Move nv30, nv50 and nvc0 to nouveau.
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_target_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir_target_nvc0.h"
24
25 namespace nv50_ir {
26
27 Target *getTargetNVC0(unsigned int chipset)
28 {
29 return new TargetNVC0(chipset);
30 }
31
32 TargetNVC0::TargetNVC0(unsigned int card) : Target(false, card >= 0xe4)
33 {
34 chipset = card;
35 initOpInfo();
36 }
37
38 // BULTINS / LIBRARY FUNCTIONS:
39
40 // lazyness -> will just hardcode everything for the time being
41
42 #include "target_lib_nvc0.asm.h"
43 #include "target_lib_nve4.asm.h"
44 #include "target_lib_nvf0.asm.h"
45
46 void
47 TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
48 {
49 switch (chipset & 0xf0) {
50 case 0xe0:
51 *code = (const uint32_t *)&nve4_builtin_code[0];
52 *size = sizeof(nve4_builtin_code);
53 break;
54 case 0xf0:
55 *code = (const uint32_t *)&nvf0_builtin_code[0];
56 *size = sizeof(nvf0_builtin_code);
57 break;
58 default:
59 *code = (const uint32_t *)&nvc0_builtin_code[0];
60 *size = sizeof(nvc0_builtin_code);
61 break;
62 }
63 }
64
65 uint32_t
66 TargetNVC0::getBuiltinOffset(int builtin) const
67 {
68 assert(builtin < NVC0_BUILTIN_COUNT);
69
70 switch (chipset & 0xf0) {
71 case 0xe0: return nve4_builtin_offsets[builtin];
72 case 0xf0: return nvf0_builtin_offsets[builtin];
73 default:
74 return nvc0_builtin_offsets[builtin];
75 }
76 }
77
78 struct opProperties
79 {
80 operation op;
81 unsigned int mNeg : 4;
82 unsigned int mAbs : 4;
83 unsigned int mNot : 4;
84 unsigned int mSat : 4;
85 unsigned int fConst : 3;
86 unsigned int fImmd : 4; // last bit indicates if full immediate is suppoted
87 };
88
89 static const struct opProperties _initProps[] =
90 {
91 // neg abs not sat c[] imm
92 { OP_ADD, 0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
93 { OP_SUB, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
94 { OP_MUL, 0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
95 { OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
96 { OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
97 { OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // special c[] constraint
98 { OP_MADSP, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
99 { OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
100 { OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
101 { OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
102 { OP_CEIL, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
103 { OP_FLOOR, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
104 { OP_TRUNC, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
105 { OP_AND, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
106 { OP_OR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
107 { OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
108 { OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
109 { OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
110 { OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
111 { OP_SLCT, 0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
112 { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
113 { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
114 { OP_COS, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
115 { OP_SIN, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
116 { OP_EX2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
117 { OP_LG2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
118 { OP_RCP, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
119 { OP_RSQ, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
120 { OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
121 { OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
122 { OP_CALL, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
123 { OP_INSBF, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
124 { OP_PERMT, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
125 { OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
126 { OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
127 { OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
128 // saturate only:
129 { OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
130 { OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
131 // nve4 ops:
132 { OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
133 { OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
134 { OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
135 { OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
136 { OP_SUBFM, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
137 { OP_SUEAU, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
138 };
139
140 void TargetNVC0::initOpInfo()
141 {
142 unsigned int i, j;
143
144 static const uint32_t commutative[(OP_LAST + 31) / 32] =
145 {
146 // ADD, MAD, MUL, AND, OR, XOR, MAX, MIN
147 0x0670ca00, 0x0000003f, 0x00000000, 0x00000000
148 };
149
150 static const uint32_t shortForm[(OP_LAST + 31) / 32] =
151 {
152 // ADD, MAD, MUL, AND, OR, XOR, PRESIN, PREEX2, SFN, CVT, PINTERP, MOV
153 0x0670ca00, 0x00000000, 0x00000000, 0x00000000
154 };
155
156 static const operation noDest[] =
157 {
158 OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
159 OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
160 OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
161 OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
162 OP_SUREDB, OP_BAR
163 };
164
165 static const operation noPred[] =
166 {
167 OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
168 OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
169 };
170
171 for (i = 0; i < DATA_FILE_COUNT; ++i)
172 nativeFileMap[i] = (DataFile)i;
173 nativeFileMap[FILE_ADDRESS] = FILE_GPR;
174
175 for (i = 0; i < OP_LAST; ++i) {
176 opInfo[i].variants = NULL;
177 opInfo[i].op = (operation)i;
178 opInfo[i].srcTypes = 1 << (int)TYPE_F32;
179 opInfo[i].dstTypes = 1 << (int)TYPE_F32;
180 opInfo[i].immdBits = 0;
181 opInfo[i].srcNr = operationSrcNr[i];
182
183 for (j = 0; j < opInfo[i].srcNr; ++j) {
184 opInfo[i].srcMods[j] = 0;
185 opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
186 }
187 opInfo[i].dstMods = 0;
188 opInfo[i].dstFiles = 1 << (int)FILE_GPR;
189
190 opInfo[i].hasDest = 1;
191 opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
192 opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
193 opInfo[i].pseudo = (i < OP_MOV);
194 opInfo[i].predicate = !opInfo[i].pseudo;
195 opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
196 opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
197 }
198 for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
199 opInfo[noDest[i]].hasDest = 0;
200 for (i = 0; i < sizeof(noPred) / sizeof(noPred[0]); ++i)
201 opInfo[noPred[i]].predicate = 0;
202
203 for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
204 const struct opProperties *prop = &_initProps[i];
205
206 for (int s = 0; s < 3; ++s) {
207 if (prop->mNeg & (1 << s))
208 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
209 if (prop->mAbs & (1 << s))
210 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
211 if (prop->mNot & (1 << s))
212 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
213 if (prop->fConst & (1 << s))
214 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
215 if (prop->fImmd & (1 << s))
216 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
217 if (prop->fImmd & 8)
218 opInfo[prop->op].immdBits = 0xffffffff;
219 }
220 if (prop->mSat & 8)
221 opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
222 }
223 }
224
225 unsigned int
226 TargetNVC0::getFileSize(DataFile file) const
227 {
228 switch (file) {
229 case FILE_NULL: return 0;
230 case FILE_GPR: return (chipset >= NVISA_GK110_CHIPSET) ? 255 : 63;
231 case FILE_PREDICATE: return 7;
232 case FILE_FLAGS: return 1;
233 case FILE_ADDRESS: return 0;
234 case FILE_IMMEDIATE: return 0;
235 case FILE_MEMORY_CONST: return 65536;
236 case FILE_SHADER_INPUT: return 0x400;
237 case FILE_SHADER_OUTPUT: return 0x400;
238 case FILE_MEMORY_GLOBAL: return 0xffffffff;
239 case FILE_MEMORY_SHARED: return 16 << 10;
240 case FILE_MEMORY_LOCAL: return 48 << 10;
241 case FILE_SYSTEM_VALUE: return 32;
242 default:
243 assert(!"invalid file");
244 return 0;
245 }
246 }
247
248 unsigned int
249 TargetNVC0::getFileUnit(DataFile file) const
250 {
251 if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
252 return 2;
253 return 0;
254 }
255
256 uint32_t
257 TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
258 {
259 const int idx = sym->reg.data.sv.index;
260 const SVSemantic sv = sym->reg.data.sv.sv;
261
262 const bool isInput = shaderFile == FILE_SHADER_INPUT;
263 const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
264
265 switch (sv) {
266 case SV_POSITION: return 0x070 + idx * 4;
267 case SV_INSTANCE_ID: return 0x2f8;
268 case SV_VERTEX_ID: return 0x2fc;
269 case SV_PRIMITIVE_ID: return isInput ? 0x060 : 0x040;
270 case SV_LAYER: return 0x064;
271 case SV_VIEWPORT_INDEX: return 0x068;
272 case SV_POINT_SIZE: return 0x06c;
273 case SV_CLIP_DISTANCE: return 0x2c0 + idx * 4;
274 case SV_POINT_COORD: return 0x2e0 + idx * 4;
275 case SV_FACE: return 0x3fc;
276 case SV_TESS_FACTOR: return 0x000 + idx * 4;
277 case SV_TESS_COORD: return 0x2f0 + idx * 4;
278 case SV_NTID: return kepler ? (0x00 + idx * 4) : ~0;
279 case SV_NCTAID: return kepler ? (0x0c + idx * 4) : ~0;
280 case SV_GRIDID: return kepler ? 0x18 : ~0;
281 default:
282 return 0xffffffff;
283 }
284 }
285
286 bool
287 TargetNVC0::insnCanLoad(const Instruction *i, int s,
288 const Instruction *ld) const
289 {
290 DataFile sf = ld->src(0).getFile();
291
292 // immediate 0 can be represented by GPR $r63/$r255
293 if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
294 return (!i->isPseudo() &&
295 !i->asTex() &&
296 i->op != OP_EXPORT && i->op != OP_STORE);
297
298 if (s >= opInfo[i->op].srcNr)
299 return false;
300 if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
301 return false;
302
303 // indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
304 if (ld->src(0).isIndirect(0))
305 return false;
306
307 for (int k = 0; i->srcExists(k); ++k) {
308 if (i->src(k).getFile() == FILE_IMMEDIATE) {
309 if (k == 2 && i->op == OP_SUCLAMP) // special case
310 continue;
311 if (i->getSrc(k)->reg.data.u64 != 0)
312 return false;
313 } else
314 if (i->src(k).getFile() != FILE_GPR &&
315 i->src(k).getFile() != FILE_PREDICATE) {
316 return false;
317 }
318 }
319
320 // not all instructions support full 32 bit immediates
321 if (sf == FILE_IMMEDIATE) {
322 Storage &reg = ld->getSrc(0)->asImm()->reg;
323
324 if (opInfo[i->op].immdBits != 0xffffffff) {
325 if (i->sType == TYPE_F32) {
326 if (reg.data.u32 & 0xfff)
327 return false;
328 } else
329 if (i->sType == TYPE_S32 || i->sType == TYPE_U32) {
330 // with u32, 0xfffff counts as 0xffffffff as well
331 if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
332 return false;
333 }
334 } else
335 if (i->op == OP_MAD || i->op == OP_FMA) {
336 // requires src == dst, cannot decide before RA
337 // (except if we implement more constraints)
338 if (ld->getSrc(0)->asImm()->reg.data.u32 & 0xfff)
339 return false;
340 } else
341 if (i->op == OP_ADD && i->sType == TYPE_F32) {
342 // add f32 LIMM cannot saturate
343 if (i->saturate && (reg.data.u32 & 0xfff))
344 return false;
345 }
346 }
347
348 return true;
349 }
350
351 bool
352 TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
353 {
354 if (ty == TYPE_NONE)
355 return false;
356 if (file == FILE_MEMORY_CONST && getChipset() >= 0xe0) // wrong encoding ?
357 return typeSizeof(ty) <= 8;
358 if (ty == TYPE_B96)
359 return false;
360 if (getChipset() >= 0xf0) {
361 // XXX: find wide vfetch/export
362 if (ty == TYPE_B128)
363 return false;
364 if (ty == TYPE_U64)
365 return false;
366 }
367 return true;
368 }
369
370 bool
371 TargetNVC0::isOpSupported(operation op, DataType ty) const
372 {
373 if ((op == OP_MAD || op == OP_FMA) && (ty != TYPE_F32))
374 return false;
375 if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
376 return false;
377 if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
378 return false;
379 return true;
380 }
381
382 bool
383 TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
384 {
385 if (!isFloatType(insn->dType)) {
386 switch (insn->op) {
387 case OP_ABS:
388 case OP_NEG:
389 case OP_CVT:
390 case OP_CEIL:
391 case OP_FLOOR:
392 case OP_TRUNC:
393 case OP_AND:
394 case OP_OR:
395 case OP_XOR:
396 break;
397 case OP_SET:
398 if (insn->sType != TYPE_F32)
399 return false;
400 break;
401 case OP_ADD:
402 if (mod.abs())
403 return false;
404 if (insn->src(s ? 0 : 1).mod.neg())
405 return false;
406 break;
407 case OP_SUB:
408 if (s == 0)
409 return insn->src(1).mod.neg() ? false : true;
410 break;
411 default:
412 return false;
413 }
414 }
415 if (s > 3)
416 return false;
417 return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
418 }
419
420 bool
421 TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
422 {
423 if (insn->getPredicate())
424 return false;
425 return opInfo[insn->op].predicate;
426 }
427
428 bool
429 TargetNVC0::isSatSupported(const Instruction *insn) const
430 {
431 if (insn->op == OP_CVT)
432 return true;
433 if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
434 return false;
435
436 if (insn->dType == TYPE_U32)
437 return (insn->op == OP_ADD) || (insn->op == OP_MAD);
438
439 // add f32 LIMM cannot saturate
440 if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
441 if (insn->getSrc(1)->asImm() &&
442 insn->getSrc(1)->reg.data.u32 & 0xfff)
443 return false;
444 }
445
446 return insn->dType == TYPE_F32;
447 }
448
449 bool
450 TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
451 {
452 if (op != OP_MUL)
453 return false;
454 f = fabsf(f);
455 e = static_cast<int>(log2f(f));
456 if (e < -3 || e > 3)
457 return false;
458 return f == exp2f(static_cast<float>(e));
459 }
460
461 // TODO: better values
462 // this could be more precise, e.g. depending on the issue-to-read/write delay
463 // of the depending instruction, but it's good enough
464 int TargetNVC0::getLatency(const Instruction *i) const
465 {
466 if (chipset >= 0xe4) {
467 if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
468 return 20;
469 switch (i->op) {
470 case OP_LINTERP:
471 case OP_PINTERP:
472 return 15;
473 case OP_LOAD:
474 if (i->src(0).getFile() == FILE_MEMORY_CONST)
475 return 9;
476 // fall through
477 case OP_VFETCH:
478 return 24;
479 default:
480 if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
481 return 17;
482 if (i->op == OP_MUL && i->dType != TYPE_F32)
483 return 15;
484 return 9;
485 }
486 } else {
487 if (i->op == OP_LOAD) {
488 if (i->cache == CACHE_CV)
489 return 700;
490 return 48;
491 }
492 return 24;
493 }
494 return 32;
495 }
496
497 // These are "inverse" throughput values, i.e. the number of cycles required
498 // to issue a specific instruction for a full warp (32 threads).
499 //
500 // Assuming we have more than 1 warp in flight, a higher issue latency results
501 // in a lower result latency since the MP will have spent more time with other
502 // warps.
503 // This also helps to determine the number of cycles between instructions in
504 // a single warp.
505 //
506 int TargetNVC0::getThroughput(const Instruction *i) const
507 {
508 // TODO: better values
509 if (i->dType == TYPE_F32) {
510 switch (i->op) {
511 case OP_ADD:
512 case OP_MUL:
513 case OP_MAD:
514 case OP_FMA:
515 return 1;
516 case OP_CVT:
517 case OP_CEIL:
518 case OP_FLOOR:
519 case OP_TRUNC:
520 case OP_SET:
521 case OP_SLCT:
522 case OP_MIN:
523 case OP_MAX:
524 return 2;
525 case OP_RCP:
526 case OP_RSQ:
527 case OP_LG2:
528 case OP_SIN:
529 case OP_COS:
530 case OP_PRESIN:
531 case OP_PREEX2:
532 default:
533 return 8;
534 }
535 } else
536 if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
537 switch (i->op) {
538 case OP_ADD:
539 case OP_AND:
540 case OP_OR:
541 case OP_XOR:
542 case OP_NOT:
543 return 1;
544 case OP_MUL:
545 case OP_MAD:
546 case OP_CVT:
547 case OP_SET:
548 case OP_SLCT:
549 case OP_SHL:
550 case OP_SHR:
551 case OP_NEG:
552 case OP_ABS:
553 case OP_MIN:
554 case OP_MAX:
555 default:
556 return 2;
557 }
558 } else
559 if (i->dType == TYPE_F64) {
560 return 2;
561 } else {
562 return 1;
563 }
564 }
565
566 bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
567 {
568 const OpClass clA = operationClass[a->op];
569 const OpClass clB = operationClass[b->op];
570
571 if (getChipset() >= 0xe4) {
572 // not texturing
573 // not if the 2nd instruction isn't necessarily executed
574 if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
575 return false;
576 // anything with MOV
577 if (a->op == OP_MOV || b->op == OP_MOV)
578 return true;
579 if (clA == clB) {
580 // only F32 arith or integer additions
581 if (clA != OPCLASS_ARITH)
582 return false;
583 return (a->dType == TYPE_F32 || a->op == OP_ADD ||
584 b->dType == TYPE_F32 || b->op == OP_ADD);
585 }
586 // nothing with TEXBAR
587 if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
588 return false;
589 // no loads and stores accessing the the same space
590 if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
591 (clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
592 if (a->src(0).getFile() == b->src(0).getFile())
593 return false;
594 // no > 32-bit ops
595 if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
596 typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
597 return false;
598 return true;
599 } else {
600 return false; // info not needed (yet)
601 }
602 }
603
604 } // namespace nv50_ir