glsl,nir: Switch the enum representing shader image formats to PIPE_FORMAT.
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_build.h"
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27
28 #include <set>
29
30 #include "codegen/nv50_ir.h"
31 #include "codegen/nv50_ir_from_common.h"
32 #include "codegen/nv50_ir_util.h"
33
34 namespace tgsi {
35
36 class Source;
37
38 static nv50_ir::operation translateOpcode(uint opcode);
39 static nv50_ir::DataFile translateFile(uint file);
40 static nv50_ir::TexTarget translateTexture(uint texTarg);
41 static nv50_ir::SVSemantic translateSysVal(uint sysval);
42 static nv50_ir::CacheMode translateCacheMode(uint qualifier);
43
44 class Instruction
45 {
46 public:
47 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48
49 class SrcRegister
50 {
51 public:
52 SrcRegister(const struct tgsi_full_src_register *src)
53 : reg(src->Register),
54 fsr(src)
55 { }
56
57 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58
59 SrcRegister(const struct tgsi_ind_register& ind)
60 : reg(tgsi_util_get_src_from_ind(&ind)),
61 fsr(NULL)
62 { }
63
64 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65 {
66 struct tgsi_src_register reg;
67 memset(&reg, 0, sizeof(reg));
68 reg.Index = off.Index;
69 reg.File = off.File;
70 reg.SwizzleX = off.SwizzleX;
71 reg.SwizzleY = off.SwizzleY;
72 reg.SwizzleZ = off.SwizzleZ;
73 return reg;
74 }
75
76 SrcRegister(const struct tgsi_texture_offset& off) :
77 reg(offsetToSrc(off)),
78 fsr(NULL)
79 { }
80
81 uint getFile() const { return reg.File; }
82
83 bool is2D() const { return reg.Dimension; }
84
85 bool isIndirect(int dim) const
86 {
87 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88 }
89
90 int getIndex(int dim) const
91 {
92 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93 }
94
95 int getSwizzle(int chan) const
96 {
97 return tgsi_util_get_src_register_swizzle(&reg, chan);
98 }
99
100 int getArrayId() const
101 {
102 if (isIndirect(0))
103 return fsr->Indirect.ArrayID;
104 return 0;
105 }
106
107 nv50_ir::Modifier getMod(int chan) const;
108
109 SrcRegister getIndirect(int dim) const
110 {
111 assert(fsr && isIndirect(dim));
112 if (dim)
113 return SrcRegister(fsr->DimIndirect);
114 return SrcRegister(fsr->Indirect);
115 }
116
117 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
118 {
119 assert(reg.File == TGSI_FILE_IMMEDIATE);
120 assert(!reg.Absolute);
121 assert(!reg.Negate);
122 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
123 }
124
125 private:
126 const struct tgsi_src_register reg;
127 const struct tgsi_full_src_register *fsr;
128 };
129
130 class DstRegister
131 {
132 public:
133 DstRegister(const struct tgsi_full_dst_register *dst)
134 : reg(dst->Register),
135 fdr(dst)
136 { }
137
138 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
139
140 uint getFile() const { return reg.File; }
141
142 bool is2D() const { return reg.Dimension; }
143
144 bool isIndirect(int dim) const
145 {
146 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
147 }
148
149 int getIndex(int dim) const
150 {
151 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
152 }
153
154 unsigned int getMask() const { return reg.WriteMask; }
155
156 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
157
158 SrcRegister getIndirect(int dim) const
159 {
160 assert(fdr && isIndirect(dim));
161 if (dim)
162 return SrcRegister(fdr->DimIndirect);
163 return SrcRegister(fdr->Indirect);
164 }
165
166 struct tgsi_full_src_register asSrc()
167 {
168 assert(fdr);
169 return tgsi_full_src_register_from_dst(fdr);
170 }
171
172 int getArrayId() const
173 {
174 if (isIndirect(0))
175 return fdr->Indirect.ArrayID;
176 return 0;
177 }
178
179 private:
180 const struct tgsi_dst_register reg;
181 const struct tgsi_full_dst_register *fdr;
182 };
183
184 inline uint getOpcode() const { return insn->Instruction.Opcode; }
185
186 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
187 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
188
189 // mask of used components of source s
190 unsigned int srcMask(unsigned int s) const;
191 unsigned int texOffsetMask() const;
192
193 SrcRegister getSrc(unsigned int s) const
194 {
195 assert(s < srcCount());
196 return SrcRegister(&insn->Src[s]);
197 }
198
199 DstRegister getDst(unsigned int d) const
200 {
201 assert(d < dstCount());
202 return DstRegister(&insn->Dst[d]);
203 }
204
205 SrcRegister getTexOffset(unsigned int i) const
206 {
207 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
208 return SrcRegister(insn->TexOffsets[i]);
209 }
210
211 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
212
213 bool checkDstSrcAliasing() const;
214
215 inline nv50_ir::operation getOP() const {
216 return translateOpcode(getOpcode()); }
217
218 nv50_ir::DataType inferSrcType() const;
219 nv50_ir::DataType inferDstType() const;
220
221 nv50_ir::CondCode getSetCond() const;
222
223 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
224
225 const nv50_ir::TexInstruction::ImgFormatDesc *getImageFormat() const {
226 return nv50_ir::TexInstruction::translateImgFormat((enum pipe_format)insn->Memory.Format);
227 }
228
229 nv50_ir::TexTarget getImageTarget() const {
230 return translateTexture(insn->Memory.Texture);
231 }
232
233 nv50_ir::CacheMode getCacheMode() const {
234 if (!insn->Instruction.Memory)
235 return nv50_ir::CACHE_CA;
236 return translateCacheMode(insn->Memory.Qualifier);
237 }
238
239 inline uint getLabel() { return insn->Label.Label; }
240
241 unsigned getSaturate() const { return insn->Instruction.Saturate; }
242
243 void print() const
244 {
245 tgsi_dump_instruction(insn, 1);
246 }
247
248 private:
249 const struct tgsi_full_instruction *insn;
250 };
251
252 unsigned int Instruction::texOffsetMask() const
253 {
254 const struct tgsi_instruction_texture *tex = &insn->Texture;
255 assert(insn->Instruction.Texture);
256
257 switch (tex->Texture) {
258 case TGSI_TEXTURE_BUFFER:
259 case TGSI_TEXTURE_1D:
260 case TGSI_TEXTURE_SHADOW1D:
261 case TGSI_TEXTURE_1D_ARRAY:
262 case TGSI_TEXTURE_SHADOW1D_ARRAY:
263 return 0x1;
264 case TGSI_TEXTURE_2D:
265 case TGSI_TEXTURE_SHADOW2D:
266 case TGSI_TEXTURE_2D_ARRAY:
267 case TGSI_TEXTURE_SHADOW2D_ARRAY:
268 case TGSI_TEXTURE_RECT:
269 case TGSI_TEXTURE_SHADOWRECT:
270 case TGSI_TEXTURE_2D_MSAA:
271 case TGSI_TEXTURE_2D_ARRAY_MSAA:
272 return 0x3;
273 case TGSI_TEXTURE_3D:
274 return 0x7;
275 default:
276 assert(!"Unexpected texture target");
277 return 0xf;
278 }
279 }
280
281 unsigned int Instruction::srcMask(unsigned int s) const
282 {
283 unsigned int mask = insn->Dst[0].Register.WriteMask;
284
285 switch (insn->Instruction.Opcode) {
286 case TGSI_OPCODE_COS:
287 case TGSI_OPCODE_SIN:
288 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
289 case TGSI_OPCODE_DP2:
290 return 0x3;
291 case TGSI_OPCODE_DP3:
292 return 0x7;
293 case TGSI_OPCODE_DP4:
294 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
295 return 0xf;
296 case TGSI_OPCODE_DST:
297 return mask & (s ? 0xa : 0x6);
298 case TGSI_OPCODE_EX2:
299 case TGSI_OPCODE_EXP:
300 case TGSI_OPCODE_LG2:
301 case TGSI_OPCODE_LOG:
302 case TGSI_OPCODE_POW:
303 case TGSI_OPCODE_RCP:
304 case TGSI_OPCODE_RSQ:
305 return 0x1;
306 case TGSI_OPCODE_IF:
307 case TGSI_OPCODE_UIF:
308 return 0x1;
309 case TGSI_OPCODE_LIT:
310 return 0xb;
311 case TGSI_OPCODE_TEX2:
312 case TGSI_OPCODE_TXB2:
313 case TGSI_OPCODE_TXL2:
314 return (s == 0) ? 0xf : 0x3;
315 case TGSI_OPCODE_TEX:
316 case TGSI_OPCODE_TXB:
317 case TGSI_OPCODE_TXD:
318 case TGSI_OPCODE_TXL:
319 case TGSI_OPCODE_TXP:
320 case TGSI_OPCODE_TXF:
321 case TGSI_OPCODE_TG4:
322 case TGSI_OPCODE_TEX_LZ:
323 case TGSI_OPCODE_TXF_LZ:
324 case TGSI_OPCODE_LODQ:
325 {
326 const struct tgsi_instruction_texture *tex = &insn->Texture;
327
328 assert(insn->Instruction.Texture);
329
330 mask = 0x7;
331 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
332 insn->Instruction.Opcode != TGSI_OPCODE_TEX_LZ &&
333 insn->Instruction.Opcode != TGSI_OPCODE_TXF_LZ &&
334 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
335 mask |= 0x8; /* bias, lod or proj */
336
337 switch (tex->Texture) {
338 case TGSI_TEXTURE_1D:
339 mask &= 0x9;
340 break;
341 case TGSI_TEXTURE_SHADOW1D:
342 mask &= 0xd;
343 break;
344 case TGSI_TEXTURE_1D_ARRAY:
345 case TGSI_TEXTURE_2D:
346 case TGSI_TEXTURE_RECT:
347 mask &= 0xb;
348 break;
349 case TGSI_TEXTURE_CUBE_ARRAY:
350 case TGSI_TEXTURE_SHADOW2D_ARRAY:
351 case TGSI_TEXTURE_SHADOWCUBE:
352 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
353 mask |= 0x8;
354 break;
355 default:
356 break;
357 }
358 }
359 return mask;
360 case TGSI_OPCODE_TXQ:
361 return 1;
362 case TGSI_OPCODE_D2I:
363 case TGSI_OPCODE_D2U:
364 case TGSI_OPCODE_D2F:
365 case TGSI_OPCODE_DSLT:
366 case TGSI_OPCODE_DSGE:
367 case TGSI_OPCODE_DSEQ:
368 case TGSI_OPCODE_DSNE:
369 case TGSI_OPCODE_U64SEQ:
370 case TGSI_OPCODE_U64SNE:
371 case TGSI_OPCODE_I64SLT:
372 case TGSI_OPCODE_U64SLT:
373 case TGSI_OPCODE_I64SGE:
374 case TGSI_OPCODE_U64SGE:
375 case TGSI_OPCODE_I642F:
376 case TGSI_OPCODE_U642F:
377 switch (util_bitcount(mask)) {
378 case 1: return 0x3;
379 case 2: return 0xf;
380 default:
381 assert(!"unexpected mask");
382 return 0xf;
383 }
384 case TGSI_OPCODE_I2D:
385 case TGSI_OPCODE_U2D:
386 case TGSI_OPCODE_F2D: {
387 unsigned int x = 0;
388 if ((mask & 0x3) == 0x3)
389 x |= 1;
390 if ((mask & 0xc) == 0xc)
391 x |= 2;
392 return x;
393 }
394 case TGSI_OPCODE_PK2H:
395 return 0x3;
396 case TGSI_OPCODE_UP2H:
397 return 0x1;
398 default:
399 break;
400 }
401
402 return mask;
403 }
404
405 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
406 {
407 nv50_ir::Modifier m(0);
408
409 if (reg.Absolute)
410 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
411 if (reg.Negate)
412 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
413 return m;
414 }
415
416 static nv50_ir::DataFile translateFile(uint file)
417 {
418 switch (file) {
419 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
420 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
421 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
422 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
423 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
424 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
425 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
426 case TGSI_FILE_BUFFER: return nv50_ir::FILE_MEMORY_BUFFER;
427 case TGSI_FILE_IMAGE: return nv50_ir::FILE_MEMORY_GLOBAL;
428 case TGSI_FILE_MEMORY: return nv50_ir::FILE_MEMORY_GLOBAL;
429 case TGSI_FILE_SAMPLER:
430 case TGSI_FILE_NULL:
431 default:
432 return nv50_ir::FILE_NULL;
433 }
434 }
435
436 static nv50_ir::SVSemantic translateSysVal(uint sysval)
437 {
438 switch (sysval) {
439 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
440 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
441 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
442 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
443 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
444 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
445 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
446 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
447 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
448 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
449 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
450 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
451 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
452 case TGSI_SEMANTIC_TESSCOORD: return nv50_ir::SV_TESS_COORD;
453 case TGSI_SEMANTIC_TESSOUTER: return nv50_ir::SV_TESS_OUTER;
454 case TGSI_SEMANTIC_TESSINNER: return nv50_ir::SV_TESS_INNER;
455 case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT;
456 case TGSI_SEMANTIC_HELPER_INVOCATION: return nv50_ir::SV_THREAD_KILL;
457 case TGSI_SEMANTIC_BASEVERTEX: return nv50_ir::SV_BASEVERTEX;
458 case TGSI_SEMANTIC_BASEINSTANCE: return nv50_ir::SV_BASEINSTANCE;
459 case TGSI_SEMANTIC_DRAWID: return nv50_ir::SV_DRAWID;
460 case TGSI_SEMANTIC_WORK_DIM: return nv50_ir::SV_WORK_DIM;
461 case TGSI_SEMANTIC_SUBGROUP_INVOCATION: return nv50_ir::SV_LANEID;
462 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK: return nv50_ir::SV_LANEMASK_EQ;
463 case TGSI_SEMANTIC_SUBGROUP_LT_MASK: return nv50_ir::SV_LANEMASK_LT;
464 case TGSI_SEMANTIC_SUBGROUP_LE_MASK: return nv50_ir::SV_LANEMASK_LE;
465 case TGSI_SEMANTIC_SUBGROUP_GT_MASK: return nv50_ir::SV_LANEMASK_GT;
466 case TGSI_SEMANTIC_SUBGROUP_GE_MASK: return nv50_ir::SV_LANEMASK_GE;
467 default:
468 assert(0);
469 return nv50_ir::SV_CLOCK;
470 }
471 }
472
473 #define NV50_IR_TEX_TARG_CASE(a, b) \
474 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
475
476 static nv50_ir::TexTarget translateTexture(uint tex)
477 {
478 switch (tex) {
479 NV50_IR_TEX_TARG_CASE(1D, 1D);
480 NV50_IR_TEX_TARG_CASE(2D, 2D);
481 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
482 NV50_IR_TEX_TARG_CASE(3D, 3D);
483 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
484 NV50_IR_TEX_TARG_CASE(RECT, RECT);
485 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
486 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
487 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
488 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
489 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
490 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
491 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
492 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
493 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
494 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
495 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
496 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
497
498 case TGSI_TEXTURE_UNKNOWN:
499 default:
500 assert(!"invalid texture target");
501 return nv50_ir::TEX_TARGET_2D;
502 }
503 }
504
505 static nv50_ir::CacheMode translateCacheMode(uint qualifier)
506 {
507 if (qualifier & TGSI_MEMORY_VOLATILE)
508 return nv50_ir::CACHE_CV;
509 if (qualifier & TGSI_MEMORY_COHERENT)
510 return nv50_ir::CACHE_CG;
511 return nv50_ir::CACHE_CA;
512 }
513
514 nv50_ir::DataType Instruction::inferSrcType() const
515 {
516 switch (getOpcode()) {
517 case TGSI_OPCODE_UIF:
518 case TGSI_OPCODE_AND:
519 case TGSI_OPCODE_OR:
520 case TGSI_OPCODE_XOR:
521 case TGSI_OPCODE_NOT:
522 case TGSI_OPCODE_SHL:
523 case TGSI_OPCODE_U2F:
524 case TGSI_OPCODE_U2D:
525 case TGSI_OPCODE_U2I64:
526 case TGSI_OPCODE_UADD:
527 case TGSI_OPCODE_UDIV:
528 case TGSI_OPCODE_UMOD:
529 case TGSI_OPCODE_UMAD:
530 case TGSI_OPCODE_UMUL:
531 case TGSI_OPCODE_UMUL_HI:
532 case TGSI_OPCODE_UMAX:
533 case TGSI_OPCODE_UMIN:
534 case TGSI_OPCODE_USEQ:
535 case TGSI_OPCODE_USGE:
536 case TGSI_OPCODE_USLT:
537 case TGSI_OPCODE_USNE:
538 case TGSI_OPCODE_USHR:
539 case TGSI_OPCODE_ATOMUADD:
540 case TGSI_OPCODE_ATOMXCHG:
541 case TGSI_OPCODE_ATOMCAS:
542 case TGSI_OPCODE_ATOMAND:
543 case TGSI_OPCODE_ATOMOR:
544 case TGSI_OPCODE_ATOMXOR:
545 case TGSI_OPCODE_ATOMUMIN:
546 case TGSI_OPCODE_ATOMUMAX:
547 case TGSI_OPCODE_ATOMDEC_WRAP:
548 case TGSI_OPCODE_ATOMINC_WRAP:
549 case TGSI_OPCODE_UBFE:
550 case TGSI_OPCODE_UMSB:
551 case TGSI_OPCODE_UP2H:
552 case TGSI_OPCODE_VOTE_ALL:
553 case TGSI_OPCODE_VOTE_ANY:
554 case TGSI_OPCODE_VOTE_EQ:
555 return nv50_ir::TYPE_U32;
556 case TGSI_OPCODE_I2F:
557 case TGSI_OPCODE_I2D:
558 case TGSI_OPCODE_I2I64:
559 case TGSI_OPCODE_IDIV:
560 case TGSI_OPCODE_IMUL_HI:
561 case TGSI_OPCODE_IMAX:
562 case TGSI_OPCODE_IMIN:
563 case TGSI_OPCODE_IABS:
564 case TGSI_OPCODE_INEG:
565 case TGSI_OPCODE_ISGE:
566 case TGSI_OPCODE_ISHR:
567 case TGSI_OPCODE_ISLT:
568 case TGSI_OPCODE_ISSG:
569 case TGSI_OPCODE_MOD:
570 case TGSI_OPCODE_UARL:
571 case TGSI_OPCODE_ATOMIMIN:
572 case TGSI_OPCODE_ATOMIMAX:
573 case TGSI_OPCODE_IBFE:
574 case TGSI_OPCODE_IMSB:
575 return nv50_ir::TYPE_S32;
576 case TGSI_OPCODE_D2F:
577 case TGSI_OPCODE_D2I:
578 case TGSI_OPCODE_D2U:
579 case TGSI_OPCODE_D2I64:
580 case TGSI_OPCODE_D2U64:
581 case TGSI_OPCODE_DABS:
582 case TGSI_OPCODE_DNEG:
583 case TGSI_OPCODE_DADD:
584 case TGSI_OPCODE_DMUL:
585 case TGSI_OPCODE_DDIV:
586 case TGSI_OPCODE_DMAX:
587 case TGSI_OPCODE_DMIN:
588 case TGSI_OPCODE_DSLT:
589 case TGSI_OPCODE_DSGE:
590 case TGSI_OPCODE_DSEQ:
591 case TGSI_OPCODE_DSNE:
592 case TGSI_OPCODE_DRCP:
593 case TGSI_OPCODE_DSQRT:
594 case TGSI_OPCODE_DMAD:
595 case TGSI_OPCODE_DFMA:
596 case TGSI_OPCODE_DFRAC:
597 case TGSI_OPCODE_DRSQ:
598 case TGSI_OPCODE_DTRUNC:
599 case TGSI_OPCODE_DCEIL:
600 case TGSI_OPCODE_DFLR:
601 case TGSI_OPCODE_DROUND:
602 return nv50_ir::TYPE_F64;
603 case TGSI_OPCODE_U64SEQ:
604 case TGSI_OPCODE_U64SNE:
605 case TGSI_OPCODE_U64SLT:
606 case TGSI_OPCODE_U64SGE:
607 case TGSI_OPCODE_U64MIN:
608 case TGSI_OPCODE_U64MAX:
609 case TGSI_OPCODE_U64ADD:
610 case TGSI_OPCODE_U64MUL:
611 case TGSI_OPCODE_U64SHL:
612 case TGSI_OPCODE_U64SHR:
613 case TGSI_OPCODE_U64DIV:
614 case TGSI_OPCODE_U64MOD:
615 case TGSI_OPCODE_U642F:
616 case TGSI_OPCODE_U642D:
617 return nv50_ir::TYPE_U64;
618 case TGSI_OPCODE_I64ABS:
619 case TGSI_OPCODE_I64SSG:
620 case TGSI_OPCODE_I64NEG:
621 case TGSI_OPCODE_I64SLT:
622 case TGSI_OPCODE_I64SGE:
623 case TGSI_OPCODE_I64MIN:
624 case TGSI_OPCODE_I64MAX:
625 case TGSI_OPCODE_I64SHR:
626 case TGSI_OPCODE_I64DIV:
627 case TGSI_OPCODE_I64MOD:
628 case TGSI_OPCODE_I642F:
629 case TGSI_OPCODE_I642D:
630 return nv50_ir::TYPE_S64;
631 default:
632 return nv50_ir::TYPE_F32;
633 }
634 }
635
636 nv50_ir::DataType Instruction::inferDstType() const
637 {
638 switch (getOpcode()) {
639 case TGSI_OPCODE_D2U:
640 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
641 case TGSI_OPCODE_D2I:
642 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
643 case TGSI_OPCODE_FSEQ:
644 case TGSI_OPCODE_FSGE:
645 case TGSI_OPCODE_FSLT:
646 case TGSI_OPCODE_FSNE:
647 case TGSI_OPCODE_DSEQ:
648 case TGSI_OPCODE_DSGE:
649 case TGSI_OPCODE_DSLT:
650 case TGSI_OPCODE_DSNE:
651 case TGSI_OPCODE_I64SLT:
652 case TGSI_OPCODE_I64SGE:
653 case TGSI_OPCODE_U64SEQ:
654 case TGSI_OPCODE_U64SNE:
655 case TGSI_OPCODE_U64SLT:
656 case TGSI_OPCODE_U64SGE:
657 case TGSI_OPCODE_PK2H:
658 return nv50_ir::TYPE_U32;
659 case TGSI_OPCODE_I2F:
660 case TGSI_OPCODE_U2F:
661 case TGSI_OPCODE_D2F:
662 case TGSI_OPCODE_I642F:
663 case TGSI_OPCODE_U642F:
664 case TGSI_OPCODE_UP2H:
665 return nv50_ir::TYPE_F32;
666 case TGSI_OPCODE_I2D:
667 case TGSI_OPCODE_U2D:
668 case TGSI_OPCODE_F2D:
669 case TGSI_OPCODE_I642D:
670 case TGSI_OPCODE_U642D:
671 return nv50_ir::TYPE_F64;
672 case TGSI_OPCODE_I2I64:
673 case TGSI_OPCODE_U2I64:
674 case TGSI_OPCODE_F2I64:
675 case TGSI_OPCODE_D2I64:
676 return nv50_ir::TYPE_S64;
677 case TGSI_OPCODE_F2U64:
678 case TGSI_OPCODE_D2U64:
679 return nv50_ir::TYPE_U64;
680 default:
681 return inferSrcType();
682 }
683 }
684
685 nv50_ir::CondCode Instruction::getSetCond() const
686 {
687 using namespace nv50_ir;
688
689 switch (getOpcode()) {
690 case TGSI_OPCODE_SLT:
691 case TGSI_OPCODE_ISLT:
692 case TGSI_OPCODE_USLT:
693 case TGSI_OPCODE_FSLT:
694 case TGSI_OPCODE_DSLT:
695 case TGSI_OPCODE_I64SLT:
696 case TGSI_OPCODE_U64SLT:
697 return CC_LT;
698 case TGSI_OPCODE_SLE:
699 return CC_LE;
700 case TGSI_OPCODE_SGE:
701 case TGSI_OPCODE_ISGE:
702 case TGSI_OPCODE_USGE:
703 case TGSI_OPCODE_FSGE:
704 case TGSI_OPCODE_DSGE:
705 case TGSI_OPCODE_I64SGE:
706 case TGSI_OPCODE_U64SGE:
707 return CC_GE;
708 case TGSI_OPCODE_SGT:
709 return CC_GT;
710 case TGSI_OPCODE_SEQ:
711 case TGSI_OPCODE_USEQ:
712 case TGSI_OPCODE_FSEQ:
713 case TGSI_OPCODE_DSEQ:
714 case TGSI_OPCODE_U64SEQ:
715 return CC_EQ;
716 case TGSI_OPCODE_SNE:
717 case TGSI_OPCODE_FSNE:
718 case TGSI_OPCODE_DSNE:
719 case TGSI_OPCODE_U64SNE:
720 return CC_NEU;
721 case TGSI_OPCODE_USNE:
722 return CC_NE;
723 default:
724 return CC_ALWAYS;
725 }
726 }
727
728 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
729
730 static nv50_ir::operation translateOpcode(uint opcode)
731 {
732 switch (opcode) {
733 NV50_IR_OPCODE_CASE(ARL, SHL);
734 NV50_IR_OPCODE_CASE(MOV, MOV);
735
736 NV50_IR_OPCODE_CASE(RCP, RCP);
737 NV50_IR_OPCODE_CASE(RSQ, RSQ);
738 NV50_IR_OPCODE_CASE(SQRT, SQRT);
739
740 NV50_IR_OPCODE_CASE(MUL, MUL);
741 NV50_IR_OPCODE_CASE(ADD, ADD);
742
743 NV50_IR_OPCODE_CASE(MIN, MIN);
744 NV50_IR_OPCODE_CASE(MAX, MAX);
745 NV50_IR_OPCODE_CASE(SLT, SET);
746 NV50_IR_OPCODE_CASE(SGE, SET);
747 NV50_IR_OPCODE_CASE(MAD, MAD);
748 NV50_IR_OPCODE_CASE(FMA, FMA);
749
750 NV50_IR_OPCODE_CASE(FLR, FLOOR);
751 NV50_IR_OPCODE_CASE(ROUND, CVT);
752 NV50_IR_OPCODE_CASE(EX2, EX2);
753 NV50_IR_OPCODE_CASE(LG2, LG2);
754 NV50_IR_OPCODE_CASE(POW, POW);
755
756 NV50_IR_OPCODE_CASE(COS, COS);
757 NV50_IR_OPCODE_CASE(DDX, DFDX);
758 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
759 NV50_IR_OPCODE_CASE(DDY, DFDY);
760 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
761 NV50_IR_OPCODE_CASE(KILL, DISCARD);
762 NV50_IR_OPCODE_CASE(DEMOTE, DISCARD);
763
764 NV50_IR_OPCODE_CASE(SEQ, SET);
765 NV50_IR_OPCODE_CASE(SGT, SET);
766 NV50_IR_OPCODE_CASE(SIN, SIN);
767 NV50_IR_OPCODE_CASE(SLE, SET);
768 NV50_IR_OPCODE_CASE(SNE, SET);
769 NV50_IR_OPCODE_CASE(TEX, TEX);
770 NV50_IR_OPCODE_CASE(TXD, TXD);
771 NV50_IR_OPCODE_CASE(TXP, TEX);
772
773 NV50_IR_OPCODE_CASE(CAL, CALL);
774 NV50_IR_OPCODE_CASE(RET, RET);
775 NV50_IR_OPCODE_CASE(CMP, SLCT);
776
777 NV50_IR_OPCODE_CASE(TXB, TXB);
778
779 NV50_IR_OPCODE_CASE(DIV, DIV);
780
781 NV50_IR_OPCODE_CASE(TXL, TXL);
782 NV50_IR_OPCODE_CASE(TEX_LZ, TXL);
783
784 NV50_IR_OPCODE_CASE(CEIL, CEIL);
785 NV50_IR_OPCODE_CASE(I2F, CVT);
786 NV50_IR_OPCODE_CASE(NOT, NOT);
787 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
788 NV50_IR_OPCODE_CASE(SHL, SHL);
789
790 NV50_IR_OPCODE_CASE(AND, AND);
791 NV50_IR_OPCODE_CASE(OR, OR);
792 NV50_IR_OPCODE_CASE(MOD, MOD);
793 NV50_IR_OPCODE_CASE(XOR, XOR);
794 NV50_IR_OPCODE_CASE(TXF, TXF);
795 NV50_IR_OPCODE_CASE(TXF_LZ, TXF);
796 NV50_IR_OPCODE_CASE(TXQ, TXQ);
797 NV50_IR_OPCODE_CASE(TXQS, TXQ);
798 NV50_IR_OPCODE_CASE(TG4, TXG);
799 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
800
801 NV50_IR_OPCODE_CASE(EMIT, EMIT);
802 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
803
804 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
805
806 NV50_IR_OPCODE_CASE(F2I, CVT);
807 NV50_IR_OPCODE_CASE(FSEQ, SET);
808 NV50_IR_OPCODE_CASE(FSGE, SET);
809 NV50_IR_OPCODE_CASE(FSLT, SET);
810 NV50_IR_OPCODE_CASE(FSNE, SET);
811 NV50_IR_OPCODE_CASE(IDIV, DIV);
812 NV50_IR_OPCODE_CASE(IMAX, MAX);
813 NV50_IR_OPCODE_CASE(IMIN, MIN);
814 NV50_IR_OPCODE_CASE(IABS, ABS);
815 NV50_IR_OPCODE_CASE(INEG, NEG);
816 NV50_IR_OPCODE_CASE(ISGE, SET);
817 NV50_IR_OPCODE_CASE(ISHR, SHR);
818 NV50_IR_OPCODE_CASE(ISLT, SET);
819 NV50_IR_OPCODE_CASE(F2U, CVT);
820 NV50_IR_OPCODE_CASE(U2F, CVT);
821 NV50_IR_OPCODE_CASE(UADD, ADD);
822 NV50_IR_OPCODE_CASE(UDIV, DIV);
823 NV50_IR_OPCODE_CASE(UMAD, MAD);
824 NV50_IR_OPCODE_CASE(UMAX, MAX);
825 NV50_IR_OPCODE_CASE(UMIN, MIN);
826 NV50_IR_OPCODE_CASE(UMOD, MOD);
827 NV50_IR_OPCODE_CASE(UMUL, MUL);
828 NV50_IR_OPCODE_CASE(USEQ, SET);
829 NV50_IR_OPCODE_CASE(USGE, SET);
830 NV50_IR_OPCODE_CASE(USHR, SHR);
831 NV50_IR_OPCODE_CASE(USLT, SET);
832 NV50_IR_OPCODE_CASE(USNE, SET);
833
834 NV50_IR_OPCODE_CASE(DABS, ABS);
835 NV50_IR_OPCODE_CASE(DNEG, NEG);
836 NV50_IR_OPCODE_CASE(DADD, ADD);
837 NV50_IR_OPCODE_CASE(DMUL, MUL);
838 NV50_IR_OPCODE_CASE(DDIV, DIV);
839 NV50_IR_OPCODE_CASE(DMAX, MAX);
840 NV50_IR_OPCODE_CASE(DMIN, MIN);
841 NV50_IR_OPCODE_CASE(DSLT, SET);
842 NV50_IR_OPCODE_CASE(DSGE, SET);
843 NV50_IR_OPCODE_CASE(DSEQ, SET);
844 NV50_IR_OPCODE_CASE(DSNE, SET);
845 NV50_IR_OPCODE_CASE(DRCP, RCP);
846 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
847 NV50_IR_OPCODE_CASE(DMAD, MAD);
848 NV50_IR_OPCODE_CASE(DFMA, FMA);
849 NV50_IR_OPCODE_CASE(D2I, CVT);
850 NV50_IR_OPCODE_CASE(D2U, CVT);
851 NV50_IR_OPCODE_CASE(I2D, CVT);
852 NV50_IR_OPCODE_CASE(U2D, CVT);
853 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
854 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
855 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
856 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
857 NV50_IR_OPCODE_CASE(DROUND, CVT);
858
859 NV50_IR_OPCODE_CASE(U64SEQ, SET);
860 NV50_IR_OPCODE_CASE(U64SNE, SET);
861 NV50_IR_OPCODE_CASE(U64SLT, SET);
862 NV50_IR_OPCODE_CASE(U64SGE, SET);
863 NV50_IR_OPCODE_CASE(I64SLT, SET);
864 NV50_IR_OPCODE_CASE(I64SGE, SET);
865 NV50_IR_OPCODE_CASE(I2I64, CVT);
866 NV50_IR_OPCODE_CASE(U2I64, CVT);
867 NV50_IR_OPCODE_CASE(F2I64, CVT);
868 NV50_IR_OPCODE_CASE(F2U64, CVT);
869 NV50_IR_OPCODE_CASE(D2I64, CVT);
870 NV50_IR_OPCODE_CASE(D2U64, CVT);
871 NV50_IR_OPCODE_CASE(I642F, CVT);
872 NV50_IR_OPCODE_CASE(U642F, CVT);
873 NV50_IR_OPCODE_CASE(I642D, CVT);
874 NV50_IR_OPCODE_CASE(U642D, CVT);
875
876 NV50_IR_OPCODE_CASE(I64MIN, MIN);
877 NV50_IR_OPCODE_CASE(U64MIN, MIN);
878 NV50_IR_OPCODE_CASE(I64MAX, MAX);
879 NV50_IR_OPCODE_CASE(U64MAX, MAX);
880 NV50_IR_OPCODE_CASE(I64ABS, ABS);
881 NV50_IR_OPCODE_CASE(I64NEG, NEG);
882 NV50_IR_OPCODE_CASE(U64ADD, ADD);
883 NV50_IR_OPCODE_CASE(U64MUL, MUL);
884 NV50_IR_OPCODE_CASE(U64SHL, SHL);
885 NV50_IR_OPCODE_CASE(I64SHR, SHR);
886 NV50_IR_OPCODE_CASE(U64SHR, SHR);
887
888 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
889 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
890
891 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
892 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
893 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
894 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
895 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
896 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
897 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
898 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
899 NV50_IR_OPCODE_CASE(GATHER4, TXG);
900 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
901
902 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
903 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
904 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
905 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
906 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
907 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
908 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
909 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
910 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
911 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
912 NV50_IR_OPCODE_CASE(ATOMFADD, ATOM);
913 NV50_IR_OPCODE_CASE(ATOMDEC_WRAP, ATOM);
914 NV50_IR_OPCODE_CASE(ATOMINC_WRAP, ATOM);
915
916 NV50_IR_OPCODE_CASE(TEX2, TEX);
917 NV50_IR_OPCODE_CASE(TXB2, TXB);
918 NV50_IR_OPCODE_CASE(TXL2, TXL);
919
920 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
921 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
922 NV50_IR_OPCODE_CASE(BFI, INSBF);
923 NV50_IR_OPCODE_CASE(BREV, EXTBF);
924 NV50_IR_OPCODE_CASE(POPC, POPCNT);
925 NV50_IR_OPCODE_CASE(LSB, BFIND);
926 NV50_IR_OPCODE_CASE(IMSB, BFIND);
927 NV50_IR_OPCODE_CASE(UMSB, BFIND);
928
929 NV50_IR_OPCODE_CASE(VOTE_ALL, VOTE);
930 NV50_IR_OPCODE_CASE(VOTE_ANY, VOTE);
931 NV50_IR_OPCODE_CASE(VOTE_EQ, VOTE);
932
933 NV50_IR_OPCODE_CASE(BALLOT, VOTE);
934 NV50_IR_OPCODE_CASE(READ_INVOC, SHFL);
935 NV50_IR_OPCODE_CASE(READ_FIRST, SHFL);
936
937 NV50_IR_OPCODE_CASE(END, EXIT);
938
939 default:
940 return nv50_ir::OP_NOP;
941 }
942 }
943
944 static uint16_t opcodeToSubOp(uint opcode)
945 {
946 switch (opcode) {
947 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
948 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
949 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
950 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
951 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
952 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
953 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
954 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
955 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
956 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
957 case TGSI_OPCODE_ATOMFADD: return NV50_IR_SUBOP_ATOM_ADD;
958 case TGSI_OPCODE_ATOMDEC_WRAP: return NV50_IR_SUBOP_ATOM_DEC;
959 case TGSI_OPCODE_ATOMINC_WRAP: return NV50_IR_SUBOP_ATOM_INC;
960 case TGSI_OPCODE_IMUL_HI:
961 case TGSI_OPCODE_UMUL_HI:
962 return NV50_IR_SUBOP_MUL_HIGH;
963 case TGSI_OPCODE_VOTE_ALL: return NV50_IR_SUBOP_VOTE_ALL;
964 case TGSI_OPCODE_VOTE_ANY: return NV50_IR_SUBOP_VOTE_ANY;
965 case TGSI_OPCODE_VOTE_EQ: return NV50_IR_SUBOP_VOTE_UNI;
966 default:
967 return 0;
968 }
969 }
970
971 bool Instruction::checkDstSrcAliasing() const
972 {
973 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
974 return false;
975
976 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
977 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
978 break;
979 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
980 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
981 return true;
982 }
983 return false;
984 }
985
986 class Source
987 {
988 public:
989 Source(struct nv50_ir_prog_info *);
990 ~Source();
991
992 public:
993 bool scanSource();
994 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
995
996 public:
997 struct tgsi_shader_info scan;
998 struct tgsi_full_instruction *insns;
999 const struct tgsi_token *tokens;
1000 struct nv50_ir_prog_info *info;
1001
1002 nv50_ir::DynArray tempArrays;
1003 nv50_ir::DynArray immdArrays;
1004
1005 typedef nv50_ir::BuildUtil::Location Location;
1006 // these registers are per-subroutine, cannot be used for parameter passing
1007 std::set<Location> locals;
1008
1009 std::set<int> indirectTempArrays;
1010 std::map<int, int> indirectTempOffsets;
1011 std::map<int, std::pair<int, int> > tempArrayInfo;
1012 std::vector<int> tempArrayId;
1013
1014 int clipVertexOutput;
1015
1016 struct TextureView {
1017 uint8_t target; // TGSI_TEXTURE_*
1018 };
1019 std::vector<TextureView> textureViews;
1020
1021 /*
1022 struct Resource {
1023 uint8_t target; // TGSI_TEXTURE_*
1024 bool raw;
1025 uint8_t slot; // $surface index
1026 };
1027 std::vector<Resource> resources;
1028 */
1029
1030 struct MemoryFile {
1031 uint8_t mem_type; // TGSI_MEMORY_TYPE_*
1032 };
1033 std::vector<MemoryFile> memoryFiles;
1034
1035 std::vector<bool> bufferAtomics;
1036
1037 private:
1038 int inferSysValDirection(unsigned sn) const;
1039 bool scanDeclaration(const struct tgsi_full_declaration *);
1040 bool scanInstruction(const struct tgsi_full_instruction *);
1041 void scanInstructionSrc(const Instruction& insn,
1042 const Instruction::SrcRegister& src,
1043 unsigned mask);
1044 void scanProperty(const struct tgsi_full_property *);
1045 void scanImmediate(const struct tgsi_full_immediate *);
1046
1047 inline bool isEdgeFlagPassthrough(const Instruction&) const;
1048 };
1049
1050 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
1051 {
1052 tokens = (const struct tgsi_token *)info->bin.source;
1053
1054 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
1055 tgsi_dump(tokens, 0);
1056 }
1057
1058 Source::~Source()
1059 {
1060 if (insns)
1061 FREE(insns);
1062
1063 if (info->immd.data)
1064 FREE(info->immd.data);
1065 if (info->immd.type)
1066 FREE(info->immd.type);
1067 }
1068
1069 bool Source::scanSource()
1070 {
1071 unsigned insnCount = 0;
1072 struct tgsi_parse_context parse;
1073
1074 tgsi_scan_shader(tokens, &scan);
1075
1076 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
1077 sizeof(insns[0]));
1078 if (!insns)
1079 return false;
1080
1081 clipVertexOutput = -1;
1082
1083 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
1084 //resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
1085 tempArrayId.resize(scan.file_max[TGSI_FILE_TEMPORARY] + 1);
1086 memoryFiles.resize(scan.file_max[TGSI_FILE_MEMORY] + 1);
1087 bufferAtomics.resize(scan.file_max[TGSI_FILE_BUFFER] + 1);
1088
1089 info->immd.bufSize = 0;
1090
1091 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
1092 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
1093 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
1094
1095 if (info->type == PIPE_SHADER_FRAGMENT) {
1096 info->prop.fp.writesDepth = scan.writes_z;
1097 info->prop.fp.usesDiscard = scan.uses_kill || info->io.alphaRefBase;
1098 } else
1099 if (info->type == PIPE_SHADER_GEOMETRY) {
1100 info->prop.gp.instanceCount = 1; // default value
1101 }
1102
1103 info->io.viewportId = -1;
1104
1105 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
1106 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
1107
1108 tgsi_parse_init(&parse, tokens);
1109 while (!tgsi_parse_end_of_tokens(&parse)) {
1110 tgsi_parse_token(&parse);
1111
1112 switch (parse.FullToken.Token.Type) {
1113 case TGSI_TOKEN_TYPE_IMMEDIATE:
1114 scanImmediate(&parse.FullToken.FullImmediate);
1115 break;
1116 case TGSI_TOKEN_TYPE_DECLARATION:
1117 scanDeclaration(&parse.FullToken.FullDeclaration);
1118 break;
1119 case TGSI_TOKEN_TYPE_INSTRUCTION:
1120 insns[insnCount++] = parse.FullToken.FullInstruction;
1121 scanInstruction(&parse.FullToken.FullInstruction);
1122 break;
1123 case TGSI_TOKEN_TYPE_PROPERTY:
1124 scanProperty(&parse.FullToken.FullProperty);
1125 break;
1126 default:
1127 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
1128 break;
1129 }
1130 }
1131 tgsi_parse_free(&parse);
1132
1133 if (indirectTempArrays.size()) {
1134 int tempBase = 0;
1135 for (std::set<int>::const_iterator it = indirectTempArrays.begin();
1136 it != indirectTempArrays.end(); ++it) {
1137 std::pair<int, int>& info = tempArrayInfo[*it];
1138 indirectTempOffsets.insert(std::make_pair(*it, tempBase - info.first));
1139 tempBase += info.second;
1140 }
1141 info->bin.tlsSpace += tempBase * 16;
1142 }
1143
1144 if (info->io.genUserClip > 0) {
1145 info->io.clipDistances = info->io.genUserClip;
1146
1147 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
1148
1149 for (unsigned int n = 0; n < nOut; ++n) {
1150 unsigned int i = info->numOutputs++;
1151 info->out[i].id = i;
1152 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
1153 info->out[i].si = n;
1154 info->out[i].mask = ((1 << info->io.clipDistances) - 1) >> (n * 4);
1155 }
1156 }
1157
1158 return info->assignSlots(info) == 0;
1159 }
1160
1161 void Source::scanProperty(const struct tgsi_full_property *prop)
1162 {
1163 switch (prop->Property.PropertyName) {
1164 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
1165 info->prop.gp.outputPrim = prop->u[0].Data;
1166 break;
1167 case TGSI_PROPERTY_GS_INPUT_PRIM:
1168 info->prop.gp.inputPrim = prop->u[0].Data;
1169 break;
1170 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
1171 info->prop.gp.maxVertices = prop->u[0].Data;
1172 break;
1173 case TGSI_PROPERTY_GS_INVOCATIONS:
1174 info->prop.gp.instanceCount = prop->u[0].Data;
1175 break;
1176 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
1177 info->prop.fp.separateFragData = true;
1178 break;
1179 case TGSI_PROPERTY_FS_COORD_ORIGIN:
1180 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
1181 case TGSI_PROPERTY_FS_DEPTH_LAYOUT:
1182 // we don't care
1183 break;
1184 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
1185 info->io.genUserClip = -1;
1186 break;
1187 case TGSI_PROPERTY_TCS_VERTICES_OUT:
1188 info->prop.tp.outputPatchSize = prop->u[0].Data;
1189 break;
1190 case TGSI_PROPERTY_TES_PRIM_MODE:
1191 info->prop.tp.domain = prop->u[0].Data;
1192 break;
1193 case TGSI_PROPERTY_TES_SPACING:
1194 info->prop.tp.partitioning = prop->u[0].Data;
1195 break;
1196 case TGSI_PROPERTY_TES_VERTEX_ORDER_CW:
1197 info->prop.tp.winding = prop->u[0].Data;
1198 break;
1199 case TGSI_PROPERTY_TES_POINT_MODE:
1200 if (prop->u[0].Data)
1201 info->prop.tp.outputPrim = PIPE_PRIM_POINTS;
1202 else
1203 info->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */
1204 break;
1205 case TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH:
1206 info->prop.cp.numThreads[0] = prop->u[0].Data;
1207 break;
1208 case TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT:
1209 info->prop.cp.numThreads[1] = prop->u[0].Data;
1210 break;
1211 case TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH:
1212 info->prop.cp.numThreads[2] = prop->u[0].Data;
1213 break;
1214 case TGSI_PROPERTY_NUM_CLIPDIST_ENABLED:
1215 info->io.clipDistances = prop->u[0].Data;
1216 break;
1217 case TGSI_PROPERTY_NUM_CULLDIST_ENABLED:
1218 info->io.cullDistances = prop->u[0].Data;
1219 break;
1220 case TGSI_PROPERTY_NEXT_SHADER:
1221 /* Do not need to know the next shader stage. */
1222 break;
1223 case TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL:
1224 info->prop.fp.earlyFragTests = prop->u[0].Data;
1225 break;
1226 case TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE:
1227 info->prop.fp.postDepthCoverage = prop->u[0].Data;
1228 break;
1229 case TGSI_PROPERTY_MUL_ZERO_WINS:
1230 info->io.mul_zero_wins = prop->u[0].Data;
1231 break;
1232 default:
1233 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
1234 break;
1235 }
1236 }
1237
1238 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
1239 {
1240 const unsigned n = info->immd.count++;
1241
1242 assert(n < scan.immediate_count);
1243
1244 for (int c = 0; c < 4; ++c)
1245 info->immd.data[n * 4 + c] = imm->u[c].Uint;
1246
1247 info->immd.type[n] = imm->Immediate.DataType;
1248 }
1249
1250 int Source::inferSysValDirection(unsigned sn) const
1251 {
1252 switch (sn) {
1253 case TGSI_SEMANTIC_INSTANCEID:
1254 case TGSI_SEMANTIC_VERTEXID:
1255 return 1;
1256 case TGSI_SEMANTIC_LAYER:
1257 #if 0
1258 case TGSI_SEMANTIC_VIEWPORTINDEX:
1259 return 0;
1260 #endif
1261 case TGSI_SEMANTIC_PRIMID:
1262 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
1263 default:
1264 return 0;
1265 }
1266 }
1267
1268 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
1269 {
1270 unsigned i, c;
1271 unsigned sn = TGSI_SEMANTIC_GENERIC;
1272 unsigned si = 0;
1273 const unsigned first = decl->Range.First, last = decl->Range.Last;
1274 const int arrayId = decl->Array.ArrayID;
1275
1276 if (decl->Declaration.Semantic) {
1277 sn = decl->Semantic.Name;
1278 si = decl->Semantic.Index;
1279 }
1280
1281 if (decl->Declaration.Local || decl->Declaration.File == TGSI_FILE_ADDRESS) {
1282 for (i = first; i <= last; ++i) {
1283 for (c = 0; c < 4; ++c) {
1284 locals.insert(
1285 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1286 }
1287 }
1288 }
1289
1290 switch (decl->Declaration.File) {
1291 case TGSI_FILE_INPUT:
1292 if (info->type == PIPE_SHADER_VERTEX) {
1293 // all vertex attributes are equal
1294 for (i = first; i <= last; ++i) {
1295 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1296 info->in[i].si = i;
1297 }
1298 } else {
1299 for (i = first; i <= last; ++i, ++si) {
1300 info->in[i].id = i;
1301 info->in[i].sn = sn;
1302 info->in[i].si = si;
1303 if (info->type == PIPE_SHADER_FRAGMENT) {
1304 // translate interpolation mode
1305 switch (decl->Interp.Interpolate) {
1306 case TGSI_INTERPOLATE_CONSTANT:
1307 info->in[i].flat = 1;
1308 break;
1309 case TGSI_INTERPOLATE_COLOR:
1310 info->in[i].sc = 1;
1311 break;
1312 case TGSI_INTERPOLATE_LINEAR:
1313 info->in[i].linear = 1;
1314 break;
1315 default:
1316 break;
1317 }
1318 if (decl->Interp.Location)
1319 info->in[i].centroid = 1;
1320 }
1321
1322 if (sn == TGSI_SEMANTIC_PATCH)
1323 info->in[i].patch = 1;
1324 if (sn == TGSI_SEMANTIC_PATCH)
1325 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1326 }
1327 }
1328 break;
1329 case TGSI_FILE_OUTPUT:
1330 for (i = first; i <= last; ++i, ++si) {
1331 switch (sn) {
1332 case TGSI_SEMANTIC_POSITION:
1333 if (info->type == PIPE_SHADER_FRAGMENT)
1334 info->io.fragDepth = i;
1335 else
1336 if (clipVertexOutput < 0)
1337 clipVertexOutput = i;
1338 break;
1339 case TGSI_SEMANTIC_COLOR:
1340 if (info->type == PIPE_SHADER_FRAGMENT)
1341 info->prop.fp.numColourResults++;
1342 break;
1343 case TGSI_SEMANTIC_EDGEFLAG:
1344 info->io.edgeFlagOut = i;
1345 break;
1346 case TGSI_SEMANTIC_CLIPVERTEX:
1347 clipVertexOutput = i;
1348 break;
1349 case TGSI_SEMANTIC_CLIPDIST:
1350 info->io.genUserClip = -1;
1351 break;
1352 case TGSI_SEMANTIC_SAMPLEMASK:
1353 info->io.sampleMask = i;
1354 break;
1355 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1356 info->io.viewportId = i;
1357 break;
1358 case TGSI_SEMANTIC_PATCH:
1359 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1360 /* fallthrough */
1361 case TGSI_SEMANTIC_TESSOUTER:
1362 case TGSI_SEMANTIC_TESSINNER:
1363 info->out[i].patch = 1;
1364 break;
1365 default:
1366 break;
1367 }
1368 info->out[i].id = i;
1369 info->out[i].sn = sn;
1370 info->out[i].si = si;
1371 }
1372 break;
1373 case TGSI_FILE_SYSTEM_VALUE:
1374 switch (sn) {
1375 case TGSI_SEMANTIC_INSTANCEID:
1376 info->io.instanceId = first;
1377 break;
1378 case TGSI_SEMANTIC_VERTEXID:
1379 info->io.vertexId = first;
1380 break;
1381 case TGSI_SEMANTIC_BASEVERTEX:
1382 case TGSI_SEMANTIC_BASEINSTANCE:
1383 case TGSI_SEMANTIC_DRAWID:
1384 info->prop.vp.usesDrawParameters = true;
1385 break;
1386 case TGSI_SEMANTIC_SAMPLEID:
1387 case TGSI_SEMANTIC_SAMPLEPOS:
1388 info->prop.fp.persampleInvocation = true;
1389 break;
1390 case TGSI_SEMANTIC_SAMPLEMASK:
1391 info->prop.fp.usesSampleMaskIn = true;
1392 break;
1393 default:
1394 break;
1395 }
1396 for (i = first; i <= last; ++i, ++si) {
1397 info->sv[i].sn = sn;
1398 info->sv[i].si = si;
1399 info->sv[i].input = inferSysValDirection(sn);
1400
1401 switch (sn) {
1402 case TGSI_SEMANTIC_TESSOUTER:
1403 case TGSI_SEMANTIC_TESSINNER:
1404 info->sv[i].patch = 1;
1405 break;
1406 }
1407 }
1408 break;
1409 /*
1410 case TGSI_FILE_RESOURCE:
1411 for (i = first; i <= last; ++i) {
1412 resources[i].target = decl->Resource.Resource;
1413 resources[i].raw = decl->Resource.Raw;
1414 resources[i].slot = i;
1415 }
1416 break;
1417 */
1418 case TGSI_FILE_SAMPLER_VIEW:
1419 for (i = first; i <= last; ++i)
1420 textureViews[i].target = decl->SamplerView.Resource;
1421 break;
1422 case TGSI_FILE_MEMORY:
1423 for (i = first; i <= last; ++i)
1424 memoryFiles[i].mem_type = decl->Declaration.MemType;
1425 break;
1426 case TGSI_FILE_NULL:
1427 case TGSI_FILE_TEMPORARY:
1428 for (i = first; i <= last; ++i)
1429 tempArrayId[i] = arrayId;
1430 if (arrayId)
1431 tempArrayInfo.insert(std::make_pair(arrayId, std::make_pair(
1432 first, last - first + 1)));
1433 break;
1434 case TGSI_FILE_BUFFER:
1435 for (i = first; i <= last; ++i)
1436 bufferAtomics[i] = decl->Declaration.Atomic;
1437 break;
1438 case TGSI_FILE_ADDRESS:
1439 case TGSI_FILE_CONSTANT:
1440 case TGSI_FILE_IMMEDIATE:
1441 case TGSI_FILE_SAMPLER:
1442 case TGSI_FILE_IMAGE:
1443 break;
1444 default:
1445 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1446 return false;
1447 }
1448 return true;
1449 }
1450
1451 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1452 {
1453 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1454 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1455 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1456 }
1457
1458 void Source::scanInstructionSrc(const Instruction& insn,
1459 const Instruction::SrcRegister& src,
1460 unsigned mask)
1461 {
1462 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1463 if (src.isIndirect(0))
1464 indirectTempArrays.insert(src.getArrayId());
1465 } else
1466 if (src.getFile() == TGSI_FILE_OUTPUT) {
1467 if (src.isIndirect(0)) {
1468 // We don't know which one is accessed, just mark everything for
1469 // reading. This is an extremely unlikely occurrence.
1470 for (unsigned i = 0; i < info->numOutputs; ++i)
1471 info->out[i].oread = 1;
1472 } else {
1473 info->out[src.getIndex(0)].oread = 1;
1474 }
1475 }
1476 if (src.getFile() == TGSI_FILE_SYSTEM_VALUE) {
1477 if (info->sv[src.getIndex(0)].sn == TGSI_SEMANTIC_SAMPLEPOS)
1478 info->prop.fp.readsSampleLocations = true;
1479 }
1480 if (src.getFile() != TGSI_FILE_INPUT)
1481 return;
1482
1483 if (src.isIndirect(0)) {
1484 for (unsigned i = 0; i < info->numInputs; ++i)
1485 info->in[i].mask = 0xf;
1486 } else {
1487 const int i = src.getIndex(0);
1488 for (unsigned c = 0; c < 4; ++c) {
1489 if (!(mask & (1 << c)))
1490 continue;
1491 int k = src.getSwizzle(c);
1492 if (k <= TGSI_SWIZZLE_W)
1493 info->in[i].mask |= 1 << k;
1494 }
1495 switch (info->in[i].sn) {
1496 case TGSI_SEMANTIC_PSIZE:
1497 case TGSI_SEMANTIC_PRIMID:
1498 case TGSI_SEMANTIC_FOG:
1499 info->in[i].mask &= 0x1;
1500 break;
1501 case TGSI_SEMANTIC_PCOORD:
1502 info->in[i].mask &= 0x3;
1503 break;
1504 default:
1505 break;
1506 }
1507 }
1508 }
1509
1510 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1511 {
1512 Instruction insn(inst);
1513
1514 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1515 info->numBarriers = 1;
1516
1517 if (insn.getOpcode() == TGSI_OPCODE_FBFETCH)
1518 info->prop.fp.readsFramebuffer = true;
1519
1520 if (insn.getOpcode() == TGSI_OPCODE_INTERP_SAMPLE)
1521 info->prop.fp.readsSampleLocations = true;
1522
1523 if (insn.getOpcode() == TGSI_OPCODE_DEMOTE)
1524 info->prop.fp.usesDiscard = true;
1525
1526 if (insn.dstCount()) {
1527 Instruction::DstRegister dst = insn.getDst(0);
1528
1529 if (insn.getOpcode() == TGSI_OPCODE_STORE &&
1530 dst.getFile() != TGSI_FILE_MEMORY) {
1531 info->io.globalAccess |= 0x2;
1532
1533 if (dst.getFile() == TGSI_FILE_INPUT) {
1534 // TODO: Handle indirect somehow?
1535 const int i = dst.getIndex(0);
1536 info->in[i].mask |= 1;
1537 }
1538 }
1539
1540 if (dst.getFile() == TGSI_FILE_OUTPUT) {
1541 if (dst.isIndirect(0))
1542 for (unsigned i = 0; i < info->numOutputs; ++i)
1543 info->out[i].mask = 0xf;
1544 else
1545 info->out[dst.getIndex(0)].mask |= dst.getMask();
1546
1547 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1548 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1549 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1550 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1551 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1552 info->out[dst.getIndex(0)].mask &= 1;
1553
1554 if (isEdgeFlagPassthrough(insn))
1555 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1556 } else
1557 if (dst.getFile() == TGSI_FILE_TEMPORARY) {
1558 if (dst.isIndirect(0))
1559 indirectTempArrays.insert(dst.getArrayId());
1560 } else
1561 if (dst.getFile() == TGSI_FILE_BUFFER ||
1562 dst.getFile() == TGSI_FILE_IMAGE ||
1563 (dst.getFile() == TGSI_FILE_MEMORY &&
1564 memoryFiles[dst.getIndex(0)].mem_type == TGSI_MEMORY_TYPE_GLOBAL)) {
1565 info->io.globalAccess |= 0x2;
1566 }
1567 }
1568
1569 if (insn.srcCount() && (
1570 insn.getSrc(0).getFile() != TGSI_FILE_MEMORY ||
1571 memoryFiles[insn.getSrc(0).getIndex(0)].mem_type ==
1572 TGSI_MEMORY_TYPE_GLOBAL)) {
1573 switch (insn.getOpcode()) {
1574 case TGSI_OPCODE_ATOMUADD:
1575 case TGSI_OPCODE_ATOMXCHG:
1576 case TGSI_OPCODE_ATOMCAS:
1577 case TGSI_OPCODE_ATOMAND:
1578 case TGSI_OPCODE_ATOMOR:
1579 case TGSI_OPCODE_ATOMXOR:
1580 case TGSI_OPCODE_ATOMUMIN:
1581 case TGSI_OPCODE_ATOMIMIN:
1582 case TGSI_OPCODE_ATOMUMAX:
1583 case TGSI_OPCODE_ATOMIMAX:
1584 case TGSI_OPCODE_ATOMFADD:
1585 case TGSI_OPCODE_ATOMDEC_WRAP:
1586 case TGSI_OPCODE_ATOMINC_WRAP:
1587 case TGSI_OPCODE_LOAD:
1588 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1589 0x1 : 0x2;
1590 break;
1591 }
1592 }
1593
1594
1595 for (unsigned s = 0; s < insn.srcCount(); ++s)
1596 scanInstructionSrc(insn, insn.getSrc(s), insn.srcMask(s));
1597
1598 for (unsigned s = 0; s < insn.getNumTexOffsets(); ++s)
1599 scanInstructionSrc(insn, insn.getTexOffset(s), insn.texOffsetMask());
1600
1601 return true;
1602 }
1603
1604 nv50_ir::TexInstruction::Target
1605 Instruction::getTexture(const tgsi::Source *code, int s) const
1606 {
1607 // XXX: indirect access
1608 unsigned int r;
1609
1610 switch (getSrc(s).getFile()) {
1611 /*
1612 case TGSI_FILE_RESOURCE:
1613 r = getSrc(s).getIndex(0);
1614 return translateTexture(code->resources.at(r).target);
1615 */
1616 case TGSI_FILE_SAMPLER_VIEW:
1617 r = getSrc(s).getIndex(0);
1618 return translateTexture(code->textureViews.at(r).target);
1619 default:
1620 return translateTexture(insn->Texture.Texture);
1621 }
1622 }
1623
1624 } // namespace tgsi
1625
1626 namespace {
1627
1628 using namespace nv50_ir;
1629
1630 class Converter : public ConverterCommon
1631 {
1632 public:
1633 Converter(Program *, const tgsi::Source *);
1634 ~Converter();
1635
1636 bool run();
1637
1638 private:
1639 Value *shiftAddress(Value *);
1640 Value *getVertexBase(int s);
1641 Value *getOutputBase(int s);
1642 DataArray *getArrayForFile(unsigned file, int idx);
1643 Value *fetchSrc(int s, int c);
1644 Value *fetchDst(int d, int c);
1645 Value *acquireDst(int d, int c);
1646 void storeDst(int d, int c, Value *);
1647
1648 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1649 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1650 Value *val, Value *ptr);
1651
1652 void adjustTempIndex(int arrayId, int &idx, int &idx2d) const;
1653 Value *applySrcMod(Value *, int s, int c);
1654
1655 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1656 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1657 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1658
1659 bool isSubGroupMask(uint8_t semantic);
1660
1661 bool handleInstruction(const struct tgsi_full_instruction *);
1662 void exportOutputs();
1663 inline bool isEndOfSubroutine(uint ip);
1664
1665 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1666
1667 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1668 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1669 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1670 void handleTXF(Value *dst0[4], int R, int L_M);
1671 void handleTXQ(Value *dst0[4], enum TexQuery, int R);
1672 void handleFBFETCH(Value *dst0[4]);
1673 void handleLIT(Value *dst0[4]);
1674
1675 // Symbol *getResourceBase(int r);
1676 void getImageCoords(std::vector<Value *>&, int s);
1677
1678 void handleLOAD(Value *dst0[4]);
1679 void handleSTORE();
1680 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1681
1682 void handleINTERP(Value *dst0[4]);
1683
1684 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1685
1686 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1687
1688 Value *buildDot(int dim);
1689
1690 class BindArgumentsPass : public Pass {
1691 public:
1692 BindArgumentsPass(Converter &conv) : conv(conv) { }
1693
1694 private:
1695 Converter &conv;
1696 Subroutine *sub;
1697
1698 inline const Location *getValueLocation(Subroutine *, Value *);
1699
1700 template<typename T> inline void
1701 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1702 T (Function::*proto));
1703
1704 template<typename T> inline void
1705 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1706 T (Function::*proto));
1707
1708 protected:
1709 bool visit(Function *);
1710 bool visit(BasicBlock *bb) { return false; }
1711 };
1712
1713 private:
1714 const tgsi::Source *code;
1715
1716 uint ip; // instruction pointer
1717
1718 tgsi::Instruction tgsi;
1719
1720 DataType dstTy;
1721 DataType srcTy;
1722
1723 DataArray tData; // TGSI_FILE_TEMPORARY
1724 DataArray lData; // TGSI_FILE_TEMPORARY, for indirect arrays
1725 DataArray aData; // TGSI_FILE_ADDRESS
1726 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1727
1728 Value *zero;
1729
1730 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1731 uint8_t vtxBaseValid;
1732
1733 Stack condBBs; // fork BB, then else clause BB
1734 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1735 Stack loopBBs; // loop headers
1736 Stack breakBBs; // end of / after loop
1737
1738 Value *viewport;
1739 };
1740
1741 Symbol *
1742 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1743 {
1744 const int swz = src.getSwizzle(c);
1745
1746 /* TODO: Use Array ID when it's available for the index */
1747 return makeSym(src.getFile(),
1748 src.is2D() ? src.getIndex(1) : 0,
1749 src.getIndex(0), swz,
1750 src.getIndex(0) * 16 + swz * 4);
1751 }
1752
1753 Symbol *
1754 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1755 {
1756 /* TODO: Use Array ID when it's available for the index */
1757 return makeSym(dst.getFile(),
1758 dst.is2D() ? dst.getIndex(1) : 0,
1759 dst.getIndex(0), c,
1760 dst.getIndex(0) * 16 + c * 4);
1761 }
1762
1763 Symbol *
1764 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1765 {
1766 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1767
1768 sym->reg.fileIndex = fileIdx;
1769
1770 if (tgsiFile == TGSI_FILE_MEMORY) {
1771 switch (code->memoryFiles[fileIdx].mem_type) {
1772 case TGSI_MEMORY_TYPE_GLOBAL:
1773 /* No-op this is the default for TGSI_FILE_MEMORY */
1774 sym->setFile(FILE_MEMORY_GLOBAL);
1775 break;
1776 case TGSI_MEMORY_TYPE_SHARED:
1777 sym->setFile(FILE_MEMORY_SHARED);
1778 break;
1779 case TGSI_MEMORY_TYPE_INPUT:
1780 assert(prog->getType() == Program::TYPE_COMPUTE);
1781 assert(idx == -1);
1782 sym->setFile(FILE_SHADER_INPUT);
1783 address += info->prop.cp.inputOffset;
1784 break;
1785 default:
1786 assert(0); /* TODO: Add support for global and private memory */
1787 }
1788 }
1789
1790 if (idx >= 0) {
1791 if (sym->reg.file == FILE_SHADER_INPUT)
1792 sym->setOffset(info->in[idx].slot[c] * 4);
1793 else
1794 if (sym->reg.file == FILE_SHADER_OUTPUT)
1795 sym->setOffset(info->out[idx].slot[c] * 4);
1796 else
1797 if (sym->reg.file == FILE_SYSTEM_VALUE)
1798 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1799 else
1800 sym->setOffset(address);
1801 } else {
1802 sym->setOffset(address);
1803 }
1804 return sym;
1805 }
1806
1807 Value *
1808 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1809 {
1810 operation op;
1811
1812 // XXX: no way to know interpolation mode if we don't know what's accessed
1813 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1814 src.getIndex(0)], op);
1815
1816 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1817
1818 insn->setDef(0, getScratch());
1819 insn->setSrc(0, srcToSym(src, c));
1820 if (op == OP_PINTERP)
1821 insn->setSrc(1, fragCoord[3]);
1822 if (ptr)
1823 insn->setIndirect(0, 0, ptr);
1824
1825 insn->setInterpolate(mode);
1826
1827 bb->insertTail(insn);
1828 return insn->getDef(0);
1829 }
1830
1831 Value *
1832 Converter::applySrcMod(Value *val, int s, int c)
1833 {
1834 Modifier m = tgsi.getSrc(s).getMod(c);
1835 DataType ty = tgsi.inferSrcType();
1836
1837 if (m & Modifier(NV50_IR_MOD_ABS))
1838 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1839
1840 if (m & Modifier(NV50_IR_MOD_NEG))
1841 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1842
1843 return val;
1844 }
1845
1846 Value *
1847 Converter::getVertexBase(int s)
1848 {
1849 assert(s < 5);
1850 if (!(vtxBaseValid & (1 << s))) {
1851 const int index = tgsi.getSrc(s).getIndex(1);
1852 Value *rel = NULL;
1853 if (tgsi.getSrc(s).isIndirect(1))
1854 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1855 vtxBaseValid |= 1 << s;
1856 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1857 mkImm(index), rel);
1858 }
1859 return vtxBase[s];
1860 }
1861
1862 Value *
1863 Converter::getOutputBase(int s)
1864 {
1865 assert(s < 5);
1866 if (!(vtxBaseValid & (1 << s))) {
1867 Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1));
1868 if (tgsi.getSrc(s).isIndirect(1))
1869 offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(),
1870 fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL),
1871 offset);
1872 vtxBaseValid |= 1 << s;
1873 vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset);
1874 }
1875 return vtxBase[s];
1876 }
1877
1878 Value *
1879 Converter::fetchSrc(int s, int c)
1880 {
1881 Value *res;
1882 Value *ptr = NULL, *dimRel = NULL;
1883
1884 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1885
1886 if (src.isIndirect(0))
1887 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1888
1889 if (src.is2D()) {
1890 switch (src.getFile()) {
1891 case TGSI_FILE_OUTPUT:
1892 dimRel = getOutputBase(s);
1893 break;
1894 case TGSI_FILE_INPUT:
1895 dimRel = getVertexBase(s);
1896 break;
1897 case TGSI_FILE_CONSTANT:
1898 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1899 if (src.isIndirect(1))
1900 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1901 break;
1902 default:
1903 break;
1904 }
1905 }
1906
1907 res = fetchSrc(src, c, ptr);
1908
1909 if (dimRel)
1910 res->getInsn()->setIndirect(0, 1, dimRel);
1911
1912 return applySrcMod(res, s, c);
1913 }
1914
1915 Value *
1916 Converter::fetchDst(int d, int c)
1917 {
1918 Value *res;
1919 Value *ptr = NULL, *dimRel = NULL;
1920
1921 tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1922
1923 if (dst.isIndirect(0))
1924 ptr = fetchSrc(dst.getIndirect(0), 0, NULL);
1925
1926 if (dst.is2D()) {
1927 switch (dst.getFile()) {
1928 case TGSI_FILE_OUTPUT:
1929 assert(0); // TODO
1930 dimRel = NULL;
1931 break;
1932 case TGSI_FILE_INPUT:
1933 assert(0); // TODO
1934 dimRel = NULL;
1935 break;
1936 case TGSI_FILE_CONSTANT:
1937 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1938 if (dst.isIndirect(1))
1939 dimRel = fetchSrc(dst.getIndirect(1), 0, 0);
1940 break;
1941 default:
1942 break;
1943 }
1944 }
1945
1946 struct tgsi_full_src_register fsr = dst.asSrc();
1947 tgsi::Instruction::SrcRegister src(&fsr);
1948 res = fetchSrc(src, c, ptr);
1949
1950 if (dimRel)
1951 res->getInsn()->setIndirect(0, 1, dimRel);
1952
1953 return res;
1954 }
1955
1956 Converter::DataArray *
1957 Converter::getArrayForFile(unsigned file, int idx)
1958 {
1959 switch (file) {
1960 case TGSI_FILE_TEMPORARY:
1961 return idx == 0 ? &tData : &lData;
1962 case TGSI_FILE_ADDRESS:
1963 return &aData;
1964 case TGSI_FILE_OUTPUT:
1965 assert(prog->getType() == Program::TYPE_FRAGMENT);
1966 return &oData;
1967 default:
1968 assert(!"invalid/unhandled TGSI source file");
1969 return NULL;
1970 }
1971 }
1972
1973 Value *
1974 Converter::shiftAddress(Value *index)
1975 {
1976 if (!index)
1977 return NULL;
1978 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1979 }
1980
1981 void
1982 Converter::adjustTempIndex(int arrayId, int &idx, int &idx2d) const
1983 {
1984 std::map<int, int>::const_iterator it =
1985 code->indirectTempOffsets.find(arrayId);
1986 if (it == code->indirectTempOffsets.end())
1987 return;
1988
1989 idx2d = 1;
1990 idx += it->second;
1991 }
1992
1993 bool
1994 Converter::isSubGroupMask(uint8_t semantic)
1995 {
1996 switch (semantic) {
1997 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
1998 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
1999 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2000 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2001 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2002 return true;
2003 default:
2004 return false;
2005 }
2006 }
2007
2008 Value *
2009 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
2010 {
2011 int idx2d = src.is2D() ? src.getIndex(1) : 0;
2012 int idx = src.getIndex(0);
2013 const int swz = src.getSwizzle(c);
2014 Instruction *ld;
2015
2016 switch (src.getFile()) {
2017 case TGSI_FILE_IMMEDIATE:
2018 assert(!ptr);
2019 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
2020 case TGSI_FILE_CONSTANT:
2021 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
2022 case TGSI_FILE_INPUT:
2023 if (prog->getType() == Program::TYPE_FRAGMENT) {
2024 // don't load masked inputs, won't be assigned a slot
2025 if (!ptr && !(info->in[idx].mask & (1 << swz)))
2026 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
2027 return interpolate(src, c, shiftAddress(ptr));
2028 } else
2029 if (prog->getType() == Program::TYPE_GEOMETRY) {
2030 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
2031 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
2032 // XXX: This is going to be a problem with scalar arrays, i.e. when
2033 // we cannot assume that the address is given in units of vec4.
2034 //
2035 // nv50 and nvc0 need different things here, so let the lowering
2036 // passes decide what to do with the address
2037 if (ptr)
2038 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
2039 }
2040 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
2041 ld->perPatch = info->in[idx].patch;
2042 return ld->getDef(0);
2043 case TGSI_FILE_OUTPUT:
2044 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2045 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
2046 ld->perPatch = info->out[idx].patch;
2047 return ld->getDef(0);
2048 case TGSI_FILE_SYSTEM_VALUE:
2049 assert(!ptr);
2050 if (info->sv[idx].sn == TGSI_SEMANTIC_THREAD_ID &&
2051 info->prop.cp.numThreads[swz] == 1)
2052 return loadImm(NULL, 0u);
2053 if (isSubGroupMask(info->sv[idx].sn) && swz > 0)
2054 return loadImm(NULL, 0u);
2055 if (info->sv[idx].sn == TGSI_SEMANTIC_SUBGROUP_SIZE)
2056 return loadImm(NULL, 32u);
2057 ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
2058 ld->perPatch = info->sv[idx].patch;
2059 return ld->getDef(0);
2060 case TGSI_FILE_TEMPORARY: {
2061 int arrayid = src.getArrayId();
2062 if (!arrayid)
2063 arrayid = code->tempArrayId[idx];
2064 adjustTempIndex(arrayid, idx, idx2d);
2065 }
2066 /* fallthrough */
2067 default:
2068 return getArrayForFile(src.getFile(), idx2d)->load(
2069 sub.cur->values, idx, swz, shiftAddress(ptr));
2070 }
2071 }
2072
2073 Value *
2074 Converter::acquireDst(int d, int c)
2075 {
2076 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
2077 const unsigned f = dst.getFile();
2078 int idx = dst.getIndex(0);
2079 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
2080
2081 if (dst.isMasked(c) || f == TGSI_FILE_BUFFER || f == TGSI_FILE_MEMORY ||
2082 f == TGSI_FILE_IMAGE)
2083 return NULL;
2084
2085 if (dst.isIndirect(0) ||
2086 f == TGSI_FILE_SYSTEM_VALUE ||
2087 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
2088 return getScratch();
2089
2090 if (f == TGSI_FILE_TEMPORARY) {
2091 int arrayid = dst.getArrayId();
2092 if (!arrayid)
2093 arrayid = code->tempArrayId[idx];
2094 adjustTempIndex(arrayid, idx, idx2d);
2095 }
2096
2097 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
2098 }
2099
2100 void
2101 Converter::storeDst(int d, int c, Value *val)
2102 {
2103 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
2104
2105 if (tgsi.getSaturate()) {
2106 mkOp1(OP_SAT, dstTy, val, val);
2107 }
2108
2109 Value *ptr = NULL;
2110 if (dst.isIndirect(0))
2111 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
2112
2113 if (info->io.genUserClip > 0 &&
2114 dst.getFile() == TGSI_FILE_OUTPUT &&
2115 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
2116 mkMov(clipVtx[c], val);
2117 val = clipVtx[c];
2118 }
2119
2120 storeDst(dst, c, val, ptr);
2121 }
2122
2123 void
2124 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
2125 Value *val, Value *ptr)
2126 {
2127 const unsigned f = dst.getFile();
2128 int idx = dst.getIndex(0);
2129 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
2130
2131 if (f == TGSI_FILE_SYSTEM_VALUE) {
2132 assert(!ptr);
2133 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
2134 } else
2135 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
2136
2137 if (ptr || (info->out[idx].mask & (1 << c))) {
2138 /* Save the viewport index into a scratch register so that it can be
2139 exported at EMIT time */
2140 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
2141 prog->getType() == Program::TYPE_GEOMETRY &&
2142 viewport != NULL)
2143 mkOp1(OP_MOV, TYPE_U32, viewport, val);
2144 else
2145 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch =
2146 info->out[idx].patch;
2147 }
2148 } else
2149 if (f == TGSI_FILE_TEMPORARY ||
2150 f == TGSI_FILE_ADDRESS ||
2151 f == TGSI_FILE_OUTPUT) {
2152 if (f == TGSI_FILE_TEMPORARY) {
2153 int arrayid = dst.getArrayId();
2154 if (!arrayid)
2155 arrayid = code->tempArrayId[idx];
2156 adjustTempIndex(arrayid, idx, idx2d);
2157 }
2158
2159 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
2160 } else {
2161 assert(!"invalid dst file");
2162 }
2163 }
2164
2165 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
2166 for (chan = 0; chan < 4; ++chan) \
2167 if (!inst.getDst(d).isMasked(chan))
2168
2169 Value *
2170 Converter::buildDot(int dim)
2171 {
2172 assert(dim > 0);
2173
2174 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
2175 Value *dotp = getScratch();
2176
2177 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1)
2178 ->dnz = info->io.mul_zero_wins;
2179
2180 for (int c = 1; c < dim; ++c) {
2181 src0 = fetchSrc(0, c);
2182 src1 = fetchSrc(1, c);
2183 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp)
2184 ->dnz = info->io.mul_zero_wins;
2185 }
2186 return dotp;
2187 }
2188
2189 void
2190 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
2191 {
2192 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
2193 join->fixed = 1;
2194 conv->insertHead(join);
2195
2196 assert(!fork->joinAt);
2197 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
2198 fork->insertBefore(fork->getExit(), fork->joinAt);
2199 }
2200
2201 void
2202 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
2203 {
2204 unsigned rIdx = 0, sIdx = 0;
2205
2206 if (R >= 0 && tgsi.getSrc(R).getFile() != TGSI_FILE_SAMPLER) {
2207 // This is the bindless case. We have to get the actual value and pass
2208 // it in. This will be the complete handle.
2209 tex->tex.rIndirectSrc = s;
2210 tex->setSrc(s++, fetchSrc(R, 0));
2211 tex->setTexture(tgsi.getTexture(code, R), 0xff, 0x1f);
2212 tex->tex.bindless = true;
2213 return;
2214 }
2215
2216 if (R >= 0)
2217 rIdx = tgsi.getSrc(R).getIndex(0);
2218 if (S >= 0)
2219 sIdx = tgsi.getSrc(S).getIndex(0);
2220
2221 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
2222
2223 if (tgsi.getSrc(R).isIndirect(0)) {
2224 tex->tex.rIndirectSrc = s;
2225 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
2226 }
2227 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
2228 tex->tex.sIndirectSrc = s;
2229 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
2230 }
2231 }
2232
2233 void
2234 Converter::handleTXQ(Value *dst0[4], enum TexQuery query, int R)
2235 {
2236 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
2237 tex->tex.query = query;
2238 unsigned int c, d;
2239
2240 for (d = 0, c = 0; c < 4; ++c) {
2241 if (!dst0[c])
2242 continue;
2243 tex->tex.mask |= 1 << c;
2244 tex->setDef(d++, dst0[c]);
2245 }
2246 if (query == TXQ_DIMS)
2247 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
2248 else
2249 tex->setSrc((c = 0), zero);
2250
2251 setTexRS(tex, ++c, R, -1);
2252
2253 bb->insertTail(tex);
2254 }
2255
2256 void
2257 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
2258 {
2259 Value *proj = fetchSrc(0, 3);
2260 Instruction *insn = proj->getUniqueInsn();
2261 int c;
2262
2263 if (insn->op == OP_PINTERP) {
2264 bb->insertTail(insn = cloneForward(func, insn));
2265 insn->op = OP_LINTERP;
2266 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
2267 insn->setSrc(1, NULL);
2268 proj = insn->getDef(0);
2269 }
2270 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
2271
2272 for (c = 0; c < 4; ++c) {
2273 if (!(mask & (1 << c)))
2274 continue;
2275 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
2276 continue;
2277 mask &= ~(1 << c);
2278
2279 bb->insertTail(insn = cloneForward(func, insn));
2280 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
2281 insn->setSrc(1, proj);
2282 dst[c] = insn->getDef(0);
2283 }
2284 if (!mask)
2285 return;
2286
2287 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
2288
2289 for (c = 0; c < 4; ++c)
2290 if (mask & (1 << c))
2291 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
2292 }
2293
2294 // order of nv50 ir sources: x y z layer lod/bias shadow
2295 // order of TGSI TEX sources: x y z layer shadow lod/bias
2296 // lowering will finally set the hw specific order (like array first on nvc0)
2297 void
2298 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
2299 {
2300 Value *arg[4], *src[8];
2301 Value *lod = NULL, *shd = NULL;
2302 unsigned int s, c, d;
2303 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2304
2305 TexInstruction::Target tgt = tgsi.getTexture(code, R);
2306
2307 for (s = 0; s < tgt.getArgCount(); ++s)
2308 arg[s] = src[s] = fetchSrc(0, s);
2309
2310 if (tgsi.getOpcode() == TGSI_OPCODE_TEX_LZ)
2311 lod = loadImm(NULL, 0);
2312 else if (texi->op == OP_TXL || texi->op == OP_TXB)
2313 lod = fetchSrc(L >> 4, L & 3);
2314
2315 if (C == 0x0f)
2316 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
2317
2318 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
2319 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
2320 shd = fetchSrc(1, 0);
2321 else if (tgt.isShadow())
2322 shd = fetchSrc(C >> 4, C & 3);
2323
2324 if (texi->op == OP_TXD) {
2325 for (c = 0; c < tgt.getDim() + tgt.isCube(); ++c) {
2326 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
2327 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
2328 }
2329 }
2330
2331 // cube textures don't care about projection value, it's divided out
2332 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
2333 unsigned int n = tgt.getDim();
2334 if (shd) {
2335 arg[n] = shd;
2336 ++n;
2337 assert(tgt.getDim() == tgt.getArgCount());
2338 }
2339 loadProjTexCoords(src, arg, (1 << n) - 1);
2340 if (shd)
2341 shd = src[n - 1];
2342 }
2343
2344 for (c = 0, d = 0; c < 4; ++c) {
2345 if (dst[c]) {
2346 texi->setDef(d++, dst[c]);
2347 texi->tex.mask |= 1 << c;
2348 } else {
2349 // NOTE: maybe hook up def too, for CSE
2350 }
2351 }
2352 for (s = 0; s < tgt.getArgCount(); ++s)
2353 texi->setSrc(s, src[s]);
2354 if (lod)
2355 texi->setSrc(s++, lod);
2356 if (shd)
2357 texi->setSrc(s++, shd);
2358
2359 setTexRS(texi, s, R, S);
2360
2361 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
2362 texi->tex.levelZero = true;
2363 if (prog->getType() != Program::TYPE_FRAGMENT &&
2364 (tgsi.getOpcode() == TGSI_OPCODE_TEX ||
2365 tgsi.getOpcode() == TGSI_OPCODE_TEX2 ||
2366 tgsi.getOpcode() == TGSI_OPCODE_TXP))
2367 texi->tex.levelZero = true;
2368 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
2369 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
2370
2371 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2372 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2373 for (c = 0; c < 3; ++c) {
2374 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2375 texi->offset[s][c].setInsn(texi);
2376 }
2377 }
2378
2379 bb->insertTail(texi);
2380 }
2381
2382 // 1st source: xyz = coordinates, w = lod/sample
2383 // 2nd source: offset
2384 void
2385 Converter::handleTXF(Value *dst[4], int R, int L_M)
2386 {
2387 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2388 int ms;
2389 unsigned int c, d, s;
2390
2391 texi->tex.target = tgsi.getTexture(code, R);
2392
2393 ms = texi->tex.target.isMS() ? 1 : 0;
2394 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
2395
2396 for (c = 0, d = 0; c < 4; ++c) {
2397 if (dst[c]) {
2398 texi->setDef(d++, dst[c]);
2399 texi->tex.mask |= 1 << c;
2400 }
2401 }
2402 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
2403 texi->setSrc(c, fetchSrc(0, c));
2404 if (!ms && tgsi.getOpcode() == TGSI_OPCODE_TXF_LZ)
2405 texi->setSrc(c++, loadImm(NULL, 0));
2406 else
2407 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
2408
2409 setTexRS(texi, c, R, -1);
2410
2411 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2412 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2413 for (c = 0; c < 3; ++c) {
2414 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2415 texi->offset[s][c].setInsn(texi);
2416 }
2417 }
2418
2419 bb->insertTail(texi);
2420 }
2421
2422 void
2423 Converter::handleFBFETCH(Value *dst[4])
2424 {
2425 TexInstruction *texi = new_TexInstruction(func, OP_TXF);
2426 unsigned int c, d;
2427
2428 texi->tex.target = TEX_TARGET_2D_MS_ARRAY;
2429 texi->tex.levelZero = 1;
2430 texi->tex.useOffsets = 0;
2431
2432 for (c = 0, d = 0; c < 4; ++c) {
2433 if (dst[c]) {
2434 texi->setDef(d++, dst[c]);
2435 texi->tex.mask |= 1 << c;
2436 }
2437 }
2438
2439 Value *x = mkOp1v(OP_RDSV, TYPE_F32, getScratch(), mkSysVal(SV_POSITION, 0));
2440 Value *y = mkOp1v(OP_RDSV, TYPE_F32, getScratch(), mkSysVal(SV_POSITION, 1));
2441 Value *z = mkOp1v(OP_RDSV, TYPE_U32, getScratch(), mkSysVal(SV_LAYER, 0));
2442 Value *ms = mkOp1v(OP_RDSV, TYPE_U32, getScratch(), mkSysVal(SV_SAMPLE_INDEX, 0));
2443
2444 mkCvt(OP_CVT, TYPE_U32, x, TYPE_F32, x)->rnd = ROUND_Z;
2445 mkCvt(OP_CVT, TYPE_U32, y, TYPE_F32, y)->rnd = ROUND_Z;
2446 texi->setSrc(0, x);
2447 texi->setSrc(1, y);
2448 texi->setSrc(2, z);
2449 texi->setSrc(3, ms);
2450
2451 texi->tex.r = texi->tex.s = -1;
2452
2453 bb->insertTail(texi);
2454 }
2455
2456 void
2457 Converter::handleLIT(Value *dst0[4])
2458 {
2459 Value *val0 = NULL;
2460 unsigned int mask = tgsi.getDst(0).getMask();
2461
2462 if (mask & (1 << 0))
2463 loadImm(dst0[0], 1.0f);
2464
2465 if (mask & (1 << 3))
2466 loadImm(dst0[3], 1.0f);
2467
2468 if (mask & (3 << 1)) {
2469 val0 = getScratch();
2470 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
2471 if (mask & (1 << 1))
2472 mkMov(dst0[1], val0);
2473 }
2474
2475 if (mask & (1 << 2)) {
2476 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
2477 Value *val1 = getScratch(), *val3 = getScratch();
2478
2479 Value *pos128 = loadImm(NULL, +127.999999f);
2480 Value *neg128 = loadImm(NULL, -127.999999f);
2481
2482 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
2483 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
2484 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
2485 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
2486
2487 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
2488 }
2489 }
2490
2491 /* Keep this around for now as reference when adding img support
2492 static inline bool
2493 isResourceSpecial(const int r)
2494 {
2495 return (r == TGSI_RESOURCE_GLOBAL ||
2496 r == TGSI_RESOURCE_LOCAL ||
2497 r == TGSI_RESOURCE_PRIVATE ||
2498 r == TGSI_RESOURCE_INPUT);
2499 }
2500
2501 static inline bool
2502 isResourceRaw(const tgsi::Source *code, const int r)
2503 {
2504 return isResourceSpecial(r) || code->resources[r].raw;
2505 }
2506
2507 static inline nv50_ir::TexTarget
2508 getResourceTarget(const tgsi::Source *code, int r)
2509 {
2510 if (isResourceSpecial(r))
2511 return nv50_ir::TEX_TARGET_BUFFER;
2512 return tgsi::translateTexture(code->resources.at(r).target);
2513 }
2514
2515 Symbol *
2516 Converter::getResourceBase(const int r)
2517 {
2518 Symbol *sym = NULL;
2519
2520 switch (r) {
2521 case TGSI_RESOURCE_GLOBAL:
2522 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL,
2523 info->io.auxCBSlot);
2524 break;
2525 case TGSI_RESOURCE_LOCAL:
2526 assert(prog->getType() == Program::TYPE_COMPUTE);
2527 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
2528 info->prop.cp.sharedOffset);
2529 break;
2530 case TGSI_RESOURCE_PRIVATE:
2531 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
2532 info->bin.tlsSpace);
2533 break;
2534 case TGSI_RESOURCE_INPUT:
2535 assert(prog->getType() == Program::TYPE_COMPUTE);
2536 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
2537 info->prop.cp.inputOffset);
2538 break;
2539 default:
2540 sym = new_Symbol(prog,
2541 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
2542 break;
2543 }
2544 return sym;
2545 }
2546
2547 void
2548 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2549 {
2550 const int arg =
2551 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2552
2553 for (int c = 0; c < arg; ++c)
2554 coords.push_back(fetchSrc(s, c));
2555
2556 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2557 if (r == TGSI_RESOURCE_LOCAL ||
2558 r == TGSI_RESOURCE_PRIVATE ||
2559 r == TGSI_RESOURCE_INPUT)
2560 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2561 coords[0]);
2562 }
2563
2564 static inline int
2565 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2566 {
2567 int n = 0;
2568
2569 while (mask) {
2570 if (mask & 1) {
2571 size[n]++;
2572 } else {
2573 if (size[n])
2574 comp[n = 1] = size[0] + 1;
2575 else
2576 comp[n]++;
2577 }
2578 mask >>= 1;
2579 }
2580 if (size[0] == 3) {
2581 n = 1;
2582 size[0] = (comp[0] == 1) ? 1 : 2;
2583 size[1] = 3 - size[0];
2584 comp[1] = comp[0] + size[0];
2585 }
2586 return n + 1;
2587 }
2588 */
2589 void
2590 Converter::getImageCoords(std::vector<Value *> &coords, int s)
2591 {
2592 TexInstruction::Target t =
2593 TexInstruction::Target(tgsi.getImageTarget());
2594 const int arg = t.getDim() + (t.isArray() || t.isCube());
2595
2596 for (int c = 0; c < arg; ++c)
2597 coords.push_back(fetchSrc(s, c));
2598
2599 if (t.isMS())
2600 coords.push_back(fetchSrc(s, 3));
2601 }
2602
2603 // For raw loads, granularity is 4 byte.
2604 // Usage of the texture read mask on OP_SULDP is not allowed.
2605 void
2606 Converter::handleLOAD(Value *dst0[4])
2607 {
2608 const int r = tgsi.getSrc(0).getIndex(0);
2609 int c;
2610 std::vector<Value *> off, src, ldv, def;
2611 Value *ind = NULL;
2612
2613 if (tgsi.getSrc(0).isIndirect(0))
2614 ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
2615
2616 switch (tgsi.getSrc(0).getFile()) {
2617 case TGSI_FILE_BUFFER:
2618 case TGSI_FILE_MEMORY:
2619 for (c = 0; c < 4; ++c) {
2620 if (!dst0[c])
2621 continue;
2622
2623 Value *off;
2624 Symbol *sym;
2625 uint32_t src0_component_offset = tgsi.getSrc(0).getSwizzle(c) * 4;
2626
2627 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE) {
2628 off = NULL;
2629 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2630 tgsi.getSrc(1).getValueU32(0, info) +
2631 src0_component_offset);
2632 } else {
2633 // yzw are ignored for buffers
2634 off = fetchSrc(1, 0);
2635 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2636 src0_component_offset);
2637 }
2638
2639 Instruction *ld = mkLoad(TYPE_U32, dst0[c], sym, off);
2640 if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER &&
2641 code->bufferAtomics[r])
2642 ld->cache = nv50_ir::CACHE_CG;
2643 else
2644 ld->cache = tgsi.getCacheMode();
2645 if (ind)
2646 ld->setIndirect(0, 1, ind);
2647 }
2648 break;
2649 default: {
2650 getImageCoords(off, 1);
2651 def.resize(4);
2652
2653 for (c = 0; c < 4; ++c) {
2654 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2655 def[c] = getScratch();
2656 else
2657 def[c] = dst0[c];
2658 }
2659
2660 bool bindless = tgsi.getSrc(0).getFile() != TGSI_FILE_IMAGE;
2661 if (bindless)
2662 ind = fetchSrc(0, 0);
2663
2664 TexInstruction *ld =
2665 mkTex(OP_SULDP, tgsi.getImageTarget(), 0, 0, def, off);
2666 ld->tex.mask = tgsi.getDst(0).getMask();
2667 ld->tex.format = tgsi.getImageFormat();
2668 ld->cache = tgsi.getCacheMode();
2669 ld->tex.bindless = bindless;
2670 if (!bindless)
2671 ld->tex.r = r;
2672 if (ind)
2673 ld->setIndirectR(ind);
2674
2675 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2676 if (dst0[c] != def[c])
2677 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2678 break;
2679 }
2680 }
2681
2682
2683 /* Keep this around for now as reference when adding img support
2684 getResourceCoords(off, r, 1);
2685
2686 if (isResourceRaw(code, r)) {
2687 uint8_t mask = 0;
2688 uint8_t comp[2] = { 0, 0 };
2689 uint8_t size[2] = { 0, 0 };
2690
2691 Symbol *base = getResourceBase(r);
2692
2693 // determine the base and size of the at most 2 load ops
2694 for (c = 0; c < 4; ++c)
2695 if (!tgsi.getDst(0).isMasked(c))
2696 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2697
2698 int n = partitionLoadStore(comp, size, mask);
2699
2700 src = off;
2701
2702 def.resize(4); // index by component, the ones we need will be non-NULL
2703 for (c = 0; c < 4; ++c) {
2704 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2705 def[c] = dst0[c];
2706 else
2707 if (mask & (1 << c))
2708 def[c] = getScratch();
2709 }
2710
2711 const bool useLd = isResourceSpecial(r) ||
2712 (info->io.nv50styleSurfaces &&
2713 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2714
2715 for (int i = 0; i < n; ++i) {
2716 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2717
2718 if (comp[i]) // adjust x component of source address if necessary
2719 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2720 off[0], mkImm(comp[i] * 4));
2721 else
2722 src[0] = off[0];
2723
2724 if (useLd) {
2725 Instruction *ld =
2726 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2727 for (size_t c = 1; c < ldv.size(); ++c)
2728 ld->setDef(c, ldv[c]);
2729 } else {
2730 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2731 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2732 }
2733 }
2734 } else {
2735 def.resize(4);
2736 for (c = 0; c < 4; ++c) {
2737 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2738 def[c] = getScratch();
2739 else
2740 def[c] = dst0[c];
2741 }
2742
2743 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2744 def, off);
2745 }
2746 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2747 if (dst0[c] != def[c])
2748 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2749 */
2750 }
2751
2752 // For formatted stores, the write mask on OP_SUSTP can be used.
2753 // Raw stores have to be split.
2754 void
2755 Converter::handleSTORE()
2756 {
2757 const int r = tgsi.getDst(0).getIndex(0);
2758 int c;
2759 std::vector<Value *> off, src, dummy;
2760 Value *ind = NULL;
2761
2762 if (tgsi.getDst(0).isIndirect(0))
2763 ind = fetchSrc(tgsi.getDst(0).getIndirect(0), 0, 0);
2764
2765 switch (tgsi.getDst(0).getFile()) {
2766 case TGSI_FILE_BUFFER:
2767 case TGSI_FILE_MEMORY:
2768 for (c = 0; c < 4; ++c) {
2769 if (!(tgsi.getDst(0).getMask() & (1 << c)))
2770 continue;
2771
2772 Symbol *sym;
2773 Value *off;
2774 if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMMEDIATE) {
2775 off = NULL;
2776 sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c,
2777 tgsi.getSrc(0).getValueU32(0, info) + 4 * c);
2778 } else {
2779 // yzw are ignored for buffers
2780 off = fetchSrc(0, 0);
2781 sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c, 4 * c);
2782 }
2783
2784 Instruction *st = mkStore(OP_STORE, TYPE_U32, sym, off, fetchSrc(1, c));
2785 st->cache = tgsi.getCacheMode();
2786 if (ind)
2787 st->setIndirect(0, 1, ind);
2788 }
2789 break;
2790 default: {
2791 getImageCoords(off, 0);
2792 src = off;
2793
2794 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2795 src.push_back(fetchSrc(1, c));
2796
2797 bool bindless = tgsi.getDst(0).getFile() != TGSI_FILE_IMAGE;
2798 if (bindless)
2799 ind = fetchDst(0, 0);
2800
2801 TexInstruction *st =
2802 mkTex(OP_SUSTP, tgsi.getImageTarget(), 0, 0, dummy, src);
2803 st->tex.mask = tgsi.getDst(0).getMask();
2804 st->tex.format = tgsi.getImageFormat();
2805 st->cache = tgsi.getCacheMode();
2806 st->tex.bindless = bindless;
2807 if (!bindless)
2808 st->tex.r = r;
2809 if (ind)
2810 st->setIndirectR(ind);
2811
2812 break;
2813 }
2814 }
2815
2816 /* Keep this around for now as reference when adding img support
2817 getResourceCoords(off, r, 0);
2818 src = off;
2819 const int s = src.size();
2820
2821 if (isResourceRaw(code, r)) {
2822 uint8_t comp[2] = { 0, 0 };
2823 uint8_t size[2] = { 0, 0 };
2824
2825 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2826
2827 Symbol *base = getResourceBase(r);
2828
2829 const bool useSt = isResourceSpecial(r) ||
2830 (info->io.nv50styleSurfaces &&
2831 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2832
2833 for (int i = 0; i < n; ++i) {
2834 if (comp[i]) // adjust x component of source address if necessary
2835 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2836 off[0], mkImm(comp[i] * 4));
2837 else
2838 src[0] = off[0];
2839
2840 const DataType stTy = typeOfSize(size[i] * 4);
2841
2842 if (useSt) {
2843 Instruction *st =
2844 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2845 for (c = 1; c < size[i]; ++c)
2846 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2847 st->setIndirect(0, 0, src[0]);
2848 } else {
2849 // attach values to be stored
2850 src.resize(s + size[i]);
2851 for (c = 0; c < size[i]; ++c)
2852 src[s + c] = fetchSrc(1, comp[i] + c);
2853 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2854 0, dummy, src)->setType(stTy);
2855 }
2856 }
2857 } else {
2858 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2859 src.push_back(fetchSrc(1, c));
2860
2861 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2862 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2863 }
2864 */
2865 }
2866
2867 // XXX: These only work on resources with the single-component u32/s32 formats.
2868 // Therefore the result is replicated. This might not be intended by TGSI, but
2869 // operating on more than 1 component would produce undefined results because
2870 // they do not exist.
2871 void
2872 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2873 {
2874 const int r = tgsi.getSrc(0).getIndex(0);
2875 std::vector<Value *> srcv;
2876 std::vector<Value *> defv;
2877 LValue *dst = getScratch();
2878 Value *ind = NULL;
2879
2880 if (tgsi.getSrc(0).isIndirect(0))
2881 ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
2882
2883 switch (tgsi.getSrc(0).getFile()) {
2884 case TGSI_FILE_BUFFER:
2885 case TGSI_FILE_MEMORY:
2886 for (int c = 0; c < 4; ++c) {
2887 if (!dst0[c])
2888 continue;
2889
2890 Instruction *insn;
2891 Value *off = fetchSrc(1, c);
2892 Value *sym;
2893 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE)
2894 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2895 tgsi.getSrc(1).getValueU32(c, info));
2896 else
2897 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, 0);
2898 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2899 insn = mkOp3(OP_ATOM, ty, dst, sym, fetchSrc(2, c), fetchSrc(3, c));
2900 else
2901 insn = mkOp2(OP_ATOM, ty, dst, sym, fetchSrc(2, c));
2902 if (tgsi.getSrc(1).getFile() != TGSI_FILE_IMMEDIATE)
2903 insn->setIndirect(0, 0, off);
2904 if (ind)
2905 insn->setIndirect(0, 1, ind);
2906 insn->subOp = subOp;
2907 }
2908 for (int c = 0; c < 4; ++c)
2909 if (dst0[c])
2910 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2911 break;
2912 default: {
2913 getImageCoords(srcv, 1);
2914 defv.push_back(dst);
2915 srcv.push_back(fetchSrc(2, 0));
2916
2917 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2918 srcv.push_back(fetchSrc(3, 0));
2919
2920 bool bindless = tgsi.getSrc(0).getFile() != TGSI_FILE_IMAGE;
2921 if (bindless)
2922 ind = fetchSrc(0, 0);
2923
2924 TexInstruction *tex = mkTex(OP_SUREDP, tgsi.getImageTarget(),
2925 0, 0, defv, srcv);
2926 tex->subOp = subOp;
2927 tex->tex.mask = 1;
2928 tex->tex.format = tgsi.getImageFormat();
2929 tex->setType(ty);
2930 tex->tex.bindless = bindless;
2931 if (!bindless)
2932 tex->tex.r = r;
2933 if (ind)
2934 tex->setIndirectR(ind);
2935
2936 for (int c = 0; c < 4; ++c)
2937 if (dst0[c])
2938 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2939 break;
2940 }
2941 }
2942
2943 /* Keep this around for now as reference when adding img support
2944 getResourceCoords(srcv, r, 1);
2945
2946 if (isResourceSpecial(r)) {
2947 assert(r != TGSI_RESOURCE_INPUT);
2948 Instruction *insn;
2949 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2950 insn->subOp = subOp;
2951 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2952 insn->setSrc(2, fetchSrc(3, 0));
2953 insn->setIndirect(0, 0, srcv.at(0));
2954 } else {
2955 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2956 TexTarget targ = getResourceTarget(code, r);
2957 int idx = code->resources[r].slot;
2958 defv.push_back(dst);
2959 srcv.push_back(fetchSrc(2, 0));
2960 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2961 srcv.push_back(fetchSrc(3, 0));
2962 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2963 tex->subOp = subOp;
2964 tex->tex.mask = 1;
2965 tex->setType(ty);
2966 }
2967
2968 for (int c = 0; c < 4; ++c)
2969 if (dst0[c])
2970 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2971 */
2972 }
2973
2974 void
2975 Converter::handleINTERP(Value *dst[4])
2976 {
2977 // Check whether the input is linear. All other attributes ignored.
2978 Instruction *insn;
2979 Value *offset = NULL, *ptr = NULL, *w = NULL;
2980 Symbol *sym[4] = { NULL };
2981 bool linear;
2982 operation op = OP_NOP;
2983 int c, mode = 0;
2984
2985 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2986
2987 // In some odd cases, in large part due to varying packing, the source
2988 // might not actually be an input. This is illegal TGSI, but it's easier to
2989 // account for it here than it is to fix it where the TGSI is being
2990 // generated. In that case, it's going to be a straight up mov (or sequence
2991 // of mov's) from the input in question. We follow the mov chain to see
2992 // which input we need to use.
2993 if (src.getFile() != TGSI_FILE_INPUT) {
2994 if (src.isIndirect(0)) {
2995 ERROR("Ignoring indirect input interpolation\n");
2996 return;
2997 }
2998 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2999 Value *val = fetchSrc(0, c);
3000 assert(val->defs.size() == 1);
3001 insn = val->getInsn();
3002 while (insn->op == OP_MOV) {
3003 assert(insn->getSrc(0)->defs.size() == 1);
3004 insn = insn->getSrc(0)->getInsn();
3005 if (!insn) {
3006 ERROR("Miscompiling shader due to unhandled INTERP\n");
3007 return;
3008 }
3009 }
3010 if (insn->op != OP_LINTERP && insn->op != OP_PINTERP) {
3011 ERROR("Trying to interpolate non-input, this is not allowed.\n");
3012 return;
3013 }
3014 sym[c] = insn->getSrc(0)->asSym();
3015 assert(sym[c]);
3016 op = insn->op;
3017 mode = insn->ipa;
3018 ptr = insn->getIndirect(0, 0);
3019 }
3020 } else {
3021 if (src.isIndirect(0))
3022 ptr = shiftAddress(fetchSrc(src.getIndirect(0), 0, NULL));
3023
3024 // We can assume that the fixed index will point to an input of the same
3025 // interpolation type in case of an indirect.
3026 // TODO: Make use of ArrayID.
3027 linear = info->in[src.getIndex(0)].linear;
3028 if (linear) {
3029 op = OP_LINTERP;
3030 mode = NV50_IR_INTERP_LINEAR;
3031 } else {
3032 op = OP_PINTERP;
3033 mode = NV50_IR_INTERP_PERSPECTIVE;
3034 }
3035 }
3036
3037 switch (tgsi.getOpcode()) {
3038 case TGSI_OPCODE_INTERP_CENTROID:
3039 mode |= NV50_IR_INTERP_CENTROID;
3040 break;
3041 case TGSI_OPCODE_INTERP_SAMPLE:
3042 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
3043 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
3044 mode |= NV50_IR_INTERP_OFFSET;
3045 break;
3046 case TGSI_OPCODE_INTERP_OFFSET: {
3047 // The input in src1.xy is float, but we need a single 32-bit value
3048 // where the upper and lower 16 bits are encoded in S0.12 format. We need
3049 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
3050 // and then convert to s32.
3051 Value *offs[2];
3052 for (c = 0; c < 2; c++) {
3053 offs[c] = getScratch();
3054 mkOp2(OP_MIN, TYPE_F32, offs[c], fetchSrc(1, c), loadImm(NULL, 0.4375f));
3055 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
3056 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
3057 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
3058 }
3059 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
3060 offs[1], mkImm(0x1010), offs[0]);
3061 mode |= NV50_IR_INTERP_OFFSET;
3062 break;
3063 }
3064 }
3065
3066 if (op == OP_PINTERP) {
3067 if (offset) {
3068 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
3069 mkOp1(OP_RCP, TYPE_F32, w, w);
3070 } else {
3071 w = fragCoord[3];
3072 }
3073 }
3074
3075
3076 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3077 insn = mkOp1(op, TYPE_F32, dst[c], sym[c] ? sym[c] : srcToSym(src, c));
3078 if (op == OP_PINTERP)
3079 insn->setSrc(1, w);
3080 if (offset)
3081 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
3082 if (ptr)
3083 insn->setIndirect(0, 0, ptr);
3084
3085 insn->setInterpolate(mode);
3086 }
3087 }
3088
3089 bool
3090 Converter::isEndOfSubroutine(uint ip)
3091 {
3092 assert(ip < code->scan.num_instructions);
3093 tgsi::Instruction insn(&code->insns[ip]);
3094 return (insn.getOpcode() == TGSI_OPCODE_END ||
3095 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
3096 // does END occur at end of main or the very end ?
3097 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
3098 }
3099
3100 bool
3101 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
3102 {
3103 Instruction *geni;
3104
3105 Value *dst0[4], *rDst0[4];
3106 Value *src0, *src1, *src2, *src3;
3107 Value *val0, *val1;
3108 int c;
3109
3110 tgsi = tgsi::Instruction(insn);
3111
3112 bool useScratchDst = tgsi.checkDstSrcAliasing();
3113
3114 operation op = tgsi.getOP();
3115 dstTy = tgsi.inferDstType();
3116 srcTy = tgsi.inferSrcType();
3117
3118 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
3119
3120 if (tgsi.dstCount() && tgsi.getOpcode() != TGSI_OPCODE_STORE) {
3121 for (c = 0; c < 4; ++c) {
3122 rDst0[c] = acquireDst(0, c);
3123 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
3124 }
3125 }
3126
3127 switch (tgsi.getOpcode()) {
3128 case TGSI_OPCODE_ADD:
3129 case TGSI_OPCODE_UADD:
3130 case TGSI_OPCODE_AND:
3131 case TGSI_OPCODE_DIV:
3132 case TGSI_OPCODE_IDIV:
3133 case TGSI_OPCODE_UDIV:
3134 case TGSI_OPCODE_MAX:
3135 case TGSI_OPCODE_MIN:
3136 case TGSI_OPCODE_IMAX:
3137 case TGSI_OPCODE_IMIN:
3138 case TGSI_OPCODE_UMAX:
3139 case TGSI_OPCODE_UMIN:
3140 case TGSI_OPCODE_MOD:
3141 case TGSI_OPCODE_UMOD:
3142 case TGSI_OPCODE_MUL:
3143 case TGSI_OPCODE_UMUL:
3144 case TGSI_OPCODE_IMUL_HI:
3145 case TGSI_OPCODE_UMUL_HI:
3146 case TGSI_OPCODE_OR:
3147 case TGSI_OPCODE_SHL:
3148 case TGSI_OPCODE_ISHR:
3149 case TGSI_OPCODE_USHR:
3150 case TGSI_OPCODE_XOR:
3151 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3152 src0 = fetchSrc(0, c);
3153 src1 = fetchSrc(1, c);
3154 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
3155 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3156 if (op == OP_MUL && dstTy == TYPE_F32)
3157 geni->dnz = info->io.mul_zero_wins;
3158 geni->precise = insn->Instruction.Precise;
3159 }
3160 break;
3161 case TGSI_OPCODE_MAD:
3162 case TGSI_OPCODE_UMAD:
3163 case TGSI_OPCODE_FMA:
3164 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3165 src0 = fetchSrc(0, c);
3166 src1 = fetchSrc(1, c);
3167 src2 = fetchSrc(2, c);
3168 geni = mkOp3(op, dstTy, dst0[c], src0, src1, src2);
3169 if (dstTy == TYPE_F32)
3170 geni->dnz = info->io.mul_zero_wins;
3171 geni->precise = insn->Instruction.Precise;
3172 }
3173 break;
3174 case TGSI_OPCODE_MOV:
3175 case TGSI_OPCODE_CEIL:
3176 case TGSI_OPCODE_FLR:
3177 case TGSI_OPCODE_TRUNC:
3178 case TGSI_OPCODE_RCP:
3179 case TGSI_OPCODE_SQRT:
3180 case TGSI_OPCODE_IABS:
3181 case TGSI_OPCODE_INEG:
3182 case TGSI_OPCODE_NOT:
3183 case TGSI_OPCODE_DDX:
3184 case TGSI_OPCODE_DDY:
3185 case TGSI_OPCODE_DDX_FINE:
3186 case TGSI_OPCODE_DDY_FINE:
3187 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3188 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
3189 break;
3190 case TGSI_OPCODE_RSQ:
3191 src0 = fetchSrc(0, 0);
3192 val0 = getScratch();
3193 mkOp1(OP_ABS, TYPE_F32, val0, src0);
3194 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
3195 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3196 mkMov(dst0[c], val0);
3197 break;
3198 case TGSI_OPCODE_ARL:
3199 case TGSI_OPCODE_ARR:
3200 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3201 const RoundMode rnd =
3202 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
3203 src0 = fetchSrc(0, c);
3204 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
3205 }
3206 break;
3207 case TGSI_OPCODE_UARL:
3208 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3209 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
3210 break;
3211 case TGSI_OPCODE_POW:
3212 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
3213 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3214 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
3215 break;
3216 case TGSI_OPCODE_EX2:
3217 case TGSI_OPCODE_LG2:
3218 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
3219 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3220 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
3221 break;
3222 case TGSI_OPCODE_COS:
3223 case TGSI_OPCODE_SIN:
3224 val0 = getScratch();
3225 if (mask & 7) {
3226 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
3227 mkOp1(op, TYPE_F32, val0, val0);
3228 for (c = 0; c < 3; ++c)
3229 if (dst0[c])
3230 mkMov(dst0[c], val0);
3231 }
3232 if (dst0[3]) {
3233 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
3234 mkOp1(op, TYPE_F32, dst0[3], val0);
3235 }
3236 break;
3237 case TGSI_OPCODE_EXP:
3238 src0 = fetchSrc(0, 0);
3239 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
3240 if (dst0[1])
3241 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
3242 if (dst0[0])
3243 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
3244 if (dst0[2])
3245 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
3246 if (dst0[3])
3247 loadImm(dst0[3], 1.0f);
3248 break;
3249 case TGSI_OPCODE_LOG:
3250 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
3251 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
3252 if (dst0[0] || dst0[1])
3253 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
3254 if (dst0[1]) {
3255 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
3256 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
3257 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0)
3258 ->dnz = info->io.mul_zero_wins;
3259 }
3260 if (dst0[3])
3261 loadImm(dst0[3], 1.0f);
3262 break;
3263 case TGSI_OPCODE_DP2:
3264 val0 = buildDot(2);
3265 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3266 mkMov(dst0[c], val0);
3267 break;
3268 case TGSI_OPCODE_DP3:
3269 val0 = buildDot(3);
3270 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3271 mkMov(dst0[c], val0);
3272 break;
3273 case TGSI_OPCODE_DP4:
3274 val0 = buildDot(4);
3275 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3276 mkMov(dst0[c], val0);
3277 break;
3278 case TGSI_OPCODE_DST:
3279 if (dst0[0])
3280 loadImm(dst0[0], 1.0f);
3281 if (dst0[1]) {
3282 src0 = fetchSrc(0, 1);
3283 src1 = fetchSrc(1, 1);
3284 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1)
3285 ->dnz = info->io.mul_zero_wins;
3286 }
3287 if (dst0[2])
3288 mkMov(dst0[2], fetchSrc(0, 2));
3289 if (dst0[3])
3290 mkMov(dst0[3], fetchSrc(1, 3));
3291 break;
3292 case TGSI_OPCODE_LRP:
3293 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3294 src0 = fetchSrc(0, c);
3295 src1 = fetchSrc(1, c);
3296 src2 = fetchSrc(2, c);
3297 mkOp3(OP_MAD, TYPE_F32, dst0[c],
3298 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2)
3299 ->dnz = info->io.mul_zero_wins;
3300 }
3301 break;
3302 case TGSI_OPCODE_LIT:
3303 handleLIT(dst0);
3304 break;
3305 case TGSI_OPCODE_ISSG:
3306 case TGSI_OPCODE_SSG:
3307 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3308 src0 = fetchSrc(0, c);
3309 val0 = getScratch();
3310 val1 = getScratch();
3311 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
3312 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
3313 if (srcTy == TYPE_F32)
3314 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
3315 else
3316 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
3317 }
3318 break;
3319 case TGSI_OPCODE_UCMP:
3320 srcTy = TYPE_U32;
3321 /* fallthrough */
3322 case TGSI_OPCODE_CMP:
3323 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3324 src0 = fetchSrc(0, c);
3325 src1 = fetchSrc(1, c);
3326 src2 = fetchSrc(2, c);
3327 if (src1 == src2)
3328 mkMov(dst0[c], src1);
3329 else
3330 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
3331 srcTy, dst0[c], srcTy, src1, src2, src0);
3332 }
3333 break;
3334 case TGSI_OPCODE_FRC:
3335 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3336 src0 = fetchSrc(0, c);
3337 val0 = getScratch();
3338 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
3339 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
3340 }
3341 break;
3342 case TGSI_OPCODE_ROUND:
3343 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3344 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
3345 ->rnd = ROUND_NI;
3346 break;
3347 case TGSI_OPCODE_SLT:
3348 case TGSI_OPCODE_SGE:
3349 case TGSI_OPCODE_SEQ:
3350 case TGSI_OPCODE_SGT:
3351 case TGSI_OPCODE_SLE:
3352 case TGSI_OPCODE_SNE:
3353 case TGSI_OPCODE_FSEQ:
3354 case TGSI_OPCODE_FSGE:
3355 case TGSI_OPCODE_FSLT:
3356 case TGSI_OPCODE_FSNE:
3357 case TGSI_OPCODE_ISGE:
3358 case TGSI_OPCODE_ISLT:
3359 case TGSI_OPCODE_USEQ:
3360 case TGSI_OPCODE_USGE:
3361 case TGSI_OPCODE_USLT:
3362 case TGSI_OPCODE_USNE:
3363 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3364 src0 = fetchSrc(0, c);
3365 src1 = fetchSrc(1, c);
3366 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3367 }
3368 break;
3369 case TGSI_OPCODE_VOTE_ALL:
3370 case TGSI_OPCODE_VOTE_ANY:
3371 case TGSI_OPCODE_VOTE_EQ:
3372 val0 = new_LValue(func, FILE_PREDICATE);
3373 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3374 mkCmp(OP_SET, CC_NE, TYPE_U32, val0, TYPE_U32, fetchSrc(0, c), zero);
3375 mkOp1(op, dstTy, val0, val0)
3376 ->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3377 mkCvt(OP_CVT, TYPE_U32, dst0[c], TYPE_U8, val0);
3378 }
3379 break;
3380 case TGSI_OPCODE_BALLOT:
3381 if (!tgsi.getDst(0).isMasked(0)) {
3382 val0 = new_LValue(func, FILE_PREDICATE);
3383 mkCmp(OP_SET, CC_NE, TYPE_U32, val0, TYPE_U32, fetchSrc(0, 0), zero);
3384 mkOp1(op, TYPE_U32, dst0[0], val0)->subOp = NV50_IR_SUBOP_VOTE_ANY;
3385 }
3386 if (!tgsi.getDst(0).isMasked(1))
3387 mkMov(dst0[1], zero, TYPE_U32);
3388 break;
3389 case TGSI_OPCODE_READ_FIRST:
3390 // ReadFirstInvocationARB(src) is implemented as
3391 // ReadInvocationARB(src, findLSB(ballot(true)))
3392 val0 = getScratch();
3393 mkOp1(OP_VOTE, TYPE_U32, val0, mkImm(1))->subOp = NV50_IR_SUBOP_VOTE_ANY;
3394 mkOp2(OP_EXTBF, TYPE_U32, val0, val0, mkImm(0x2000))
3395 ->subOp = NV50_IR_SUBOP_EXTBF_REV;
3396 mkOp1(OP_BFIND, TYPE_U32, val0, val0)->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3397 src1 = val0;
3398 /* fallthrough */
3399 case TGSI_OPCODE_READ_INVOC:
3400 if (tgsi.getOpcode() == TGSI_OPCODE_READ_INVOC)
3401 src1 = fetchSrc(1, 0);
3402 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3403 geni = mkOp3(op, dstTy, dst0[c], fetchSrc(0, c), src1, mkImm(0x1f));
3404 geni->subOp = NV50_IR_SUBOP_SHFL_IDX;
3405 }
3406 break;
3407 case TGSI_OPCODE_CLOCK:
3408 // Stick the 32-bit clock into the high dword of the logical result.
3409 if (!tgsi.getDst(0).isMasked(0))
3410 mkOp1(OP_MOV, TYPE_U32, dst0[0], zero);
3411 if (!tgsi.getDst(0).isMasked(1))
3412 mkOp1(OP_RDSV, TYPE_U32, dst0[1], mkSysVal(SV_CLOCK, 0))->fixed = 1;
3413 break;
3414 case TGSI_OPCODE_READ_HELPER:
3415 if (!tgsi.getDst(0).isMasked(0))
3416 mkOp1(OP_RDSV, TYPE_U32, dst0[0], mkSysVal(SV_THREAD_KILL, 0))
3417 ->fixed = 1;
3418 break;
3419 case TGSI_OPCODE_KILL_IF:
3420 val0 = new_LValue(func, FILE_PREDICATE);
3421 mask = 0;
3422 for (c = 0; c < 4; ++c) {
3423 const int s = tgsi.getSrc(0).getSwizzle(c);
3424 if (mask & (1 << s))
3425 continue;
3426 mask |= 1 << s;
3427 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
3428 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
3429 }
3430 break;
3431 case TGSI_OPCODE_KILL:
3432 case TGSI_OPCODE_DEMOTE:
3433 // TODO: Should we make KILL exit that invocation? Some old shaders
3434 // don't like that.
3435 mkOp(OP_DISCARD, TYPE_NONE, NULL);
3436 break;
3437 case TGSI_OPCODE_TEX:
3438 case TGSI_OPCODE_TEX_LZ:
3439 case TGSI_OPCODE_TXB:
3440 case TGSI_OPCODE_TXL:
3441 case TGSI_OPCODE_TXP:
3442 case TGSI_OPCODE_LODQ:
3443 // R S L C Dx Dy
3444 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
3445 break;
3446 case TGSI_OPCODE_TXD:
3447 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
3448 break;
3449 case TGSI_OPCODE_TG4:
3450 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
3451 break;
3452 case TGSI_OPCODE_TEX2:
3453 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
3454 break;
3455 case TGSI_OPCODE_TXB2:
3456 case TGSI_OPCODE_TXL2:
3457 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
3458 break;
3459 case TGSI_OPCODE_SAMPLE:
3460 case TGSI_OPCODE_SAMPLE_B:
3461 case TGSI_OPCODE_SAMPLE_D:
3462 case TGSI_OPCODE_SAMPLE_L:
3463 case TGSI_OPCODE_SAMPLE_C:
3464 case TGSI_OPCODE_SAMPLE_C_LZ:
3465 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
3466 break;
3467 case TGSI_OPCODE_TXF_LZ:
3468 case TGSI_OPCODE_TXF:
3469 handleTXF(dst0, 1, 0x03);
3470 break;
3471 case TGSI_OPCODE_SAMPLE_I:
3472 handleTXF(dst0, 1, 0x03);
3473 break;
3474 case TGSI_OPCODE_SAMPLE_I_MS:
3475 handleTXF(dst0, 1, 0x20);
3476 break;
3477 case TGSI_OPCODE_TXQ:
3478 case TGSI_OPCODE_SVIEWINFO:
3479 handleTXQ(dst0, TXQ_DIMS, 1);
3480 break;
3481 case TGSI_OPCODE_TXQS:
3482 // The TXQ_TYPE query returns samples in its 3rd arg, but we need it to
3483 // be in .x
3484 dst0[1] = dst0[2] = dst0[3] = NULL;
3485 std::swap(dst0[0], dst0[2]);
3486 handleTXQ(dst0, TXQ_TYPE, 0);
3487 std::swap(dst0[0], dst0[2]);
3488 break;
3489 case TGSI_OPCODE_FBFETCH:
3490 handleFBFETCH(dst0);
3491 break;
3492 case TGSI_OPCODE_F2I:
3493 case TGSI_OPCODE_F2U:
3494 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3495 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
3496 break;
3497 case TGSI_OPCODE_I2F:
3498 case TGSI_OPCODE_U2F:
3499 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3500 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
3501 break;
3502 case TGSI_OPCODE_PK2H:
3503 val0 = getScratch();
3504 val1 = getScratch();
3505 mkCvt(OP_CVT, TYPE_F16, val0, TYPE_F32, fetchSrc(0, 0));
3506 mkCvt(OP_CVT, TYPE_F16, val1, TYPE_F32, fetchSrc(0, 1));
3507 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3508 mkOp3(OP_INSBF, TYPE_U32, dst0[c], val1, mkImm(0x1010), val0);
3509 break;
3510 case TGSI_OPCODE_UP2H:
3511 src0 = fetchSrc(0, 0);
3512 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3513 geni = mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F16, src0);
3514 geni->subOp = c & 1;
3515 }
3516 break;
3517 case TGSI_OPCODE_EMIT:
3518 /* export the saved viewport index */
3519 if (viewport != NULL) {
3520 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
3521 info->out[info->io.viewportId].slot[0] * 4);
3522 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
3523 }
3524 /* handle user clip planes for each emitted vertex */
3525 if (info->io.genUserClip > 0)
3526 handleUserClipPlanes();
3527 /* fallthrough */
3528 case TGSI_OPCODE_ENDPRIM:
3529 {
3530 // get vertex stream (must be immediate)
3531 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
3532 if (stream && op == OP_RESTART)
3533 break;
3534 if (info->prop.gp.maxVertices == 0)
3535 break;
3536 src0 = mkImm(stream);
3537 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
3538 break;
3539 }
3540 case TGSI_OPCODE_IF:
3541 case TGSI_OPCODE_UIF:
3542 {
3543 BasicBlock *ifBB = new BasicBlock(func);
3544
3545 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
3546 condBBs.push(bb);
3547 joinBBs.push(bb);
3548
3549 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
3550
3551 setPosition(ifBB, true);
3552 }
3553 break;
3554 case TGSI_OPCODE_ELSE:
3555 {
3556 BasicBlock *elseBB = new BasicBlock(func);
3557 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3558
3559 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
3560 condBBs.push(bb);
3561
3562 forkBB->getExit()->asFlow()->target.bb = elseBB;
3563 if (!bb->isTerminated())
3564 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
3565
3566 setPosition(elseBB, true);
3567 }
3568 break;
3569 case TGSI_OPCODE_ENDIF:
3570 {
3571 BasicBlock *convBB = new BasicBlock(func);
3572 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3573 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
3574
3575 if (!bb->isTerminated()) {
3576 // we only want join if none of the clauses ended with CONT/BREAK/RET
3577 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
3578 insertConvergenceOps(convBB, forkBB);
3579 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
3580 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3581 }
3582
3583 if (prevBB->getExit()->op == OP_BRA) {
3584 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3585 prevBB->getExit()->asFlow()->target.bb = convBB;
3586 }
3587 setPosition(convBB, true);
3588 }
3589 break;
3590 case TGSI_OPCODE_BGNLOOP:
3591 {
3592 BasicBlock *lbgnBB = new BasicBlock(func);
3593 BasicBlock *lbrkBB = new BasicBlock(func);
3594
3595 loopBBs.push(lbgnBB);
3596 breakBBs.push(lbrkBB);
3597 if (loopBBs.getSize() > func->loopNestingBound)
3598 func->loopNestingBound++;
3599
3600 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
3601
3602 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
3603 setPosition(lbgnBB, true);
3604 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
3605 }
3606 break;
3607 case TGSI_OPCODE_ENDLOOP:
3608 {
3609 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
3610
3611 if (!bb->isTerminated()) {
3612 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
3613 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
3614 }
3615 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
3616
3617 // If the loop never breaks (e.g. only has RET's inside), then there
3618 // will be no way to get to the break bb. However BGNLOOP will have
3619 // already made a PREBREAK to it, so it must be in the CFG.
3620 if (getBB()->cfg.incidentCount() == 0)
3621 loopBB->cfg.attach(&getBB()->cfg, Graph::Edge::TREE);
3622 }
3623 break;
3624 case TGSI_OPCODE_BRK:
3625 {
3626 if (bb->isTerminated())
3627 break;
3628 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
3629 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
3630 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
3631 }
3632 break;
3633 case TGSI_OPCODE_CONT:
3634 {
3635 if (bb->isTerminated())
3636 break;
3637 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
3638 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
3639 contBB->explicitCont = true;
3640 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
3641 }
3642 break;
3643 case TGSI_OPCODE_BGNSUB:
3644 {
3645 Subroutine *s = getSubroutine(ip);
3646 BasicBlock *entry = new BasicBlock(s->f);
3647 BasicBlock *leave = new BasicBlock(s->f);
3648
3649 // multiple entrypoints possible, keep the graph connected
3650 if (prog->getType() == Program::TYPE_COMPUTE)
3651 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
3652
3653 sub.cur = s;
3654 s->f->setEntry(entry);
3655 s->f->setExit(leave);
3656 setPosition(entry, true);
3657 return true;
3658 }
3659 case TGSI_OPCODE_ENDSUB:
3660 {
3661 sub.cur = getSubroutine(prog->main);
3662 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
3663 return true;
3664 }
3665 case TGSI_OPCODE_CAL:
3666 {
3667 Subroutine *s = getSubroutine(tgsi.getLabel());
3668 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
3669 func->call.attach(&s->f->call, Graph::Edge::TREE);
3670 return true;
3671 }
3672 case TGSI_OPCODE_RET:
3673 {
3674 if (bb->isTerminated())
3675 return true;
3676 BasicBlock *leave = BasicBlock::get(func->cfgExit);
3677
3678 if (!isEndOfSubroutine(ip + 1)) {
3679 // insert a PRERET at the entry if this is an early return
3680 // (only needed for sharing code in the epilogue)
3681 BasicBlock *root = BasicBlock::get(func->cfg.getRoot());
3682 if (root->getEntry() == NULL || root->getEntry()->op != OP_PRERET) {
3683 BasicBlock *pos = getBB();
3684 setPosition(root, false);
3685 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
3686 setPosition(pos, true);
3687 }
3688 }
3689 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
3690 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
3691 }
3692 break;
3693 case TGSI_OPCODE_END:
3694 {
3695 // attach and generate epilogue code
3696 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
3697 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
3698 setPosition(epilogue, true);
3699 if (prog->getType() == Program::TYPE_FRAGMENT)
3700 exportOutputs();
3701 if ((prog->getType() == Program::TYPE_VERTEX ||
3702 prog->getType() == Program::TYPE_TESSELLATION_EVAL
3703 ) && info->io.genUserClip > 0)
3704 handleUserClipPlanes();
3705 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
3706 }
3707 break;
3708 case TGSI_OPCODE_SWITCH:
3709 case TGSI_OPCODE_CASE:
3710 ERROR("switch/case opcode encountered, should have been lowered\n");
3711 abort();
3712 break;
3713 case TGSI_OPCODE_LOAD:
3714 handleLOAD(dst0);
3715 break;
3716 case TGSI_OPCODE_STORE:
3717 handleSTORE();
3718 break;
3719 case TGSI_OPCODE_BARRIER:
3720 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
3721 geni->fixed = 1;
3722 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
3723 break;
3724 case TGSI_OPCODE_MEMBAR:
3725 {
3726 uint32_t level = tgsi.getSrc(0).getValueU32(0, info);
3727 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
3728 geni->fixed = 1;
3729 if (!(level & ~(TGSI_MEMBAR_THREAD_GROUP | TGSI_MEMBAR_SHARED)))
3730 geni->subOp = NV50_IR_SUBOP_MEMBAR(M, CTA);
3731 else
3732 geni->subOp = NV50_IR_SUBOP_MEMBAR(M, GL);
3733 }
3734 break;
3735 case TGSI_OPCODE_ATOMUADD:
3736 case TGSI_OPCODE_ATOMXCHG:
3737 case TGSI_OPCODE_ATOMCAS:
3738 case TGSI_OPCODE_ATOMAND:
3739 case TGSI_OPCODE_ATOMOR:
3740 case TGSI_OPCODE_ATOMXOR:
3741 case TGSI_OPCODE_ATOMUMIN:
3742 case TGSI_OPCODE_ATOMIMIN:
3743 case TGSI_OPCODE_ATOMUMAX:
3744 case TGSI_OPCODE_ATOMIMAX:
3745 case TGSI_OPCODE_ATOMFADD:
3746 case TGSI_OPCODE_ATOMDEC_WRAP:
3747 case TGSI_OPCODE_ATOMINC_WRAP:
3748 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
3749 break;
3750 case TGSI_OPCODE_RESQ:
3751 if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER) {
3752 Value *ind = NULL;
3753 if (tgsi.getSrc(0).isIndirect(0))
3754 ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
3755 geni = mkOp1(OP_BUFQ, TYPE_U32, dst0[0],
3756 makeSym(tgsi.getSrc(0).getFile(),
3757 tgsi.getSrc(0).getIndex(0), -1, 0, 0));
3758 if (ind)
3759 geni->setIndirect(0, 1, ind);
3760 } else {
3761 TexInstruction *texi = new_TexInstruction(func, OP_SUQ);
3762 for (int c = 0, d = 0; c < 4; ++c) {
3763 if (dst0[c]) {
3764 texi->setDef(d++, dst0[c]);
3765 texi->tex.mask |= 1 << c;
3766 }
3767 }
3768 if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMAGE) {
3769 texi->tex.r = tgsi.getSrc(0).getIndex(0);
3770 if (tgsi.getSrc(0).isIndirect(0))
3771 texi->setIndirectR(fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, NULL));
3772 } else {
3773 texi->tex.bindless = true;
3774 texi->setIndirectR(fetchSrc(0, 0));
3775 }
3776 texi->tex.target = tgsi.getImageTarget();
3777
3778 bb->insertTail(texi);
3779 }
3780 break;
3781 case TGSI_OPCODE_IBFE:
3782 case TGSI_OPCODE_UBFE:
3783 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3784 src0 = fetchSrc(0, c);
3785 val0 = getScratch();
3786 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE &&
3787 tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) {
3788 loadImm(val0, (tgsi.getSrc(2).getValueU32(c, info) << 8) |
3789 tgsi.getSrc(1).getValueU32(c, info));
3790 } else {
3791 src1 = fetchSrc(1, c);
3792 src2 = fetchSrc(2, c);
3793 mkOp3(OP_INSBF, TYPE_U32, val0, src2, mkImm(0x808), src1);
3794 }
3795 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, val0);
3796 }
3797 break;
3798 case TGSI_OPCODE_BFI:
3799 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3800 src0 = fetchSrc(0, c);
3801 src1 = fetchSrc(1, c);
3802 src2 = fetchSrc(2, c);
3803 src3 = fetchSrc(3, c);
3804 val0 = getScratch();
3805 mkOp3(OP_INSBF, TYPE_U32, val0, src3, mkImm(0x808), src2);
3806 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, val0, src0);
3807 }
3808 break;
3809 case TGSI_OPCODE_LSB:
3810 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3811 src0 = fetchSrc(0, c);
3812 val0 = getScratch();
3813 geni = mkOp2(OP_EXTBF, TYPE_U32, val0, src0, mkImm(0x2000));
3814 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3815 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], val0);
3816 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3817 }
3818 break;
3819 case TGSI_OPCODE_IMSB:
3820 case TGSI_OPCODE_UMSB:
3821 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3822 src0 = fetchSrc(0, c);
3823 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
3824 }
3825 break;
3826 case TGSI_OPCODE_BREV:
3827 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3828 src0 = fetchSrc(0, c);
3829 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
3830 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3831 }
3832 break;
3833 case TGSI_OPCODE_POPC:
3834 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3835 src0 = fetchSrc(0, c);
3836 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
3837 }
3838 break;
3839 case TGSI_OPCODE_INTERP_CENTROID:
3840 case TGSI_OPCODE_INTERP_SAMPLE:
3841 case TGSI_OPCODE_INTERP_OFFSET:
3842 handleINTERP(dst0);
3843 break;
3844 case TGSI_OPCODE_I642F:
3845 case TGSI_OPCODE_U642F:
3846 case TGSI_OPCODE_D2I:
3847 case TGSI_OPCODE_D2U:
3848 case TGSI_OPCODE_D2F: {
3849 int pos = 0;
3850 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3851 Value *dreg = getSSA(8);
3852 src0 = fetchSrc(0, pos);
3853 src1 = fetchSrc(0, pos + 1);
3854 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
3855 Instruction *cvt = mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
3856 if (!isFloatType(dstTy))
3857 cvt->rnd = ROUND_Z;
3858 pos += 2;
3859 }
3860 break;
3861 }
3862 case TGSI_OPCODE_I2I64:
3863 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3864 dst0[c] = fetchSrc(0, c / 2);
3865 mkOp2(OP_SHR, TYPE_S32, dst0[c + 1], dst0[c], loadImm(NULL, 31));
3866 c++;
3867 }
3868 break;
3869 case TGSI_OPCODE_U2I64:
3870 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3871 dst0[c] = fetchSrc(0, c / 2);
3872 dst0[c + 1] = zero;
3873 c++;
3874 }
3875 break;
3876 case TGSI_OPCODE_F2I64:
3877 case TGSI_OPCODE_F2U64:
3878 case TGSI_OPCODE_I2D:
3879 case TGSI_OPCODE_U2D:
3880 case TGSI_OPCODE_F2D:
3881 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3882 Value *dreg = getSSA(8);
3883 Instruction *cvt = mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
3884 if (!isFloatType(dstTy))
3885 cvt->rnd = ROUND_Z;
3886 mkSplit(&dst0[c], 4, dreg);
3887 c++;
3888 }
3889 break;
3890 case TGSI_OPCODE_D2I64:
3891 case TGSI_OPCODE_D2U64:
3892 case TGSI_OPCODE_I642D:
3893 case TGSI_OPCODE_U642D:
3894 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3895 src0 = getSSA(8);
3896 Value *dst = getSSA(8), *tmp[2];
3897 tmp[0] = fetchSrc(0, c);
3898 tmp[1] = fetchSrc(0, c + 1);
3899 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3900 Instruction *cvt = mkCvt(OP_CVT, dstTy, dst, srcTy, src0);
3901 if (!isFloatType(dstTy))
3902 cvt->rnd = ROUND_Z;
3903 mkSplit(&dst0[c], 4, dst);
3904 c++;
3905 }
3906 break;
3907 case TGSI_OPCODE_I64NEG:
3908 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3909 src0 = getSSA(8);
3910 Value *dst = getSSA(8), *tmp[2];
3911 tmp[0] = fetchSrc(0, c);
3912 tmp[1] = fetchSrc(0, c + 1);
3913 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3914 mkOp2(OP_SUB, dstTy, dst, zero, src0);
3915 mkSplit(&dst0[c], 4, dst);
3916 c++;
3917 }
3918 break;
3919 case TGSI_OPCODE_I64ABS:
3920 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3921 src0 = getSSA(8);
3922 Value *neg = getSSA(8), *srcComp[2], *negComp[2];
3923 srcComp[0] = fetchSrc(0, c);
3924 srcComp[1] = fetchSrc(0, c + 1);
3925 mkOp2(OP_MERGE, TYPE_U64, src0, srcComp[0], srcComp[1]);
3926 mkOp2(OP_SUB, dstTy, neg, zero, src0);
3927 mkSplit(negComp, 4, neg);
3928 mkCmp(OP_SLCT, CC_LT, TYPE_S32, dst0[c], TYPE_S32,
3929 negComp[0], srcComp[0], srcComp[1]);
3930 mkCmp(OP_SLCT, CC_LT, TYPE_S32, dst0[c + 1], TYPE_S32,
3931 negComp[1], srcComp[1], srcComp[1]);
3932 c++;
3933 }
3934 break;
3935 case TGSI_OPCODE_DABS:
3936 case TGSI_OPCODE_DNEG:
3937 case TGSI_OPCODE_DRCP:
3938 case TGSI_OPCODE_DSQRT:
3939 case TGSI_OPCODE_DRSQ:
3940 case TGSI_OPCODE_DTRUNC:
3941 case TGSI_OPCODE_DCEIL:
3942 case TGSI_OPCODE_DFLR:
3943 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3944 src0 = getSSA(8);
3945 Value *dst = getSSA(8), *tmp[2];
3946 tmp[0] = fetchSrc(0, c);
3947 tmp[1] = fetchSrc(0, c + 1);
3948 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3949 mkOp1(op, dstTy, dst, src0);
3950 mkSplit(&dst0[c], 4, dst);
3951 c++;
3952 }
3953 break;
3954 case TGSI_OPCODE_DFRAC:
3955 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3956 src0 = getSSA(8);
3957 Value *dst = getSSA(8), *tmp[2];
3958 tmp[0] = fetchSrc(0, c);
3959 tmp[1] = fetchSrc(0, c + 1);
3960 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3961 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3962 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3963 mkSplit(&dst0[c], 4, dst);
3964 c++;
3965 }
3966 break;
3967 case TGSI_OPCODE_U64SEQ:
3968 case TGSI_OPCODE_U64SNE:
3969 case TGSI_OPCODE_U64SLT:
3970 case TGSI_OPCODE_U64SGE:
3971 case TGSI_OPCODE_I64SLT:
3972 case TGSI_OPCODE_I64SGE:
3973 case TGSI_OPCODE_DSLT:
3974 case TGSI_OPCODE_DSGE:
3975 case TGSI_OPCODE_DSEQ:
3976 case TGSI_OPCODE_DSNE: {
3977 int pos = 0;
3978 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3979 Value *tmp[2];
3980
3981 src0 = getSSA(8);
3982 src1 = getSSA(8);
3983 tmp[0] = fetchSrc(0, pos);
3984 tmp[1] = fetchSrc(0, pos + 1);
3985 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3986 tmp[0] = fetchSrc(1, pos);
3987 tmp[1] = fetchSrc(1, pos + 1);
3988 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3989 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3990 pos += 2;
3991 }
3992 break;
3993 }
3994 case TGSI_OPCODE_U64MIN:
3995 case TGSI_OPCODE_U64MAX:
3996 case TGSI_OPCODE_I64MIN:
3997 case TGSI_OPCODE_I64MAX: {
3998 dstTy = isSignedIntType(dstTy) ? TYPE_S32 : TYPE_U32;
3999 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4000 Value *flag = getSSA(1, FILE_FLAGS);
4001 src0 = fetchSrc(0, c + 1);
4002 src1 = fetchSrc(1, c + 1);
4003 geni = mkOp2(op, dstTy, dst0[c + 1], src0, src1);
4004 geni->subOp = NV50_IR_SUBOP_MINMAX_HIGH;
4005 geni->setFlagsDef(1, flag);
4006
4007 src0 = fetchSrc(0, c);
4008 src1 = fetchSrc(1, c);
4009 geni = mkOp2(op, TYPE_U32, dst0[c], src0, src1);
4010 geni->subOp = NV50_IR_SUBOP_MINMAX_LOW;
4011 geni->setFlagsSrc(2, flag);
4012
4013 c++;
4014 }
4015 break;
4016 }
4017 case TGSI_OPCODE_U64SHL:
4018 case TGSI_OPCODE_I64SHR:
4019 case TGSI_OPCODE_U64SHR:
4020 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4021 src0 = getSSA(8);
4022 Value *dst = getSSA(8), *tmp[2];
4023 tmp[0] = fetchSrc(0, c);
4024 tmp[1] = fetchSrc(0, c + 1);
4025 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4026 // Theoretically src1 is a 64-bit value but in practice only the low
4027 // bits matter. The IR expects this to be a 32-bit value.
4028 src1 = fetchSrc(1, c);
4029 mkOp2(op, dstTy, dst, src0, src1);
4030 mkSplit(&dst0[c], 4, dst);
4031 c++;
4032 }
4033 break;
4034 case TGSI_OPCODE_U64ADD:
4035 case TGSI_OPCODE_U64MUL:
4036 case TGSI_OPCODE_DADD:
4037 case TGSI_OPCODE_DMUL:
4038 case TGSI_OPCODE_DDIV:
4039 case TGSI_OPCODE_DMAX:
4040 case TGSI_OPCODE_DMIN:
4041 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4042 src0 = getSSA(8);
4043 src1 = getSSA(8);
4044 Value *dst = getSSA(8), *tmp[2];
4045 tmp[0] = fetchSrc(0, c);
4046 tmp[1] = fetchSrc(0, c + 1);
4047 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4048 tmp[0] = fetchSrc(1, c);
4049 tmp[1] = fetchSrc(1, c + 1);
4050 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
4051 mkOp2(op, dstTy, dst, src0, src1);
4052 mkSplit(&dst0[c], 4, dst);
4053 c++;
4054 }
4055 break;
4056 case TGSI_OPCODE_DMAD:
4057 case TGSI_OPCODE_DFMA:
4058 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4059 src0 = getSSA(8);
4060 src1 = getSSA(8);
4061 src2 = getSSA(8);
4062 Value *dst = getSSA(8), *tmp[2];
4063 tmp[0] = fetchSrc(0, c);
4064 tmp[1] = fetchSrc(0, c + 1);
4065 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4066 tmp[0] = fetchSrc(1, c);
4067 tmp[1] = fetchSrc(1, c + 1);
4068 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
4069 tmp[0] = fetchSrc(2, c);
4070 tmp[1] = fetchSrc(2, c + 1);
4071 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
4072 mkOp3(op, dstTy, dst, src0, src1, src2);
4073 mkSplit(&dst0[c], 4, dst);
4074 c++;
4075 }
4076 break;
4077 case TGSI_OPCODE_DROUND:
4078 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4079 src0 = getSSA(8);
4080 Value *dst = getSSA(8), *tmp[2];
4081 tmp[0] = fetchSrc(0, c);
4082 tmp[1] = fetchSrc(0, c + 1);
4083 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4084 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
4085 ->rnd = ROUND_NI;
4086 mkSplit(&dst0[c], 4, dst);
4087 c++;
4088 }
4089 break;
4090 case TGSI_OPCODE_DSSG:
4091 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4092 src0 = getSSA(8);
4093 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
4094 tmp[0] = fetchSrc(0, c);
4095 tmp[1] = fetchSrc(0, c + 1);
4096 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4097
4098 val0 = getScratch();
4099 val1 = getScratch();
4100 // The zero is wrong here since it's only 32-bit, but it works out in
4101 // the end since it gets replaced with $r63.
4102 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
4103 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
4104 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
4105 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
4106 mkSplit(&dst0[c], 4, dst);
4107 c++;
4108 }
4109 break;
4110 case TGSI_OPCODE_I64SSG:
4111 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4112 src0 = getSSA(8);
4113 Value *tmp[2];
4114 tmp[0] = fetchSrc(0, c);
4115 tmp[1] = fetchSrc(0, c + 1);
4116 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4117
4118 val0 = getScratch();
4119 val1 = getScratch();
4120 mkCmp(OP_SET, CC_GT, TYPE_U32, val0, TYPE_S64, src0, zero);
4121 mkCmp(OP_SET, CC_LT, TYPE_U32, val1, TYPE_S64, src0, zero);
4122 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
4123 mkOp2(OP_SHR, TYPE_S32, dst0[c + 1], dst0[c], loadImm(0, 31));
4124 c++;
4125 }
4126 break;
4127 default:
4128 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
4129 assert(0);
4130 break;
4131 }
4132
4133 if (tgsi.dstCount() && tgsi.getOpcode() != TGSI_OPCODE_STORE) {
4134 for (c = 0; c < 4; ++c) {
4135 if (!dst0[c])
4136 continue;
4137 if (dst0[c] != rDst0[c])
4138 mkMov(rDst0[c], dst0[c]);
4139 storeDst(0, c, rDst0[c]);
4140 }
4141 }
4142 vtxBaseValid = 0;
4143
4144 return true;
4145 }
4146
4147 void
4148 Converter::exportOutputs()
4149 {
4150 if (info->io.alphaRefBase) {
4151 for (unsigned int i = 0; i < info->numOutputs; ++i) {
4152 if (info->out[i].sn != TGSI_SEMANTIC_COLOR ||
4153 info->out[i].si != 0)
4154 continue;
4155 const unsigned int c = 3;
4156 if (!oData.exists(sub.cur->values, i, c))
4157 continue;
4158 Value *val = oData.load(sub.cur->values, i, c, NULL);
4159 if (!val)
4160 continue;
4161
4162 Symbol *ref = mkSymbol(FILE_MEMORY_CONST, info->io.auxCBSlot,
4163 TYPE_U32, info->io.alphaRefBase);
4164 Value *pred = new_LValue(func, FILE_PREDICATE);
4165 mkCmp(OP_SET, CC_TR, TYPE_U32, pred, TYPE_F32, val,
4166 mkLoadv(TYPE_U32, ref, NULL))
4167 ->subOp = 1;
4168 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_NOT_P, pred);
4169 }
4170 }
4171
4172 for (unsigned int i = 0; i < info->numOutputs; ++i) {
4173 for (unsigned int c = 0; c < 4; ++c) {
4174 if (!oData.exists(sub.cur->values, i, c))
4175 continue;
4176 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
4177 info->out[i].slot[c] * 4);
4178 Value *val = oData.load(sub.cur->values, i, c, NULL);
4179 if (val) {
4180 if (info->out[i].sn == TGSI_SEMANTIC_POSITION)
4181 mkOp1(OP_SAT, TYPE_F32, val, val);
4182 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
4183 }
4184 }
4185 }
4186 }
4187
4188 Converter::Converter(Program *ir, const tgsi::Source *code) : ConverterCommon(ir, code->info),
4189 code(code),
4190 tgsi(NULL),
4191 tData(this), lData(this), aData(this), oData(this)
4192 {
4193 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
4194 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
4195 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
4196
4197 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, FILE_GPR, 0);
4198 lData.setup(TGSI_FILE_TEMPORARY, 1, 0, tSize, 4, 4, FILE_MEMORY_LOCAL, 0);
4199 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
4200 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
4201
4202 zero = mkImm((uint32_t)0);
4203
4204 vtxBaseValid = 0;
4205 }
4206
4207 Converter::~Converter()
4208 {
4209 }
4210
4211 inline const Converter::Location *
4212 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
4213 {
4214 ValueMap::l_iterator it = s->values.l.find(v);
4215 return it == s->values.l.end() ? NULL : &it->second;
4216 }
4217
4218 template<typename T> inline void
4219 Converter::BindArgumentsPass::updateCallArgs(
4220 Instruction *i, void (Instruction::*setArg)(int, Value *),
4221 T (Function::*proto))
4222 {
4223 Function *g = i->asFlow()->target.fn;
4224 Subroutine *subg = conv.getSubroutine(g);
4225
4226 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
4227 Value *v = (g->*proto)[a].get();
4228 const Converter::Location &l = *getValueLocation(subg, v);
4229 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
4230
4231 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
4232 }
4233 }
4234
4235 template<typename T> inline void
4236 Converter::BindArgumentsPass::updatePrototype(
4237 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
4238 {
4239 (func->*updateSet)();
4240
4241 for (unsigned i = 0; i < set->getSize(); ++i) {
4242 Value *v = func->getLValue(i);
4243 const Converter::Location *l = getValueLocation(sub, v);
4244
4245 // only include values with a matching TGSI register
4246 if (set->test(i) && l && !conv.code->locals.count(*l))
4247 (func->*proto).push_back(v);
4248 }
4249 }
4250
4251 bool
4252 Converter::BindArgumentsPass::visit(Function *f)
4253 {
4254 sub = conv.getSubroutine(f);
4255
4256 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
4257 !bi.end(); bi.next()) {
4258 for (Instruction *i = BasicBlock::get(bi)->getFirst();
4259 i; i = i->next) {
4260 if (i->op == OP_CALL && !i->asFlow()->builtin) {
4261 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
4262 updateCallArgs(i, &Instruction::setDef, &Function::outs);
4263 }
4264 }
4265 }
4266
4267 if (func == prog->main /* && prog->getType() != Program::TYPE_COMPUTE */)
4268 return true;
4269 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
4270 &Function::buildLiveSets, &Function::ins);
4271 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
4272 &Function::buildDefSets, &Function::outs);
4273
4274 return true;
4275 }
4276
4277 bool
4278 Converter::run()
4279 {
4280 BasicBlock *entry = new BasicBlock(prog->main);
4281 BasicBlock *leave = new BasicBlock(prog->main);
4282
4283 prog->main->setEntry(entry);
4284 prog->main->setExit(leave);
4285
4286 setPosition(entry, true);
4287 sub.cur = getSubroutine(prog->main);
4288
4289 if (info->io.genUserClip > 0) {
4290 for (int c = 0; c < 4; ++c)
4291 clipVtx[c] = getScratch();
4292 }
4293
4294 switch (prog->getType()) {
4295 case Program::TYPE_TESSELLATION_CONTROL:
4296 outBase = mkOp2v(
4297 OP_SUB, TYPE_U32, getSSA(),
4298 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
4299 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
4300 break;
4301 case Program::TYPE_FRAGMENT: {
4302 Symbol *sv = mkSysVal(SV_POSITION, 3);
4303 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
4304 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
4305 break;
4306 }
4307 default:
4308 break;
4309 }
4310
4311 if (info->io.viewportId >= 0)
4312 viewport = getScratch();
4313 else
4314 viewport = NULL;
4315
4316 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
4317 if (!handleInstruction(&code->insns[ip]))
4318 return false;
4319 }
4320
4321 if (!BindArgumentsPass(*this).run(prog))
4322 return false;
4323
4324 return true;
4325 }
4326
4327 } // unnamed namespace
4328
4329 namespace nv50_ir {
4330
4331 bool
4332 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
4333 {
4334 tgsi::Source src(info);
4335 if (!src.scanSource())
4336 return false;
4337 tlsSize = info->bin.tlsSpace;
4338
4339 Converter builder(this, &src);
4340 return builder.run();
4341 }
4342
4343 } // namespace nv50_ir