52106cb931fd10644f3b6a6d7f45b839e3b8d20c
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_lowering_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48
49 bld.setPosition(i, false);
50
51 // Generate movs to the input regs for the call we want to generate
52 for (int s = 0; i->srcExists(s); ++s) {
53 Instruction *ld = i->getSrc(s)->getInsn();
54 // check if we are moving an immediate, propagate it in that case
55 if (!ld || ld->fixed || (ld->op != OP_LOAD && ld->op != OP_MOV) ||
56 !(ld->src(0).getFile() == FILE_IMMEDIATE))
57 bld.mkMovToReg(s, i->getSrc(s));
58 else {
59 assert(ld->getSrc(0) != NULL);
60 bld.mkMovToReg(s, ld->getSrc(0));
61 // Clear the src, to make code elimination possible here before we
62 // delete the instruction i later
63 i->setSrc(s, NULL);
64 if (ld->isDead())
65 delete_Instruction(prog, ld);
66 }
67 }
68
69 switch (i->dType) {
70 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
71 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
72 default:
73 return;
74 }
75 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
76 bld.mkMovFromReg(i->getDef(0), i->op == OP_DIV ? 0 : 1);
77 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
78 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
79
80 call->fixed = 1;
81 call->absolute = call->builtin = 1;
82 call->target.builtin = builtin;
83 delete_Instruction(prog, i);
84 }
85
86 void
87 NVC0LegalizeSSA::handleRCPRSQLib(Instruction *i, Value *src[])
88 {
89 FlowInstruction *call;
90 Value *def[2];
91 int builtin;
92
93 def[0] = bld.mkMovToReg(0, src[0])->getDef(0);
94 def[1] = bld.mkMovToReg(1, src[1])->getDef(0);
95
96 if (i->op == OP_RCP)
97 builtin = NVC0_BUILTIN_RCP_F64;
98 else
99 builtin = NVC0_BUILTIN_RSQ_F64;
100
101 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
102 def[0] = bld.getSSA();
103 def[1] = bld.getSSA();
104 bld.mkMovFromReg(def[0], 0);
105 bld.mkMovFromReg(def[1], 1);
106 bld.mkClobber(FILE_GPR, 0x3fc, 2);
107 bld.mkClobber(FILE_PREDICATE, i->op == OP_RSQ ? 0x3 : 0x1, 0);
108 bld.mkOp2(OP_MERGE, TYPE_U64, i->getDef(0), def[0], def[1]);
109
110 call->fixed = 1;
111 call->absolute = call->builtin = 1;
112 call->target.builtin = builtin;
113 delete_Instruction(prog, i);
114
115 prog->fp64 = true;
116 }
117
118 void
119 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
120 {
121 assert(i->dType == TYPE_F64);
122 // There are instructions that will compute the high 32 bits of the 64-bit
123 // float. We will just stick 0 in the bottom 32 bits.
124
125 bld.setPosition(i, false);
126
127 // 1. Take the source and it up.
128 Value *src[2], *dst[2], *def = i->getDef(0);
129 bld.mkSplit(src, 4, i->getSrc(0));
130
131 int chip = prog->getTarget()->getChipset();
132 if (chip >= NVISA_GK104_CHIPSET) {
133 handleRCPRSQLib(i, src);
134 return;
135 }
136
137 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
138 dst[0] = bld.loadImm(NULL, 0);
139 dst[1] = bld.getSSA();
140
141 // 3. The new version of the instruction takes the high 32 bits of the
142 // source and outputs the high 32 bits of the destination.
143 i->setSrc(0, src[1]);
144 i->setDef(0, dst[1]);
145 i->setType(TYPE_F32);
146 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
147
148 // 4. Recombine the two dst pieces back into the original destination.
149 bld.setPosition(i, true);
150 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
151 }
152
153 void
154 NVC0LegalizeSSA::handleFTZ(Instruction *i)
155 {
156 // Only want to flush float inputs
157 assert(i->sType == TYPE_F32);
158
159 // If we're already flushing denorms (and NaN's) to zero, no need for this.
160 if (i->dnz)
161 return;
162
163 // Only certain classes of operations can flush
164 OpClass cls = prog->getTarget()->getOpClass(i->op);
165 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
166 cls != OPCLASS_CONVERT)
167 return;
168
169 i->ftz = true;
170 }
171
172 void
173 NVC0LegalizeSSA::handleTEXLOD(TexInstruction *i)
174 {
175 if (i->tex.levelZero)
176 return;
177
178 ImmediateValue lod;
179
180 // The LOD argument comes right after the coordinates (before depth bias,
181 // offsets, etc).
182 int arg = i->tex.target.getArgCount();
183
184 // SM30+ stores the indirect handle as a separate arg, which comes before
185 // the LOD.
186 if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET &&
187 i->tex.rIndirectSrc >= 0)
188 arg++;
189 // SM20 stores indirect handle combined with array coordinate
190 if (prog->getTarget()->getChipset() < NVISA_GK104_CHIPSET &&
191 !i->tex.target.isArray() &&
192 i->tex.rIndirectSrc >= 0)
193 arg++;
194
195 if (!i->src(arg).getImmediate(lod) || !lod.isInteger(0))
196 return;
197
198 if (i->op == OP_TXL)
199 i->op = OP_TEX;
200 i->tex.levelZero = true;
201 i->moveSources(arg + 1, -1);
202 }
203
204 void
205 NVC0LegalizeSSA::handleShift(Instruction *lo)
206 {
207 Value *shift = lo->getSrc(1);
208 Value *dst64 = lo->getDef(0);
209 Value *src[2], *dst[2];
210 operation op = lo->op;
211
212 bld.setPosition(lo, false);
213
214 bld.mkSplit(src, 4, lo->getSrc(0));
215
216 // SM30 and prior don't have the fancy new SHF.L/R ops. So the logic has to
217 // be completely emulated. For SM35+, we can use the more directed SHF
218 // operations.
219 if (prog->getTarget()->getChipset() < NVISA_GK20A_CHIPSET) {
220 // The strategy here is to handle shifts >= 32 and less than 32 as
221 // separate parts.
222 //
223 // For SHL:
224 // If the shift is <= 32, then
225 // (HI,LO) << x = (HI << x | (LO >> (32 - x)), LO << x)
226 // If the shift is > 32, then
227 // (HI,LO) << x = (LO << (x - 32), 0)
228 //
229 // For SHR:
230 // If the shift is <= 32, then
231 // (HI,LO) >> x = (HI >> x, (HI << (32 - x)) | LO >> x)
232 // If the shift is > 32, then
233 // (HI,LO) >> x = (0, HI >> (x - 32))
234 //
235 // Note that on NVIDIA hardware, a shift > 32 yields a 0 value, which we
236 // can use to our advantage. Also note the structural similarities
237 // between the right/left cases. The main difference is swapping hi/lo
238 // on input and output.
239
240 Value *x32_minus_shift, *pred, *hi1, *hi2;
241 DataType type = isSignedIntType(lo->dType) ? TYPE_S32 : TYPE_U32;
242 operation antiop = op == OP_SHR ? OP_SHL : OP_SHR;
243 if (op == OP_SHR)
244 std::swap(src[0], src[1]);
245 bld.mkOp2(OP_ADD, TYPE_U32, (x32_minus_shift = bld.getSSA()), shift, bld.mkImm(0x20))
246 ->src(0).mod = Modifier(NV50_IR_MOD_NEG);
247 bld.mkCmp(OP_SET, CC_LE, TYPE_U8, (pred = bld.getSSA(1, FILE_PREDICATE)),
248 TYPE_U32, shift, bld.mkImm(32));
249 // Compute HI (shift <= 32)
250 bld.mkOp2(OP_OR, TYPE_U32, (hi1 = bld.getSSA()),
251 bld.mkOp2v(op, TYPE_U32, bld.getSSA(), src[1], shift),
252 bld.mkOp2v(antiop, TYPE_U32, bld.getSSA(), src[0], x32_minus_shift))
253 ->setPredicate(CC_P, pred);
254 // Compute LO (all shift values)
255 bld.mkOp2(op, type, (dst[0] = bld.getSSA()), src[0], shift);
256 // Compute HI (shift > 32)
257 bld.mkOp2(op, type, (hi2 = bld.getSSA()), src[0],
258 bld.mkOp1v(OP_NEG, TYPE_S32, bld.getSSA(), x32_minus_shift))
259 ->setPredicate(CC_NOT_P, pred);
260 bld.mkOp2(OP_UNION, TYPE_U32, (dst[1] = bld.getSSA()), hi1, hi2);
261 if (op == OP_SHR)
262 std::swap(dst[0], dst[1]);
263 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
264 delete_Instruction(prog, lo);
265 return;
266 }
267
268 Instruction *hi = new_Instruction(func, op, TYPE_U32);
269 lo->bb->insertAfter(lo, hi);
270
271 hi->sType = lo->sType;
272 lo->dType = TYPE_U32;
273
274 hi->setDef(0, (dst[1] = bld.getSSA()));
275 if (lo->op == OP_SHR)
276 hi->subOp |= NV50_IR_SUBOP_SHIFT_HIGH;
277 lo->setDef(0, (dst[0] = bld.getSSA()));
278
279 bld.setPosition(hi, true);
280
281 if (lo->op == OP_SHL)
282 std::swap(hi, lo);
283
284 hi->setSrc(0, new_ImmediateValue(prog, 0u));
285 hi->setSrc(1, shift);
286 hi->setSrc(2, lo->op == OP_SHL ? src[0] : src[1]);
287
288 lo->setSrc(0, src[0]);
289 lo->setSrc(1, shift);
290 lo->setSrc(2, src[1]);
291
292 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
293 }
294
295 void
296 NVC0LegalizeSSA::handleSET(CmpInstruction *cmp)
297 {
298 DataType hTy = cmp->sType == TYPE_S64 ? TYPE_S32 : TYPE_U32;
299 Value *carry;
300 Value *src0[2], *src1[2];
301 bld.setPosition(cmp, false);
302
303 bld.mkSplit(src0, 4, cmp->getSrc(0));
304 bld.mkSplit(src1, 4, cmp->getSrc(1));
305 bld.mkOp2(OP_SUB, hTy, NULL, src0[0], src1[0])
306 ->setFlagsDef(0, (carry = bld.getSSA(1, FILE_FLAGS)));
307 cmp->setFlagsSrc(cmp->srcCount(), carry);
308 cmp->setSrc(0, src0[1]);
309 cmp->setSrc(1, src1[1]);
310 cmp->sType = hTy;
311 }
312
313 void
314 NVC0LegalizeSSA::handleBREV(Instruction *i)
315 {
316 i->op = OP_EXTBF;
317 i->subOp = NV50_IR_SUBOP_EXTBF_REV;
318 i->setSrc(1, bld.mkImm(0x2000));
319 }
320
321 bool
322 NVC0LegalizeSSA::visit(Function *fn)
323 {
324 bld.setProgram(fn->getProgram());
325 return true;
326 }
327
328 bool
329 NVC0LegalizeSSA::visit(BasicBlock *bb)
330 {
331 Instruction *next;
332 for (Instruction *i = bb->getEntry(); i; i = next) {
333 next = i->next;
334
335 if (i->sType == TYPE_F32 && prog->getType() != Program::TYPE_COMPUTE)
336 handleFTZ(i);
337
338 switch (i->op) {
339 case OP_DIV:
340 case OP_MOD:
341 if (i->sType != TYPE_F32)
342 handleDIV(i);
343 break;
344 case OP_RCP:
345 case OP_RSQ:
346 if (i->dType == TYPE_F64)
347 handleRCPRSQ(i);
348 break;
349 case OP_TXL:
350 case OP_TXF:
351 handleTEXLOD(i->asTex());
352 break;
353 case OP_SHR:
354 case OP_SHL:
355 if (typeSizeof(i->sType) == 8)
356 handleShift(i);
357 break;
358 case OP_SET:
359 case OP_SET_AND:
360 case OP_SET_OR:
361 case OP_SET_XOR:
362 if (typeSizeof(i->sType) == 8 && i->sType != TYPE_F64)
363 handleSET(i->asCmp());
364 break;
365 case OP_BREV:
366 handleBREV(i);
367 break;
368 default:
369 break;
370 }
371 }
372 return true;
373 }
374
375 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
376 : rZero(NULL),
377 carry(NULL),
378 pOne(NULL),
379 needTexBar(prog->getTarget()->getChipset() >= 0xe0 &&
380 prog->getTarget()->getChipset() < 0x110)
381 {
382 }
383
384 bool
385 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
386 const Instruction *early) const
387 {
388 if (early->bb == later->bb)
389 return early->serial < later->serial;
390 return later->bb->dominatedBy(early->bb);
391 }
392
393 void
394 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
395 Instruction *usei, const Instruction *texi)
396 {
397 bool add = true;
398 bool dominated = insnDominatedBy(usei, texi);
399 // Uses before the tex have to all be included. Just because an earlier
400 // instruction dominates another instruction doesn't mean that there's no
401 // way to get from the tex to the later instruction. For example you could
402 // have nested loops, with the tex in the inner loop, and uses before it in
403 // both loops - even though the outer loop's instruction would dominate the
404 // inner's, we still want a texbar before the inner loop's instruction.
405 //
406 // However we can still use the eliding logic between uses dominated by the
407 // tex instruction, as that is unambiguously correct.
408 if (dominated) {
409 for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
410 if (it->after) {
411 if (insnDominatedBy(usei, it->insn)) {
412 add = false;
413 break;
414 }
415 if (insnDominatedBy(it->insn, usei)) {
416 it = uses.erase(it);
417 continue;
418 }
419 }
420 ++it;
421 }
422 }
423 if (add)
424 uses.push_back(TexUse(usei, texi, dominated));
425 }
426
427 // While it might be tempting to use the an algorithm that just looks at tex
428 // uses, not all texture results are guaranteed to be used on all paths. In
429 // the case where along some control flow path a texture result is never used,
430 // we might reuse that register for something else, creating a
431 // write-after-write hazard. So we have to manually look through all
432 // instructions looking for ones that reference the registers in question.
433 void
434 NVC0LegalizePostRA::findFirstUses(
435 Instruction *texi, std::list<TexUse> &uses)
436 {
437 int minGPR = texi->def(0).rep()->reg.data.id;
438 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
439
440 unordered_set<const BasicBlock *> visited;
441 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
442 }
443
444 void
445 NVC0LegalizePostRA::findFirstUsesBB(
446 int minGPR, int maxGPR, Instruction *start,
447 const Instruction *texi, std::list<TexUse> &uses,
448 unordered_set<const BasicBlock *> &visited)
449 {
450 const BasicBlock *bb = start->bb;
451
452 // We don't process the whole bb the first time around. This is correct,
453 // however we might be in a loop and hit this BB again, and need to process
454 // the full thing. So only mark a bb as visited if we processed it from the
455 // beginning.
456 if (start == bb->getEntry()) {
457 if (visited.find(bb) != visited.end())
458 return;
459 visited.insert(bb);
460 }
461
462 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
463 if (insn->isNop())
464 continue;
465
466 for (int d = 0; insn->defExists(d); ++d) {
467 const Value *def = insn->def(d).rep();
468 if (insn->def(d).getFile() != FILE_GPR ||
469 def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
470 def->reg.data.id > maxGPR)
471 continue;
472 addTexUse(uses, insn, texi);
473 return;
474 }
475
476 for (int s = 0; insn->srcExists(s); ++s) {
477 const Value *src = insn->src(s).rep();
478 if (insn->src(s).getFile() != FILE_GPR ||
479 src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
480 src->reg.data.id > maxGPR)
481 continue;
482 addTexUse(uses, insn, texi);
483 return;
484 }
485 }
486
487 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
488 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
489 texi, uses, visited);
490 }
491 }
492
493 // Texture barriers:
494 // This pass is a bit long and ugly and can probably be optimized.
495 //
496 // 1. obtain a list of TEXes and their outputs' first use(s)
497 // 2. calculate the barrier level of each first use (minimal number of TEXes,
498 // over all paths, between the TEX and the use in question)
499 // 3. for each barrier, if all paths from the source TEX to that barrier
500 // contain a barrier of lesser level, it can be culled
501 bool
502 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
503 {
504 std::list<TexUse> *uses;
505 std::vector<Instruction *> texes;
506 std::vector<int> bbFirstTex;
507 std::vector<int> bbFirstUse;
508 std::vector<int> texCounts;
509 std::vector<TexUse> useVec;
510 ArrayList insns;
511
512 fn->orderInstructions(insns);
513
514 texCounts.resize(fn->allBBlocks.getSize(), 0);
515 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
516 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
517
518 // tag BB CFG nodes by their id for later
519 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
520 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
521 if (bb)
522 bb->cfg.tag = bb->getId();
523 }
524
525 // gather the first uses for each TEX
526 for (int i = 0; i < insns.getSize(); ++i) {
527 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
528 if (isTextureOp(tex->op)) {
529 texes.push_back(tex);
530 if (!texCounts.at(tex->bb->getId()))
531 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
532 texCounts[tex->bb->getId()]++;
533 }
534 }
535 insns.clear();
536 if (texes.empty())
537 return false;
538 uses = new std::list<TexUse>[texes.size()];
539 if (!uses)
540 return false;
541 for (size_t i = 0; i < texes.size(); ++i) {
542 findFirstUses(texes[i], uses[i]);
543 }
544
545 // determine the barrier level at each use
546 for (size_t i = 0; i < texes.size(); ++i) {
547 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
548 ++u) {
549 BasicBlock *tb = texes[i]->bb;
550 BasicBlock *ub = u->insn->bb;
551 if (tb == ub) {
552 u->level = 0;
553 for (size_t j = i + 1; j < texes.size() &&
554 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
555 ++j)
556 u->level++;
557 } else {
558 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
559 &ub->cfg, texCounts);
560 if (u->level < 0) {
561 WARN("Failed to find path TEX -> TEXBAR\n");
562 u->level = 0;
563 continue;
564 }
565 // this counted all TEXes in the origin block, correct that
566 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
567 // and did not count the TEXes in the destination block, add those
568 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
569 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
570 ++j)
571 u->level++;
572 }
573 assert(u->level >= 0);
574 useVec.push_back(*u);
575 }
576 }
577 delete[] uses;
578
579 // insert the barriers
580 for (size_t i = 0; i < useVec.size(); ++i) {
581 Instruction *prev = useVec[i].insn->prev;
582 if (useVec[i].level < 0)
583 continue;
584 if (prev && prev->op == OP_TEXBAR) {
585 if (prev->subOp > useVec[i].level)
586 prev->subOp = useVec[i].level;
587 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
588 } else {
589 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
590 bar->fixed = 1;
591 bar->subOp = useVec[i].level;
592 // make use explicit to ease latency calculation
593 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
594 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
595 }
596 }
597
598 if (fn->getProgram()->optLevel < 3)
599 return true;
600
601 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
602
603 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
604 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
605 limitS.resize(fn->allBBlocks.getSize());
606
607 // cull unneeded barriers (should do that earlier, but for simplicity)
608 IteratorRef bi = fn->cfg.iteratorCFG();
609 // first calculate min/max outstanding TEXes for each BB
610 for (bi->reset(); !bi->end(); bi->next()) {
611 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
612 BasicBlock *bb = BasicBlock::get(n);
613 int min = 0;
614 int max = std::numeric_limits<int>::max();
615 for (Instruction *i = bb->getFirst(); i; i = i->next) {
616 if (isTextureOp(i->op)) {
617 min++;
618 if (max < std::numeric_limits<int>::max())
619 max++;
620 } else
621 if (i->op == OP_TEXBAR) {
622 min = MIN2(min, i->subOp);
623 max = MIN2(max, i->subOp);
624 }
625 }
626 // limits when looking at an isolated block
627 limitS[bb->getId()].min = min;
628 limitS[bb->getId()].max = max;
629 }
630 // propagate the min/max values
631 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
632 for (bi->reset(); !bi->end(); bi->next()) {
633 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
634 BasicBlock *bb = BasicBlock::get(n);
635 const int bbId = bb->getId();
636 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
637 BasicBlock *in = BasicBlock::get(ei.getNode());
638 const int inId = in->getId();
639 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
640 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
641 }
642 // I just hope this is correct ...
643 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
644 // no barrier
645 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
646 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
647 } else {
648 // block contained a barrier
649 limitB[bbId].min = MIN2(limitS[bbId].max,
650 limitT[bbId].min + limitS[bbId].min);
651 limitB[bbId].max = MIN2(limitS[bbId].max,
652 limitT[bbId].max + limitS[bbId].min);
653 }
654 }
655 }
656 // finally delete unnecessary barriers
657 for (bi->reset(); !bi->end(); bi->next()) {
658 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
659 BasicBlock *bb = BasicBlock::get(n);
660 Instruction *prev = NULL;
661 Instruction *next;
662 int max = limitT[bb->getId()].max;
663 for (Instruction *i = bb->getFirst(); i; i = next) {
664 next = i->next;
665 if (i->op == OP_TEXBAR) {
666 if (i->subOp >= max) {
667 delete_Instruction(prog, i);
668 i = NULL;
669 } else {
670 max = i->subOp;
671 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
672 delete_Instruction(prog, prev);
673 prev = NULL;
674 }
675 }
676 } else
677 if (isTextureOp(i->op)) {
678 max++;
679 }
680 if (i && !i->isNop())
681 prev = i;
682 }
683 }
684 return true;
685 }
686
687 bool
688 NVC0LegalizePostRA::visit(Function *fn)
689 {
690 if (needTexBar)
691 insertTextureBarriers(fn);
692
693 rZero = new_LValue(fn, FILE_GPR);
694 pOne = new_LValue(fn, FILE_PREDICATE);
695 carry = new_LValue(fn, FILE_FLAGS);
696
697 rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
698 carry->reg.data.id = 0;
699 pOne->reg.data.id = 7;
700
701 return true;
702 }
703
704 void
705 NVC0LegalizePostRA::replaceZero(Instruction *i)
706 {
707 for (int s = 0; i->srcExists(s); ++s) {
708 if (s == 2 && i->op == OP_SUCLAMP)
709 continue;
710 if (s == 1 && i->op == OP_SHLADD)
711 continue;
712 ImmediateValue *imm = i->getSrc(s)->asImm();
713 if (imm) {
714 if (i->op == OP_SELP && s == 2) {
715 i->setSrc(s, pOne);
716 if (imm->reg.data.u64 == 0)
717 i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
718 } else if (imm->reg.data.u64 == 0) {
719 i->setSrc(s, rZero);
720 }
721 }
722 }
723 }
724
725 // replace CONT with BRA for single unconditional continue
726 bool
727 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
728 {
729 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
730 return false;
731 Graph::EdgeIterator ei = bb->cfg.incident();
732 if (ei.getType() != Graph::Edge::BACK)
733 ei.next();
734 if (ei.getType() != Graph::Edge::BACK)
735 return false;
736 BasicBlock *contBB = BasicBlock::get(ei.getNode());
737
738 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
739 contBB->getExit()->getPredicate())
740 return false;
741 contBB->getExit()->op = OP_BRA;
742 bb->remove(bb->getEntry()); // delete PRECONT
743
744 ei.next();
745 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
746 return true;
747 }
748
749 // replace branches to join blocks with join ops
750 void
751 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
752 {
753 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
754 return;
755 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
756 BasicBlock *in = BasicBlock::get(ei.getNode());
757 Instruction *exit = in->getExit();
758 if (!exit) {
759 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
760 // there should always be a terminator instruction
761 WARN("inserted missing terminator in BB:%i\n", in->getId());
762 } else
763 if (exit->op == OP_BRA) {
764 exit->op = OP_JOIN;
765 exit->asFlow()->limit = 1; // must-not-propagate marker
766 }
767 }
768 bb->remove(bb->getEntry());
769 }
770
771 // replaces instructions which would end up as f2f or i2i with faster
772 // alternatives:
773 // - fabs(a) -> fadd(0, abs a)
774 // - fneg(a) -> fadd(neg 0, neg a)
775 // - ineg(a) -> iadd(0, neg a)
776 // - fneg(abs a) -> fadd(neg 0, neg abs a)
777 // - sat(a) -> sat add(0, a)
778 void
779 NVC0LegalizePostRA::replaceCvt(Instruction *cvt)
780 {
781 if (!isFloatType(cvt->sType) && typeSizeof(cvt->sType) != 4)
782 return;
783 if (cvt->sType != cvt->dType)
784 return;
785 // we could make it work, but in this case we have optimizations disabled
786 // and we don't really care either way.
787 if (cvt->src(0).getFile() != FILE_GPR &&
788 cvt->src(0).getFile() != FILE_MEMORY_CONST)
789 return;
790
791 Modifier mod0, mod1;
792
793 switch (cvt->op) {
794 case OP_ABS:
795 if (cvt->src(0).mod)
796 return;
797 if (!isFloatType(cvt->sType))
798 return;
799 mod0 = 0;
800 mod1 = NV50_IR_MOD_ABS;
801 break;
802 case OP_NEG:
803 if (!isFloatType(cvt->sType) && cvt->src(0).mod)
804 return;
805 if (isFloatType(cvt->sType) &&
806 (cvt->src(0).mod && cvt->src(0).mod != Modifier(NV50_IR_MOD_ABS)))
807 return;
808
809 mod0 = isFloatType(cvt->sType) ? NV50_IR_MOD_NEG : 0;
810 mod1 = cvt->src(0).mod == Modifier(NV50_IR_MOD_ABS) ?
811 NV50_IR_MOD_NEG_ABS : NV50_IR_MOD_NEG;
812 break;
813 case OP_SAT:
814 if (!isFloatType(cvt->sType) && cvt->src(0).mod.abs())
815 return;
816 mod0 = 0;
817 mod1 = cvt->src(0).mod;
818 cvt->saturate = true;
819 break;
820 default:
821 return;
822 }
823
824 cvt->op = OP_ADD;
825 cvt->moveSources(0, 1);
826 cvt->setSrc(0, rZero);
827 cvt->src(0).mod = mod0;
828 cvt->src(1).mod = mod1;
829 }
830
831 bool
832 NVC0LegalizePostRA::visit(BasicBlock *bb)
833 {
834 Instruction *i, *next;
835
836 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
837 for (i = bb->getFirst(); i; i = next) {
838 next = i->next;
839 if (i->op == OP_EMIT || i->op == OP_RESTART) {
840 if (!i->getDef(0)->refCount())
841 i->setDef(0, NULL);
842 if (i->src(0).getFile() == FILE_IMMEDIATE)
843 i->setSrc(0, rZero); // initial value must be 0
844 replaceZero(i);
845 } else
846 if (i->isNop()) {
847 bb->remove(i);
848 } else
849 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
850 prog->getType() != Program::TYPE_COMPUTE) {
851 // It seems like barriers are never required for tessellation since
852 // the warp size is 32, and there are always at most 32 tcs threads.
853 bb->remove(i);
854 } else
855 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
856 int offset = i->src(0).get()->reg.data.offset;
857 if (abs(offset) >= 0x10000)
858 i->src(0).get()->reg.fileIndex += offset >> 16;
859 i->src(0).get()->reg.data.offset = (int)(short)offset;
860 } else {
861 // TODO: Move this to before register allocation for operations that
862 // need the $c register !
863 if (typeSizeof(i->sType) == 8 || typeSizeof(i->dType) == 8) {
864 Instruction *hi;
865 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
866 if (hi)
867 next = hi;
868 }
869
870 if (i->op != OP_MOV && i->op != OP_PFETCH)
871 replaceZero(i);
872
873 if (i->op == OP_SAT || i->op == OP_NEG || i->op == OP_ABS)
874 replaceCvt(i);
875 }
876 }
877 if (!bb->getEntry())
878 return true;
879
880 if (!tryReplaceContWithBra(bb))
881 propagateJoin(bb);
882
883 return true;
884 }
885
886 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
887 {
888 bld.setProgram(prog);
889 }
890
891 bool
892 NVC0LoweringPass::visit(Function *fn)
893 {
894 if (prog->getType() == Program::TYPE_GEOMETRY) {
895 assert(!strncmp(fn->getName(), "MAIN", 4));
896 // TODO: when we generate actual functions pass this value along somehow
897 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
898 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
899 if (fn->cfgExit) {
900 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
901 if (prog->getTarget()->getChipset() >= NVISA_GV100_CHIPSET)
902 bld.mkOp1(OP_FINAL, TYPE_NONE, NULL, gpEmitAddress)->fixed = 1;
903 bld.mkMovToReg(0, gpEmitAddress);
904 }
905 }
906 return true;
907 }
908
909 bool
910 NVC0LoweringPass::visit(BasicBlock *bb)
911 {
912 return true;
913 }
914
915 inline Value *
916 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
917 {
918 uint8_t b = prog->driver->io.auxCBSlot;
919 uint32_t off = prog->driver->io.texBindBase + slot * 4;
920
921 if (ptr)
922 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
923
924 return bld.
925 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
926 }
927
928 // move array source to first slot, convert to u16, add indirections
929 bool
930 NVC0LoweringPass::handleTEX(TexInstruction *i)
931 {
932 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
933 const int arg = i->tex.target.getArgCount();
934 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
935 const int chipset = prog->getTarget()->getChipset();
936
937 /* Only normalize in the non-explicit derivatives case. For explicit
938 * derivatives, this is handled in handleManualTXD.
939 */
940 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
941 Value *src[3], *val;
942 int c;
943 for (c = 0; c < 3; ++c)
944 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
945 val = bld.getScratch();
946 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
947 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
948 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
949 for (c = 0; c < 3; ++c) {
950 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
951 i->getSrc(c), val));
952 }
953 }
954
955 // Arguments to the TEX instruction are a little insane. Even though the
956 // encoding is identical between SM20 and SM30, the arguments mean
957 // different things between Fermi and Kepler+. A lot of arguments are
958 // optional based on flags passed to the instruction. This summarizes the
959 // order of things.
960 //
961 // Fermi:
962 // array/indirect
963 // coords
964 // sample
965 // lod bias
966 // depth compare
967 // offsets:
968 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
969 // - other: 4 bits each, single reg
970 //
971 // Kepler+:
972 // indirect handle
973 // array (+ offsets for txd in upper 16 bits)
974 // coords
975 // sample
976 // lod bias
977 // depth compare
978 // offsets (same as fermi, except txd which takes it with array)
979 //
980 // Maxwell (tex):
981 // array
982 // coords
983 // indirect handle
984 // sample
985 // lod bias
986 // depth compare
987 // offsets
988 //
989 // Maxwell (txd):
990 // indirect handle
991 // coords
992 // array + offsets
993 // derivatives
994
995 if (chipset >= NVISA_GK104_CHIPSET) {
996 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
997 // XXX this ignores tsc, and assumes a 1:1 mapping
998 assert(i->tex.rIndirectSrc >= 0);
999 if (!i->tex.bindless) {
1000 Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
1001 i->tex.r = 0xff;
1002 i->tex.s = 0x1f;
1003 i->setIndirectR(hnd);
1004 }
1005 i->setIndirectS(NULL);
1006 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
1007 if (i->tex.r == 0xffff)
1008 i->tex.r = prog->driver->io.fbtexBindBase / 4;
1009 else
1010 i->tex.r += prog->driver->io.texBindBase / 4;
1011 i->tex.s = 0; // only a single cX[] value possible here
1012 } else {
1013 Value *hnd = bld.getScratch();
1014 Value *rHnd = loadTexHandle(NULL, i->tex.r);
1015 Value *sHnd = loadTexHandle(NULL, i->tex.s);
1016
1017 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
1018
1019 i->tex.r = 0; // not used for indirect tex
1020 i->tex.s = 0;
1021 i->setIndirectR(hnd);
1022 }
1023 if (i->tex.target.isArray()) {
1024 LValue *layer = new_LValue(func, FILE_GPR);
1025 Value *src = i->getSrc(lyr);
1026 const int sat = (i->op == OP_TXF) ? 1 : 0;
1027 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1028 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
1029 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
1030 for (int s = dim; s >= 1; --s)
1031 i->setSrc(s, i->getSrc(s - 1));
1032 i->setSrc(0, layer);
1033 } else {
1034 i->setSrc(dim, layer);
1035 }
1036 }
1037 // Move the indirect reference to the first place
1038 if (i->tex.rIndirectSrc >= 0 && (
1039 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
1040 Value *hnd = i->getIndirectR();
1041
1042 i->setIndirectR(NULL);
1043 i->moveSources(0, 1);
1044 i->setSrc(0, hnd);
1045 i->tex.rIndirectSrc = 0;
1046 i->tex.sIndirectSrc = -1;
1047 }
1048 // Move the indirect reference to right after the coords
1049 else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
1050 Value *hnd = i->getIndirectR();
1051
1052 i->setIndirectR(NULL);
1053 i->moveSources(arg, 1);
1054 i->setSrc(arg, hnd);
1055 i->tex.rIndirectSrc = 0;
1056 i->tex.sIndirectSrc = -1;
1057 }
1058 } else
1059 // (nvc0) generate and move the tsc/tic/array source to the front
1060 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
1061 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1062
1063 Value *ticRel = i->getIndirectR();
1064 Value *tscRel = i->getIndirectS();
1065
1066 if (i->tex.r == 0xffff) {
1067 i->tex.r = 0x20;
1068 i->tex.s = 0x10;
1069 }
1070
1071 if (ticRel) {
1072 i->setSrc(i->tex.rIndirectSrc, NULL);
1073 if (i->tex.r)
1074 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1075 ticRel, bld.mkImm(i->tex.r));
1076 }
1077 if (tscRel) {
1078 i->setSrc(i->tex.sIndirectSrc, NULL);
1079 if (i->tex.s)
1080 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1081 tscRel, bld.mkImm(i->tex.s));
1082 }
1083
1084 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
1085 if (arrayIndex) {
1086 for (int s = dim; s >= 1; --s)
1087 i->setSrc(s, i->getSrc(s - 1));
1088 i->setSrc(0, arrayIndex);
1089 } else {
1090 i->moveSources(0, 1);
1091 }
1092
1093 if (arrayIndex) {
1094 int sat = (i->op == OP_TXF) ? 1 : 0;
1095 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1096 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
1097 } else {
1098 bld.loadImm(src, 0);
1099 }
1100
1101 if (ticRel)
1102 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
1103 if (tscRel)
1104 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
1105
1106 i->setSrc(0, src);
1107 }
1108
1109 // For nvc0, the sample id has to be in the second operand, as the offset
1110 // does. Right now we don't know how to pass both in, and this case can't
1111 // happen with OpenGL. On nve0, the sample id is part of the texture
1112 // coordinate argument.
1113 assert(chipset >= NVISA_GK104_CHIPSET ||
1114 !i->tex.useOffsets || !i->tex.target.isMS());
1115
1116 // offset is between lod and dc
1117 if (i->tex.useOffsets) {
1118 int n, c;
1119 int s = i->srcCount(0xff, true);
1120 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
1121 if (i->tex.target.isShadow())
1122 s--;
1123 if (i->srcExists(s)) // move potential predicate out of the way
1124 i->moveSources(s, 1);
1125 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
1126 i->moveSources(s + 1, 1);
1127 }
1128 if (i->op == OP_TXG) {
1129 // Either there is 1 offset, which goes into the 2 low bytes of the
1130 // first source, or there are 4 offsets, which go into 2 sources (8
1131 // values, 1 byte each).
1132 Value *offs[2] = {NULL, NULL};
1133 for (n = 0; n < i->tex.useOffsets; n++) {
1134 for (c = 0; c < 2; ++c) {
1135 if ((n % 2) == 0 && c == 0)
1136 bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
1137 else
1138 bld.mkOp3(OP_INSBF, TYPE_U32,
1139 offs[n / 2],
1140 i->offset[n][c].get(),
1141 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
1142 offs[n / 2]);
1143 }
1144 }
1145 i->setSrc(s, offs[0]);
1146 if (offs[1])
1147 i->setSrc(s + 1, offs[1]);
1148 } else {
1149 unsigned imm = 0;
1150 assert(i->tex.useOffsets == 1);
1151 for (c = 0; c < 3; ++c) {
1152 ImmediateValue val;
1153 if (!i->offset[0][c].getImmediate(val))
1154 assert(!"non-immediate offset passed to non-TXG");
1155 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
1156 }
1157 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
1158 // The offset goes into the upper 16 bits of the array index. So
1159 // create it if it's not already there, and INSBF it if it already
1160 // is.
1161 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
1162 if (chipset >= NVISA_GM107_CHIPSET)
1163 s += dim;
1164 if (i->tex.target.isArray()) {
1165 Value *offset = bld.getScratch();
1166 bld.mkOp3(OP_INSBF, TYPE_U32, offset,
1167 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
1168 i->getSrc(s));
1169 i->setSrc(s, offset);
1170 } else {
1171 i->moveSources(s, 1);
1172 i->setSrc(s, bld.loadImm(NULL, imm << 16));
1173 }
1174 } else {
1175 i->setSrc(s, bld.loadImm(NULL, imm));
1176 }
1177 }
1178 }
1179
1180 return true;
1181 }
1182
1183 bool
1184 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
1185 {
1186 // Always done from the l0 perspective. This is the way that NVIDIA's
1187 // driver does it, and doing it from the "current" lane's perpsective
1188 // doesn't seem to always work for reasons that aren't altogether clear,
1189 // even in frag shaders.
1190 //
1191 // Note that we must move not only the coordinates into lane0, but also all
1192 // ancillary arguments, like array indices and depth compare as they may
1193 // differ between lanes. Offsets for TXD are supposed to be uniform, so we
1194 // leave them alone.
1195 static const uint8_t qOps[2] =
1196 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) };
1197
1198 Value *def[4][4];
1199 Value *crd[3], *arr[2], *shadow;
1200 Instruction *tex;
1201 Value *zero = bld.loadImm(bld.getSSA(), 0);
1202 int l, c;
1203 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
1204
1205 // This function is invoked after handleTEX lowering, so we have to expect
1206 // the arguments in the order that the hw wants them. For Fermi, array and
1207 // indirect are both in the leading arg, while for Kepler, array and
1208 // indirect are separate (and both precede the coordinates). Maxwell is
1209 // handled in a separate function.
1210 int array;
1211 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1212 array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
1213 else
1214 array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
1215
1216 i->op = OP_TEX; // no need to clone dPdx/dPdy later
1217
1218 for (c = 0; c < dim; ++c)
1219 crd[c] = bld.getScratch();
1220 for (c = 0; c < array; ++c)
1221 arr[c] = bld.getScratch();
1222 shadow = bld.getScratch();
1223
1224 for (l = 0; l < 4; ++l) {
1225 Value *src[3], *val;
1226
1227 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
1228 // we're using the texture result from lane 0 in all cases, so make sure
1229 // that lane 0 is pointing at the proper array index, indirect value,
1230 // and depth compare.
1231 if (l != 0) {
1232 for (c = 0; c < array; ++c)
1233 bld.mkQuadop(0x00, arr[c], l, i->getSrc(c), zero);
1234 if (i->tex.target.isShadow()) {
1235 // The next argument after coords is the depth compare
1236 bld.mkQuadop(0x00, shadow, l, i->getSrc(array + dim), zero);
1237 }
1238 }
1239 // mov position coordinates from lane l to all lanes
1240 for (c = 0; c < dim; ++c)
1241 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
1242 // add dPdx from lane l to lanes dx
1243 for (c = 0; c < dim; ++c)
1244 bld.mkQuadop(qOps[0], crd[c], l, i->dPdx[c].get(), crd[c]);
1245 // add dPdy from lane l to lanes dy
1246 for (c = 0; c < dim; ++c)
1247 bld.mkQuadop(qOps[1], crd[c], l, i->dPdy[c].get(), crd[c]);
1248 // normalize cube coordinates
1249 if (i->tex.target.isCube()) {
1250 for (c = 0; c < 3; ++c)
1251 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
1252 val = bld.getScratch();
1253 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1254 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1255 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
1256 for (c = 0; c < 3; ++c)
1257 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
1258 } else {
1259 for (c = 0; c < dim; ++c)
1260 src[c] = crd[c];
1261 }
1262 // texture
1263 bld.insert(tex = cloneForward(func, i));
1264 if (l != 0) {
1265 for (c = 0; c < array; ++c)
1266 tex->setSrc(c, arr[c]);
1267 if (i->tex.target.isShadow())
1268 tex->setSrc(array + dim, shadow);
1269 }
1270 for (c = 0; c < dim; ++c)
1271 tex->setSrc(c + array, src[c]);
1272 // broadcast results from lane 0 to all lanes so that the moves *into*
1273 // the target lane pick up the proper value.
1274 if (l != 0)
1275 for (c = 0; i->defExists(c); ++c)
1276 bld.mkQuadop(0x00, tex->getDef(c), 0, tex->getDef(c), zero);
1277 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
1278
1279 // save results
1280 for (c = 0; i->defExists(c); ++c) {
1281 Instruction *mov;
1282 def[c][l] = bld.getSSA();
1283 mov = bld.mkMov(def[c][l], tex->getDef(c));
1284 mov->fixed = 1;
1285 mov->lanes = 1 << l;
1286 }
1287 }
1288
1289 for (c = 0; i->defExists(c); ++c) {
1290 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
1291 for (l = 0; l < 4; ++l)
1292 u->setSrc(l, def[c][l]);
1293 }
1294
1295 i->bb->remove(i);
1296 return true;
1297 }
1298
1299 bool
1300 NVC0LoweringPass::handleTXD(TexInstruction *txd)
1301 {
1302 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
1303 unsigned arg = txd->tex.target.getArgCount();
1304 unsigned expected_args = arg;
1305 const int chipset = prog->getTarget()->getChipset();
1306
1307 if (chipset >= NVISA_GK104_CHIPSET) {
1308 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
1309 expected_args++;
1310 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
1311 expected_args++;
1312 } else {
1313 if (txd->tex.useOffsets)
1314 expected_args++;
1315 if (!txd->tex.target.isArray() && (
1316 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
1317 expected_args++;
1318 }
1319
1320 if (expected_args > 4 ||
1321 dim > 2 ||
1322 txd->tex.target.isShadow())
1323 txd->op = OP_TEX;
1324
1325 handleTEX(txd);
1326 while (txd->srcExists(arg))
1327 ++arg;
1328
1329 txd->tex.derivAll = true;
1330 if (txd->op == OP_TEX)
1331 return handleManualTXD(txd);
1332
1333 assert(arg == expected_args);
1334 for (int c = 0; c < dim; ++c) {
1335 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1336 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1337 txd->dPdx[c].set(NULL);
1338 txd->dPdy[c].set(NULL);
1339 }
1340
1341 // In this case we have fewer than 4 "real" arguments, which means that
1342 // handleTEX didn't apply any padding. However we have to make sure that
1343 // the second "group" of arguments still gets padded up to 4.
1344 if (chipset >= NVISA_GK104_CHIPSET) {
1345 int s = arg + 2 * dim;
1346 if (s >= 4 && s < 7) {
1347 if (txd->srcExists(s)) // move potential predicate out of the way
1348 txd->moveSources(s, 7 - s);
1349 while (s < 7)
1350 txd->setSrc(s++, bld.loadImm(NULL, 0));
1351 }
1352 }
1353
1354 return true;
1355 }
1356
1357 bool
1358 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1359 {
1360 const int chipset = prog->getTarget()->getChipset();
1361 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1362 txq->tex.r += prog->driver->io.texBindBase / 4;
1363
1364 if (txq->tex.rIndirectSrc < 0)
1365 return true;
1366
1367 Value *ticRel = txq->getIndirectR();
1368
1369 txq->setIndirectS(NULL);
1370 txq->tex.sIndirectSrc = -1;
1371
1372 assert(ticRel);
1373
1374 if (chipset < NVISA_GK104_CHIPSET) {
1375 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1376
1377 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1378 if (txq->tex.r)
1379 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1380 ticRel, bld.mkImm(txq->tex.r));
1381
1382 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1383
1384 txq->moveSources(0, 1);
1385 txq->setSrc(0, src);
1386 } else {
1387 Value *hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
1388 txq->tex.r = 0xff;
1389 txq->tex.s = 0x1f;
1390
1391 txq->setIndirectR(NULL);
1392 txq->moveSources(0, 1);
1393 txq->setSrc(0, hnd);
1394 txq->tex.rIndirectSrc = 0;
1395 }
1396
1397 return true;
1398 }
1399
1400 bool
1401 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1402 {
1403 /* The outputs are inverted compared to what the TGSI instruction
1404 * expects. Take that into account in the mask.
1405 */
1406 assert((i->tex.mask & ~3) == 0);
1407 if (i->tex.mask == 1)
1408 i->tex.mask = 2;
1409 else if (i->tex.mask == 2)
1410 i->tex.mask = 1;
1411 handleTEX(i);
1412 bld.setPosition(i, true);
1413
1414 /* The returned values are not quite what we want:
1415 * (a) convert from s16/u16 to f32
1416 * (b) multiply by 1/256
1417 */
1418 for (int def = 0; def < 2; ++def) {
1419 if (!i->defExists(def))
1420 continue;
1421 enum DataType type = TYPE_S16;
1422 if (i->tex.mask == 2 || def > 0)
1423 type = TYPE_U16;
1424 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1425 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1426 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1427 }
1428 if (i->tex.mask == 3) {
1429 LValue *t = new_LValue(func, FILE_GPR);
1430 bld.mkMov(t, i->getDef(0));
1431 bld.mkMov(i->getDef(0), i->getDef(1));
1432 bld.mkMov(i->getDef(1), t);
1433 }
1434 return true;
1435 }
1436
1437 bool
1438 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1439 {
1440 bufq->op = OP_MOV;
1441 bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1442 bufq->getSrc(0)->reg.fileIndex * 16));
1443 bufq->setIndirect(0, 0, NULL);
1444 bufq->setIndirect(0, 1, NULL);
1445 return true;
1446 }
1447
1448 void
1449 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1450 {
1451 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1452
1453 BasicBlock *currBB = atom->bb;
1454 BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1455 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1456 BasicBlock *setAndUnlockBB = new BasicBlock(func);
1457 BasicBlock *failLockBB = new BasicBlock(func);
1458
1459 bld.setPosition(currBB, true);
1460 assert(!currBB->joinAt);
1461 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1462
1463 CmpInstruction *pred =
1464 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1465 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1466
1467 bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1468 currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1469
1470 bld.setPosition(tryLockBB, true);
1471
1472 Instruction *ld =
1473 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1474 atom->getIndirect(0, 0));
1475 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1476 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1477
1478 bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1479 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1480 tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1481 tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1482
1483 tryLockBB->cfg.detach(&joinBB->cfg);
1484 bld.remove(atom);
1485
1486 bld.setPosition(setAndUnlockBB, true);
1487 Value *stVal;
1488 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1489 // Read the old value, and write the new one.
1490 stVal = atom->getSrc(1);
1491 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1492 CmpInstruction *set =
1493 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1494 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1495
1496 bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1497 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1498 } else {
1499 operation op;
1500
1501 switch (atom->subOp) {
1502 case NV50_IR_SUBOP_ATOM_ADD:
1503 op = OP_ADD;
1504 break;
1505 case NV50_IR_SUBOP_ATOM_AND:
1506 op = OP_AND;
1507 break;
1508 case NV50_IR_SUBOP_ATOM_OR:
1509 op = OP_OR;
1510 break;
1511 case NV50_IR_SUBOP_ATOM_XOR:
1512 op = OP_XOR;
1513 break;
1514 case NV50_IR_SUBOP_ATOM_MIN:
1515 op = OP_MIN;
1516 break;
1517 case NV50_IR_SUBOP_ATOM_MAX:
1518 op = OP_MAX;
1519 break;
1520 default:
1521 assert(0);
1522 return;
1523 }
1524
1525 stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1526 atom->getSrc(1));
1527 }
1528
1529 Instruction *st =
1530 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1531 atom->getIndirect(0, 0), stVal);
1532 st->setDef(0, pred->getDef(0));
1533 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1534
1535 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1536 setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1537
1538 // Lock until the store has not been performed.
1539 bld.setPosition(failLockBB, true);
1540 bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1541 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1542 failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1543 failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1544
1545 bld.setPosition(joinBB, false);
1546 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1547 }
1548
1549 void
1550 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1551 {
1552 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1553
1554 BasicBlock *currBB = atom->bb;
1555 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1556 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1557
1558 bld.setPosition(currBB, true);
1559 assert(!currBB->joinAt);
1560 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1561
1562 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1563 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1564
1565 bld.setPosition(tryLockAndSetBB, true);
1566
1567 Instruction *ld =
1568 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1569 atom->getIndirect(0, 0));
1570 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1571 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1572
1573 Value *stVal;
1574 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1575 // Read the old value, and write the new one.
1576 stVal = atom->getSrc(1);
1577 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1578 CmpInstruction *set =
1579 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1580 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1581 set->setPredicate(CC_P, ld->getDef(1));
1582
1583 Instruction *selp =
1584 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1585 atom->getSrc(2), set->getDef(0));
1586 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1587 selp->setPredicate(CC_P, ld->getDef(1));
1588
1589 stVal = selp->getDef(0);
1590 } else {
1591 operation op;
1592
1593 switch (atom->subOp) {
1594 case NV50_IR_SUBOP_ATOM_ADD:
1595 op = OP_ADD;
1596 break;
1597 case NV50_IR_SUBOP_ATOM_AND:
1598 op = OP_AND;
1599 break;
1600 case NV50_IR_SUBOP_ATOM_OR:
1601 op = OP_OR;
1602 break;
1603 case NV50_IR_SUBOP_ATOM_XOR:
1604 op = OP_XOR;
1605 break;
1606 case NV50_IR_SUBOP_ATOM_MIN:
1607 op = OP_MIN;
1608 break;
1609 case NV50_IR_SUBOP_ATOM_MAX:
1610 op = OP_MAX;
1611 break;
1612 default:
1613 assert(0);
1614 return;
1615 }
1616
1617 Instruction *i =
1618 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1619 atom->getSrc(1));
1620 i->setPredicate(CC_P, ld->getDef(1));
1621
1622 stVal = i->getDef(0);
1623 }
1624
1625 Instruction *st =
1626 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1627 atom->getIndirect(0, 0), stVal);
1628 st->setPredicate(CC_P, ld->getDef(1));
1629 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1630
1631 // Loop until the lock is acquired.
1632 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1633 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1634 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1635 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1636
1637 bld.remove(atom);
1638
1639 bld.setPosition(joinBB, false);
1640 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1641 }
1642
1643 bool
1644 NVC0LoweringPass::handleATOM(Instruction *atom)
1645 {
1646 SVSemantic sv;
1647 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1648
1649 switch (atom->src(0).getFile()) {
1650 case FILE_MEMORY_LOCAL:
1651 sv = SV_LBASE;
1652 break;
1653 case FILE_MEMORY_SHARED:
1654 // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1655 // operations on shared memory. For Maxwell, ATOMS is enough.
1656 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1657 handleSharedATOM(atom);
1658 else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1659 handleSharedATOMNVE4(atom);
1660 return true;
1661 case FILE_MEMORY_GLOBAL:
1662 return true;
1663 default:
1664 assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1665 base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1666 assert(base->reg.size == 8);
1667 if (ptr)
1668 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1669 assert(base->reg.size == 8);
1670 atom->setIndirect(0, 0, base);
1671 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1672
1673 // Harden against out-of-bounds accesses
1674 Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1675 Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1676 Value *pred = new_LValue(func, FILE_PREDICATE);
1677 if (ptr)
1678 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1679 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1680 atom->setPredicate(CC_NOT_P, pred);
1681 if (atom->defExists(0)) {
1682 Value *zero, *dst = atom->getDef(0);
1683 atom->setDef(0, bld.getSSA());
1684
1685 bld.setPosition(atom, true);
1686 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1687 ->setPredicate(CC_P, pred);
1688 bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1689 }
1690
1691 return true;
1692 }
1693 base =
1694 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1695
1696 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1697 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1698 if (ptr)
1699 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1700 atom->setIndirect(0, 1, NULL);
1701 atom->setIndirect(0, 0, base);
1702
1703 return true;
1704 }
1705
1706 bool
1707 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1708 {
1709 if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1710 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1711 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1712 return false;
1713 }
1714 }
1715
1716 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1717 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1718 return false;
1719 bld.setPosition(cas, true);
1720
1721 if (needCctl) {
1722 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1723 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1724 cctl->fixed = 1;
1725 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1726 if (cas->isPredicated())
1727 cctl->setPredicate(cas->cc, cas->getPredicate());
1728 }
1729
1730 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS &&
1731 targ->getChipset() < NVISA_GV100_CHIPSET) {
1732 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1733 // should be set to the high part of the double reg or bad things will
1734 // happen elsewhere in the universe.
1735 // Also, it sometimes returns the new value instead of the old one
1736 // under mysterious circumstances.
1737 Value *dreg = bld.getSSA(8);
1738 bld.setPosition(cas, false);
1739 bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1740 cas->setSrc(1, dreg);
1741 cas->setSrc(2, dreg);
1742 }
1743
1744 return true;
1745 }
1746
1747 inline Value *
1748 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1749 {
1750 uint8_t b = prog->driver->io.auxCBSlot;
1751 off += base;
1752
1753 return bld.
1754 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1755 }
1756
1757 inline Value *
1758 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1759 {
1760 uint8_t b = prog->driver->io.auxCBSlot;
1761 off += base;
1762
1763 if (ptr)
1764 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1765
1766 return bld.
1767 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1768 }
1769
1770 inline Value *
1771 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1772 {
1773 uint8_t b = prog->driver->io.auxCBSlot;
1774 off += base;
1775
1776 if (ptr)
1777 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1778
1779 return bld.
1780 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1781 }
1782
1783 inline Value *
1784 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1785 {
1786 return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1787 }
1788
1789 inline Value *
1790 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1791 {
1792 return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1793 }
1794
1795 inline Value *
1796 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1797 {
1798 return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1799 }
1800
1801 inline Value *
1802 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1803 {
1804 return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1805 }
1806
1807 inline Value *
1808 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1809 {
1810 uint8_t b = prog->driver->io.msInfoCBSlot;
1811 off += prog->driver->io.msInfoBase;
1812 return bld.
1813 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1814 }
1815
1816 inline Value *
1817 NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off, bool bindless)
1818 {
1819 uint32_t base = slot * NVC0_SU_INFO__STRIDE;
1820
1821 // We don't upload surface info for bindless for GM107+
1822 assert(!bindless || targ->getChipset() < NVISA_GM107_CHIPSET);
1823
1824 if (ptr) {
1825 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
1826 if (bindless)
1827 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(511));
1828 else
1829 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
1830 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
1831 base = 0;
1832 }
1833 off += base;
1834
1835 return loadResInfo32(ptr, off, bindless ? prog->driver->io.bindlessBase :
1836 prog->driver->io.suInfoBase);
1837 }
1838
1839 Value *
1840 NVC0LoweringPass::loadMsAdjInfo32(TexInstruction::Target target, uint32_t index, int slot, Value *ind, bool bindless)
1841 {
1842 if (!bindless || targ->getChipset() < NVISA_GM107_CHIPSET)
1843 return loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(index), bindless);
1844
1845 assert(bindless);
1846
1847 Value *samples = bld.getSSA();
1848 // this shouldn't be lowered because it's being inserted before the current instruction
1849 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1850 tex->tex.target = target;
1851 tex->tex.query = TXQ_TYPE;
1852 tex->tex.mask = 0x4;
1853 tex->tex.r = 0xff;
1854 tex->tex.s = 0x1f;
1855 tex->tex.rIndirectSrc = 0;
1856 tex->setDef(0, samples);
1857 tex->setSrc(0, ind);
1858 tex->setSrc(1, bld.loadImm(NULL, 0));
1859 bld.insert(tex);
1860
1861 // doesn't work with sample counts other than 1/2/4/8 but they aren't supported
1862 switch (index) {
1863 case 0: {
1864 Value *tmp = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), samples, bld.mkImm(2));
1865 return bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(2));
1866 }
1867 case 1: {
1868 Value *tmp = bld.mkCmp(OP_SET, CC_GT, TYPE_U32, bld.getSSA(), TYPE_U32, samples, bld.mkImm(2))->getDef(0);
1869 return bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(1));
1870 }
1871 default: {
1872 assert(false);
1873 return NULL;
1874 }
1875 }
1876 }
1877
1878 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1879 {
1880 switch (su->tex.target.getEnum()) {
1881 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1882 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1883 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1884 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1885 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1886 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1887 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1888 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1889 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1890 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1891 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1892 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1893 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1894 default:
1895 assert(0);
1896 return 0;
1897 }
1898 }
1899
1900 bool
1901 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1902 {
1903 int mask = suq->tex.mask;
1904 int dim = suq->tex.target.getDim();
1905 int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1906 Value *ind = suq->getIndirectR();
1907 int slot = suq->tex.r;
1908 int c, d;
1909
1910 for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
1911 if (c >= arg || !(mask & 1))
1912 continue;
1913
1914 int offset;
1915
1916 if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1917 offset = NVC0_SU_INFO_SIZE(2);
1918 } else {
1919 offset = NVC0_SU_INFO_SIZE(c);
1920 }
1921 bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset, suq->tex.bindless));
1922 if (c == 2 && suq->tex.target.isCube())
1923 bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
1924 bld.loadImm(NULL, 6));
1925 }
1926
1927 if (mask & 1) {
1928 if (suq->tex.target.isMS()) {
1929 Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0), suq->tex.bindless);
1930 Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1), suq->tex.bindless);
1931 Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
1932 bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
1933 } else {
1934 bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
1935 }
1936 }
1937
1938 bld.remove(suq);
1939 return true;
1940 }
1941
1942 void
1943 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1944 {
1945 const int arg = tex->tex.target.getArgCount();
1946 int slot = tex->tex.r;
1947
1948 if (tex->tex.target == TEX_TARGET_2D_MS)
1949 tex->tex.target = TEX_TARGET_2D;
1950 else
1951 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1952 tex->tex.target = TEX_TARGET_2D_ARRAY;
1953 else
1954 return;
1955
1956 Value *x = tex->getSrc(0);
1957 Value *y = tex->getSrc(1);
1958 Value *s = tex->getSrc(arg - 1);
1959
1960 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1961 Value *ind = tex->getIndirectR();
1962
1963 Value *ms_x = loadMsAdjInfo32(tex->tex.target, 0, slot, ind, tex->tex.bindless);
1964 Value *ms_y = loadMsAdjInfo32(tex->tex.target, 1, slot, ind, tex->tex.bindless);
1965
1966 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1967 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1968
1969 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1970 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1971
1972 Value *dx = loadMsInfo32(ts, 0x0);
1973 Value *dy = loadMsInfo32(ts, 0x4);
1974
1975 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1976 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1977
1978 tex->setSrc(0, tx);
1979 tex->setSrc(1, ty);
1980 tex->moveSources(arg, -1);
1981 }
1982
1983 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1984 // They're computed from the coordinates using the surface info in c[] space.
1985 void
1986 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1987 {
1988 Instruction *insn;
1989 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1990 const bool raw =
1991 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1992 const int slot = su->tex.r;
1993 const int dim = su->tex.target.getDim();
1994 const bool array = su->tex.target.isArray() || su->tex.target.isCube();
1995 const int arg = dim + array;
1996 int c;
1997 Value *zero = bld.mkImm(0);
1998 Value *p1 = NULL;
1999 Value *v;
2000 Value *src[3];
2001 Value *bf, *eau, *off;
2002 Value *addr, *pred;
2003 Value *ind = su->getIndirectR();
2004 Value *y, *z;
2005
2006 off = bld.getScratch(4);
2007 bf = bld.getScratch(4);
2008 addr = bld.getSSA(8);
2009 pred = bld.getScratch(1, FILE_PREDICATE);
2010
2011 bld.setPosition(su, false);
2012
2013 adjustCoordinatesMS(su);
2014
2015 // calculate clamped coordinates
2016 for (c = 0; c < arg; ++c) {
2017 int dimc = c;
2018
2019 if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
2020 // The array index is stored in the Z component for 1D arrays.
2021 dimc = 2;
2022 }
2023
2024 src[c] = bld.getScratch();
2025 if (c == 0 && raw)
2026 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X, su->tex.bindless);
2027 else
2028 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc), su->tex.bindless);
2029 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
2030 ->subOp = getSuClampSubOp(su, dimc);
2031 }
2032 for (; c < 3; ++c)
2033 src[c] = zero;
2034
2035 if (dim == 2 && !array) {
2036 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2037 src[2] = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(),
2038 v, bld.loadImm(NULL, 16));
2039
2040 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(2), su->tex.bindless);
2041 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[2], src[2], v, zero)
2042 ->subOp = NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
2043 }
2044
2045 // set predicate output
2046 if (su->tex.target == TEX_TARGET_BUFFER) {
2047 src[0]->getInsn()->setFlagsDef(1, pred);
2048 } else
2049 if (array) {
2050 p1 = bld.getSSA(1, FILE_PREDICATE);
2051 src[dim]->getInsn()->setFlagsDef(1, p1);
2052 }
2053
2054 // calculate pixel offset
2055 if (dim == 1) {
2056 y = z = zero;
2057 if (su->tex.target != TEX_TARGET_BUFFER)
2058 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
2059 } else {
2060 y = src[1];
2061 z = src[2];
2062
2063 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2064 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
2065 ->subOp = NV50_IR_SUBOP_MADSP(4,4,8); // u16l u16l u16l
2066
2067 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
2068 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
2069 ->subOp = array ?
2070 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
2071 }
2072
2073 // calculate effective address part 1
2074 if (su->tex.target == TEX_TARGET_BUFFER) {
2075 if (raw) {
2076 bf = src[0];
2077 } else {
2078 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2079 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
2080 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
2081 }
2082 } else {
2083 uint16_t subOp = 0;
2084
2085 switch (dim) {
2086 case 1:
2087 break;
2088 case 2:
2089 if (array) {
2090 z = off;
2091 } else {
2092 subOp = NV50_IR_SUBOP_SUBFM_3D;
2093 }
2094 break;
2095 default:
2096 subOp = NV50_IR_SUBOP_SUBFM_3D;
2097 assert(dim == 3);
2098 break;
2099 }
2100 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
2101 insn->subOp = subOp;
2102 insn->setFlagsDef(1, pred);
2103 }
2104
2105 // part 2
2106 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless);
2107
2108 if (su->tex.target == TEX_TARGET_BUFFER) {
2109 eau = v;
2110 } else {
2111 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
2112 }
2113 // add array layer offset
2114 if (array) {
2115 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2116 if (dim == 1)
2117 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
2118 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
2119 else
2120 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
2121 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
2122 // combine predicates
2123 assert(p1);
2124 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
2125 }
2126
2127 if (atom) {
2128 Value *lo = bf;
2129 if (su->tex.target == TEX_TARGET_BUFFER) {
2130 lo = zero;
2131 bld.mkMov(off, bf);
2132 }
2133 // bf == g[] address & 0xff
2134 // eau == g[] address >> 8
2135 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
2136 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
2137 } else
2138 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
2139 // Convert from u32 to u8 address format, which is what the library code
2140 // doing SULDP currently uses.
2141 // XXX: can SUEAU do this ?
2142 // XXX: does it matter that we don't mask high bytes in bf ?
2143 // Grrr.
2144 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
2145 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
2146 }
2147
2148 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
2149
2150 if (atom && su->tex.target == TEX_TARGET_BUFFER)
2151 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
2152
2153 // let's just set it 0 for raw access and hope it works
2154 v = raw ?
2155 bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2156
2157 // get rid of old coordinate sources, make space for fmt info and predicate
2158 su->moveSources(arg, 3 - arg);
2159 // set 64 bit address and 32-bit format sources
2160 su->setSrc(0, addr);
2161 su->setSrc(1, v);
2162 su->setSrc(2, pred);
2163 su->setIndirectR(NULL);
2164
2165 // prevent read fault when the image is not actually bound
2166 CmpInstruction *pred1 =
2167 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2168 TYPE_U32, bld.mkImm(0),
2169 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2170
2171 if (su->op != OP_SUSTP && su->tex.format) {
2172 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2173 int blockwidth = format->bits[0] + format->bits[1] +
2174 format->bits[2] + format->bits[3];
2175
2176 // make sure that the format doesn't mismatch
2177 assert(format->components != 0);
2178 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
2179 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2180 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2181 pred1->getDef(0));
2182 }
2183 su->setPredicate(CC_NOT_P, pred1->getDef(0));
2184
2185 // TODO: initialize def values to 0 when the surface operation is not
2186 // performed (not needed for stores). Also, fix the "address bounds test"
2187 // subtests from arb_shader_image_load_store-invalid for buffers, because it
2188 // seems like that the predicate is not correctly set by suclamp.
2189 }
2190
2191 static DataType
2192 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
2193 {
2194 switch (t->type) {
2195 case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
2196 case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
2197 case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
2198 case UINT:
2199 return (t->bits[c] == 8 ? TYPE_U8 :
2200 (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
2201 case SINT:
2202 return (t->bits[c] == 8 ? TYPE_S8 :
2203 (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
2204 }
2205 return TYPE_NONE;
2206 }
2207
2208 static DataType
2209 getDestType(const ImgType type) {
2210 switch (type) {
2211 case FLOAT:
2212 case UNORM:
2213 case SNORM:
2214 return TYPE_F32;
2215 case UINT:
2216 return TYPE_U32;
2217 case SINT:
2218 return TYPE_S32;
2219 default:
2220 assert(!"Impossible type");
2221 return TYPE_NONE;
2222 }
2223 }
2224
2225 void
2226 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su, Instruction **loaded)
2227 {
2228 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2229 int width = format->bits[0] + format->bits[1] +
2230 format->bits[2] + format->bits[3];
2231 Value *untypedDst[4] = {};
2232 Value *typedDst[4] = {};
2233
2234 // We must convert this to a generic load.
2235 su->op = OP_SULDB;
2236
2237 su->dType = typeOfSize(width / 8);
2238 su->sType = TYPE_U8;
2239
2240 for (int i = 0; i < width / 32; i++)
2241 untypedDst[i] = bld.getSSA();
2242 if (width < 32)
2243 untypedDst[0] = bld.getSSA();
2244
2245 if (loaded && loaded[0]) {
2246 for (int i = 0; i < 4; i++) {
2247 if (loaded[i])
2248 typedDst[i] = loaded[i]->getDef(0);
2249 }
2250 } else {
2251 for (int i = 0; i < 4; i++) {
2252 typedDst[i] = su->getDef(i);
2253 }
2254 }
2255
2256 // Set the untyped dsts as the su's destinations
2257 if (loaded && loaded[0]) {
2258 for (int i = 0; i < 4; i++)
2259 if (loaded[i])
2260 loaded[i]->setDef(0, untypedDst[i]);
2261 } else {
2262 for (int i = 0; i < 4; i++)
2263 su->setDef(i, untypedDst[i]);
2264
2265 bld.setPosition(su, true);
2266 }
2267
2268 // Unpack each component into the typed dsts
2269 int bits = 0;
2270 for (int i = 0; i < 4; bits += format->bits[i], i++) {
2271 if (!typedDst[i])
2272 continue;
2273
2274 if (loaded && loaded[0])
2275 bld.setPosition(loaded[i], true);
2276
2277 if (i >= format->components) {
2278 if (format->type == FLOAT ||
2279 format->type == UNORM ||
2280 format->type == SNORM)
2281 bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
2282 else
2283 bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
2284 continue;
2285 }
2286
2287 // Get just that component's data into the relevant place
2288 if (format->bits[i] == 32)
2289 bld.mkMov(typedDst[i], untypedDst[i]);
2290 else if (format->bits[i] == 16)
2291 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2292 getSrcType(format, i), untypedDst[i / 2])
2293 ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
2294 else if (format->bits[i] == 8)
2295 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2296 getSrcType(format, i), untypedDst[0])->subOp = i;
2297 else {
2298 bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
2299 bld.mkImm((bits % 32) | (format->bits[i] << 8)));
2300 if (format->type == UNORM || format->type == SNORM)
2301 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
2302 }
2303
2304 // Normalize / convert as necessary
2305 if (format->type == UNORM)
2306 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
2307 else if (format->type == SNORM)
2308 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
2309 else if (format->type == FLOAT && format->bits[i] < 16) {
2310 bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
2311 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
2312 }
2313 }
2314
2315 if (format->bgra) {
2316 std::swap(typedDst[0], typedDst[2]);
2317 }
2318 }
2319
2320 void
2321 NVC0LoweringPass::insertOOBSurfaceOpResult(TexInstruction *su)
2322 {
2323 if (!su->getPredicate())
2324 return;
2325
2326 bld.setPosition(su, true);
2327
2328 for (unsigned i = 0; su->defExists(i); ++i) {
2329 ValueDef &def = su->def(i);
2330
2331 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2332 assert(su->cc == CC_NOT_P);
2333 mov->setPredicate(CC_P, su->getPredicate());
2334 Instruction *uni = bld.mkOp2(OP_UNION, TYPE_U32, bld.getSSA(), NULL, mov->getDef(0));
2335
2336 def.replace(uni->getDef(0), false);
2337 uni->setSrc(0, def.get());
2338 }
2339 }
2340
2341 void
2342 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
2343 {
2344 processSurfaceCoordsNVE4(su);
2345
2346 if (su->op == OP_SULDP) {
2347 convertSurfaceFormat(su, NULL);
2348 insertOOBSurfaceOpResult(su);
2349 }
2350
2351 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2352 assert(su->getPredicate());
2353 Value *pred =
2354 bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
2355 su->getPredicate(), su->getSrc(2));
2356
2357 Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
2358 red->subOp = su->subOp;
2359 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
2360 red->setSrc(1, su->getSrc(3));
2361 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
2362 red->setSrc(2, su->getSrc(4));
2363 red->setIndirect(0, 0, su->getSrc(0));
2364
2365 // make sure to initialize dst value when the atomic operation is not
2366 // performed
2367 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2368
2369 assert(su->cc == CC_NOT_P);
2370 red->setPredicate(su->cc, pred);
2371 mov->setPredicate(CC_P, pred);
2372
2373 bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
2374 red->getDef(0), mov->getDef(0));
2375
2376 delete_Instruction(bld.getProgram(), su);
2377 handleCasExch(red, true);
2378 }
2379
2380 if (su->op == OP_SUSTB || su->op == OP_SUSTP)
2381 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
2382 }
2383
2384 void
2385 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2386 {
2387 const int slot = su->tex.r;
2388 const int dim = su->tex.target.getDim();
2389 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2390 int c;
2391 Value *zero = bld.mkImm(0);
2392 Value *src[3];
2393 Value *v;
2394 Value *ind = su->getIndirectR();
2395
2396 bld.setPosition(su, false);
2397
2398 adjustCoordinatesMS(su);
2399
2400 if (ind) {
2401 Value *ptr;
2402 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
2403 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
2404 su->setIndirectR(ptr);
2405 }
2406
2407 // get surface coordinates
2408 for (c = 0; c < arg; ++c)
2409 src[c] = su->getSrc(c);
2410 for (; c < 3; ++c)
2411 src[c] = zero;
2412
2413 // calculate pixel offset
2414 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2415 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless);
2416 su->setSrc(0, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[0], v));
2417 }
2418
2419 // add array layer offset
2420 if (su->tex.target.isArray() || su->tex.target.isCube()) {
2421 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2422 assert(dim > 1);
2423 su->setSrc(2, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v));
2424 }
2425
2426 // prevent read fault when the image is not actually bound
2427 CmpInstruction *pred =
2428 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2429 TYPE_U32, bld.mkImm(0),
2430 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2431 if (su->op != OP_SUSTP && su->tex.format) {
2432 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2433 int blockwidth = format->bits[0] + format->bits[1] +
2434 format->bits[2] + format->bits[3];
2435
2436 assert(format->components != 0);
2437 // make sure that the format doesn't mismatch when it's not FMT_NONE
2438 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2439 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2440 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2441 pred->getDef(0));
2442 }
2443 su->setPredicate(CC_NOT_P, pred->getDef(0));
2444 }
2445
2446 void
2447 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2448 {
2449 if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2450 /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2451 * will simplify the lowering pass and the texture constraints. */
2452 su->moveSources(1, 1);
2453 su->setSrc(1, bld.loadImm(NULL, 0));
2454 su->tex.target = TEX_TARGET_2D_ARRAY;
2455 }
2456
2457 processSurfaceCoordsNVC0(su);
2458
2459 if (su->op == OP_SULDP) {
2460 convertSurfaceFormat(su, NULL);
2461 insertOOBSurfaceOpResult(su);
2462 }
2463
2464 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2465 const int dim = su->tex.target.getDim();
2466 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2467 LValue *addr = bld.getSSA(8);
2468 Value *def = su->getDef(0);
2469
2470 su->op = OP_SULEA;
2471
2472 // Set the destination to the address
2473 su->dType = TYPE_U64;
2474 su->setDef(0, addr);
2475 su->setDef(1, su->getPredicate());
2476
2477 bld.setPosition(su, true);
2478
2479 // Perform the atomic op
2480 Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2481 red->subOp = su->subOp;
2482 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2483 red->setSrc(1, su->getSrc(arg));
2484 if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2485 red->setSrc(2, su->getSrc(arg + 1));
2486 red->setIndirect(0, 0, addr);
2487
2488 // make sure to initialize dst value when the atomic operation is not
2489 // performed
2490 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2491
2492 assert(su->cc == CC_NOT_P);
2493 red->setPredicate(su->cc, su->getPredicate());
2494 mov->setPredicate(CC_P, su->getPredicate());
2495
2496 bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2497
2498 handleCasExch(red, false);
2499 }
2500 }
2501
2502 TexInstruction *
2503 NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su, Instruction *ret[4])
2504 {
2505 const int slot = su->tex.r;
2506 const int dim = su->tex.target.getDim();
2507 const bool array = su->tex.target.isArray() || su->tex.target.isCube();
2508 const int arg = dim + array;
2509 Value *ind = su->getIndirectR();
2510 Value *handle;
2511 Instruction *pred = NULL, *pred2d = NULL;
2512 int pos = 0;
2513
2514 bld.setPosition(su, false);
2515
2516 adjustCoordinatesMS(su);
2517
2518 // add texture handle
2519 switch (su->op) {
2520 case OP_SUSTP:
2521 pos = 4;
2522 break;
2523 case OP_SUREDP:
2524 pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
2525 break;
2526 default:
2527 assert(pos == 0);
2528 break;
2529 }
2530
2531 if (dim == 2 && !array) {
2532 // This might be a 2d slice of a 3d texture, try to load the z
2533 // coordinate in.
2534 Value *v;
2535 if (!su->tex.bindless)
2536 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2537 else
2538 v = bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), ind, bld.mkImm(11));
2539 Value *is_3d = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), v, bld.mkImm(1));
2540 pred2d = bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2541 TYPE_U32, bld.mkImm(0), is_3d);
2542
2543 bld.mkOp2(OP_SHR, TYPE_U32, v, v, bld.loadImm(NULL, 16));
2544 su->moveSources(dim, 1);
2545 su->setSrc(dim, v);
2546 su->tex.target = nv50_ir::TEX_TARGET_3D;
2547 pos++;
2548 }
2549
2550 if (su->tex.bindless)
2551 handle = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ind, bld.mkImm(2047));
2552 else
2553 handle = loadTexHandle(ind, slot + 32);
2554
2555 su->setSrc(arg + pos, handle);
2556
2557 // The address check doesn't make sense here. The format check could make
2558 // sense but it's a bit of a pain.
2559 if (!su->tex.bindless) {
2560 // prevent read fault when the image is not actually bound
2561 pred =
2562 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2563 TYPE_U32, bld.mkImm(0),
2564 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2565 if (su->op != OP_SUSTP && su->tex.format) {
2566 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2567 int blockwidth = format->bits[0] + format->bits[1] +
2568 format->bits[2] + format->bits[3];
2569
2570 assert(format->components != 0);
2571 // make sure that the format doesn't mismatch when it's not FMT_NONE
2572 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2573 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2574 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2575 pred->getDef(0));
2576 }
2577 }
2578
2579 // Now we have "pred" which (optionally) contains whether to do the surface
2580 // op at all, and a "pred2d" which indicates that, in case of doing the
2581 // surface op, we have to create a 2d and 3d version, conditioned on pred2d.
2582 TexInstruction *su2d = NULL;
2583 if (pred2d) {
2584 su2d = cloneForward(func, su)->asTex();
2585 for (unsigned i = 0; su->defExists(i); ++i)
2586 su2d->setDef(i, bld.getSSA());
2587 su2d->moveSources(dim + 1, -1);
2588 su2d->tex.target = nv50_ir::TEX_TARGET_2D;
2589 }
2590 if (pred2d && pred) {
2591 Instruction *pred3d = bld.mkOp2(OP_AND, TYPE_U8,
2592 bld.getSSA(1, FILE_PREDICATE),
2593 pred->getDef(0), pred2d->getDef(0));
2594 pred3d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2595 pred3d->src(1).mod = Modifier(NV50_IR_MOD_NOT);
2596 su->setPredicate(CC_P, pred3d->getDef(0));
2597 pred2d = bld.mkOp2(OP_AND, TYPE_U8, bld.getSSA(1, FILE_PREDICATE),
2598 pred->getDef(0), pred2d->getDef(0));
2599 pred2d->src(0).mod = Modifier(NV50_IR_MOD_NOT);
2600 } else if (pred) {
2601 su->setPredicate(CC_NOT_P, pred->getDef(0));
2602 } else if (pred2d) {
2603 su->setPredicate(CC_NOT_P, pred2d->getDef(0));
2604 }
2605 if (su2d) {
2606 su2d->setPredicate(CC_P, pred2d->getDef(0));
2607 bld.insert(su2d);
2608
2609 // Create a UNION so that RA assigns the same registers
2610 bld.setPosition(su, true);
2611 for (unsigned i = 0; su->defExists(i); ++i) {
2612 assert(i < 4);
2613
2614 ValueDef &def = su->def(i);
2615 ValueDef &def2 = su2d->def(i);
2616 Instruction *mov = NULL;
2617
2618 if (pred) {
2619 mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2620 mov->setPredicate(CC_P, pred->getDef(0));
2621 }
2622
2623 Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2624 bld.getSSA(),
2625 NULL, def2.get());
2626 def.replace(uni->getDef(0), false);
2627 uni->setSrc(0, def.get());
2628 if (mov)
2629 uni->setSrc(2, mov->getDef(0));
2630 }
2631 } else if (pred) {
2632 // Create a UNION so that RA assigns the same registers
2633 bld.setPosition(su, true);
2634 for (unsigned i = 0; su->defExists(i); ++i) {
2635 assert(i < 4);
2636
2637 ValueDef &def = su->def(i);
2638
2639 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2640 mov->setPredicate(CC_P, pred->getDef(0));
2641
2642 Instruction *uni = ret[i] = bld.mkOp2(OP_UNION, TYPE_U32,
2643 bld.getSSA(),
2644 NULL, mov->getDef(0));
2645 def.replace(uni->getDef(0), false);
2646 uni->setSrc(0, def.get());
2647 }
2648 }
2649
2650 return su2d;
2651 }
2652
2653 void
2654 NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
2655 {
2656 // processSurfaceCoords also takes care of fixing up the outputs and
2657 // union'ing them with 0 as necessary. Additionally it may create a second
2658 // surface which needs some of the similar fixups.
2659
2660 Instruction *loaded[4] = {};
2661 TexInstruction *su2 = processSurfaceCoordsGM107(su, loaded);
2662
2663 if (su->op == OP_SULDP) {
2664 convertSurfaceFormat(su, loaded);
2665 }
2666
2667 if (su->op == OP_SUREDP) {
2668 su->op = OP_SUREDB;
2669 }
2670
2671 // If we fixed up the type of the regular surface load instruction, we also
2672 // have to fix up the copy.
2673 if (su2) {
2674 su2->op = su->op;
2675 su2->dType = su->dType;
2676 su2->sType = su->sType;
2677 }
2678 }
2679
2680 bool
2681 NVC0LoweringPass::handleWRSV(Instruction *i)
2682 {
2683 Instruction *st;
2684 Symbol *sym;
2685 uint32_t addr;
2686
2687 // must replace, $sreg are not writeable
2688 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2689 if (addr >= 0x400)
2690 return false;
2691 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2692
2693 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2694 i->getSrc(1));
2695 st->perPatch = i->perPatch;
2696
2697 bld.getBB()->remove(i);
2698 return true;
2699 }
2700
2701 void
2702 NVC0LoweringPass::handleLDST(Instruction *i)
2703 {
2704 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2705 if (prog->getType() == Program::TYPE_COMPUTE) {
2706 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2707 i->getSrc(0)->reg.fileIndex = 0;
2708 } else
2709 if (prog->getType() == Program::TYPE_GEOMETRY &&
2710 i->src(0).isIndirect(0)) {
2711 // XXX: this assumes vec4 units
2712 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2713 i->getIndirect(0, 0), bld.mkImm(4));
2714 i->setIndirect(0, 0, ptr);
2715 i->op = OP_VFETCH;
2716 } else {
2717 i->op = OP_VFETCH;
2718 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2719 }
2720 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2721 int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2722 Value *ind = i->getIndirect(0, 1);
2723
2724 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2725 prog->getType() == Program::TYPE_COMPUTE &&
2726 (fileIndex >= 6 || ind)) {
2727 // The launch descriptor only allows to set up 8 CBs, but OpenGL
2728 // requires at least 12 UBOs. To bypass this limitation, for constant
2729 // buffers 7+, we store the addrs into the driver constbuf and we
2730 // directly load from the global memory.
2731 if (ind) {
2732 // Clamp the UBO index when an indirect access is used to avoid
2733 // loading information from the wrong place in the driver cb.
2734 // TODO - synchronize the max with the driver.
2735 ind = bld.mkOp2v(OP_MIN, TYPE_U32, bld.getSSA(),
2736 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2737 ind, bld.loadImm(NULL, fileIndex)),
2738 bld.loadImm(NULL, 13));
2739 fileIndex = 0;
2740 }
2741
2742 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2743 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2744 Value *length = loadUboLength32(ind, fileIndex * 16);
2745 Value *pred = new_LValue(func, FILE_PREDICATE);
2746 if (i->src(0).isIndirect(0)) {
2747 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2748 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2749 }
2750 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2751 i->setIndirect(0, 1, NULL);
2752 i->setIndirect(0, 0, ptr);
2753 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2754 i->setPredicate(CC_NOT_P, pred);
2755 Value *zero, *dst = i->getDef(0);
2756 i->setDef(0, bld.getSSA());
2757
2758 bld.setPosition(i, true);
2759 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2760 ->setPredicate(CC_P, pred);
2761 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2762 } else if (i->src(0).isIndirect(1)) {
2763 Value *ptr;
2764 if (i->src(0).isIndirect(0))
2765 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2766 i->getIndirect(0, 1), bld.mkImm(0x1010),
2767 i->getIndirect(0, 0));
2768 else
2769 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2770 i->getIndirect(0, 1), bld.mkImm(16));
2771 i->setIndirect(0, 1, NULL);
2772 i->setIndirect(0, 0, ptr);
2773 i->subOp = NV50_IR_SUBOP_LDC_IS;
2774 }
2775 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2776 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2777 i->op = OP_VFETCH;
2778 } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2779 Value *ind = i->getIndirect(0, 1);
2780 Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2781 // XXX come up with a way not to do this for EVERY little access but
2782 // rather to batch these up somehow. Unfortunately we've lost the
2783 // information about the field width by the time we get here.
2784 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2785 Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2786 Value *pred = new_LValue(func, FILE_PREDICATE);
2787 if (i->src(0).isIndirect(0)) {
2788 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2789 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2790 }
2791 i->setIndirect(0, 1, NULL);
2792 i->setIndirect(0, 0, ptr);
2793 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2794 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2795 i->setPredicate(CC_NOT_P, pred);
2796 if (i->defExists(0)) {
2797 Value *zero, *dst = i->getDef(0);
2798 i->setDef(0, bld.getSSA());
2799
2800 bld.setPosition(i, true);
2801 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2802 ->setPredicate(CC_P, pred);
2803 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2804 }
2805 }
2806 }
2807
2808 void
2809 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2810 {
2811 Value *laneid = bld.getSSA();
2812 Value *x, *y;
2813
2814 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2815
2816 if (c == 0) {
2817 x = dst;
2818 y = NULL;
2819 } else
2820 if (c == 1) {
2821 x = NULL;
2822 y = dst;
2823 } else {
2824 assert(c == 2);
2825 if (prog->driver_out->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
2826 bld.mkMov(dst, bld.loadImm(NULL, 0));
2827 return;
2828 }
2829 x = bld.getSSA();
2830 y = bld.getSSA();
2831 }
2832 if (x)
2833 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2834 if (y)
2835 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2836
2837 if (c == 2) {
2838 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2839 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2840 }
2841 }
2842
2843 bool
2844 NVC0LoweringPass::handleRDSV(Instruction *i)
2845 {
2846 Symbol *sym = i->getSrc(0)->asSym();
2847 const SVSemantic sv = sym->reg.data.sv.sv;
2848 Value *vtx = NULL;
2849 Instruction *ld;
2850 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2851
2852 if (addr >= 0x400) {
2853 // mov $sreg
2854 if (sym->reg.data.sv.index == 3) {
2855 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2856 i->op = OP_MOV;
2857 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2858 } else
2859 if (sv == SV_TID) {
2860 // Help CSE combine TID fetches
2861 Value *tid = bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(),
2862 bld.mkSysVal(SV_COMBINED_TID, 0));
2863 i->op = OP_EXTBF;
2864 i->setSrc(0, tid);
2865 switch (sym->reg.data.sv.index) {
2866 case 0: i->setSrc(1, bld.mkImm(0x1000)); break;
2867 case 1: i->setSrc(1, bld.mkImm(0x0a10)); break;
2868 case 2: i->setSrc(1, bld.mkImm(0x061a)); break;
2869 }
2870 }
2871 if (sv == SV_VERTEX_COUNT) {
2872 bld.setPosition(i, true);
2873 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2874 }
2875 return true;
2876 }
2877
2878 switch (sv) {
2879 case SV_POSITION:
2880 assert(prog->getType() == Program::TYPE_FRAGMENT);
2881 if (i->srcExists(1)) {
2882 // Pass offset through to the interpolation logic
2883 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2884 i->getDef(0), addr, NULL);
2885 ld->setSrc(1, i->getSrc(1));
2886 } else {
2887 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2888 }
2889 break;
2890 case SV_FACE:
2891 {
2892 Value *face = i->getDef(0);
2893 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2894 if (i->dType == TYPE_F32) {
2895 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2896 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
2897 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
2898 }
2899 }
2900 break;
2901 case SV_TESS_COORD:
2902 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
2903 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
2904 break;
2905 case SV_NTID:
2906 case SV_NCTAID:
2907 case SV_GRIDID:
2908 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
2909 if (sym->reg.data.sv.index == 3) {
2910 i->op = OP_MOV;
2911 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
2912 return true;
2913 }
2914 // Fallthrough
2915 case SV_WORK_DIM:
2916 addr += prog->driver->prop.cp.gridInfoBase;
2917 bld.mkLoad(TYPE_U32, i->getDef(0),
2918 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2919 TYPE_U32, addr), NULL);
2920 break;
2921 case SV_SAMPLE_INDEX:
2922 // TODO: Properly pass source as an address in the PIX address space
2923 // (which can be of the form [r0+offset]). But this is currently
2924 // unnecessary.
2925 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2926 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2927 break;
2928 case SV_SAMPLE_POS: {
2929 Value *sampleID = bld.getScratch();
2930 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, sampleID, bld.mkImm(0));
2931 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2932 Value *offset = calculateSampleOffset(sampleID);
2933
2934 assert(prog->driver_out->prop.fp.readsSampleLocations);
2935
2936 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
2937 bld.mkLoad(TYPE_F32,
2938 i->getDef(0),
2939 bld.mkSymbol(
2940 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2941 TYPE_U32, prog->driver->io.sampleInfoBase),
2942 offset);
2943 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0),
2944 bld.mkImm(0x040c + sym->reg.data.sv.index * 16));
2945 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(0), TYPE_U32, i->getDef(0));
2946 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(0), i->getDef(0), bld.mkImm(1.0f / 16.0f));
2947 } else {
2948 bld.mkLoad(TYPE_F32,
2949 i->getDef(0),
2950 bld.mkSymbol(
2951 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2952 TYPE_U32, prog->driver->io.sampleInfoBase +
2953 4 * sym->reg.data.sv.index),
2954 offset);
2955 }
2956 break;
2957 }
2958 case SV_SAMPLE_MASK: {
2959 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2960 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
2961 Instruction *sampleid =
2962 bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2963 sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2964 Value *masked =
2965 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
2966 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2967 bld.loadImm(NULL, 1), sampleid->getDef(0)));
2968 if (prog->persampleInvocation) {
2969 bld.mkMov(i->getDef(0), masked);
2970 } else {
2971 bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
2972 bld.mkImm(0))
2973 ->subOp = 1;
2974 }
2975 break;
2976 }
2977 case SV_BASEVERTEX:
2978 case SV_BASEINSTANCE:
2979 case SV_DRAWID:
2980 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
2981 bld.mkSymbol(FILE_MEMORY_CONST,
2982 prog->driver->io.auxCBSlot,
2983 TYPE_U32,
2984 prog->driver->io.drawInfoBase +
2985 4 * (sv - SV_BASEVERTEX)),
2986 NULL);
2987 break;
2988 default:
2989 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
2990 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2991 if (prog->getType() == Program::TYPE_FRAGMENT) {
2992 bld.mkInterp(NV50_IR_INTERP_FLAT, i->getDef(0), addr, NULL);
2993 } else {
2994 ld = bld.mkFetch(i->getDef(0), i->dType,
2995 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
2996 ld->perPatch = i->perPatch;
2997 }
2998 break;
2999 }
3000 bld.getBB()->remove(i);
3001 return true;
3002 }
3003
3004 bool
3005 NVC0LoweringPass::handleDIV(Instruction *i)
3006 {
3007 if (!isFloatType(i->dType))
3008 return true;
3009 bld.setPosition(i, false);
3010 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
3011 i->op = OP_MUL;
3012 i->setSrc(1, rcp->getDef(0));
3013 return true;
3014 }
3015
3016 bool
3017 NVC0LoweringPass::handleMOD(Instruction *i)
3018 {
3019 if (!isFloatType(i->dType))
3020 return true;
3021 LValue *value = bld.getScratch(typeSizeof(i->dType));
3022 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
3023 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
3024 bld.mkOp1(OP_TRUNC, i->dType, value, value);
3025 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
3026 i->op = OP_SUB;
3027 i->setSrc(1, value);
3028 return true;
3029 }
3030
3031 bool
3032 NVC0LoweringPass::handleSQRT(Instruction *i)
3033 {
3034 if (targ->isOpSupported(OP_SQRT, i->dType))
3035 return true;
3036
3037 if (i->dType == TYPE_F64) {
3038 Value *pred = bld.getSSA(1, FILE_PREDICATE);
3039 Value *zero = bld.loadImm(NULL, 0.0);
3040 Value *dst = bld.getSSA(8);
3041 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
3042 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
3043 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
3044 i->op = OP_MUL;
3045 i->setSrc(1, dst);
3046 // TODO: Handle this properly with a library function
3047 } else {
3048 bld.setPosition(i, true);
3049 i->op = OP_RSQ;
3050 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
3051 }
3052
3053 return true;
3054 }
3055
3056 bool
3057 NVC0LoweringPass::handlePOW(Instruction *i)
3058 {
3059 LValue *val = bld.getScratch();
3060
3061 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
3062 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
3063 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
3064
3065 i->op = OP_EX2;
3066 i->setSrc(0, val);
3067 i->setSrc(1, NULL);
3068
3069 return true;
3070 }
3071
3072 bool
3073 NVC0LoweringPass::handleEXPORT(Instruction *i)
3074 {
3075 if (prog->getType() == Program::TYPE_FRAGMENT) {
3076 int id = i->getSrc(0)->reg.data.offset / 4;
3077
3078 if (i->src(0).isIndirect(0)) // TODO, ugly
3079 return false;
3080 i->op = OP_MOV;
3081 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
3082 i->src(0).set(i->src(1));
3083 i->setSrc(1, NULL);
3084 i->setDef(0, new_LValue(func, FILE_GPR));
3085 i->getDef(0)->reg.data.id = id;
3086
3087 prog->maxGPR = MAX2(prog->maxGPR, id);
3088 } else
3089 if (prog->getType() == Program::TYPE_GEOMETRY) {
3090 i->setIndirect(0, 1, gpEmitAddress);
3091 }
3092 return true;
3093 }
3094
3095 bool
3096 NVC0LoweringPass::handleOUT(Instruction *i)
3097 {
3098 Instruction *prev = i->prev;
3099 ImmediateValue stream, prevStream;
3100
3101 // Only merge if the stream ids match. Also, note that the previous
3102 // instruction would have already been lowered, so we take arg1 from it.
3103 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
3104 i->src(0).getImmediate(stream) &&
3105 prev->src(1).getImmediate(prevStream) &&
3106 stream.reg.data.u32 == prevStream.reg.data.u32) {
3107 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
3108 delete_Instruction(prog, i);
3109 } else {
3110 assert(gpEmitAddress);
3111 i->setDef(0, gpEmitAddress);
3112 i->setSrc(1, i->getSrc(0));
3113 i->setSrc(0, gpEmitAddress);
3114 }
3115 return true;
3116 }
3117
3118 Value *
3119 NVC0LoweringPass::calculateSampleOffset(Value *sampleID)
3120 {
3121 Value *offset = bld.getScratch();
3122 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
3123 // Sample location offsets (in bytes) are calculated like so:
3124 // offset = (SV_POSITION.y % 4 * 2) + (SV_POSITION.x % 2)
3125 // offset = offset * 32 + sampleID % 8 * 4;
3126 // which is equivalent to:
3127 // offset = (SV_POSITION.y & 0x3) << 6 + (SV_POSITION.x & 0x1) << 5;
3128 // offset += sampleID << 2
3129
3130 // The second operand (src1) of the INSBF instructions are like so:
3131 // 0xssll where ss is the size and ll is the offset.
3132 // so: dest = src2 | (src0 & (1 << ss - 1)) << ll
3133
3134 // Add sample ID (offset = (sampleID & 0x7) << 2)
3135 bld.mkOp3(OP_INSBF, TYPE_U32, offset, sampleID, bld.mkImm(0x0302), bld.mkImm(0x0));
3136
3137 Symbol *xSym = bld.mkSysVal(SV_POSITION, 0);
3138 Symbol *ySym = bld.mkSysVal(SV_POSITION, 1);
3139 Value *coord = bld.getScratch();
3140
3141 // Add X coordinate (offset |= (SV_POSITION.x & 0x1) << 5)
3142 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3143 targ->getSVAddress(FILE_SHADER_INPUT, xSym), NULL);
3144 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3145 ->rnd = ROUND_ZI;
3146 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0105), offset);
3147
3148 // Add Y coordinate (offset |= (SV_POSITION.y & 0x3) << 6)
3149 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
3150 targ->getSVAddress(FILE_SHADER_INPUT, ySym), NULL);
3151 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
3152 ->rnd = ROUND_ZI;
3153 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0206), offset);
3154 } else {
3155 bld.mkOp2(OP_SHL, TYPE_U32, offset, sampleID, bld.mkImm(3));
3156 }
3157 return offset;
3158 }
3159
3160 // Handle programmable sample locations for GM20x+
3161 void
3162 NVC0LoweringPass::handlePIXLD(Instruction *i)
3163 {
3164 if (i->subOp != NV50_IR_SUBOP_PIXLD_OFFSET)
3165 return;
3166 if (targ->getChipset() < NVISA_GM200_CHIPSET)
3167 return;
3168
3169 assert(prog->driver_out->prop.fp.readsSampleLocations);
3170
3171 bld.mkLoad(TYPE_F32,
3172 i->getDef(0),
3173 bld.mkSymbol(
3174 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3175 TYPE_U32, prog->driver->io.sampleInfoBase),
3176 calculateSampleOffset(i->getSrc(0)));
3177
3178 bld.getBB()->remove(i);
3179 }
3180
3181 // Generate a binary predicate if an instruction is predicated by
3182 // e.g. an f32 value.
3183 void
3184 NVC0LoweringPass::checkPredicate(Instruction *insn)
3185 {
3186 Value *pred = insn->getPredicate();
3187 Value *pdst;
3188
3189 if (!pred || pred->reg.file == FILE_PREDICATE)
3190 return;
3191 pdst = new_LValue(func, FILE_PREDICATE);
3192
3193 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
3194 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
3195
3196 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
3197
3198 insn->setPredicate(insn->cc, pdst);
3199 }
3200
3201 //
3202 // - add quadop dance for texturing
3203 // - put FP outputs in GPRs
3204 // - convert instruction sequences
3205 //
3206 bool
3207 NVC0LoweringPass::visit(Instruction *i)
3208 {
3209 bool ret = true;
3210 bld.setPosition(i, false);
3211
3212 if (i->cc != CC_ALWAYS)
3213 checkPredicate(i);
3214
3215 switch (i->op) {
3216 case OP_TEX:
3217 case OP_TXB:
3218 case OP_TXL:
3219 case OP_TXF:
3220 case OP_TXG:
3221 return handleTEX(i->asTex());
3222 case OP_TXD:
3223 return handleTXD(i->asTex());
3224 case OP_TXLQ:
3225 return handleTXLQ(i->asTex());
3226 case OP_TXQ:
3227 return handleTXQ(i->asTex());
3228 case OP_EX2:
3229 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
3230 i->setSrc(0, i->getDef(0));
3231 break;
3232 case OP_POW:
3233 return handlePOW(i);
3234 case OP_DIV:
3235 return handleDIV(i);
3236 case OP_MOD:
3237 return handleMOD(i);
3238 case OP_SQRT:
3239 return handleSQRT(i);
3240 case OP_EXPORT:
3241 ret = handleEXPORT(i);
3242 break;
3243 case OP_EMIT:
3244 case OP_RESTART:
3245 return handleOUT(i);
3246 case OP_RDSV:
3247 return handleRDSV(i);
3248 case OP_WRSV:
3249 return handleWRSV(i);
3250 case OP_STORE:
3251 case OP_LOAD:
3252 handleLDST(i);
3253 break;
3254 case OP_ATOM:
3255 {
3256 const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
3257 handleATOM(i);
3258 handleCasExch(i, cctl);
3259 }
3260 break;
3261 case OP_SULDB:
3262 case OP_SULDP:
3263 case OP_SUSTB:
3264 case OP_SUSTP:
3265 case OP_SUREDB:
3266 case OP_SUREDP:
3267 if (targ->getChipset() >= NVISA_GM107_CHIPSET)
3268 handleSurfaceOpGM107(i->asTex());
3269 else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
3270 handleSurfaceOpNVE4(i->asTex());
3271 else
3272 handleSurfaceOpNVC0(i->asTex());
3273 break;
3274 case OP_SUQ:
3275 handleSUQ(i->asTex());
3276 break;
3277 case OP_BUFQ:
3278 handleBUFQ(i);
3279 break;
3280 case OP_PIXLD:
3281 handlePIXLD(i);
3282 break;
3283 default:
3284 break;
3285 }
3286
3287 /* Kepler+ has a special opcode to compute a new base address to be used
3288 * for indirect loads.
3289 *
3290 * Maxwell+ has an additional similar requirement for indirect
3291 * interpolation ops in frag shaders.
3292 */
3293 bool doAfetch = false;
3294 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
3295 !i->perPatch &&
3296 (i->op == OP_VFETCH || i->op == OP_EXPORT) &&
3297 i->src(0).isIndirect(0)) {
3298 doAfetch = true;
3299 }
3300 if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
3301 (i->op == OP_LINTERP || i->op == OP_PINTERP) &&
3302 i->src(0).isIndirect(0)) {
3303 doAfetch = true;
3304 }
3305
3306 if (doAfetch) {
3307 Value *addr = cloneShallow(func, i->getSrc(0));
3308 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
3309 i->getSrc(0));
3310 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
3311 addr->reg.data.offset = 0;
3312 i->setSrc(0, addr);
3313 i->setIndirect(0, 0, afetch->getDef(0));
3314 }
3315
3316 return ret;
3317 }
3318
3319 bool
3320 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
3321 {
3322 if (stage == CG_STAGE_PRE_SSA) {
3323 NVC0LoweringPass pass(prog);
3324 return pass.run(prog, false, true);
3325 } else
3326 if (stage == CG_STAGE_POST_RA) {
3327 NVC0LegalizePostRA pass(prog);
3328 return pass.run(prog, false, true);
3329 } else
3330 if (stage == CG_STAGE_SSA) {
3331 NVC0LegalizeSSA pass;
3332 return pass.run(prog, false, true);
3333 }
3334 return false;
3335 }
3336
3337 } // namespace nv50_ir