852 debug_printf("Illegal set constant without bind flag\n");
2853 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
2854 }
2855 }
2856
2857 if (shader == PIPE_SHADER_VERTEX ||
2858 shader == PIPE_SHADER_GEOMETRY) {
2859 /* Pass the constants to the 'draw' module */
2860 const unsigned size = cb ? cb->buffer_size : 0;
2861 const ubyte *data;
2862
2863 if (constants) {
2864 data = (ubyte *) llvmpipe_resource_data(constants);
2865 }
2866 else if (cb && cb->user_buffer) {
2867 data = (ubyte *) cb->user_buffer;
2868 }
2869 else {
2870 data = NULL;
2871 }
2872
2873 if (data)
2874 data += cb->buffer_offset;
2875
2876 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
2877 index, data, size);
2878 }
2879 else {
2880 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
2881 }
2882
2883 if (cb && cb->user_buffer) {
2884 pipe_resource_reference(&constants, NULL);
2885 }
2886 }
2887
2888
2889 /**
2890 * Return the blend factor equivalent to a destination alpha of one.
2891 */
2892 static inline unsigned
2893 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
2894 {
2895 switch(factor) {
2896 case PIPE_BLENDFACTOR_DST_ALPHA:
2897 return PIPE_BLENDFACTOR_ONE;
2898 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
2899 return PIPE_BLENDFACTOR_ZERO;
2900 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
2901 if (clamped_zero)
2902 return PIPE_BLENDFACTOR_ZERO;
2903 else
2904 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
2905 }
2906
2907 return factor;
2908 }
2909
2910
2911 /**
2912 * We need to generate several variants of the fragment pipeline to match
2913 * all the combinations of the contributing state atoms.
2914 *
2915 * TODO: there is actually no reason to tie this to context state -- the
2916 * generated code could be cached globally in the screen.
2917 */
2918 static void
2919 make_variant_key(struct llvmpipe_context *lp,
2920 struct lp_fragment_shader *shader,
2921 struct lp_fragment_shader_variant_key *key)
2922 {
2923 unsigned i;
2924
2925 memset(key, 0, shader->variant_key_size);
2926
2927 if (lp->framebuffer.zsbuf) {
2928 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
2929 const struct util_format_description *zsbuf_desc =
2930 util_format_description(zsbuf_format);
2931
2932 if (lp->depth_stencil->depth.enabled &&
2933 util_format_has_depth(zsbuf_desc)) {
2934 key->zsbuf_format = zsbuf_format;
2935 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
2936 }
2937 if (lp->depth_stencil->stencil[0].enabled &&
2938 util_format_has_stencil(zsbuf_desc)) {
2939 key->zsbuf_format = zsbuf_format;
2940 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
2941 }
2942 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
2943 key->resource_1d = TRUE;
2944 }
2945 }
2946
2947 /*
2948 * Propagate the depth clamp setting from the rasterizer state.
2949 * depth_clip == 0 implies depth clamping is enabled.
2950 *
2951 * When clip_halfz is enabled, then always clamp the depth values.
2952 */
2953 if (lp->rasterizer->clip_halfz) {
2954 key->depth_clamp = 1;
2955 } else {
2956 key->depth_clamp = (lp->rasterizer->depth_clip == 0) ? 1 : 0;
2957 }
2958
2959 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
2960 if (!lp->framebuffer.nr_cbufs ||
2961 !lp->framebuffer.cbufs[0] ||
2962 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
2963 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
2964 }
2965 if(key->alpha.enabled)
2966 key->alpha.func = lp->depth_stencil->alpha.func;
2967 /* alpha.ref_value is passed in jit_context */
2968
2969 key->flatshade = lp->rasterizer->flatshade;
2970 if (lp->active_occlusion_queries) {
2971 key->occlusion_count = TRUE;
2972 }
2973
2974 if (lp->framebuffer.nr_cbufs) {
2975 memcpy(&key->blend, lp->blend, sizeof key->blend);
2976 }
2977
2978 key->nr_cbufs = lp->framebuffer.nr_cbufs;
2979
2980 if (!key->blend.independent_blend_enable) {
2981 /* we always need independent blend otherwise the fixups below won't work */
2982 for (i = 1; i < key->nr_cbufs; i++) {
2983 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
2984 }
2985 key->blend.independent_blend_enable = 1;
2986 }
2987
2988 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
2989 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
2990
2991 if (lp->framebuffer.cbufs[i]) {
2992 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
2993 const struct util_format_description *format_desc;
2994
2995 key->cbuf_format[i] = format;
2996
2997 /*
2998 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
2999 * mixing of 2d textures with height 1 and 1d textures, so make sure
3000 * we pick 1d if any cbuf or zsbuf is 1d.
3001 */
3002 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3003 key->resource_1d = TRUE;
3004 }
3005
3006 format_desc = util_format_description(format);
3007 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3008 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3009
3010 /*
3011 * Mask out color channels not present in the color buffer.
3012 */
3013 blend_rt->colormask &= util_format_colormask(format_desc);
3014
3015 /*
3016 * Disable blend for integer formats.
3017 */
3018 if (util_format_is_pure_integer(format)) {
3019 blend_rt->blend_enable = 0;
3020 }
3021
3022 /*
3023 * Our swizzled render tiles always have an alpha channel, but the
3024 * linear render target format often does not, so force here the dst
3025 * alpha to be one.
3026 *
3027 * This is not a mere optimization. Wrong results will be produced if
3028 * the dst alpha is used, the dst format does not have alpha, and the
3029 * previous rendering was not flushed from the swizzled to linear
3030 * buffer. For example, NonPowTwo DCT.
3031 *
3032 * TODO: This should be generalized to all channels for better
3033 * performance, but only alpha causes correctness issues.
3034 *
3035 * Also, force rgb/alpha func/factors match, to make AoS blending
3036 * easier.
3037 */
3038 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3039 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3040 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3041 boolean clamped_zero = !util_format_is_float(format) &&
3042 !util_format_is_snorm(format);
3043 blend_rt->rgb_src_factor =
3044 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3045 blend_rt->rgb_dst_factor =
3046 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3047 blend_rt->alpha_func = blend_rt->rgb_func;
3048 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3049 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3050 }
3051 }
3052 else {
3053 /* no color buffer for this fragment output */
3054 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3055 blend_rt->colormask = 0x0;
3056 blend_rt->blend_enable = 0;
3057 }
3058 }
3059
3060 /* This value will be the same for all the variants of a given shader:
3061 */
3062 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3063
3064 for(i = 0; i < key->nr_samplers; ++i) {
3065 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3066 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3067 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3068 }
3069 }
3070
3071 /*
3072 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3073 * are dx10-style? Can't really have mixed opcodes, at least not
3074 * if we want to skip the holes here (without rescanning tgsi).
3075 */
3076 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3077 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3078 for(i = 0; i < key->nr_sampler_views; ++i) {
3079 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
3080 lp_sampler_static_texture_state(&key->state[i].texture_state,
3081 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3082 }
3083 }
3084 }
3085 else {
3086 key->nr_sampler_views = key->nr_samplers;
3087 for(i = 0; i < key->nr_sampler_views; ++i) {
3088 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3089 lp_sampler_static_texture_state(&key->state[i].texture_state,
3090 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3091 }
3092 }
3093 }
3094 }
3095
3096
3097
3098 /**
3099 * Update fragment shader state. This is called just prior to drawing
3100 * something when some fragment-related state has changed.
3101 */
3102 void
3103 llvmpipe_update_fs(struct llvmpipe_context *lp)
3104 {
3105 struct lp_fragment_shader *shader = lp->fs;
3106 struct lp_fragment_shader_variant_key key;
3107 struct lp_fragment_shader_variant *variant = NULL;
3108 struct lp_fs_variant_list_item *li;
3109
3110 make_variant_key(lp, shader, &key);
3111
3112 /* Search the variants for one which matches the key */
3113 li = first_elem(&shader->variants);
3114 while(!at_end(&shader->variants, li)) {
3115 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3116 variant = li->base;
3117 break;
3118 }
3119 li = next_elem(li);
3120 }
3121
3122 if (variant) {
3123 /* Move this variant to the head of the list to implement LRU
3124 * deletion of shader's when we have too many.
3125 */
3126 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3127 }
3128 else {
3129 /* variant not found, create it now */
3130 int64_t t0, t1, dt;
3131 unsigned i;
3132 unsigned variants_to_cull;
3133
3134 if (0) {
3135 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3136 lp->nr_fs_variants,
3137 lp->nr_fs_instrs,
3138 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3139 }
3140
3141 /* First, check if we've exceeded the max number of shader variants.
3142 * If so, free 25% of them (the least recently used ones).
3143 */
3144 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
3145
3146 if (variants_to_cull ||
3147 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3148 struct pipe_context *pipe = &lp->pipe;
3149
3150 /*
3151 * XXX: we need to flush the context until we have some sort of
3152 * reference counting in fragment shaders as they may still be binned
3153 * Flushing alone might not be sufficient we need to wait on it too.
3154 */
3155 llvmpipe_finish(pipe, __FUNCTION__);
3156
3157 /*
3158 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3159 * number of shader variants (potentially all of them) could be
3160 * pending for destruction on flush.
3161 */
3162
3163 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3164 struct lp_fs_variant_list_item *item;
3165 if (is_empty_list(&lp->fs_variants_list)) {
3166 break;
3167 }
3168 item = last_elem(&lp->fs_variants_list);
3169 assert(item);
3170 assert(item->base);
3171 llvmpipe_remove_shader_variant(lp, item->base);
3172 }
3173 }
3174
3175 /*
3176 * Generate the new variant.
3177 */
3178 t0 = os_time_get();
3179 variant = generate_variant(lp, shader, &key);
3180 t1 = os_time_get();
3181 dt = t1 - t0;
3182 LP_COUNT_ADD(llvm_compile_time, dt);
3183 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3184
3185 /* Put the new variant into the list */
3186 if (variant) {
3187 insert_at_head(&shader->variants, &variant->list_item_local);
3188 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3189 lp->nr_fs_variants++;
3190 lp->nr_fs_instrs += variant->nr_instrs;
3191 shader->variants_cached++;
3192 }
3193 }
3194
3195 /* Bind this variant */
3196 lp_setup_set_fs_variant(lp->setup, variant);
3197 }
3198
3199
3200
3201
3202
3203 void
3204 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3205 {
3206 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3207 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3208 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3209
3210 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3211 }
3212
3213 /*
3214 * Rasterization is disabled if there is no pixel shader and
3215 * both depth and stencil testing are disabled:
3216 * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3217 */
3218 boolean
3219 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3220 {
3221 boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3222
3223 return (null_fs &&
3224 !lp->depth_stencil->depth.enabled &&
3225 !lp->depth_stencil->stencil[0].enabled);
3226 }