nvc0: fixup gk110 and up not being listed in various switch statements
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_target_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir_target_nvc0.h"
24
25 namespace nv50_ir {
26
27 Target *getTargetNVC0(unsigned int chipset)
28 {
29 return new TargetNVC0(chipset);
30 }
31
32 TargetNVC0::TargetNVC0(unsigned int card) : Target(false, card >= 0xe4)
33 {
34 chipset = card;
35 initOpInfo();
36 }
37
38 // BULTINS / LIBRARY FUNCTIONS:
39
40 // lazyness -> will just hardcode everything for the time being
41
42 #include "target_lib_nvc0.asm.h"
43 #include "target_lib_nve4.asm.h"
44 #include "target_lib_nvf0.asm.h"
45
46 void
47 TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
48 {
49 switch (chipset & ~0xf) {
50 case 0xe0:
51 *code = (const uint32_t *)&nve4_builtin_code[0];
52 *size = sizeof(nve4_builtin_code);
53 break;
54 case 0xf0:
55 case 0x100:
56 *code = (const uint32_t *)&nvf0_builtin_code[0];
57 *size = sizeof(nvf0_builtin_code);
58 break;
59 default:
60 *code = (const uint32_t *)&nvc0_builtin_code[0];
61 *size = sizeof(nvc0_builtin_code);
62 break;
63 }
64 }
65
66 uint32_t
67 TargetNVC0::getBuiltinOffset(int builtin) const
68 {
69 assert(builtin < NVC0_BUILTIN_COUNT);
70
71 switch (chipset & ~0xf) {
72 case 0xe0:
73 return nve4_builtin_offsets[builtin];
74 case 0xf0:
75 case 0x100:
76 return nvf0_builtin_offsets[builtin];
77 default:
78 return nvc0_builtin_offsets[builtin];
79 }
80 }
81
82 struct opProperties
83 {
84 operation op;
85 unsigned int mNeg : 4;
86 unsigned int mAbs : 4;
87 unsigned int mNot : 4;
88 unsigned int mSat : 4;
89 unsigned int fConst : 3;
90 unsigned int fImmd : 4; // last bit indicates if full immediate is suppoted
91 };
92
93 static const struct opProperties _initProps[] =
94 {
95 // neg abs not sat c[] imm
96 { OP_ADD, 0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
97 { OP_SUB, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
98 { OP_MUL, 0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
99 { OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
100 { OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
101 { OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // special c[] constraint
102 { OP_MADSP, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
103 { OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
104 { OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
105 { OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
106 { OP_CEIL, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
107 { OP_FLOOR, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
108 { OP_TRUNC, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
109 { OP_AND, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
110 { OP_OR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
111 { OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
112 { OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
113 { OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
114 { OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
115 { OP_SLCT, 0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
116 { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
117 { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
118 { OP_COS, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
119 { OP_SIN, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
120 { OP_EX2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
121 { OP_LG2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
122 { OP_RCP, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
123 { OP_RSQ, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
124 { OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
125 { OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
126 { OP_CALL, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
127 { OP_INSBF, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
128 { OP_PERMT, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
129 { OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
130 { OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
131 { OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
132 // saturate only:
133 { OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
134 { OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
135 // nve4 ops:
136 { OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
137 { OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
138 { OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
139 { OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
140 { OP_SUBFM, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
141 { OP_SUEAU, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
142 };
143
144 void TargetNVC0::initOpInfo()
145 {
146 unsigned int i, j;
147
148 static const uint32_t commutative[(OP_LAST + 31) / 32] =
149 {
150 // ADD, MAD, MUL, AND, OR, XOR, MAX, MIN
151 0x0670ca00, 0x0000003f, 0x00000000, 0x00000000
152 };
153
154 static const uint32_t shortForm[(OP_LAST + 31) / 32] =
155 {
156 // ADD, MAD, MUL, AND, OR, XOR, PRESIN, PREEX2, SFN, CVT, PINTERP, MOV
157 0x0670ca00, 0x00000000, 0x00000000, 0x00000000
158 };
159
160 static const operation noDest[] =
161 {
162 OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
163 OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
164 OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
165 OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
166 OP_SUREDB, OP_BAR
167 };
168
169 static const operation noPred[] =
170 {
171 OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
172 OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
173 };
174
175 for (i = 0; i < DATA_FILE_COUNT; ++i)
176 nativeFileMap[i] = (DataFile)i;
177 nativeFileMap[FILE_ADDRESS] = FILE_GPR;
178
179 for (i = 0; i < OP_LAST; ++i) {
180 opInfo[i].variants = NULL;
181 opInfo[i].op = (operation)i;
182 opInfo[i].srcTypes = 1 << (int)TYPE_F32;
183 opInfo[i].dstTypes = 1 << (int)TYPE_F32;
184 opInfo[i].immdBits = 0;
185 opInfo[i].srcNr = operationSrcNr[i];
186
187 for (j = 0; j < opInfo[i].srcNr; ++j) {
188 opInfo[i].srcMods[j] = 0;
189 opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
190 }
191 opInfo[i].dstMods = 0;
192 opInfo[i].dstFiles = 1 << (int)FILE_GPR;
193
194 opInfo[i].hasDest = 1;
195 opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
196 opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
197 opInfo[i].pseudo = (i < OP_MOV);
198 opInfo[i].predicate = !opInfo[i].pseudo;
199 opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
200 opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
201 }
202 for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
203 opInfo[noDest[i]].hasDest = 0;
204 for (i = 0; i < sizeof(noPred) / sizeof(noPred[0]); ++i)
205 opInfo[noPred[i]].predicate = 0;
206
207 for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
208 const struct opProperties *prop = &_initProps[i];
209
210 for (int s = 0; s < 3; ++s) {
211 if (prop->mNeg & (1 << s))
212 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
213 if (prop->mAbs & (1 << s))
214 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
215 if (prop->mNot & (1 << s))
216 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
217 if (prop->fConst & (1 << s))
218 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
219 if (prop->fImmd & (1 << s))
220 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
221 if (prop->fImmd & 8)
222 opInfo[prop->op].immdBits = 0xffffffff;
223 }
224 if (prop->mSat & 8)
225 opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
226 }
227 }
228
229 unsigned int
230 TargetNVC0::getFileSize(DataFile file) const
231 {
232 switch (file) {
233 case FILE_NULL: return 0;
234 case FILE_GPR: return (chipset >= NVISA_GK110_CHIPSET) ? 255 : 63;
235 case FILE_PREDICATE: return 7;
236 case FILE_FLAGS: return 1;
237 case FILE_ADDRESS: return 0;
238 case FILE_IMMEDIATE: return 0;
239 case FILE_MEMORY_CONST: return 65536;
240 case FILE_SHADER_INPUT: return 0x400;
241 case FILE_SHADER_OUTPUT: return 0x400;
242 case FILE_MEMORY_GLOBAL: return 0xffffffff;
243 case FILE_MEMORY_SHARED: return 16 << 10;
244 case FILE_MEMORY_LOCAL: return 48 << 10;
245 case FILE_SYSTEM_VALUE: return 32;
246 default:
247 assert(!"invalid file");
248 return 0;
249 }
250 }
251
252 unsigned int
253 TargetNVC0::getFileUnit(DataFile file) const
254 {
255 if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
256 return 2;
257 return 0;
258 }
259
260 uint32_t
261 TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
262 {
263 const int idx = sym->reg.data.sv.index;
264 const SVSemantic sv = sym->reg.data.sv.sv;
265
266 const bool isInput = shaderFile == FILE_SHADER_INPUT;
267 const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
268
269 switch (sv) {
270 case SV_POSITION: return 0x070 + idx * 4;
271 case SV_INSTANCE_ID: return 0x2f8;
272 case SV_VERTEX_ID: return 0x2fc;
273 case SV_PRIMITIVE_ID: return isInput ? 0x060 : 0x040;
274 case SV_LAYER: return 0x064;
275 case SV_VIEWPORT_INDEX: return 0x068;
276 case SV_POINT_SIZE: return 0x06c;
277 case SV_CLIP_DISTANCE: return 0x2c0 + idx * 4;
278 case SV_POINT_COORD: return 0x2e0 + idx * 4;
279 case SV_FACE: return 0x3fc;
280 case SV_TESS_FACTOR: return 0x000 + idx * 4;
281 case SV_TESS_COORD: return 0x2f0 + idx * 4;
282 case SV_NTID: return kepler ? (0x00 + idx * 4) : ~0;
283 case SV_NCTAID: return kepler ? (0x0c + idx * 4) : ~0;
284 case SV_GRIDID: return kepler ? 0x18 : ~0;
285 default:
286 return 0xffffffff;
287 }
288 }
289
290 bool
291 TargetNVC0::insnCanLoad(const Instruction *i, int s,
292 const Instruction *ld) const
293 {
294 DataFile sf = ld->src(0).getFile();
295
296 // immediate 0 can be represented by GPR $r63/$r255
297 if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
298 return (!i->isPseudo() &&
299 !i->asTex() &&
300 i->op != OP_EXPORT && i->op != OP_STORE);
301
302 if (s >= opInfo[i->op].srcNr)
303 return false;
304 if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
305 return false;
306
307 // indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
308 if (ld->src(0).isIndirect(0))
309 return false;
310
311 for (int k = 0; i->srcExists(k); ++k) {
312 if (i->src(k).getFile() == FILE_IMMEDIATE) {
313 if (k == 2 && i->op == OP_SUCLAMP) // special case
314 continue;
315 if (i->getSrc(k)->reg.data.u64 != 0)
316 return false;
317 } else
318 if (i->src(k).getFile() != FILE_GPR &&
319 i->src(k).getFile() != FILE_PREDICATE) {
320 return false;
321 }
322 }
323
324 // not all instructions support full 32 bit immediates
325 if (sf == FILE_IMMEDIATE) {
326 Storage &reg = ld->getSrc(0)->asImm()->reg;
327
328 if (opInfo[i->op].immdBits != 0xffffffff) {
329 if (i->sType == TYPE_F32) {
330 if (reg.data.u32 & 0xfff)
331 return false;
332 } else
333 if (i->sType == TYPE_S32 || i->sType == TYPE_U32) {
334 // with u32, 0xfffff counts as 0xffffffff as well
335 if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
336 return false;
337 }
338 } else
339 if (i->op == OP_MAD || i->op == OP_FMA) {
340 // requires src == dst, cannot decide before RA
341 // (except if we implement more constraints)
342 if (ld->getSrc(0)->asImm()->reg.data.u32 & 0xfff)
343 return false;
344 } else
345 if (i->op == OP_ADD && i->sType == TYPE_F32) {
346 // add f32 LIMM cannot saturate
347 if (i->saturate && (reg.data.u32 & 0xfff))
348 return false;
349 }
350 }
351
352 return true;
353 }
354
355 bool
356 TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
357 {
358 if (ty == TYPE_NONE)
359 return false;
360 if (file == FILE_MEMORY_CONST && getChipset() >= 0xe0) // wrong encoding ?
361 return typeSizeof(ty) <= 8;
362 if (ty == TYPE_B96)
363 return false;
364 if (getChipset() >= 0xf0) {
365 // XXX: find wide vfetch/export
366 if (ty == TYPE_B128)
367 return false;
368 if (ty == TYPE_U64)
369 return false;
370 }
371 return true;
372 }
373
374 bool
375 TargetNVC0::isOpSupported(operation op, DataType ty) const
376 {
377 if ((op == OP_MAD || op == OP_FMA) && (ty != TYPE_F32))
378 return false;
379 if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
380 return false;
381 if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
382 return false;
383 return true;
384 }
385
386 bool
387 TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
388 {
389 if (!isFloatType(insn->dType)) {
390 switch (insn->op) {
391 case OP_ABS:
392 case OP_NEG:
393 case OP_CVT:
394 case OP_CEIL:
395 case OP_FLOOR:
396 case OP_TRUNC:
397 case OP_AND:
398 case OP_OR:
399 case OP_XOR:
400 break;
401 case OP_SET:
402 if (insn->sType != TYPE_F32)
403 return false;
404 break;
405 case OP_ADD:
406 if (mod.abs())
407 return false;
408 if (insn->src(s ? 0 : 1).mod.neg())
409 return false;
410 break;
411 case OP_SUB:
412 if (s == 0)
413 return insn->src(1).mod.neg() ? false : true;
414 break;
415 default:
416 return false;
417 }
418 }
419 if (s > 3)
420 return false;
421 return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
422 }
423
424 bool
425 TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
426 {
427 if (insn->getPredicate())
428 return false;
429 return opInfo[insn->op].predicate;
430 }
431
432 bool
433 TargetNVC0::isSatSupported(const Instruction *insn) const
434 {
435 if (insn->op == OP_CVT)
436 return true;
437 if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
438 return false;
439
440 if (insn->dType == TYPE_U32)
441 return (insn->op == OP_ADD) || (insn->op == OP_MAD);
442
443 // add f32 LIMM cannot saturate
444 if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
445 if (insn->getSrc(1)->asImm() &&
446 insn->getSrc(1)->reg.data.u32 & 0xfff)
447 return false;
448 }
449
450 return insn->dType == TYPE_F32;
451 }
452
453 bool
454 TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
455 {
456 if (op != OP_MUL)
457 return false;
458 f = fabsf(f);
459 e = static_cast<int>(log2f(f));
460 if (e < -3 || e > 3)
461 return false;
462 return f == exp2f(static_cast<float>(e));
463 }
464
465 // TODO: better values
466 // this could be more precise, e.g. depending on the issue-to-read/write delay
467 // of the depending instruction, but it's good enough
468 int TargetNVC0::getLatency(const Instruction *i) const
469 {
470 if (chipset >= 0xe4) {
471 if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
472 return 20;
473 switch (i->op) {
474 case OP_LINTERP:
475 case OP_PINTERP:
476 return 15;
477 case OP_LOAD:
478 if (i->src(0).getFile() == FILE_MEMORY_CONST)
479 return 9;
480 // fall through
481 case OP_VFETCH:
482 return 24;
483 default:
484 if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
485 return 17;
486 if (i->op == OP_MUL && i->dType != TYPE_F32)
487 return 15;
488 return 9;
489 }
490 } else {
491 if (i->op == OP_LOAD) {
492 if (i->cache == CACHE_CV)
493 return 700;
494 return 48;
495 }
496 return 24;
497 }
498 return 32;
499 }
500
501 // These are "inverse" throughput values, i.e. the number of cycles required
502 // to issue a specific instruction for a full warp (32 threads).
503 //
504 // Assuming we have more than 1 warp in flight, a higher issue latency results
505 // in a lower result latency since the MP will have spent more time with other
506 // warps.
507 // This also helps to determine the number of cycles between instructions in
508 // a single warp.
509 //
510 int TargetNVC0::getThroughput(const Instruction *i) const
511 {
512 // TODO: better values
513 if (i->dType == TYPE_F32) {
514 switch (i->op) {
515 case OP_ADD:
516 case OP_MUL:
517 case OP_MAD:
518 case OP_FMA:
519 return 1;
520 case OP_CVT:
521 case OP_CEIL:
522 case OP_FLOOR:
523 case OP_TRUNC:
524 case OP_SET:
525 case OP_SLCT:
526 case OP_MIN:
527 case OP_MAX:
528 return 2;
529 case OP_RCP:
530 case OP_RSQ:
531 case OP_LG2:
532 case OP_SIN:
533 case OP_COS:
534 case OP_PRESIN:
535 case OP_PREEX2:
536 default:
537 return 8;
538 }
539 } else
540 if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
541 switch (i->op) {
542 case OP_ADD:
543 case OP_AND:
544 case OP_OR:
545 case OP_XOR:
546 case OP_NOT:
547 return 1;
548 case OP_MUL:
549 case OP_MAD:
550 case OP_CVT:
551 case OP_SET:
552 case OP_SLCT:
553 case OP_SHL:
554 case OP_SHR:
555 case OP_NEG:
556 case OP_ABS:
557 case OP_MIN:
558 case OP_MAX:
559 default:
560 return 2;
561 }
562 } else
563 if (i->dType == TYPE_F64) {
564 return 2;
565 } else {
566 return 1;
567 }
568 }
569
570 bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
571 {
572 const OpClass clA = operationClass[a->op];
573 const OpClass clB = operationClass[b->op];
574
575 if (getChipset() >= 0xe4) {
576 // not texturing
577 // not if the 2nd instruction isn't necessarily executed
578 if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
579 return false;
580 // anything with MOV
581 if (a->op == OP_MOV || b->op == OP_MOV)
582 return true;
583 if (clA == clB) {
584 // only F32 arith or integer additions
585 if (clA != OPCLASS_ARITH)
586 return false;
587 return (a->dType == TYPE_F32 || a->op == OP_ADD ||
588 b->dType == TYPE_F32 || b->op == OP_ADD);
589 }
590 // nothing with TEXBAR
591 if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
592 return false;
593 // no loads and stores accessing the the same space
594 if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
595 (clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
596 if (a->src(0).getFile() == b->src(0).getFile())
597 return false;
598 // no > 32-bit ops
599 if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
600 typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
601 return false;
602 return true;
603 } else {
604 return false; // info not needed (yet)
605 }
606 }
607
608 } // namespace nv50_ir