DRI2: report swap events correctly in direct rendered case
[mesa.git] / src / gallium / drivers / nv30 / nv30_fragprog.c
1 #include "pipe/p_context.h"
2 #include "pipe/p_defines.h"
3 #include "pipe/p_state.h"
4 #include "util/u_inlines.h"
5
6 #include "pipe/p_shader_tokens.h"
7 #include "tgsi/tgsi_dump.h"
8 #include "tgsi/tgsi_parse.h"
9 #include "tgsi/tgsi_util.h"
10
11 #include "nv30_context.h"
12
13 #define SWZ_X 0
14 #define SWZ_Y 1
15 #define SWZ_Z 2
16 #define SWZ_W 3
17 #define MASK_X 1
18 #define MASK_Y 2
19 #define MASK_Z 4
20 #define MASK_W 8
21 #define MASK_ALL (MASK_X|MASK_Y|MASK_Z|MASK_W)
22 #define DEF_SCALE NV30_FP_OP_DST_SCALE_1X
23 #define DEF_CTEST NV30_FP_OP_COND_TR
24 #include "nv30_shader.h"
25
26 #define swz(s,x,y,z,w) nv30_sr_swz((s), SWZ_##x, SWZ_##y, SWZ_##z, SWZ_##w)
27 #define neg(s) nv30_sr_neg((s))
28 #define abs(s) nv30_sr_abs((s))
29 #define scale(s,v) nv30_sr_scale((s), NV30_FP_OP_DST_SCALE_##v)
30
31 #define MAX_CONSTS 128
32 #define MAX_IMM 32
33 struct nv30_fpc {
34 struct nv30_fragment_program *fp;
35
36 uint attrib_map[PIPE_MAX_SHADER_INPUTS];
37
38 int high_temp;
39 int temp_temp_count;
40 int num_regs;
41
42 uint depth_id;
43 uint colour_id;
44
45 unsigned inst_offset;
46
47 struct {
48 int pipe;
49 float vals[4];
50 } consts[MAX_CONSTS];
51 int nr_consts;
52
53 struct nv30_sreg imm[MAX_IMM];
54 unsigned nr_imm;
55 };
56
57 static INLINE struct nv30_sreg
58 temp(struct nv30_fpc *fpc)
59 {
60 int idx;
61
62 idx = fpc->temp_temp_count++;
63 idx += fpc->high_temp + 1;
64 return nv30_sr(NV30SR_TEMP, idx);
65 }
66
67 static INLINE struct nv30_sreg
68 constant(struct nv30_fpc *fpc, int pipe, float vals[4])
69 {
70 int idx;
71
72 if (fpc->nr_consts == MAX_CONSTS)
73 assert(0);
74 idx = fpc->nr_consts++;
75
76 fpc->consts[idx].pipe = pipe;
77 if (pipe == -1)
78 memcpy(fpc->consts[idx].vals, vals, 4 * sizeof(float));
79 return nv30_sr(NV30SR_CONST, idx);
80 }
81
82 #define arith(cc,s,o,d,m,s0,s1,s2) \
83 nv30_fp_arith((cc), (s), NV30_FP_OP_OPCODE_##o, \
84 (d), (m), (s0), (s1), (s2))
85 #define tex(cc,s,o,u,d,m,s0,s1,s2) \
86 nv30_fp_tex((cc), (s), NV30_FP_OP_OPCODE_##o, (u), \
87 (d), (m), (s0), none, none)
88
89 static void
90 grow_insns(struct nv30_fpc *fpc, int size)
91 {
92 struct nv30_fragment_program *fp = fpc->fp;
93
94 fp->insn_len += size;
95 fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len);
96 }
97
98 static void
99 emit_src(struct nv30_fpc *fpc, int pos, struct nv30_sreg src)
100 {
101 struct nv30_fragment_program *fp = fpc->fp;
102 uint32_t *hw = &fp->insn[fpc->inst_offset];
103 uint32_t sr = 0;
104
105 switch (src.type) {
106 case NV30SR_INPUT:
107 sr |= (NV30_FP_REG_TYPE_INPUT << NV30_FP_REG_TYPE_SHIFT);
108 hw[0] |= (src.index << NV30_FP_OP_INPUT_SRC_SHIFT);
109 break;
110 case NV30SR_OUTPUT:
111 sr |= NV30_FP_REG_SRC_HALF;
112 /* fall-through */
113 case NV30SR_TEMP:
114 sr |= (NV30_FP_REG_TYPE_TEMP << NV30_FP_REG_TYPE_SHIFT);
115 sr |= (src.index << NV30_FP_REG_SRC_SHIFT);
116 break;
117 case NV30SR_CONST:
118 grow_insns(fpc, 4);
119 hw = &fp->insn[fpc->inst_offset];
120 if (fpc->consts[src.index].pipe >= 0) {
121 struct nv30_fragment_program_data *fpd;
122
123 fp->consts = realloc(fp->consts, ++fp->nr_consts *
124 sizeof(*fpd));
125 fpd = &fp->consts[fp->nr_consts - 1];
126 fpd->offset = fpc->inst_offset + 4;
127 fpd->index = fpc->consts[src.index].pipe;
128 memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4);
129 } else {
130 memcpy(&fp->insn[fpc->inst_offset + 4],
131 fpc->consts[src.index].vals,
132 sizeof(uint32_t) * 4);
133 }
134
135 sr |= (NV30_FP_REG_TYPE_CONST << NV30_FP_REG_TYPE_SHIFT);
136 break;
137 case NV30SR_NONE:
138 sr |= (NV30_FP_REG_TYPE_INPUT << NV30_FP_REG_TYPE_SHIFT);
139 break;
140 default:
141 assert(0);
142 }
143
144 if (src.negate)
145 sr |= NV30_FP_REG_NEGATE;
146
147 if (src.abs)
148 hw[1] |= (1 << (29 + pos));
149
150 sr |= ((src.swz[0] << NV30_FP_REG_SWZ_X_SHIFT) |
151 (src.swz[1] << NV30_FP_REG_SWZ_Y_SHIFT) |
152 (src.swz[2] << NV30_FP_REG_SWZ_Z_SHIFT) |
153 (src.swz[3] << NV30_FP_REG_SWZ_W_SHIFT));
154
155 hw[pos + 1] |= sr;
156 }
157
158 static void
159 emit_dst(struct nv30_fpc *fpc, struct nv30_sreg dst)
160 {
161 struct nv30_fragment_program *fp = fpc->fp;
162 uint32_t *hw = &fp->insn[fpc->inst_offset];
163
164 switch (dst.type) {
165 case NV30SR_TEMP:
166 if (fpc->num_regs < (dst.index + 1))
167 fpc->num_regs = dst.index + 1;
168 break;
169 case NV30SR_OUTPUT:
170 if (dst.index == 1) {
171 fp->fp_control |= 0xe;
172 } else {
173 hw[0] |= NV30_FP_OP_OUT_REG_HALF;
174 }
175 break;
176 case NV30SR_NONE:
177 hw[0] |= (1 << 30);
178 break;
179 default:
180 assert(0);
181 }
182
183 hw[0] |= (dst.index << NV30_FP_OP_OUT_REG_SHIFT);
184 }
185
186 static void
187 nv30_fp_arith(struct nv30_fpc *fpc, int sat, int op,
188 struct nv30_sreg dst, int mask,
189 struct nv30_sreg s0, struct nv30_sreg s1, struct nv30_sreg s2)
190 {
191 struct nv30_fragment_program *fp = fpc->fp;
192 uint32_t *hw;
193
194 fpc->inst_offset = fp->insn_len;
195 grow_insns(fpc, 4);
196 hw = &fp->insn[fpc->inst_offset];
197 memset(hw, 0, sizeof(uint32_t) * 4);
198
199 if (op == NV30_FP_OP_OPCODE_KIL)
200 fp->fp_control |= NV34TCL_FP_CONTROL_USES_KIL;
201 hw[0] |= (op << NV30_FP_OP_OPCODE_SHIFT);
202 hw[0] |= (mask << NV30_FP_OP_OUTMASK_SHIFT);
203 hw[2] |= (dst.dst_scale << NV30_FP_OP_DST_SCALE_SHIFT);
204
205 if (sat)
206 hw[0] |= NV30_FP_OP_OUT_SAT;
207
208 if (dst.cc_update)
209 hw[0] |= NV30_FP_OP_COND_WRITE_ENABLE;
210 hw[1] |= (dst.cc_test << NV30_FP_OP_COND_SHIFT);
211 hw[1] |= ((dst.cc_swz[0] << NV30_FP_OP_COND_SWZ_X_SHIFT) |
212 (dst.cc_swz[1] << NV30_FP_OP_COND_SWZ_Y_SHIFT) |
213 (dst.cc_swz[2] << NV30_FP_OP_COND_SWZ_Z_SHIFT) |
214 (dst.cc_swz[3] << NV30_FP_OP_COND_SWZ_W_SHIFT));
215
216 emit_dst(fpc, dst);
217 emit_src(fpc, 0, s0);
218 emit_src(fpc, 1, s1);
219 emit_src(fpc, 2, s2);
220 }
221
222 static void
223 nv30_fp_tex(struct nv30_fpc *fpc, int sat, int op, int unit,
224 struct nv30_sreg dst, int mask,
225 struct nv30_sreg s0, struct nv30_sreg s1, struct nv30_sreg s2)
226 {
227 struct nv30_fragment_program *fp = fpc->fp;
228
229 nv30_fp_arith(fpc, sat, op, dst, mask, s0, s1, s2);
230
231 fp->insn[fpc->inst_offset] |= (unit << NV30_FP_OP_TEX_UNIT_SHIFT);
232 fp->samplers |= (1 << unit);
233 }
234
235 static INLINE struct nv30_sreg
236 tgsi_src(struct nv30_fpc *fpc, const struct tgsi_full_src_register *fsrc)
237 {
238 struct nv30_sreg src;
239
240 switch (fsrc->Register.File) {
241 case TGSI_FILE_INPUT:
242 src = nv30_sr(NV30SR_INPUT,
243 fpc->attrib_map[fsrc->Register.Index]);
244 break;
245 case TGSI_FILE_CONSTANT:
246 src = constant(fpc, fsrc->Register.Index, NULL);
247 break;
248 case TGSI_FILE_IMMEDIATE:
249 assert(fsrc->Register.Index < fpc->nr_imm);
250 src = fpc->imm[fsrc->Register.Index];
251 break;
252 case TGSI_FILE_TEMPORARY:
253 src = nv30_sr(NV30SR_TEMP, fsrc->Register.Index + 1);
254 if (fpc->high_temp < src.index)
255 fpc->high_temp = src.index;
256 break;
257 /* This is clearly insane, but gallium hands us shaders like this.
258 * Luckily fragprog results are just temp regs..
259 */
260 case TGSI_FILE_OUTPUT:
261 if (fsrc->Register.Index == fpc->colour_id)
262 return nv30_sr(NV30SR_OUTPUT, 0);
263 else
264 return nv30_sr(NV30SR_OUTPUT, 1);
265 break;
266 default:
267 NOUVEAU_ERR("bad src file\n");
268 break;
269 }
270
271 src.abs = fsrc->Register.Absolute;
272 src.negate = fsrc->Register.Negate;
273 src.swz[0] = fsrc->Register.SwizzleX;
274 src.swz[1] = fsrc->Register.SwizzleY;
275 src.swz[2] = fsrc->Register.SwizzleZ;
276 src.swz[3] = fsrc->Register.SwizzleW;
277 return src;
278 }
279
280 static INLINE struct nv30_sreg
281 tgsi_dst(struct nv30_fpc *fpc, const struct tgsi_full_dst_register *fdst) {
282 int idx;
283
284 switch (fdst->Register.File) {
285 case TGSI_FILE_OUTPUT:
286 if (fdst->Register.Index == fpc->colour_id)
287 return nv30_sr(NV30SR_OUTPUT, 0);
288 else
289 return nv30_sr(NV30SR_OUTPUT, 1);
290 break;
291 case TGSI_FILE_TEMPORARY:
292 idx = fdst->Register.Index + 1;
293 if (fpc->high_temp < idx)
294 fpc->high_temp = idx;
295 return nv30_sr(NV30SR_TEMP, idx);
296 case TGSI_FILE_NULL:
297 return nv30_sr(NV30SR_NONE, 0);
298 default:
299 NOUVEAU_ERR("bad dst file %d\n", fdst->Register.File);
300 return nv30_sr(NV30SR_NONE, 0);
301 }
302 }
303
304 static INLINE int
305 tgsi_mask(uint tgsi)
306 {
307 int mask = 0;
308
309 if (tgsi & TGSI_WRITEMASK_X) mask |= MASK_X;
310 if (tgsi & TGSI_WRITEMASK_Y) mask |= MASK_Y;
311 if (tgsi & TGSI_WRITEMASK_Z) mask |= MASK_Z;
312 if (tgsi & TGSI_WRITEMASK_W) mask |= MASK_W;
313 return mask;
314 }
315
316 static boolean
317 src_native_swz(struct nv30_fpc *fpc, const struct tgsi_full_src_register *fsrc,
318 struct nv30_sreg *src)
319 {
320 const struct nv30_sreg none = nv30_sr(NV30SR_NONE, 0);
321 struct nv30_sreg tgsi = tgsi_src(fpc, fsrc);
322 uint mask = 0;
323 uint c;
324
325 for (c = 0; c < 4; c++) {
326 switch (tgsi_util_get_full_src_register_swizzle(fsrc, c)) {
327 case TGSI_SWIZZLE_X:
328 case TGSI_SWIZZLE_Y:
329 case TGSI_SWIZZLE_Z:
330 case TGSI_SWIZZLE_W:
331 mask |= (1 << c);
332 break;
333 default:
334 assert(0);
335 }
336 }
337
338 if (mask == MASK_ALL)
339 return TRUE;
340
341 *src = temp(fpc);
342
343 if (mask)
344 arith(fpc, 0, MOV, *src, mask, tgsi, none, none);
345
346 return FALSE;
347 }
348
349 static boolean
350 nv30_fragprog_parse_instruction(struct nv30_fpc *fpc,
351 const struct tgsi_full_instruction *finst)
352 {
353 const struct nv30_sreg none = nv30_sr(NV30SR_NONE, 0);
354 struct nv30_sreg src[3], dst, tmp;
355 int mask, sat, unit = 0;
356 int ai = -1, ci = -1;
357 int i;
358
359 if (finst->Instruction.Opcode == TGSI_OPCODE_END)
360 return TRUE;
361
362 fpc->temp_temp_count = 0;
363 for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
364 const struct tgsi_full_src_register *fsrc;
365
366 fsrc = &finst->Src[i];
367 if (fsrc->Register.File == TGSI_FILE_TEMPORARY) {
368 src[i] = tgsi_src(fpc, fsrc);
369 }
370 }
371
372 for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
373 const struct tgsi_full_src_register *fsrc;
374
375 fsrc = &finst->Src[i];
376
377 switch (fsrc->Register.File) {
378 case TGSI_FILE_INPUT:
379 case TGSI_FILE_CONSTANT:
380 case TGSI_FILE_TEMPORARY:
381 if (!src_native_swz(fpc, fsrc, &src[i]))
382 continue;
383 break;
384 default:
385 break;
386 }
387
388 switch (fsrc->Register.File) {
389 case TGSI_FILE_INPUT:
390 if (ai == -1 || ai == fsrc->Register.Index) {
391 ai = fsrc->Register.Index;
392 src[i] = tgsi_src(fpc, fsrc);
393 } else {
394 NOUVEAU_MSG("extra src attr %d\n",
395 fsrc->Register.Index);
396 src[i] = temp(fpc);
397 arith(fpc, 0, MOV, src[i], MASK_ALL,
398 tgsi_src(fpc, fsrc), none, none);
399 }
400 break;
401 case TGSI_FILE_CONSTANT:
402 case TGSI_FILE_IMMEDIATE:
403 if (ci == -1 || ci == fsrc->Register.Index) {
404 ci = fsrc->Register.Index;
405 src[i] = tgsi_src(fpc, fsrc);
406 } else {
407 src[i] = temp(fpc);
408 arith(fpc, 0, MOV, src[i], MASK_ALL,
409 tgsi_src(fpc, fsrc), none, none);
410 }
411 break;
412 case TGSI_FILE_TEMPORARY:
413 /* handled above */
414 break;
415 case TGSI_FILE_SAMPLER:
416 unit = fsrc->Register.Index;
417 break;
418 case TGSI_FILE_OUTPUT:
419 break;
420 default:
421 NOUVEAU_ERR("bad src file\n");
422 return FALSE;
423 }
424 }
425
426 dst = tgsi_dst(fpc, &finst->Dst[0]);
427 mask = tgsi_mask(finst->Dst[0].Register.WriteMask);
428 sat = (finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE);
429
430 switch (finst->Instruction.Opcode) {
431 case TGSI_OPCODE_ABS:
432 arith(fpc, sat, MOV, dst, mask, abs(src[0]), none, none);
433 break;
434 case TGSI_OPCODE_ADD:
435 arith(fpc, sat, ADD, dst, mask, src[0], src[1], none);
436 break;
437 case TGSI_OPCODE_CMP:
438 tmp = nv30_sr(NV30SR_NONE, 0);
439 tmp.cc_update = 1;
440 arith(fpc, 0, MOV, tmp, 0xf, src[0], none, none);
441 dst.cc_test = NV30_VP_INST_COND_GE;
442 arith(fpc, sat, MOV, dst, mask, src[2], none, none);
443 dst.cc_test = NV30_VP_INST_COND_LT;
444 arith(fpc, sat, MOV, dst, mask, src[1], none, none);
445 break;
446 case TGSI_OPCODE_COS:
447 arith(fpc, sat, COS, dst, mask, src[0], none, none);
448 break;
449 case TGSI_OPCODE_DP3:
450 arith(fpc, sat, DP3, dst, mask, src[0], src[1], none);
451 break;
452 case TGSI_OPCODE_DP4:
453 arith(fpc, sat, DP4, dst, mask, src[0], src[1], none);
454 break;
455 case TGSI_OPCODE_DPH:
456 tmp = temp(fpc);
457 arith(fpc, 0, DP3, tmp, MASK_X, src[0], src[1], none);
458 arith(fpc, sat, ADD, dst, mask, swz(tmp, X, X, X, X),
459 swz(src[1], W, W, W, W), none);
460 break;
461 case TGSI_OPCODE_DST:
462 arith(fpc, sat, DST, dst, mask, src[0], src[1], none);
463 break;
464 case TGSI_OPCODE_EX2:
465 arith(fpc, sat, EX2, dst, mask, src[0], none, none);
466 break;
467 case TGSI_OPCODE_FLR:
468 arith(fpc, sat, FLR, dst, mask, src[0], none, none);
469 break;
470 case TGSI_OPCODE_FRC:
471 arith(fpc, sat, FRC, dst, mask, src[0], none, none);
472 break;
473 case TGSI_OPCODE_KILP:
474 arith(fpc, 0, KIL, none, 0, none, none, none);
475 break;
476 case TGSI_OPCODE_KIL:
477 dst = nv30_sr(NV30SR_NONE, 0);
478 dst.cc_update = 1;
479 arith(fpc, 0, MOV, dst, MASK_ALL, src[0], none, none);
480 dst.cc_update = 0; dst.cc_test = NV30_FP_OP_COND_LT;
481 arith(fpc, 0, KIL, dst, 0, none, none, none);
482 break;
483 case TGSI_OPCODE_LG2:
484 arith(fpc, sat, LG2, dst, mask, src[0], none, none);
485 break;
486 // case TGSI_OPCODE_LIT:
487 case TGSI_OPCODE_LRP:
488 arith(fpc, sat, LRP, dst, mask, src[0], src[1], src[2]);
489 break;
490 case TGSI_OPCODE_MAD:
491 arith(fpc, sat, MAD, dst, mask, src[0], src[1], src[2]);
492 break;
493 case TGSI_OPCODE_MAX:
494 arith(fpc, sat, MAX, dst, mask, src[0], src[1], none);
495 break;
496 case TGSI_OPCODE_MIN:
497 arith(fpc, sat, MIN, dst, mask, src[0], src[1], none);
498 break;
499 case TGSI_OPCODE_MOV:
500 arith(fpc, sat, MOV, dst, mask, src[0], none, none);
501 break;
502 case TGSI_OPCODE_MUL:
503 arith(fpc, sat, MUL, dst, mask, src[0], src[1], none);
504 break;
505 case TGSI_OPCODE_POW:
506 arith(fpc, sat, POW, dst, mask, src[0], src[1], none);
507 break;
508 case TGSI_OPCODE_RCP:
509 arith(fpc, sat, RCP, dst, mask, src[0], none, none);
510 break;
511 case TGSI_OPCODE_RET:
512 assert(0);
513 break;
514 case TGSI_OPCODE_RFL:
515 arith(fpc, 0, RFL, dst, mask, src[0], src[1], none);
516 break;
517 case TGSI_OPCODE_RSQ:
518 arith(fpc, sat, RSQ, dst, mask, abs(swz(src[0], X, X, X, X)), none, none);
519 break;
520 case TGSI_OPCODE_SCS:
521 /* avoid overwriting the source */
522 if(src[0].swz[SWZ_X] != SWZ_X)
523 {
524 if (mask & MASK_X) {
525 arith(fpc, sat, COS, dst, MASK_X,
526 swz(src[0], X, X, X, X), none, none);
527 }
528 if (mask & MASK_Y) {
529 arith(fpc, sat, SIN, dst, MASK_Y,
530 swz(src[0], X, X, X, X), none, none);
531 }
532 }
533 else
534 {
535 if (mask & MASK_Y) {
536 arith(fpc, sat, SIN, dst, MASK_Y,
537 swz(src[0], X, X, X, X), none, none);
538 }
539 if (mask & MASK_X) {
540 arith(fpc, sat, COS, dst, MASK_X,
541 swz(src[0], X, X, X, X), none, none);
542 }
543 }
544 break;
545 case TGSI_OPCODE_SIN:
546 arith(fpc, sat, SIN, dst, mask, src[0], none, none);
547 break;
548 case TGSI_OPCODE_SGE:
549 arith(fpc, sat, SGE, dst, mask, src[0], src[1], none);
550 break;
551 case TGSI_OPCODE_SGT:
552 arith(fpc, sat, SGT, dst, mask, src[0], src[1], none);
553 break;
554 case TGSI_OPCODE_SLT:
555 arith(fpc, sat, SLT, dst, mask, src[0], src[1], none);
556 break;
557 case TGSI_OPCODE_SUB:
558 arith(fpc, sat, ADD, dst, mask, src[0], neg(src[1]), none);
559 break;
560 case TGSI_OPCODE_TEX:
561 tex(fpc, sat, TEX, unit, dst, mask, src[0], none, none);
562 break;
563 case TGSI_OPCODE_TXB:
564 tex(fpc, sat, TXB, unit, dst, mask, src[0], none, none);
565 break;
566 case TGSI_OPCODE_TXP:
567 tex(fpc, sat, TXP, unit, dst, mask, src[0], none, none);
568 break;
569 case TGSI_OPCODE_XPD:
570 tmp = temp(fpc);
571 arith(fpc, 0, MUL, tmp, mask,
572 swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none);
573 arith(fpc, sat, MAD, dst, (mask & ~MASK_W),
574 swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y),
575 neg(tmp));
576 break;
577 default:
578 NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode);
579 return FALSE;
580 }
581
582 return TRUE;
583 }
584
585 static boolean
586 nv30_fragprog_parse_decl_attrib(struct nv30_fpc *fpc,
587 const struct tgsi_full_declaration *fdec)
588 {
589 int hw;
590
591 switch (fdec->Semantic.Name) {
592 case TGSI_SEMANTIC_POSITION:
593 hw = NV30_FP_OP_INPUT_SRC_POSITION;
594 break;
595 case TGSI_SEMANTIC_COLOR:
596 if (fdec->Semantic.Index == 0) {
597 hw = NV30_FP_OP_INPUT_SRC_COL0;
598 } else
599 if (fdec->Semantic.Index == 1) {
600 hw = NV30_FP_OP_INPUT_SRC_COL1;
601 } else {
602 NOUVEAU_ERR("bad colour semantic index\n");
603 return FALSE;
604 }
605 break;
606 case TGSI_SEMANTIC_FOG:
607 hw = NV30_FP_OP_INPUT_SRC_FOGC;
608 break;
609 case TGSI_SEMANTIC_GENERIC:
610 if (fdec->Semantic.Index <= 7) {
611 hw = NV30_FP_OP_INPUT_SRC_TC(fdec->Semantic.
612 Index);
613 } else {
614 NOUVEAU_ERR("bad generic semantic index\n");
615 return FALSE;
616 }
617 break;
618 default:
619 NOUVEAU_ERR("bad input semantic\n");
620 return FALSE;
621 }
622
623 fpc->attrib_map[fdec->Range.First] = hw;
624 return TRUE;
625 }
626
627 static boolean
628 nv30_fragprog_parse_decl_output(struct nv30_fpc *fpc,
629 const struct tgsi_full_declaration *fdec)
630 {
631 switch (fdec->Semantic.Name) {
632 case TGSI_SEMANTIC_POSITION:
633 fpc->depth_id = fdec->Range.First;
634 break;
635 case TGSI_SEMANTIC_COLOR:
636 fpc->colour_id = fdec->Range.First;
637 break;
638 default:
639 NOUVEAU_ERR("bad output semantic\n");
640 return FALSE;
641 }
642
643 return TRUE;
644 }
645
646 static boolean
647 nv30_fragprog_prepare(struct nv30_fpc *fpc)
648 {
649 struct tgsi_parse_context p;
650 /*int high_temp = -1, i;*/
651
652 tgsi_parse_init(&p, fpc->fp->pipe.tokens);
653 while (!tgsi_parse_end_of_tokens(&p)) {
654 const union tgsi_full_token *tok = &p.FullToken;
655
656 tgsi_parse_token(&p);
657 switch(tok->Token.Type) {
658 case TGSI_TOKEN_TYPE_DECLARATION:
659 {
660 const struct tgsi_full_declaration *fdec;
661 fdec = &p.FullToken.FullDeclaration;
662 switch (fdec->Declaration.File) {
663 case TGSI_FILE_INPUT:
664 if (!nv30_fragprog_parse_decl_attrib(fpc, fdec))
665 goto out_err;
666 break;
667 case TGSI_FILE_OUTPUT:
668 if (!nv30_fragprog_parse_decl_output(fpc, fdec))
669 goto out_err;
670 break;
671 /*case TGSI_FILE_TEMPORARY:
672 if (fdec->Range.Last > high_temp) {
673 high_temp =
674 fdec->Range.Last;
675 }
676 break;*/
677 default:
678 break;
679 }
680 }
681 break;
682 case TGSI_TOKEN_TYPE_IMMEDIATE:
683 {
684 struct tgsi_full_immediate *imm;
685 float vals[4];
686
687 imm = &p.FullToken.FullImmediate;
688 assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32);
689 assert(fpc->nr_imm < MAX_IMM);
690
691 vals[0] = imm->u[0].Float;
692 vals[1] = imm->u[1].Float;
693 vals[2] = imm->u[2].Float;
694 vals[3] = imm->u[3].Float;
695 fpc->imm[fpc->nr_imm++] = constant(fpc, -1, vals);
696 }
697 break;
698 default:
699 break;
700 }
701 }
702 tgsi_parse_free(&p);
703
704 /*if (++high_temp) {
705 fpc->r_temp = CALLOC(high_temp, sizeof(struct nv30_sreg));
706 for (i = 0; i < high_temp; i++)
707 fpc->r_temp[i] = temp(fpc);
708 fpc->r_temps_discard = 0;
709 }*/
710
711 return TRUE;
712
713 out_err:
714 /*if (fpc->r_temp)
715 FREE(fpc->r_temp);*/
716 tgsi_parse_free(&p);
717 return FALSE;
718 }
719
720 static void
721 nv30_fragprog_translate(struct nv30_context *nv30,
722 struct nv30_fragment_program *fp)
723 {
724 struct tgsi_parse_context parse;
725 struct nv30_fpc *fpc = NULL;
726
727 tgsi_dump(fp->pipe.tokens,0);
728
729 fpc = CALLOC(1, sizeof(struct nv30_fpc));
730 if (!fpc)
731 return;
732 fpc->fp = fp;
733 fpc->high_temp = -1;
734 fpc->num_regs = 2;
735
736 if (!nv30_fragprog_prepare(fpc)) {
737 FREE(fpc);
738 return;
739 }
740
741 tgsi_parse_init(&parse, fp->pipe.tokens);
742
743 while (!tgsi_parse_end_of_tokens(&parse)) {
744 tgsi_parse_token(&parse);
745
746 switch (parse.FullToken.Token.Type) {
747 case TGSI_TOKEN_TYPE_INSTRUCTION:
748 {
749 const struct tgsi_full_instruction *finst;
750
751 finst = &parse.FullToken.FullInstruction;
752 if (!nv30_fragprog_parse_instruction(fpc, finst))
753 goto out_err;
754 }
755 break;
756 default:
757 break;
758 }
759 }
760
761 fp->fp_control |= (fpc->num_regs-1)/2;
762 fp->fp_reg_control = (1<<16)|0x4;
763
764 /* Terminate final instruction */
765 fp->insn[fpc->inst_offset] |= 0x00000001;
766
767 /* Append NOP + END instruction, may or may not be necessary. */
768 fpc->inst_offset = fp->insn_len;
769 grow_insns(fpc, 4);
770 fp->insn[fpc->inst_offset + 0] = 0x00000001;
771 fp->insn[fpc->inst_offset + 1] = 0x00000000;
772 fp->insn[fpc->inst_offset + 2] = 0x00000000;
773 fp->insn[fpc->inst_offset + 3] = 0x00000000;
774
775 fp->translated = TRUE;
776 fp->on_hw = FALSE;
777 out_err:
778 tgsi_parse_free(&parse);
779 FREE(fpc);
780 }
781
782 static void
783 nv30_fragprog_upload(struct nv30_context *nv30,
784 struct nv30_fragment_program *fp)
785 {
786 struct pipe_screen *pscreen = nv30->pipe.screen;
787 const uint32_t le = 1;
788 uint32_t *map;
789 int i;
790
791 map = pipe_buffer_map(pscreen, fp->buffer, PIPE_BUFFER_USAGE_CPU_WRITE);
792
793 #if 0
794 for (i = 0; i < fp->insn_len; i++) {
795 fflush(stdout); fflush(stderr);
796 NOUVEAU_ERR("%d 0x%08x\n", i, fp->insn[i]);
797 fflush(stdout); fflush(stderr);
798 }
799 #endif
800
801 if ((*(const uint8_t *)&le)) {
802 for (i = 0; i < fp->insn_len; i++) {
803 map[i] = fp->insn[i];
804 }
805 } else {
806 /* Weird swapping for big-endian chips */
807 for (i = 0; i < fp->insn_len; i++) {
808 map[i] = ((fp->insn[i] & 0xffff) << 16) |
809 ((fp->insn[i] >> 16) & 0xffff);
810 }
811 }
812
813 pipe_buffer_unmap(pscreen, fp->buffer);
814 }
815
816 static boolean
817 nv30_fragprog_validate(struct nv30_context *nv30)
818 {
819 struct nv30_fragment_program *fp = nv30->fragprog;
820 struct pipe_buffer *constbuf =
821 nv30->constbuf[PIPE_SHADER_FRAGMENT];
822 struct pipe_screen *pscreen = nv30->pipe.screen;
823 struct nouveau_stateobj *so;
824 boolean new_consts = FALSE;
825 int i;
826
827 if (fp->translated)
828 goto update_constants;
829
830 /*nv30->fallback_swrast &= ~NV30_NEW_FRAGPROG;*/
831 nv30_fragprog_translate(nv30, fp);
832 if (!fp->translated) {
833 /*nv30->fallback_swrast |= NV30_NEW_FRAGPROG;*/
834 return FALSE;
835 }
836
837 fp->buffer = pscreen->buffer_create(pscreen, 0x100, 0, fp->insn_len * 4);
838 nv30_fragprog_upload(nv30, fp);
839
840 so = so_new(4, 4, 1);
841 so_method(so, nv30->screen->rankine, NV34TCL_FP_ACTIVE_PROGRAM, 1);
842 so_reloc (so, nouveau_bo(fp->buffer), 0, NOUVEAU_BO_VRAM |
843 NOUVEAU_BO_GART | NOUVEAU_BO_RD | NOUVEAU_BO_LOW |
844 NOUVEAU_BO_OR, NV34TCL_FP_ACTIVE_PROGRAM_DMA0,
845 NV34TCL_FP_ACTIVE_PROGRAM_DMA1);
846 so_method(so, nv30->screen->rankine, NV34TCL_FP_CONTROL, 1);
847 so_data (so, fp->fp_control);
848 so_method(so, nv30->screen->rankine, NV34TCL_FP_REG_CONTROL, 1);
849 so_data (so, fp->fp_reg_control);
850 so_method(so, nv30->screen->rankine, NV34TCL_TX_UNITS_ENABLE, 1);
851 so_data (so, fp->samplers);
852 so_ref(so, &fp->so);
853 so_ref(NULL, &so);
854
855 update_constants:
856 if (fp->nr_consts) {
857 float *map;
858
859 map = pipe_buffer_map(pscreen, constbuf,
860 PIPE_BUFFER_USAGE_CPU_READ);
861 for (i = 0; i < fp->nr_consts; i++) {
862 struct nv30_fragment_program_data *fpd = &fp->consts[i];
863 uint32_t *p = &fp->insn[fpd->offset];
864 uint32_t *cb = (uint32_t *)&map[fpd->index * 4];
865
866 if (!memcmp(p, cb, 4 * sizeof(float)))
867 continue;
868 memcpy(p, cb, 4 * sizeof(float));
869 new_consts = TRUE;
870 }
871 pipe_buffer_unmap(pscreen, constbuf);
872
873 if (new_consts)
874 nv30_fragprog_upload(nv30, fp);
875 }
876
877 if (new_consts || fp->so != nv30->state.hw[NV30_STATE_FRAGPROG]) {
878 so_ref(fp->so, &nv30->state.hw[NV30_STATE_FRAGPROG]);
879 return TRUE;
880 }
881
882 return FALSE;
883 }
884
885 void
886 nv30_fragprog_destroy(struct nv30_context *nv30,
887 struct nv30_fragment_program *fp)
888 {
889 if (fp->buffer)
890 pipe_buffer_reference(&fp->buffer, NULL);
891
892 if (fp->so)
893 so_ref(NULL, &fp->so);
894
895 if (fp->insn_len)
896 FREE(fp->insn);
897 }
898
899 struct nv30_state_entry nv30_state_fragprog = {
900 .validate = nv30_fragprog_validate,
901 .dirty = {
902 .pipe = NV30_NEW_FRAGPROG,
903 .hw = NV30_STATE_FRAGPROG
904 }
905 };