nvc0/ir: don't dual-issue ops that depend or interfere with each other
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_target_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir_target_nvc0.h"
24
25 namespace nv50_ir {
26
27 Target *getTargetNVC0(unsigned int chipset)
28 {
29 return new TargetNVC0(chipset);
30 }
31
32 TargetNVC0::TargetNVC0(unsigned int card) :
33 Target(card < 0x110, false, card >= 0xe4)
34 {
35 chipset = card;
36 initOpInfo();
37 }
38
39 // BULTINS / LIBRARY FUNCTIONS:
40
41 // lazyness -> will just hardcode everything for the time being
42
43 #include "lib/gf100.asm.h"
44 #include "lib/gk104.asm.h"
45 #include "lib/gk110.asm.h"
46
47 void
48 TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
49 {
50 switch (chipset & ~0xf) {
51 case 0xe0:
52 if (chipset < NVISA_GK20A_CHIPSET) {
53 *code = (const uint32_t *)&gk104_builtin_code[0];
54 *size = sizeof(gk104_builtin_code);
55 break;
56 }
57 /* fall-through for GK20A */
58 case 0xf0:
59 case 0x100:
60 *code = (const uint32_t *)&gk110_builtin_code[0];
61 *size = sizeof(gk110_builtin_code);
62 break;
63 default:
64 *code = (const uint32_t *)&gf100_builtin_code[0];
65 *size = sizeof(gf100_builtin_code);
66 break;
67 }
68 }
69
70 uint32_t
71 TargetNVC0::getBuiltinOffset(int builtin) const
72 {
73 assert(builtin < NVC0_BUILTIN_COUNT);
74
75 switch (chipset & ~0xf) {
76 case 0xe0:
77 if (chipset < NVISA_GK20A_CHIPSET)
78 return gk104_builtin_offsets[builtin];
79 /* fall-through for GK20A */
80 case 0xf0:
81 case 0x100:
82 return gk110_builtin_offsets[builtin];
83 default:
84 return gf100_builtin_offsets[builtin];
85 }
86 }
87
88 struct opProperties
89 {
90 operation op;
91 unsigned int mNeg : 4;
92 unsigned int mAbs : 4;
93 unsigned int mNot : 4;
94 unsigned int mSat : 4;
95 unsigned int fConst : 3;
96 unsigned int fImmd : 4; // last bit indicates if full immediate is suppoted
97 };
98
99 static const struct opProperties _initProps[] =
100 {
101 // neg abs not sat c[] imm
102 { OP_ADD, 0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
103 { OP_SUB, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
104 { OP_MUL, 0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
105 { OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
106 { OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
107 { OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // special c[] constraint
108 { OP_MADSP, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
109 { OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
110 { OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
111 { OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
112 { OP_CEIL, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
113 { OP_FLOOR, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
114 { OP_TRUNC, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
115 { OP_AND, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
116 { OP_OR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
117 { OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
118 { OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
119 { OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
120 { OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
121 { OP_SLCT, 0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
122 { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
123 { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
124 { OP_COS, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
125 { OP_SIN, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
126 { OP_EX2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
127 { OP_LG2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
128 { OP_RCP, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
129 { OP_RSQ, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
130 { OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
131 { OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
132 { OP_CALL, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
133 { OP_POPCNT, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 },
134 { OP_INSBF, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
135 { OP_EXTBF, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
136 { OP_BFIND, 0x0, 0x0, 0x1, 0x0, 0x1, 0x1 },
137 { OP_PERMT, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
138 { OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
139 { OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
140 { OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
141 // saturate only:
142 { OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
143 { OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
144 // nve4 ops:
145 { OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
146 { OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
147 { OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
148 { OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
149 { OP_SUBFM, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
150 { OP_SUEAU, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
151 };
152
153 void TargetNVC0::initOpInfo()
154 {
155 unsigned int i, j;
156
157 static const uint32_t commutative[(OP_LAST + 31) / 32] =
158 {
159 // ADD, MAD, MUL, AND, OR, XOR, MAX, MIN
160 0x0670ca00, 0x0000003f, 0x00000000, 0x00000000
161 };
162
163 static const uint32_t shortForm[(OP_LAST + 31) / 32] =
164 {
165 // ADD, MAD, MUL, AND, OR, XOR, PRESIN, PREEX2, SFN, CVT, PINTERP, MOV
166 0x0670ca00, 0x00000000, 0x00000000, 0x00000000
167 };
168
169 static const operation noDest[] =
170 {
171 OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
172 OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
173 OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
174 OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
175 OP_SUREDB, OP_BAR
176 };
177
178 static const operation noPred[] =
179 {
180 OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
181 OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
182 };
183
184 for (i = 0; i < DATA_FILE_COUNT; ++i)
185 nativeFileMap[i] = (DataFile)i;
186 nativeFileMap[FILE_ADDRESS] = FILE_GPR;
187
188 for (i = 0; i < OP_LAST; ++i) {
189 opInfo[i].variants = NULL;
190 opInfo[i].op = (operation)i;
191 opInfo[i].srcTypes = 1 << (int)TYPE_F32;
192 opInfo[i].dstTypes = 1 << (int)TYPE_F32;
193 opInfo[i].immdBits = 0;
194 opInfo[i].srcNr = operationSrcNr[i];
195
196 for (j = 0; j < opInfo[i].srcNr; ++j) {
197 opInfo[i].srcMods[j] = 0;
198 opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
199 }
200 opInfo[i].dstMods = 0;
201 opInfo[i].dstFiles = 1 << (int)FILE_GPR;
202
203 opInfo[i].hasDest = 1;
204 opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
205 opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
206 opInfo[i].pseudo = (i < OP_MOV);
207 opInfo[i].predicate = !opInfo[i].pseudo;
208 opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
209 opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
210 }
211 for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
212 opInfo[noDest[i]].hasDest = 0;
213 for (i = 0; i < sizeof(noPred) / sizeof(noPred[0]); ++i)
214 opInfo[noPred[i]].predicate = 0;
215
216 for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
217 const struct opProperties *prop = &_initProps[i];
218
219 for (int s = 0; s < 3; ++s) {
220 if (prop->mNeg & (1 << s))
221 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
222 if (prop->mAbs & (1 << s))
223 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
224 if (prop->mNot & (1 << s))
225 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
226 if (prop->fConst & (1 << s))
227 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
228 if (prop->fImmd & (1 << s))
229 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
230 if (prop->fImmd & 8)
231 opInfo[prop->op].immdBits = 0xffffffff;
232 }
233 if (prop->mSat & 8)
234 opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
235 }
236 }
237
238 unsigned int
239 TargetNVC0::getFileSize(DataFile file) const
240 {
241 const unsigned int gprs = (chipset >= NVISA_GK20A_CHIPSET) ? 255 : 63;
242 const unsigned int smregs = (chipset >= NVISA_GK104_CHIPSET) ? 65536 : 32768;
243 switch (file) {
244 case FILE_NULL: return 0;
245 case FILE_GPR: return MIN2(gprs, smregs / threads);
246 case FILE_PREDICATE: return 7;
247 case FILE_FLAGS: return 1;
248 case FILE_ADDRESS: return 0;
249 case FILE_IMMEDIATE: return 0;
250 case FILE_MEMORY_CONST: return 65536;
251 case FILE_SHADER_INPUT: return 0x400;
252 case FILE_SHADER_OUTPUT: return 0x400;
253 case FILE_MEMORY_BUFFER: return 0xffffffff;
254 case FILE_MEMORY_GLOBAL: return 0xffffffff;
255 case FILE_MEMORY_SHARED: return 16 << 10;
256 case FILE_MEMORY_LOCAL: return 48 << 10;
257 case FILE_SYSTEM_VALUE: return 32;
258 default:
259 assert(!"invalid file");
260 return 0;
261 }
262 }
263
264 unsigned int
265 TargetNVC0::getFileUnit(DataFile file) const
266 {
267 if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
268 return 2;
269 return 0;
270 }
271
272 uint32_t
273 TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
274 {
275 const int idx = sym->reg.data.sv.index;
276 const SVSemantic sv = sym->reg.data.sv.sv;
277
278 const bool isInput = shaderFile == FILE_SHADER_INPUT;
279 const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
280
281 switch (sv) {
282 case SV_POSITION: return 0x070 + idx * 4;
283 case SV_INSTANCE_ID: return 0x2f8;
284 case SV_VERTEX_ID: return 0x2fc;
285 case SV_PRIMITIVE_ID: return isInput ? 0x060 : 0x040;
286 case SV_LAYER: return 0x064;
287 case SV_VIEWPORT_INDEX: return 0x068;
288 case SV_POINT_SIZE: return 0x06c;
289 case SV_CLIP_DISTANCE: return 0x2c0 + idx * 4;
290 case SV_POINT_COORD: return 0x2e0 + idx * 4;
291 case SV_FACE: return 0x3fc;
292 case SV_TESS_OUTER: return 0x000 + idx * 4;
293 case SV_TESS_INNER: return 0x010 + idx * 4;
294 case SV_TESS_COORD: return 0x2f0 + idx * 4;
295 case SV_NTID: return kepler ? (0x00 + idx * 4) : ~0;
296 case SV_NCTAID: return kepler ? (0x0c + idx * 4) : ~0;
297 case SV_GRIDID: return kepler ? 0x18 : ~0;
298 case SV_WORK_DIM: return 0x1c;
299 case SV_SAMPLE_INDEX: return 0;
300 case SV_SAMPLE_POS: return 0;
301 case SV_SAMPLE_MASK: return 0;
302 case SV_BASEVERTEX: return 0;
303 case SV_BASEINSTANCE: return 0;
304 case SV_DRAWID: return 0;
305 default:
306 return 0xffffffff;
307 }
308 }
309
310 bool
311 TargetNVC0::insnCanLoad(const Instruction *i, int s,
312 const Instruction *ld) const
313 {
314 DataFile sf = ld->src(0).getFile();
315
316 // immediate 0 can be represented by GPR $r63/$r255
317 if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
318 return (!i->isPseudo() &&
319 !i->asTex() &&
320 i->op != OP_EXPORT && i->op != OP_STORE);
321
322 if (s >= opInfo[i->op].srcNr)
323 return false;
324 if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
325 return false;
326
327 // indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
328 if (ld->src(0).isIndirect(0))
329 return false;
330
331 for (int k = 0; i->srcExists(k); ++k) {
332 if (i->src(k).getFile() == FILE_IMMEDIATE) {
333 if (k == 2 && i->op == OP_SUCLAMP) // special case
334 continue;
335 if (i->getSrc(k)->reg.data.u64 != 0)
336 return false;
337 } else
338 if (i->src(k).getFile() != FILE_GPR &&
339 i->src(k).getFile() != FILE_PREDICATE) {
340 return false;
341 }
342 }
343
344 // not all instructions support full 32 bit immediates
345 if (sf == FILE_IMMEDIATE) {
346 Storage &reg = ld->getSrc(0)->asImm()->reg;
347
348 if (opInfo[i->op].immdBits != 0xffffffff || typeSizeof(i->sType) > 4) {
349 switch (i->sType) {
350 case TYPE_F64:
351 if (reg.data.u64 & 0x00000fffffffffffULL)
352 return false;
353 break;
354 case TYPE_F32:
355 if (reg.data.u32 & 0xfff)
356 return false;
357 break;
358 case TYPE_S32:
359 case TYPE_U32:
360 // with u32, 0xfffff counts as 0xffffffff as well
361 if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
362 return false;
363 break;
364 case TYPE_U8:
365 case TYPE_S8:
366 case TYPE_U16:
367 case TYPE_S16:
368 case TYPE_F16:
369 break;
370 default:
371 return false;
372 }
373 } else
374 if (i->op == OP_MAD || i->op == OP_FMA) {
375 // requires src == dst, cannot decide before RA
376 // (except if we implement more constraints)
377 if (ld->getSrc(0)->asImm()->reg.data.u32 & 0xfff)
378 return false;
379 } else
380 if (i->op == OP_ADD && i->sType == TYPE_F32) {
381 // add f32 LIMM cannot saturate
382 if (i->saturate && (reg.data.u32 & 0xfff))
383 return false;
384 }
385 }
386
387 return true;
388 }
389
390 bool
391 TargetNVC0::insnCanLoadOffset(const Instruction *insn, int s, int offset) const
392 {
393 const ValueRef& ref = insn->src(s);
394 if (ref.getFile() == FILE_MEMORY_CONST &&
395 (insn->op != OP_LOAD || insn->subOp != NV50_IR_SUBOP_LDC_IS))
396 return offset >= -0x8000 && offset < 0x8000;
397 return true;
398 }
399
400 bool
401 TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
402 {
403 if (ty == TYPE_NONE)
404 return false;
405 if (file == FILE_MEMORY_CONST && getChipset() >= 0xe0) // wrong encoding ?
406 return typeSizeof(ty) <= 8;
407 if (ty == TYPE_B96)
408 return false;
409 return true;
410 }
411
412 bool
413 TargetNVC0::isOpSupported(operation op, DataType ty) const
414 {
415 if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
416 return false;
417 if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
418 return false;
419 return true;
420 }
421
422 bool
423 TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
424 {
425 if (!isFloatType(insn->dType)) {
426 switch (insn->op) {
427 case OP_ABS:
428 case OP_NEG:
429 case OP_CVT:
430 case OP_CEIL:
431 case OP_FLOOR:
432 case OP_TRUNC:
433 case OP_AND:
434 case OP_OR:
435 case OP_XOR:
436 case OP_POPCNT:
437 case OP_BFIND:
438 break;
439 case OP_SET:
440 if (insn->sType != TYPE_F32)
441 return false;
442 break;
443 case OP_ADD:
444 if (mod.abs())
445 return false;
446 if (insn->src(s ? 0 : 1).mod.neg())
447 return false;
448 break;
449 case OP_SUB:
450 if (s == 0)
451 return insn->src(1).mod.neg() ? false : true;
452 break;
453 default:
454 return false;
455 }
456 }
457 if (s >= opInfo[insn->op].srcNr || s >= 3)
458 return false;
459 return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
460 }
461
462 bool
463 TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
464 {
465 if (insn->getPredicate())
466 return false;
467 return opInfo[insn->op].predicate;
468 }
469
470 bool
471 TargetNVC0::isSatSupported(const Instruction *insn) const
472 {
473 if (insn->op == OP_CVT)
474 return true;
475 if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
476 return false;
477
478 if (insn->dType == TYPE_U32)
479 return (insn->op == OP_ADD) || (insn->op == OP_MAD);
480
481 // add f32 LIMM cannot saturate
482 if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
483 if (insn->getSrc(1)->asImm() &&
484 insn->getSrc(1)->reg.data.u32 & 0xfff)
485 return false;
486 }
487
488 return insn->dType == TYPE_F32;
489 }
490
491 bool
492 TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
493 {
494 if (op != OP_MUL)
495 return false;
496 f = fabsf(f);
497 e = static_cast<int>(log2f(f));
498 if (e < -3 || e > 3)
499 return false;
500 return f == exp2f(static_cast<float>(e));
501 }
502
503 // TODO: better values
504 // this could be more precise, e.g. depending on the issue-to-read/write delay
505 // of the depending instruction, but it's good enough
506 int TargetNVC0::getLatency(const Instruction *i) const
507 {
508 if (chipset >= 0xe4) {
509 if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
510 return 20;
511 switch (i->op) {
512 case OP_LINTERP:
513 case OP_PINTERP:
514 return 15;
515 case OP_LOAD:
516 if (i->src(0).getFile() == FILE_MEMORY_CONST)
517 return 9;
518 // fall through
519 case OP_VFETCH:
520 return 24;
521 default:
522 if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
523 return 17;
524 if (i->op == OP_MUL && i->dType != TYPE_F32)
525 return 15;
526 return 9;
527 }
528 } else {
529 if (i->op == OP_LOAD) {
530 if (i->cache == CACHE_CV)
531 return 700;
532 return 48;
533 }
534 return 24;
535 }
536 return 32;
537 }
538
539 // These are "inverse" throughput values, i.e. the number of cycles required
540 // to issue a specific instruction for a full warp (32 threads).
541 //
542 // Assuming we have more than 1 warp in flight, a higher issue latency results
543 // in a lower result latency since the MP will have spent more time with other
544 // warps.
545 // This also helps to determine the number of cycles between instructions in
546 // a single warp.
547 //
548 int TargetNVC0::getThroughput(const Instruction *i) const
549 {
550 // TODO: better values
551 if (i->dType == TYPE_F32) {
552 switch (i->op) {
553 case OP_ADD:
554 case OP_MUL:
555 case OP_MAD:
556 case OP_FMA:
557 return 1;
558 case OP_CVT:
559 case OP_CEIL:
560 case OP_FLOOR:
561 case OP_TRUNC:
562 case OP_SET:
563 case OP_SLCT:
564 case OP_MIN:
565 case OP_MAX:
566 return 2;
567 case OP_RCP:
568 case OP_RSQ:
569 case OP_LG2:
570 case OP_SIN:
571 case OP_COS:
572 case OP_PRESIN:
573 case OP_PREEX2:
574 default:
575 return 8;
576 }
577 } else
578 if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
579 switch (i->op) {
580 case OP_ADD:
581 case OP_AND:
582 case OP_OR:
583 case OP_XOR:
584 case OP_NOT:
585 return 1;
586 case OP_MUL:
587 case OP_MAD:
588 case OP_CVT:
589 case OP_SET:
590 case OP_SLCT:
591 case OP_SHL:
592 case OP_SHR:
593 case OP_NEG:
594 case OP_ABS:
595 case OP_MIN:
596 case OP_MAX:
597 default:
598 return 2;
599 }
600 } else
601 if (i->dType == TYPE_F64) {
602 return 2;
603 } else {
604 return 1;
605 }
606 }
607
608 bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
609 {
610 const OpClass clA = operationClass[a->op];
611 const OpClass clB = operationClass[b->op];
612
613 if (getChipset() >= 0xe4) {
614 // not texturing
615 // not if the 2nd instruction isn't necessarily executed
616 if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
617 return false;
618
619 // Check that a and b don't write to the same sources, nor that b reads
620 // anything that a writes.
621 if (!a->canCommuteDefDef(b) || !a->canCommuteDefSrc(b))
622 return false;
623
624 // anything with MOV
625 if (a->op == OP_MOV || b->op == OP_MOV)
626 return true;
627 if (clA == clB) {
628 // only F32 arith or integer additions
629 if (clA != OPCLASS_ARITH)
630 return false;
631 return (a->dType == TYPE_F32 || a->op == OP_ADD ||
632 b->dType == TYPE_F32 || b->op == OP_ADD);
633 }
634 // nothing with TEXBAR
635 if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
636 return false;
637 // no loads and stores accessing the same space
638 if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
639 (clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
640 if (a->src(0).getFile() == b->src(0).getFile())
641 return false;
642 // no > 32-bit ops
643 if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
644 typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
645 return false;
646 return true;
647 } else {
648 return false; // info not needed (yet)
649 }
650 }
651
652 } // namespace nv50_ir