nvc0/ir: use SM35 ISA with GK20A
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_target_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir_target_nvc0.h"
24
25 namespace nv50_ir {
26
27 Target *getTargetNVC0(unsigned int chipset)
28 {
29 return new TargetNVC0(chipset);
30 }
31
32 TargetNVC0::TargetNVC0(unsigned int card) :
33 Target(card < 0x110, false, card >= 0xe4)
34 {
35 chipset = card;
36 initOpInfo();
37 }
38
39 // BULTINS / LIBRARY FUNCTIONS:
40
41 // lazyness -> will just hardcode everything for the time being
42
43 #include "lib/gf100.asm.h"
44 #include "lib/gk104.asm.h"
45 #include "lib/gk110.asm.h"
46
47 void
48 TargetNVC0::getBuiltinCode(const uint32_t **code, uint32_t *size) const
49 {
50 switch (chipset & ~0xf) {
51 case 0xe0:
52 if (chipset < NVISA_GK20A_CHIPSET) {
53 *code = (const uint32_t *)&gk104_builtin_code[0];
54 *size = sizeof(gk104_builtin_code);
55 break;
56 }
57 /* fall-through for GK20A */
58 case 0xf0:
59 case 0x100:
60 *code = (const uint32_t *)&gk110_builtin_code[0];
61 *size = sizeof(gk110_builtin_code);
62 break;
63 default:
64 *code = (const uint32_t *)&gf100_builtin_code[0];
65 *size = sizeof(gf100_builtin_code);
66 break;
67 }
68 }
69
70 uint32_t
71 TargetNVC0::getBuiltinOffset(int builtin) const
72 {
73 assert(builtin < NVC0_BUILTIN_COUNT);
74
75 switch (chipset & ~0xf) {
76 case 0xe0:
77 if (chipset < NVISA_GK20A_CHIPSET)
78 return gk104_builtin_offsets[builtin];
79 /* fall-through for GK20A */
80 case 0xf0:
81 case 0x100:
82 return gk110_builtin_offsets[builtin];
83 default:
84 return gf100_builtin_offsets[builtin];
85 }
86 }
87
88 struct opProperties
89 {
90 operation op;
91 unsigned int mNeg : 4;
92 unsigned int mAbs : 4;
93 unsigned int mNot : 4;
94 unsigned int mSat : 4;
95 unsigned int fConst : 3;
96 unsigned int fImmd : 4; // last bit indicates if full immediate is suppoted
97 };
98
99 static const struct opProperties _initProps[] =
100 {
101 // neg abs not sat c[] imm
102 { OP_ADD, 0x3, 0x3, 0x0, 0x8, 0x2, 0x2 | 0x8 },
103 { OP_SUB, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 | 0x8 },
104 { OP_MUL, 0x3, 0x0, 0x0, 0x8, 0x2, 0x2 | 0x8 },
105 { OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
106 { OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
107 { OP_MAD, 0x7, 0x0, 0x0, 0x8, 0x6, 0x2 | 0x8 }, // special c[] constraint
108 { OP_MADSP, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
109 { OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
110 { OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0 },
111 { OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
112 { OP_CEIL, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
113 { OP_FLOOR, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
114 { OP_TRUNC, 0x1, 0x1, 0x0, 0x8, 0x1, 0x0 },
115 { OP_AND, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
116 { OP_OR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
117 { OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 | 0x8 },
118 { OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
119 { OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
120 { OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
121 { OP_SLCT, 0x4, 0x0, 0x0, 0x0, 0x6, 0x2 }, // special c[] constraint
122 { OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
123 { OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1 },
124 { OP_COS, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
125 { OP_SIN, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
126 { OP_EX2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
127 { OP_LG2, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
128 { OP_RCP, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
129 { OP_RSQ, 0x1, 0x1, 0x0, 0x8, 0x0, 0x0 },
130 { OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
131 { OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0 },
132 { OP_CALL, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0 },
133 { OP_POPCNT, 0x0, 0x0, 0x3, 0x0, 0x2, 0x2 },
134 { OP_INSBF, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
135 { OP_EXTBF, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
136 { OP_BFIND, 0x0, 0x0, 0x1, 0x0, 0x1, 0x1 },
137 { OP_PERMT, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
138 { OP_SET_AND, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
139 { OP_SET_OR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
140 { OP_SET_XOR, 0x3, 0x3, 0x0, 0x0, 0x2, 0x2 },
141 // saturate only:
142 { OP_LINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
143 { OP_PINTERP, 0x0, 0x0, 0x0, 0x8, 0x0, 0x0 },
144 // nve4 ops:
145 { OP_SULDB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
146 { OP_SUSTB, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
147 { OP_SUSTP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x0 },
148 { OP_SUCLAMP, 0x0, 0x0, 0x0, 0x0, 0x2, 0x2 },
149 { OP_SUBFM, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 },
150 { OP_SUEAU, 0x0, 0x0, 0x0, 0x0, 0x6, 0x2 }
151 };
152
153 void TargetNVC0::initOpInfo()
154 {
155 unsigned int i, j;
156
157 static const uint32_t commutative[(OP_LAST + 31) / 32] =
158 {
159 // ADD, MAD, MUL, AND, OR, XOR, MAX, MIN
160 0x0670ca00, 0x0000003f, 0x00000000, 0x00000000
161 };
162
163 static const uint32_t shortForm[(OP_LAST + 31) / 32] =
164 {
165 // ADD, MAD, MUL, AND, OR, XOR, PRESIN, PREEX2, SFN, CVT, PINTERP, MOV
166 0x0670ca00, 0x00000000, 0x00000000, 0x00000000
167 };
168
169 static const operation noDest[] =
170 {
171 OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
172 OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
173 OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
174 OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
175 OP_SUREDB, OP_BAR
176 };
177
178 static const operation noPred[] =
179 {
180 OP_CALL, OP_PRERET, OP_QUADON, OP_QUADPOP,
181 OP_JOINAT, OP_PREBREAK, OP_PRECONT, OP_BRKPT
182 };
183
184 for (i = 0; i < DATA_FILE_COUNT; ++i)
185 nativeFileMap[i] = (DataFile)i;
186 nativeFileMap[FILE_ADDRESS] = FILE_GPR;
187
188 for (i = 0; i < OP_LAST; ++i) {
189 opInfo[i].variants = NULL;
190 opInfo[i].op = (operation)i;
191 opInfo[i].srcTypes = 1 << (int)TYPE_F32;
192 opInfo[i].dstTypes = 1 << (int)TYPE_F32;
193 opInfo[i].immdBits = 0;
194 opInfo[i].srcNr = operationSrcNr[i];
195
196 for (j = 0; j < opInfo[i].srcNr; ++j) {
197 opInfo[i].srcMods[j] = 0;
198 opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
199 }
200 opInfo[i].dstMods = 0;
201 opInfo[i].dstFiles = 1 << (int)FILE_GPR;
202
203 opInfo[i].hasDest = 1;
204 opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
205 opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
206 opInfo[i].pseudo = (i < OP_MOV);
207 opInfo[i].predicate = !opInfo[i].pseudo;
208 opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
209 opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
210 }
211 for (i = 0; i < sizeof(noDest) / sizeof(noDest[0]); ++i)
212 opInfo[noDest[i]].hasDest = 0;
213 for (i = 0; i < sizeof(noPred) / sizeof(noPred[0]); ++i)
214 opInfo[noPred[i]].predicate = 0;
215
216 for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
217 const struct opProperties *prop = &_initProps[i];
218
219 for (int s = 0; s < 3; ++s) {
220 if (prop->mNeg & (1 << s))
221 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
222 if (prop->mAbs & (1 << s))
223 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
224 if (prop->mNot & (1 << s))
225 opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
226 if (prop->fConst & (1 << s))
227 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
228 if (prop->fImmd & (1 << s))
229 opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
230 if (prop->fImmd & 8)
231 opInfo[prop->op].immdBits = 0xffffffff;
232 }
233 if (prop->mSat & 8)
234 opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
235 }
236 }
237
238 unsigned int
239 TargetNVC0::getFileSize(DataFile file) const
240 {
241 switch (file) {
242 case FILE_NULL: return 0;
243 case FILE_GPR: return (chipset >= NVISA_GK20A_CHIPSET) ? 255 : 63;
244 case FILE_PREDICATE: return 7;
245 case FILE_FLAGS: return 1;
246 case FILE_ADDRESS: return 0;
247 case FILE_IMMEDIATE: return 0;
248 case FILE_MEMORY_CONST: return 65536;
249 case FILE_SHADER_INPUT: return 0x400;
250 case FILE_SHADER_OUTPUT: return 0x400;
251 case FILE_MEMORY_GLOBAL: return 0xffffffff;
252 case FILE_MEMORY_SHARED: return 16 << 10;
253 case FILE_MEMORY_LOCAL: return 48 << 10;
254 case FILE_SYSTEM_VALUE: return 32;
255 default:
256 assert(!"invalid file");
257 return 0;
258 }
259 }
260
261 unsigned int
262 TargetNVC0::getFileUnit(DataFile file) const
263 {
264 if (file == FILE_GPR || file == FILE_ADDRESS || file == FILE_SYSTEM_VALUE)
265 return 2;
266 return 0;
267 }
268
269 uint32_t
270 TargetNVC0::getSVAddress(DataFile shaderFile, const Symbol *sym) const
271 {
272 const int idx = sym->reg.data.sv.index;
273 const SVSemantic sv = sym->reg.data.sv.sv;
274
275 const bool isInput = shaderFile == FILE_SHADER_INPUT;
276 const bool kepler = getChipset() >= NVISA_GK104_CHIPSET;
277
278 switch (sv) {
279 case SV_POSITION: return 0x070 + idx * 4;
280 case SV_INSTANCE_ID: return 0x2f8;
281 case SV_VERTEX_ID: return 0x2fc;
282 case SV_PRIMITIVE_ID: return isInput ? 0x060 : 0x040;
283 case SV_LAYER: return 0x064;
284 case SV_VIEWPORT_INDEX: return 0x068;
285 case SV_POINT_SIZE: return 0x06c;
286 case SV_CLIP_DISTANCE: return 0x2c0 + idx * 4;
287 case SV_POINT_COORD: return 0x2e0 + idx * 4;
288 case SV_FACE: return 0x3fc;
289 case SV_TESS_FACTOR: return 0x000 + idx * 4;
290 case SV_TESS_COORD: return 0x2f0 + idx * 4;
291 case SV_NTID: return kepler ? (0x00 + idx * 4) : ~0;
292 case SV_NCTAID: return kepler ? (0x0c + idx * 4) : ~0;
293 case SV_GRIDID: return kepler ? 0x18 : ~0;
294 case SV_SAMPLE_INDEX: return 0;
295 case SV_SAMPLE_POS: return 0;
296 case SV_SAMPLE_MASK: return 0;
297 default:
298 return 0xffffffff;
299 }
300 }
301
302 bool
303 TargetNVC0::insnCanLoad(const Instruction *i, int s,
304 const Instruction *ld) const
305 {
306 DataFile sf = ld->src(0).getFile();
307
308 // immediate 0 can be represented by GPR $r63/$r255
309 if (sf == FILE_IMMEDIATE && ld->getSrc(0)->reg.data.u64 == 0)
310 return (!i->isPseudo() &&
311 !i->asTex() &&
312 i->op != OP_EXPORT && i->op != OP_STORE);
313
314 if (s >= opInfo[i->op].srcNr)
315 return false;
316 if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
317 return false;
318
319 // indirect loads can only be done by OP_LOAD/VFETCH/INTERP on nvc0
320 if (ld->src(0).isIndirect(0))
321 return false;
322
323 for (int k = 0; i->srcExists(k); ++k) {
324 if (i->src(k).getFile() == FILE_IMMEDIATE) {
325 if (k == 2 && i->op == OP_SUCLAMP) // special case
326 continue;
327 if (i->getSrc(k)->reg.data.u64 != 0)
328 return false;
329 } else
330 if (i->src(k).getFile() != FILE_GPR &&
331 i->src(k).getFile() != FILE_PREDICATE) {
332 return false;
333 }
334 }
335
336 // not all instructions support full 32 bit immediates
337 if (sf == FILE_IMMEDIATE) {
338 Storage &reg = ld->getSrc(0)->asImm()->reg;
339
340 if (opInfo[i->op].immdBits != 0xffffffff) {
341 if (i->sType == TYPE_F32) {
342 if (reg.data.u32 & 0xfff)
343 return false;
344 } else
345 if (i->sType == TYPE_S32 || i->sType == TYPE_U32) {
346 // with u32, 0xfffff counts as 0xffffffff as well
347 if (reg.data.s32 > 0x7ffff || reg.data.s32 < -0x80000)
348 return false;
349 }
350 } else
351 if (i->op == OP_MAD || i->op == OP_FMA) {
352 // requires src == dst, cannot decide before RA
353 // (except if we implement more constraints)
354 if (ld->getSrc(0)->asImm()->reg.data.u32 & 0xfff)
355 return false;
356 } else
357 if (i->op == OP_ADD && i->sType == TYPE_F32) {
358 // add f32 LIMM cannot saturate
359 if (i->saturate && (reg.data.u32 & 0xfff))
360 return false;
361 }
362 }
363
364 return true;
365 }
366
367 bool
368 TargetNVC0::isAccessSupported(DataFile file, DataType ty) const
369 {
370 if (ty == TYPE_NONE)
371 return false;
372 if (file == FILE_MEMORY_CONST && getChipset() >= 0xe0) // wrong encoding ?
373 return typeSizeof(ty) <= 8;
374 if (ty == TYPE_B96)
375 return false;
376 return true;
377 }
378
379 bool
380 TargetNVC0::isOpSupported(operation op, DataType ty) const
381 {
382 if ((op == OP_MAD || op == OP_FMA) && (ty != TYPE_F32))
383 return false;
384 if (op == OP_SAD && ty != TYPE_S32 && ty != TYPE_U32)
385 return false;
386 if (op == OP_POW || op == OP_SQRT || op == OP_DIV || op == OP_MOD)
387 return false;
388 return true;
389 }
390
391 bool
392 TargetNVC0::isModSupported(const Instruction *insn, int s, Modifier mod) const
393 {
394 if (!isFloatType(insn->dType)) {
395 switch (insn->op) {
396 case OP_ABS:
397 case OP_NEG:
398 case OP_CVT:
399 case OP_CEIL:
400 case OP_FLOOR:
401 case OP_TRUNC:
402 case OP_AND:
403 case OP_OR:
404 case OP_XOR:
405 case OP_POPCNT:
406 case OP_BFIND:
407 break;
408 case OP_SET:
409 if (insn->sType != TYPE_F32)
410 return false;
411 break;
412 case OP_ADD:
413 if (mod.abs())
414 return false;
415 if (insn->src(s ? 0 : 1).mod.neg())
416 return false;
417 break;
418 case OP_SUB:
419 if (s == 0)
420 return insn->src(1).mod.neg() ? false : true;
421 break;
422 default:
423 return false;
424 }
425 }
426 if (s > 3)
427 return false;
428 return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
429 }
430
431 bool
432 TargetNVC0::mayPredicate(const Instruction *insn, const Value *pred) const
433 {
434 if (insn->getPredicate())
435 return false;
436 return opInfo[insn->op].predicate;
437 }
438
439 bool
440 TargetNVC0::isSatSupported(const Instruction *insn) const
441 {
442 if (insn->op == OP_CVT)
443 return true;
444 if (!(opInfo[insn->op].dstMods & NV50_IR_MOD_SAT))
445 return false;
446
447 if (insn->dType == TYPE_U32)
448 return (insn->op == OP_ADD) || (insn->op == OP_MAD);
449
450 // add f32 LIMM cannot saturate
451 if (insn->op == OP_ADD && insn->sType == TYPE_F32) {
452 if (insn->getSrc(1)->asImm() &&
453 insn->getSrc(1)->reg.data.u32 & 0xfff)
454 return false;
455 }
456
457 return insn->dType == TYPE_F32;
458 }
459
460 bool
461 TargetNVC0::isPostMultiplySupported(operation op, float f, int& e) const
462 {
463 if (op != OP_MUL)
464 return false;
465 f = fabsf(f);
466 e = static_cast<int>(log2f(f));
467 if (e < -3 || e > 3)
468 return false;
469 return f == exp2f(static_cast<float>(e));
470 }
471
472 // TODO: better values
473 // this could be more precise, e.g. depending on the issue-to-read/write delay
474 // of the depending instruction, but it's good enough
475 int TargetNVC0::getLatency(const Instruction *i) const
476 {
477 if (chipset >= 0xe4) {
478 if (i->dType == TYPE_F64 || i->sType == TYPE_F64)
479 return 20;
480 switch (i->op) {
481 case OP_LINTERP:
482 case OP_PINTERP:
483 return 15;
484 case OP_LOAD:
485 if (i->src(0).getFile() == FILE_MEMORY_CONST)
486 return 9;
487 // fall through
488 case OP_VFETCH:
489 return 24;
490 default:
491 if (Target::getOpClass(i->op) == OPCLASS_TEXTURE)
492 return 17;
493 if (i->op == OP_MUL && i->dType != TYPE_F32)
494 return 15;
495 return 9;
496 }
497 } else {
498 if (i->op == OP_LOAD) {
499 if (i->cache == CACHE_CV)
500 return 700;
501 return 48;
502 }
503 return 24;
504 }
505 return 32;
506 }
507
508 // These are "inverse" throughput values, i.e. the number of cycles required
509 // to issue a specific instruction for a full warp (32 threads).
510 //
511 // Assuming we have more than 1 warp in flight, a higher issue latency results
512 // in a lower result latency since the MP will have spent more time with other
513 // warps.
514 // This also helps to determine the number of cycles between instructions in
515 // a single warp.
516 //
517 int TargetNVC0::getThroughput(const Instruction *i) const
518 {
519 // TODO: better values
520 if (i->dType == TYPE_F32) {
521 switch (i->op) {
522 case OP_ADD:
523 case OP_MUL:
524 case OP_MAD:
525 case OP_FMA:
526 return 1;
527 case OP_CVT:
528 case OP_CEIL:
529 case OP_FLOOR:
530 case OP_TRUNC:
531 case OP_SET:
532 case OP_SLCT:
533 case OP_MIN:
534 case OP_MAX:
535 return 2;
536 case OP_RCP:
537 case OP_RSQ:
538 case OP_LG2:
539 case OP_SIN:
540 case OP_COS:
541 case OP_PRESIN:
542 case OP_PREEX2:
543 default:
544 return 8;
545 }
546 } else
547 if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
548 switch (i->op) {
549 case OP_ADD:
550 case OP_AND:
551 case OP_OR:
552 case OP_XOR:
553 case OP_NOT:
554 return 1;
555 case OP_MUL:
556 case OP_MAD:
557 case OP_CVT:
558 case OP_SET:
559 case OP_SLCT:
560 case OP_SHL:
561 case OP_SHR:
562 case OP_NEG:
563 case OP_ABS:
564 case OP_MIN:
565 case OP_MAX:
566 default:
567 return 2;
568 }
569 } else
570 if (i->dType == TYPE_F64) {
571 return 2;
572 } else {
573 return 1;
574 }
575 }
576
577 bool TargetNVC0::canDualIssue(const Instruction *a, const Instruction *b) const
578 {
579 const OpClass clA = operationClass[a->op];
580 const OpClass clB = operationClass[b->op];
581
582 if (getChipset() >= 0xe4) {
583 // not texturing
584 // not if the 2nd instruction isn't necessarily executed
585 if (clA == OPCLASS_TEXTURE || clA == OPCLASS_FLOW)
586 return false;
587 // anything with MOV
588 if (a->op == OP_MOV || b->op == OP_MOV)
589 return true;
590 if (clA == clB) {
591 // only F32 arith or integer additions
592 if (clA != OPCLASS_ARITH)
593 return false;
594 return (a->dType == TYPE_F32 || a->op == OP_ADD ||
595 b->dType == TYPE_F32 || b->op == OP_ADD);
596 }
597 // nothing with TEXBAR
598 if (a->op == OP_TEXBAR || b->op == OP_TEXBAR)
599 return false;
600 // no loads and stores accessing the the same space
601 if ((clA == OPCLASS_LOAD && clB == OPCLASS_STORE) ||
602 (clB == OPCLASS_LOAD && clA == OPCLASS_STORE))
603 if (a->src(0).getFile() == b->src(0).getFile())
604 return false;
605 // no > 32-bit ops
606 if (typeSizeof(a->dType) > 4 || typeSizeof(b->dType) > 4 ||
607 typeSizeof(a->sType) > 4 || typeSizeof(b->sType) > 4)
608 return false;
609 return true;
610 } else {
611 return false; // info not needed (yet)
612 }
613 }
614
615 } // namespace nv50_ir