Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_target_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir_target_nvc0.h"
24
25 namespace nv50_ir {
26
27 Target *getTargetNVC0(unsigned int chipset)
28 {
29 return new TargetNVC0(chipset);
30 }
31
32 TargetNVC0::TargetNVC0(unsigned int card) :
33 Target(card < 0x110, false, card >= 0xe4 && card < 0x140)
34 {
35 chipset = card;
36 initOpInfo();
37 }
38
39 // BULTINS / LIBRARY FUNCTIONS:
40
41 // lazyness -> will just hardcode everything for the time being
42
43 #include "lib/gf100.asm.h"
44 #include "lib/gk104.asm.h"
45 #include "lib/gk110.asm.h"
46
47 void
48 TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
49 {
50 switch (chipset & ~0xf) {
51 case 0xe0:
52 if (chipset < NVISA_GK20A_CHIPSET) {
53 *code = (const uint32_t *)&gk104_builtin_code[0];
54 *size = sizeof(gk104_builtin_code);
55 break;
56 }
57 /* fall-through for GK20A */
58 case 0xf0:
59 case 0x100:
60 *code = (const uint32_t *)&gk110_builtin_code[0];
61 *size = sizeof(gk110_builtin_code);
62 break;
63 default:
64 *code = (const uint32_t *)&gf100_builtin_code[0];
65 *size = sizeof(gf100_builtin_code);
66 break;
67 }
68 }
69
70 uint32_t
71 TargetNVC0::getBuiltinOffset(int builtin) const
72 {
73 assert(builtin < NVC0_BUILTIN_COUNT);
74
75 switch (chipset & ~0xf) {
76 case 0xe0:
77 if (chipset < NVISA_GK20A_CHIPSET)
78 return gk104_builtin_offsets[builtin];
79 /* fall-through for GK20A */
80 case 0xf0:
81 case 0x100:
82 return gk110_builtin_offsets[builtin];
83 default:
84 return gf100_builtin_offsets[builtin];
85 }
86 }
87
88 struct nvc0_opProperties
89 {
90 operation op;
91 unsigned int mNeg : 4;
92 unsigned int mAbs : 4;
93 unsigned int mNot : 4;
94 unsigned int mSat : 4;
95 unsigned int fConst : 3;
96 unsigned int fImmd : 4; // last bit indicates if full immediate is suppoted
97 };
98
99 static const struct nvc0_opProperties _initProps[] =
100 {
101 // neg abs not sat c[] imm
102 { OP_ADD, 0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
103 { OP_SUB, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
104 { OP_MUL, 0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
105 { OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
106 { OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
107 { OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 }, // special c[] constraint
108 { OP_FMA, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 }, // keep the same as OP_MAD
109 { OP_SHLADD, 0x5, 0x0, 0x0, 0x0, 0x4, 0x6 },
110 { OP_MADSP, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
111 { OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
112 { OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
113 { OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
114 { OP_CEIL, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
115 { OP_FLOOR, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
116 { OP_TRUNC, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
117 { OP_AND, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
118 { OP_OR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
119 { OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
120 { OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
121 { OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
122 { OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
123 { OP_SLCT, 0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
124 { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
125 { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
126 { OP_COS, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
127 { OP_SIN, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
128 { OP_EX2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
129 { OP_LG2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
130 { OP_RCP, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
131 { OP_RSQ, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
132 { OP_SQRT, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
133 { OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
134 { OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
135 { OP_CALL, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
136 { OP_POPCNT, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 },
137 { OP_INSBF, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
138 { OP_EXTBF, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
139 { OP_BFIND, 0x0, 0x0, 0x1, 0x0, 0x1, 0x1 },
140 { OP_PERMT, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
141 { OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
142 { OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
143 { OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
144 // saturate only:
145 { OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
146 { OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
147 };
148
149 static const struct nvc0_opProperties _initPropsNVE4[] = {
150 { OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
151 { OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
152 { OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
153 { OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
154 { OP_SUBFM, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
155 { OP_SUEAU, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
156 };
157
158 static const struct nvc0_opProperties _initPropsGM107[] = {
159 { OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 },
160 { OP_SULDP, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 },
161 { OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
162 { OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
163 { OP_SUREDB, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
164 { OP_SUREDP, 0x0, 0x0, 0x0, 0x0, 0x0, 0x4 },
165 { OP_XMAD, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
166 };
167
168 void TargetNVC0::initProps(const struct nvc0_opProperties *props, int size)
169 {
170 for (int i = 0; i < size; ++i) {
171 const struct nvc0_opProperties *prop = &props[i];
172
173 for (int s = 0; s < 3; ++s) {
174 if (prop->mNeg & (1 << s))
175 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
176 if (prop->mAbs & (1 << s))
177 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
178 if (prop->mNot & (1 << s))
179 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
180 if (prop->fConst & (1 << s))
181 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
182 if (prop->fImmd & (1 << s))
183 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
184 if (prop->fImmd & 8)
185 opInfo[prop->op].immdBits = 0xffffffff;
186 }
187 if (prop->mSat & 8)
188 opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
189 }
190 }
191
192 void TargetNVC0::initOpInfo()
193 {
194 unsigned int i, j;
195
196 static const operation commutative[] =
197 {
198 OP_ADD, OP_MUL, OP_MAD, OP_FMA, OP_AND, OP_OR, OP_XOR, OP_MAX, OP_MIN,
199 OP_SET_AND, OP_SET_OR, OP_SET_XOR, OP_SET, OP_SELP, OP_SLCT
200 };
201
202 static const operation shortForm[] =
203 {
204 OP_ADD, OP_MUL, OP_MAD, OP_FMA, OP_AND, OP_OR, OP_XOR, OP_MAX, OP_MIN
205 };
206
207 static const operation noDest[] =
208 {
209 OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
210 OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
211 OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
212 OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
213 OP_SUREDB, OP_BAR
214 };
215
216 static const operation noPred[] =
217 {
218 OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
219 OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
220 };
221
222 for (i = 0; i < DATA_FILE_COUNT; ++i)
223 nativeFileMap[i] = (DataFile)i;
224 nativeFileMap[FILE_ADDRESS] = FILE_GPR;
225
226 for (i = 0; i < OP_LAST; ++i) {
227 opInfo[i].variants = NULL;
228 opInfo[i].op = (operation)i;
229 opInfo[i].srcTypes = 1 << (int)TYPE_F32;
230 opInfo[i].dstTypes = 1 << (int)TYPE_F32;
231 opInfo[i].immdBits = 0;
232 opInfo[i].srcNr = operationSrcNr[i];
233
234 for (j = 0; j < opInfo[i].srcNr; ++j) {
235 opInfo[i].srcMods[j] = 0;
236 opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
237 }
238 opInfo[i].dstMods = 0;
239 opInfo[i].dstFiles = 1 << (int)FILE_GPR;
240
241 opInfo[i].hasDest = 1;
242 opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
243 opInfo[i].commutative = false; /* set below */
244 opInfo[i].pseudo = (i < OP_MOV);
245 opInfo[i].predicate = !opInfo[i].pseudo;
246 opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
247 opInfo[i].minEncSize = 8; /* set below */
248 }
249 for (i = 0; i < ARRAY_SIZE(commutative); ++i)
250 opInfo[commutative[i]].commutative = true;
251 for (i = 0; i < ARRAY_SIZE(shortForm); ++i)
252 opInfo[shortForm[i]].minEncSize = 4;
253 for (i = 0; i < ARRAY_SIZE(noDest); ++i)
254 opInfo[noDest[i]].hasDest = 0;
255 for (i = 0; i < ARRAY_SIZE(noPred); ++i)
256 opInfo[noPred[i]].predicate = 0;
257
258 initProps(_initProps, ARRAY_SIZE(_initProps));
259 if (chipset >= NVISA_GM107_CHIPSET)
260 initProps(_initPropsGM107, ARRAY_SIZE(_initPropsGM107));
261 else if (chipset >= NVISA_GK104_CHIPSET)
262 initProps(_initPropsNVE4, ARRAY_SIZE(_initPropsNVE4));
263 }
264
265 unsigned int
266 TargetNVC0::getFileSize(DataFile file) const
267 {
268 const unsigned int gprs = (chipset >= NVISA_GK20A_CHIPSET) ? 255 : 63;
269 const unsigned int smregs = (chipset >= NVISA_GK104_CHIPSET) ? 65536 : 32768;
270 switch (file) {
271 case FILE_NULL: return 0;
272 case FILE_GPR: return MIN2(gprs, smregs / threads);
273 case FILE_PREDICATE: return 7;
274 case FILE_FLAGS: return 1;
275 case FILE_ADDRESS: return 0;
276 case FILE_IMMEDIATE: return 0;
277 case FILE_MEMORY_CONST: return 65536;
278 case FILE_SHADER_INPUT: return 0x400;
279 case FILE_SHADER_OUTPUT: return 0x400;
280 case FILE_MEMORY_BUFFER: return 0xffffffff;
281 case FILE_MEMORY_GLOBAL: return 0xffffffff;
282 case FILE_MEMORY_SHARED: return 16 << 10;
283 case FILE_MEMORY_LOCAL: return 48 << 10;
284 case FILE_SYSTEM_VALUE: return 32;
285 default:
286 assert(!"invalid file");
287 return 0;
288 }
289 }
290
291 unsigned int
292 TargetNVC0::getFileUnit(DataFile file) const
293 {
294 if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
295 return 2;
296 return 0;
297 }
298
299 uint32_t
300 TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
301 {
302 const int idx = sym->reg.data.sv.index;
303 const SVSemantic sv = sym->reg.data.sv.sv;
304
305 const bool isInput = shaderFile == FILE_SHADER_INPUT;
306 const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
307
308 switch (sv) {
309 case SV_POSITION: return 0x070 + idx * 4;
310 case SV_INSTANCE_ID: return 0x2f8;
311 case SV_VERTEX_ID: return 0x2fc;
312 case SV_PRIMITIVE_ID: return isInput ? 0x060 : 0x040;
313 case SV_LAYER: return 0x064;
314 case SV_VIEWPORT_INDEX: return 0x068;
315 case SV_POINT_SIZE: return 0x06c;
316 case SV_CLIP_DISTANCE: return 0x2c0 + idx * 4;
317 case SV_POINT_COORD: return 0x2e0 + idx * 4;
318 case SV_FACE: return 0x3fc;
319 case SV_TESS_OUTER: return 0x000 + idx * 4;
320 case SV_TESS_INNER: return 0x010 + idx * 4;
321 case SV_TESS_COORD: return 0x2f0 + idx * 4;
322 case SV_NTID: return kepler ? (0x00 + idx * 4) : ~0;
323 case SV_NCTAID: return kepler ? (0x0c + idx * 4) : ~0;
324 case SV_GRIDID: return kepler ? 0x18 : ~0;
325 case SV_WORK_DIM: return 0x1c;
326 case SV_SAMPLE_INDEX: return 0;
327 case SV_SAMPLE_POS: return 0;
328 case SV_SAMPLE_MASK: return 0;
329 case SV_BASEVERTEX: return 0;
330 case SV_BASEINSTANCE: return 0;
331 case SV_DRAWID: return 0;
332 default:
333 return 0xffffffff;
334 }
335 }
336
337 bool
338 TargetNVC0::insnCanLoad(const Instruction *i, int s,
339 const Instruction *ld) const
340 {
341 DataFile sf = ld->src(0).getFile();
342
343 // immediate 0 can be represented by GPR $r63/$r255
344 if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
345 return (!i->isPseudo() &&
346 !i->asTex() &&
347 i->op != OP_EXPORT && i->op != OP_STORE);
348
349 if (s >= opInfo[i->op].srcNr)
350 return false;
351 if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
352 return false;
353
354 // indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
355 if (ld->src(0).isIndirect(0))
356 return false;
357 // these are implemented using shf.r and shf.l which can't load consts
358 if ((i->op == OP_SHL || i->op == OP_SHR) && typeSizeof(i->sType) == 8 &&
359 sf == FILE_MEMORY_CONST)
360 return false;
361 // constant buffer loads can't be used with cbcc xmads
362 if (i->op == OP_XMAD && sf == FILE_MEMORY_CONST &&
363 (i->subOp & NV50_IR_SUBOP_XMAD_CMODE_MASK) == NV50_IR_SUBOP_XMAD_CBCC)
364 return false;
365 // constant buffer loads for the third operand can't be used with psl/mrg xmads
366 if (i->op == OP_XMAD && sf == FILE_MEMORY_CONST && s == 2 &&
367 (i->subOp & (NV50_IR_SUBOP_XMAD_PSL | NV50_IR_SUBOP_XMAD_MRG)))
368 return false;
369 // for xmads, immediates can't have the h1 flag set
370 if (i->op == OP_XMAD && sf == FILE_IMMEDIATE && s < 2 &&
371 i->subOp & NV50_IR_SUBOP_XMAD_H1(s))
372 return false;
373
374 for (int k = 0; i->srcExists(k); ++k) {
375 if (i->src(k).getFile() == FILE_IMMEDIATE) {
376 if (k == 2 && i->op == OP_SUCLAMP) // special case
377 continue;
378 if (k == 1 && i->op == OP_SHLADD) // special case
379 continue;
380 if (i->getSrc(k)->reg.data.u64 != 0)
381 return false;
382 } else
383 if (i->src(k).getFile() != FILE_GPR &&
384 i->src(k).getFile() != FILE_PREDICATE &&
385 i->src(k).getFile() != FILE_FLAGS) {
386 return false;
387 }
388 }
389
390 // only loads can do sub 4 byte addressing
391 if (sf == FILE_MEMORY_CONST &&
392 (ld->getSrc(0)->reg.data.offset & 0x3)
393 && i->op != OP_LOAD)
394 return false;
395
396 // not all instructions support full 32 bit immediates
397 if (sf == FILE_IMMEDIATE) {
398 Storage &reg = ld->getSrc(0)->asImm()->reg;
399
400 if (opInfo[i->op].immdBits != 0xffffffff || typeSizeof(i->sType) > 4) {
401 switch (i->sType) {
402 case TYPE_F64:
403 if (reg.data.u64 & 0x00000fffffffffffULL)
404 return false;
405 break;
406 case TYPE_F32:
407 if (reg.data.u32 & 0xfff)
408 return false;
409 break;
410 case TYPE_S32:
411 case TYPE_U32:
412 // with u32, 0xfffff counts as 0xffffffff as well
413 if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
414 return false;
415 // XMADs can only have 16-bit immediates
416 if (i->op == OP_XMAD && reg.data.u32 > 0xffff)
417 return false;
418 break;
419 case TYPE_U8:
420 case TYPE_S8:
421 case TYPE_U16:
422 case TYPE_S16:
423 case TYPE_F16:
424 break;
425 default:
426 return false;
427 }
428 } else
429 if (i->op == OP_ADD && i->sType == TYPE_F32) {
430 // add f32 LIMM cannot saturate
431 if (i->saturate && (reg.data.u32 & 0xfff))
432 return false;
433 }
434 }
435
436 return true;
437 }
438
439 bool
440 TargetNVC0::insnCanLoadOffset(const Instruction *insn, int s, int offset) const
441 {
442 const ValueRef& ref = insn->src(s);
443 offset += insn->src(s).get()->reg.data.offset;
444 if (ref.getFile() == FILE_MEMORY_CONST &&
445 (insn->op != OP_LOAD || insn->subOp != NV50_IR_SUBOP_LDC_IS))
446 return offset >= -0x8000 && offset < 0x8000;
447 return true;
448 }
449
450 bool
451 TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
452 {
453 if (ty == TYPE_NONE)
454 return false;
455 if (file == FILE_MEMORY_CONST) {
456 if (getChipset() >= NVISA_GM107_CHIPSET)
457 return typeSizeof(ty) <= 4;
458 else
459 if (getChipset() >= NVISA_GK104_CHIPSET) // wrong encoding ?
460 return typeSizeof(ty) <= 8;
461 }
462 if (ty == TYPE_B96)
463 return false;
464 return true;
465 }
466
467 bool
468 TargetNVC0::isOpSupported(operation op, DataType ty) const
469 {
470 if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
471 return false;
472 if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
473 return false;
474 if (op == OP_XMAD)
475 return false;
476 return true;
477 }
478
479 bool
480 TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
481 {
482 if (!isFloatType(insn->dType)) {
483 switch (insn->op) {
484 case OP_ABS:
485 case OP_NEG:
486 case OP_CVT:
487 case OP_CEIL:
488 case OP_FLOOR:
489 case OP_TRUNC:
490 case OP_AND:
491 case OP_OR:
492 case OP_XOR:
493 case OP_POPCNT:
494 case OP_BFIND:
495 case OP_XMAD:
496 break;
497 case OP_SET:
498 if (insn->sType != TYPE_F32)
499 return false;
500 break;
501 case OP_ADD:
502 if (mod.abs())
503 return false;
504 if (insn->src(s ? 0 : 1).mod.neg())
505 return false;
506 break;
507 case OP_SUB:
508 if (s == 0)
509 return insn->src(1).mod.neg() ? false : true;
510 break;
511 case OP_SHLADD:
512 if (s == 1)
513 return false;
514 if (insn->src(s ? 0 : 2).mod.neg())
515 return false;
516 break;
517 default:
518 return false;
519 }
520 }
521 if (s >= opInfo[insn->op].srcNr || s >= 3)
522 return false;
523 return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
524 }
525
526 bool
527 TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
528 {
529 if (insn->getPredicate())
530 return false;
531 return opInfo[insn->op].predicate;
532 }
533
534 bool
535 TargetNVC0::isSatSupported(const Instruction *insn) const
536 {
537 if (insn->op == OP_CVT)
538 return true;
539 if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
540 return false;
541
542 if (insn->dType == TYPE_U32)
543 return (insn->op == OP_ADD) || (insn->op == OP_MAD);
544
545 // add f32 LIMM cannot saturate
546 if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
547 if (insn->getSrc(1)->asImm() &&
548 insn->getSrc(1)->reg.data.u32 & 0xfff)
549 return false;
550 }
551
552 return insn->dType == TYPE_F32;
553 }
554
555 bool
556 TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
557 {
558 if (op != OP_MUL)
559 return false;
560 f = fabsf(f);
561 e = static_cast<int>(log2f(f));
562 if (e < -3 || e > 3)
563 return false;
564 return f == exp2f(static_cast<float>(e));
565 }
566
567 // TODO: better values
568 // this could be more precise, e.g. depending on the issue-to-read/write delay
569 // of the depending instruction, but it's good enough
570 int TargetNVC0::getLatency(const Instruction *i) const
571 {
572 if (chipset >= 0xe4) {
573 if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
574 return 20;
575 switch (i->op) {
576 case OP_LINTERP:
577 case OP_PINTERP:
578 return 15;
579 case OP_LOAD:
580 if (i->src(0).getFile() == FILE_MEMORY_CONST)
581 return 9;
582 // fall through
583 case OP_VFETCH:
584 return 24;
585 default:
586 if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
587 return 17;
588 if (i->op == OP_MUL && i->dType != TYPE_F32)
589 return 15;
590 return 9;
591 }
592 } else {
593 if (i->op == OP_LOAD) {
594 if (i->cache == CACHE_CV)
595 return 700;
596 return 48;
597 }
598 return 24;
599 }
600 return 32;
601 }
602
603 // These are "inverse" throughput values, i.e. the number of cycles required
604 // to issue a specific instruction for a full warp (32 threads).
605 //
606 // Assuming we have more than 1 warp in flight, a higher issue latency results
607 // in a lower result latency since the MP will have spent more time with other
608 // warps.
609 // This also helps to determine the number of cycles between instructions in
610 // a single warp.
611 //
612 int TargetNVC0::getThroughput(const Instruction *i) const
613 {
614 // TODO: better values
615 if (i->dType == TYPE_F32) {
616 switch (i->op) {
617 case OP_ADD:
618 case OP_MUL:
619 case OP_MAD:
620 case OP_FMA:
621 return 1;
622 case OP_CVT:
623 case OP_CEIL:
624 case OP_FLOOR:
625 case OP_TRUNC:
626 case OP_SET:
627 case OP_SLCT:
628 case OP_MIN:
629 case OP_MAX:
630 return 2;
631 case OP_RCP:
632 case OP_RSQ:
633 case OP_LG2:
634 case OP_SIN:
635 case OP_COS:
636 case OP_PRESIN:
637 case OP_PREEX2:
638 default:
639 return 8;
640 }
641 } else
642 if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
643 switch (i->op) {
644 case OP_ADD:
645 case OP_AND:
646 case OP_OR:
647 case OP_XOR:
648 case OP_NOT:
649 return 1;
650 case OP_MUL:
651 case OP_MAD:
652 case OP_CVT:
653 case OP_SET:
654 case OP_SLCT:
655 case OP_SHL:
656 case OP_SHR:
657 case OP_NEG:
658 case OP_ABS:
659 case OP_MIN:
660 case OP_MAX:
661 default:
662 return 2;
663 }
664 } else
665 if (i->dType == TYPE_F64) {
666 return 2;
667 } else {
668 return 1;
669 }
670 }
671
672 bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
673 {
674 const OpClass clA = operationClass[a->op];
675 const OpClass clB = operationClass[b->op];
676
677 if (getChipset() >= 0xe4) {
678 // not texturing
679 // not if the 2nd instruction isn't necessarily executed
680 if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
681 return false;
682
683 // Check that a and b don't write to the same sources, nor that b reads
684 // anything that a writes.
685 if (!a->canCommuteDefDef(b) || !a->canCommuteDefSrc(b))
686 return false;
687
688 // anything with MOV
689 if (a->op == OP_MOV || b->op == OP_MOV)
690 return true;
691 if (clA == clB) {
692 switch (clA) {
693 // there might be more
694 case OPCLASS_COMPARE:
695 if ((a->op == OP_MIN || a->op == OP_MAX) &&
696 (b->op == OP_MIN || b->op == OP_MAX))
697 break;
698 return false;
699 case OPCLASS_ARITH:
700 break;
701 default:
702 return false;
703 }
704 // only F32 arith or integer additions
705 return (a->dType == TYPE_F32 || a->op == OP_ADD ||
706 b->dType == TYPE_F32 || b->op == OP_ADD);
707 }
708 // nothing with TEXBAR
709 if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
710 return false;
711 // no loads and stores accessing the same space
712 if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
713 (clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
714 if (a->src(0).getFile() == b->src(0).getFile())
715 return false;
716 // no > 32-bit ops
717 if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
718 typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
719 return false;
720 return true;
721 } else {
722 return false; // info not needed (yet)
723 }
724 }
725
726 } // namespace nv50_ir